11,437 research outputs found

    Matrix Representation of Spiking Neural P Systems

    Get PDF
    Spiking neural P systems (SN P systems, for short) are a class of distributed parallel computing devices inspired from the way neurons communicate by means of spikes. In this work, a discrete structure representation of SN P systems with extended rules and without delay is proposed. Specifically, matrices are used to represent SN P systems. In order to represent the computations of SN P systems by matrices, configuration vectors are defined to monitor the number of spikes in each neuron at any given configuration; transition net gain vectors are also introduced to quantify the total amount of spikes consumed and produced after the chosen rules are applied. Nondeterminism of the systems is assured by a set of spiking transition vectors that could be used at any given time during the computation. With such matrix representation, it is quite convenient to determine the next configuration from a given configuration, since it involves only multiplication and addition of matrices after deciding the spiking transition vector.Ministerio de Ciencia e Innovación TIN2009-13192Junta de Andalucía P08-TIC0420

    Sparse-matrix Representation of Spiking Neural P Systems for GPUs

    Get PDF
    Current parallel simulation algorithms for Spiking Neural P (SNP) systems are based on a matrix representation. This helps to harness the inherent parallelism in algebraic operations, such as vector-matrix multiplication. Although it has been convenient for the rst parallel simulators running on Graphics Processing Units (GPUs), such as CuSNP, there are some bottlenecks to cope with. For example, matrix representation of SNP systems with a low-connectivity-degree graph lead to sparse matrices, i.e. containing more zeros than actual values. Having to deal with sparse matrices downgrades the performance of the simulators because of wasting memory and time. However, sparse matrices is a known problem on parallel computing with GPUs, and several solutions and algorithms are available in the literature. In this paper, we brie y analyse some of these ideas and apply them to represent some variants of SNP systems. We also conclude which variant better suit a sparse-matrix representation

    When Matrices Meet Brains

    Get PDF
    Spiking neural P systems (SN P systems, for short) are a class of distributed parallel computing devices inspired from the way neurons communicate by means of spikes. In this work, a discrete structure representation of SN P systems is proposed. Specifically, matrices are used to represent SN P systems. In order to represent the computations of SN P systems by matrices, configuration vectors are defined to monitor the number of spikes in each neuron at any given configuration; transition net gain vectors are also introduced to quantify the total amount of spikes consumed and produced after the chosen rules are applied. Nondeterminism of the systems is assured by a set of spiking transition vectors that could be used at any given time during the computation. With such matrix representation, it is quite convenient to determine the next configuration from a given configuration, since it involves only multiplying vectors to a matrix and adding vectors

    CuSNP: Spiking Neural P Systems Simulators in CUDA

    Get PDF
    Spiking neural P systems (in short, SN P systems) are models of computation inspired by biological neurons. CuSNP is a project involving sequential (CPU) and parallel (GPU) simulators for SN P systems. In this work, we report the following results: a P-Lingua le parser is included, for ease of use when performing simulations; extension of the matrix representation of SN P systems to include delay; comparison and analysis of our simulators by simulating two types (bitonic and generalized) of parallel sorting networks; extension of supported types of regular expressions in SN P systems. Our GPU simulator is better suited for generalized sorting as compared to bitonic sorting networks, and the GPU simulators run up to 50 faster than our CPU simulator. Finally, we discuss our experiments and provide directions for further work

    Matrix representation and simulation algorithm of spiking neural P systems with structural plasticity

    Get PDF
    Abstract(#br)In this paper, we create a matrix representation for spiking neural P systems with structural plasticity (SNPSP, for short), taking inspiration from existing algorithms and representations for related variants. Using our matrix representation, we provide a simulation algorithm for SNPSP systems. We prove that the algorithm correctly simulates an SNPSP system: our representation and algorithm are able to capture the syntax and semantics of SNPSP systems, e.g. plasticity rules, dynamism in the synapse set. Analyses of the time and space complexity of our algorithm show that its implementation can benefit using parallel computers. Our representation and simulation algorithm can be useful when implementing SNPSP systems and related variants with a dynamic topology, in software or..

    A Spiking Neural P System Simulator Based on CUDA

    Get PDF
    In this paper we present a Spiking Neural P system (SNP system) simulator based on graphics processing units (GPUs). In particular we implement the simulator using NVIDIA CUDA enabled GPUs. The massively parallel architecture of current GPUs is very suitable for the maximally parallel computations of SNP systems. We simulate a wider variety of SNP systems, after presenting a previous work on SNP system matrix representation which led to their simulation in GPUs, and the simulation algorithm included here. Finally, we compare and present the performance speedups of the CPU-GPU based simulator over the CPU only simulator.Ministerio de Ciencia e Innovación TIN2009–13192Junta de Andalucía P08-TIC-0420

    Application of Fuzzy Reasoning Spiking Neural P Systems to Fault Diagnosis

    Get PDF
    This paper discusses the application of fuzzy reasoning spiking neural P systems with trapezoidal fuzzy numbers (tFRSN P systems) to fault diagnosis of power systems, where a matrix-based fuzzy reasoning algorithm based on the dynamic firing mechanism of neurons is used to develop the inference ability of tFRSN P systems from classical reasoning to fuzzy reasoning. Some case studies show the effectiveness of the presented method. We also briefly draw comparisons between the presented method and several main fault diagnosis approaches from the perspectives of knowledge representation and inference process

    Simulating Spiking Neural P systems without delays using GPUs

    Get PDF
    We present in this paper our work regarding simulating a type of P system known as a spiking neural P system (SNP system) using graphics processing units (GPUs). GPUs, because of their architectural optimization for parallel computations, are well-suited for highly parallelizable problems. Due to the advent of general purpose GPU computing in recent years, GPUs are not limited to graphics and video processing alone, but include computationally intensive scientific and mathematical applications as well. Moreover P systems, including SNP systems, are inherently and maximally parallel computing models whose inspirations are taken from the functioning and dynamics of a living cell. In particular, SNP systems try to give a modest but formal representation of a special type of cell known as the neuron and their interactions with one another. The nature of SNP systems allowed their representation as matrices, which is a crucial step in simulating them on highly parallel devices such as GPUs. The highly parallel nature of SNP systems necessitate the use of hardware intended for parallel computations. The simulation algorithms, design considerations, and implementation are presented. Finally, simulation results, observations, and analyses using an SNP system that generates all numbers in N\mathbb N - {1} are discussed, as well as recommendations for future work.Comment: 19 pages in total, 4 figures, listings/algorithms, submitted at the 9th Brainstorming Week in Membrane Computing, University of Seville, Spai
    corecore