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Summary. Spiking neural P systems (SN P systems, for short) are a class of distributed
parallel computing devices inspired from the way neurons communicate by means of
spikes. In this work, a discrete structure representation of SN P systems is proposed.
Specifically, matrices are used to represent SN P systems. In order to represent the
computations of SN P systems by matrices, configuration vectors are defined to monitor
the number of spikes in each neuron at any given configuration; transition net gain vectors
are also introduced to quantify the total amount of spikes consumed and produced after
the chosen rules are applied. Nondeterminism of the systems is assured by a set of spiking
transition vectors that could be used at any given time during the computation. With
such matrix representation, it is quite convenient to determine the next configuration
from a given configuration, since it involves only multiplying vectors to a matrix and
adding vectors.

1 Introduction

Membrane computing was initiated by Păun [6] and has developed very rapidly
(already in 2003, ISI considered membrane computing as “fast emerging research
area in computer science”, see http://esi-topics.com). It aims to abstract com-
puting ideas (data structures, operations with data, computing models, etc.) from
the structure and the functioning of single cell and from complexes of cells, such
as tissues and organs including the brain. The obtained models are distributed
and parallel computing devices, called P systems. For updated information about
membrane computing, please refer to [8].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51401913?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


312 X. Zeng et al.

This work deals with a class of neural-like P systems, called spiking neural P
systems (SN P systems, for short) [3]. SN P systems were inspired by the neuro-
physiological behavior of neurons (in brain) sending electrical impulses along axons
to other neurons, with the aim of incorporating specific ideas from spiking neurons
into membrane computing. Generally speaking, in an SN P system the processing
elements are called neurons and are placed in the nodes of a directed graph, called
the synapse graph. The content of each neuron consists of a number of copies of
a single object type, namely the spike. Each neuron may also contain rules which
allow to remove a given number of spikes from it, or send spikes (possibly with a
delay) to other neurons. The application of every rule is determined by checking
the content of the neuron against a regular set associated with the rule.

Representation of P systems by discrete structures has been one topic in the
field of membrane computing. One of the promising discrete structures to represent
P systems is matrix. Models with matrices as their representation have been helpful
to physical scientists – biologist, chemists, physicists, engineers, statisticians, and
economists – solving real world problems. Recently, matrix representation was
introduced to represent a restricted form of cell-like P systems without dissolution
(where only non-cooperate rules are used) [2]. It was proved that with algebraic
representation P systems can be easily simulated and computed backward (that
is, to find all the configurations that produce a given one in one computational
step).

In this work, a matrix representation of SN P systems without delay is pro-
posed, where configuration vectors are defined to represent the number of spikes in
neurons; spiking vectors are used to denote which rules will be applied; a spiking
transition matrix is used to describe the skeleton of system; transition net gain
vectors are also introduced to quantify the total amount of spikes consumed and
produced after the chosen rules are applied. With these algebraic representation,
matrix transition can be used to compute the next configuration from a given
configuration.

The rest of this paper is organized as follows. In the next section, we introduce
the definition of SN P systems. Section 3 presents the matrix representation of SN
P systems. Section 4 illustrates how to represent the computation of SN P system
by matrix transition. Conclusions and remarks are given in Section 5.

2 Spiking Neural P Systems

In this section, a restricted variant of SN P systems, SN P systems without delay,
is introduced.

Definition 1. An SN P system without delay, of degree m ≥ 1, is a construct of
the form

Π = (O, σ1, . . . , σm, syn, in, out),

where:
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1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, . . . , σm are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m,

where:
a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the following two forms:

(1) E/ac → ap, where E is a regular expression over a, and c ≥ 1, p ≥ 1,
with the restriction c ≥ p;

(2) as → λ, for s ≥ 1, with the restriction that for each rule E/ac → ap

of type (1) from Ri, as /∈ L(E);
3. syn = {(i, j) | 1 ≤ i, j ≤ m, i 6= j } (synapses between neurons);
4. in, out ∈ {1, 2, . . . , m} indicate the input and output neurons, respectively.

The rules of type (1) are spiking (or called firing) rules, which are applied as
follows. If the neuron σi contains k spikes, and ak ∈ L(E), k ≥ c, then the rule
E/ac → ap ∈ Ri can be applied. This means that consuming (removing) c spikes
(thus only k− c spikes remain in σi), the neuron is fired, and it produces p spikes;
these spikes are transported to all neighbor neurons by outgoing synapses.

The rules of type (2) are forgetting rules; they are applied as follows: if the
neuron σi contains exactly s spikes, then the rule as → λ from Ri can be used,
meaning that all s spikes are removed from σi.

If a rule E/ac → a has E = ac, then it is written in the simplified form ac → a.
In each time unit, if a neuron σi can apply one of its rules, then a rule from

Ri must be applied. Since two spiking rules, E1/ac1 → ap1 and E2/ac2 → ap2 , can
have L(E1)∩L(E2) 6= ∅, it is possible that two or more rules are applicable in a neu-
ron, and in that case, only one of them is chosen and applied non-deterministically.
However, note that, by definition, if a spiking rule is applicable, then no forgetting
rule is applicable, and vice versa.

Thus, the rules are applied in the sequential manner in each neuron, at most
one in each step, but neurons function in parallel with each other. It is important
to notice that the applicability of a rule is established based on the total number
of spikes contained in the neuron.

A configuration of the system is described by the number of spikes present in
each neuron. Using the rules as described above, one can define transitions among
configurations. Any sequence of transitions starting in the initial configuration is
called a computation. A computation halts if it reaches a configuration where no
rule can be applied. The result of a computation is the number of steps elapsed
between the first two spikes sent by the output neuron during the computation.

3 Matrix Representation of SN P System

In this section, a matrix representation of SN P system is given.
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As mentioned in the above section, a configuration of the system is described
by the number of spikes present in each neuron. Here, vectors are used to represent
configurations.

Definition 2 (Configuration Vectors). Let Π be an SN P system with m neu-
rons, the vector C0 = (n1, n2, . . . , nm) is called the initial configuration vec-
tor of Π, where ni is the amount of the initial spikes present in neuron σi,
i = 1, 2, . . . ,m before the computation starts.

For any k ∈ N, the vector Ck = (n(k)
1 , n

(k)
2 , . . . , n

(k)
m ) is called the kth config-

uration vector of the system, where n
(k)
i is the amount of spikes in neuron σi,

i = 1, 2, . . . ,m after the kth step in the computation.

In order to describe which rules are chosen and applied in each configuration,
spiking vector is defined.

Definition 3 (Spiking Vectors). Let Π be an SN P system with m neurons and
n rules, m ≤ n < ∞. Assume a total order d : 1, . . . , n is given for all the n
rules, so the rules can be referred as r1, . . . , rn. A spiking vector s(k) is defined
as follows:

s(k) = (r(k)
1 , r

(k)
2 , . . . , r(k)

n ),

where:

r
(k)
i =





1, if the regular expression Ei of the rule ri is satisfied
and the rule ri is chosen and applied;

0, otherwise.

In particular, s(0) = (r(0)
1 , r

(0)
2 , . . . , r

(0)
n ) is called the initial spiking vector.

In each configuration, when the chosen rules are applied, the change of the
number of spikes in each neuron is represented by spiking transition matrix.

Definition 4 (Spiking Transition Matrix). Let Π be an SN P system with
m neurons and n rules, d : 1, . . . , n a total order given for all the n rules. The
spiking transition matrix of the system Π, MΠ , is defined as follows:

MΠ = [aij ]n×m,

where:

aij =





−c, if rule ri is in neuron σj and it is applied consuming c spikes;
p, if rule ri is in neuron σs (s 6= j and (s, j) ∈ syn)

and it is applied producing p spikes;
0, if rule ri is in neuron σs (s 6= j and (s, j) /∈ syn).

In a spiking transition matrix, the row i is associated with the rule ri : E/ac →
ap. Assume that the rule ri is in neuron σj . When the rule ri is applied, it consumes
c spikes in neuron σj ; neuron σs (s 6= j and (j, s) ∈ syn) receives p spikes from
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neuron σj ; neuron σs (s 6= j and (j, s) /∈ syn) receives no spike from neuron σj .
By the definition of spiking transition matrix, the entry in the position (i, j) is a
negative number; the other entries in the row i are non-negative numbers. So the
following observation holds:

Observation 1 Each row of a spiking transition matrix has exactly one negative
entry.

In a spiking transition matrix, the column i is associated with neuron σi. For
an SN P system, without loss of generality, it can be assumed that each neuron
has at least one rule inside (if a neuron has no rule inside, it just stores spikes,
sending no spikes to other neurons or environment, so it can be deleted without
any influence to the computational result of the system). Assume the rules to be
rm, rn, . . . . The rules consume spikes in neuron σi when they are applied. So the
corresponding entries (m, i), (n, i), . . . in the spiking transition matrix are negative
numbers, and the following observation holds:

Observation 2 Each column of a spiking transition matrix has at least one neg-
ative entry.

4 Computing via Matrices

In this section, it is shown how the computation of SN P system can be represented
by operations on matrices, by using the matrix representation defined in the above
section.

First, we provide an example before we define formally the matrix operations
for an SN P system.

Example 1. Let us consider an SN P system Π = ({a}, σ1, σ1, σ3, syn, out) that
generates the set N of natural numbers excluding 1, where σ1 = (2, R1), with
R1 = {a2/a → a, a2 → a}; σ2 = (1, R2), with R2 = {a → a}; σ3 = (1, R3),
with R3 = {a → a, a2 → λ}; syn = {(1, 2), (1, 3), (2, 1), (2, 3)}; out = 3. Π is also
represented graphically in Figure 1, which may be easier to understand .

In order to represent the above SN P system Π in a matrix, firstly, we set a
total order for all the rules in the system, which can be seen in Figure 1. With
this order, the rules can be denoted by r1, . . . , r5.

Let MΠ1 = [aij ]5×3 be the spiking transition matrix for Π. As defined in
Section 3, row i of MΠ is associated with rule ri : E/ac → ap, c ≥ 1, p ≥ 0
in system Π. The entries ai1, ai2, ai3 are the amount of spikes which neurons
σ1, σ2, σ3 will get (or consume) when rule ri is applied.

We have the following spiking transition matrix for the SN P system Π in
Figure 1.
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Fig. 1. An SN P system Π that generates the set N− {1}

MΠ =




−1 1 1
−2 1 1
1 −1 1
0 0 −1
0 0 −2




(1)

Initially, neurons σ1, σ2, σ3 have 2, 1, 1 spikes, respectively. According to
Definition 2, the initial configuration vector for system Π would be C0 = (2, 1, 1).
We also get the initial spiking vector by Definition 3: since neuron σ1 has two
rules r1 and r2 that could possibly be applied in the initial transition, one of the
rules could be chosen. The initial spiking transition vector would be (1, 0, 1, 1, 0) or
(0, 1, 1, 1, 0). Note here that we cannot use rule r5 because the regular expression
a2 is not satisfied in neuron σ3.

If rule r1 : a2/a → a is applied, it consumes one spike in neuron σ1 and sends 1
spike to neurons σ2 and σ3, respectively; at the same time, neuron σ2 sends 1 spike
to neurons σ1 and σ3. In this step, the net gain of neuron σ1 is 0 spike (it consumes
1 spike by r1 and receives 1 spike from neuron σ2); the net gain of neuron σ2 is
0 spike (it consumes 1 spike by r3 and receives 1 spike from neuron σ1); the net
gain of neuron σ3 is 1 spike (it consumes 1 spike by rule r5 and receives 2 spikes
from neurons σ1 and σ2, respectively). After this step, the numbers of spikes in
neurons σ1, σ2, σ3 are 2, 1, 2, respectively.

Our illustration above served as witness to the following results.

Definition 5 (Transition Net Gain Vector). Let Π be an SN P system with m

neurons and n rules, m ≤ n < ∞, Ck = (n(k)
1 , n

(k)
2 , . . . , n

(k)
m ) the kth configuration

vector of an SN P system Π. We define

NG(k) = Ck+1 − Ck,



When Matrices Meet Brains 317

as the transition net gain vector at step k.

Lemma 1. Let Π be an SN P system with m neurons and n rules, m ≤ n < ∞,
d : 1, . . . , n a total order for the n rules, MΠ the spiking transition matrix of Π,
s(k) the spiking vector at step k. Then the transition net gain vector at step k can
be obtained by

NG(k) = s(k) ·MΠ . (2)

Proof. Equation (2) implies that NG(k) = (g1, g2, . . . , gm), such that gj =
Σn

i=1 r
(k)
i aij , for all j = 1, 2, . . . , m. Note that the spiking vector s(k) is a

{0, 1}-vector that identifies the rules in each neuron that would be applied
at step k. Thus, gj represents the total amount of spikes obtained and con-
sumed by neuron σj after applying the rules identified by s(k). Therefore, we
have (n(k+1)

1 , n
(k+1)
2 , . . . , n

(k+1)
m ) = (n(k)

1 , n
(k)
2 , . . . , n

(k)
m ) + (g1, g2, . . . , gm), that is,

Ck+1 = Ck + NG(k).

Theorem 1. Let Π be an SN P system with m neurons and n rules, m ≤ n < ∞,
d : 1, . . . , n a total order for the n rules, MΠ the spiking transition matrix of
Π, C(k) the kth configuration vector, s(k) the spiking vector at step k, then every
configuration Ck of Π can be obtained by

Ck = Ck−1 + s(k−1) ·MSNP . (3)

Proof. This results follows directly from the preceding Lemma.

Let us go back to the example show in Figure 1. Given the initial configuration
vector C0 = (2, 1, 1), the next configuration of system Π can be computed as
follows:

If we choose the rules r1, r3, r4 to apply, the spiking vector will be s(0) =
(1, 0, 1, 1, 0), then the next configuration can be obtained by:

C1 = (2 1 1) + (1 0 1 1 0)




−1 1 1
−2 1 1
1 −1 1
0 0 −1
0 0 −2




= (2 1 2) (4)

In the next step, we choose r1, r3, r5 to apply, the spiking vector is (1, 0, 1, 0, 1),
then the next configuration is:

C2 = (2 1 2) + (1 0 1 0 1)




−1 1 1
−2 1 1
1 −1 1
0 0 −1
0 0 −2




= (2 1 2) (5)
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So, if we choose the spiking vector to be (1, 0, 1, 0, 1), the transition net gain
vector will be:

NG = (1 0 1 0 1)




−1 1 1
−2 1 1
1 −1 1
0 0 −1
0 0 −2




= (0 0 0) (6)

Equation (6) means that the configuration of the system will remain unchanged
as long as we choose rules r1, r3 and r5 to apply. However, at any moment, starting
from the first step of computation, neuron σ1 can choose to use the rule r2 : a2 → a,
in this case system will go to another configuration, we do not want to check the
computation in detail here but leave this task to the readers.

Finally, the following Corollary is a direct consequence of the preceding Theo-
rem.

Corollary 1. Let Π be an SN P system with m neurons and n rules, m ≤ n < ∞,
d : 1, . . . , n a total order for the n rules, MΠ the spiking transition matrix of Π,
C(k) the kth configuration vector, s(k) the spiking vector at step k, the previous
configuration Ck−1 can be obtained by

Ck−1 = Ck − s(k−1) ·MΠ . (7)

In our matrix representation, we do not include the environment. This idea can
be incorporated in the definition of a spiking transition matrix by introducing a
so-called augmented spiking transition matrix.

Definition 6 (Augmented Transition Spiking Matrix). Let Π be an SN P
system with m neurons and n rules, m ≤ n < ∞, d : 1, . . . , n a total order for the
n rules, MΠ the n×m spiking transition matrix of Π. We define an augmented
spiking transition matrix as follows:

[MΠ | e]n×(m+1),

where e = (e1, e2, . . . , en)T is a column representing environment, where:

ei =
{

p, if rule ri is in the output neuron and it is applied producing p spikes;
0, if rule ri is not in the output neuron.

Correspondingly, we define

Ck = (n(k)
1 , n

(k)
2 , . . . , n(k)

m , n(k)
e ),

to be augmented configuration vector after the kth step in the computa-
tion, where n

(k)
i is the amount of spikes in neuron σi, for all i = 1, 2, . . . ,m, n

(k)
e

is the amount of spikes collected by environment. Using this vector instead of the
configuration vector defined in Section 3 simply allows us to monitor the output
of a system.
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5 Conclusions and Remarks

In this paper, we have found a universal algebraic representation for SN P systems:
for every SN P system without delay, configuration vectors are defined to represent
the number of spikes in neurons; spiking vectors are used to denote which rules will
be applied; a spiking transition matrix is used to describe the skeleton of system.
Such algebraic representation turns out to be a reasonable representation of SN P
systems. It is shown that matrix computation is convenient for deciding the next
configuration of our systems.

It is not difficult to see that such matrix representation is also suitable for
other variants of SN P systems, such as asynchronous SN P systems [1], SN P
systems with exhaustive use of rules [4], and so on. The spiking transition matrix
is related to the structure of system only, so that the elements of the matrix are
determined initially. During the computation of a system, it is only necessary to
decide the spiking vector by checking the current configuration vector and the
regular expressions of rules. Thus, it is easy to program for computer application,
which can offer as a powerful tool for the simulation and analysis of these systems.

Anyway, there are many issues still worth investigating. Another research line
would be of interest to see whether matrix can be used for biological neural net-
works, for example, human brain. A problem is how to capture the feature that
neurons have refractory time (in the present paper, we have not considered this
feature in our model).
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