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Abstract
In this paper, we create a matrix representation for spiking neural P systems with structural plasticity (SNPSP, for short), 
taking inspiration from existing algorithms and representations for related variants. Using our matrix representation, we 
provide a simulation algorithm for SNPSP systems. We prove that the algorithm correctly simulates an SNPSP system: our 
representation and algorithm are able to capture the syntax and semantics of SNPSP systems, e.g. plasticity rules, dynamism 
in the synapse set. Analyses of the time and space complexity of our algorithm show that its implementation can benefit 
using parallel computers. Our representation and simulation algorithm can be useful when implementing SNPSP systems 
and related variants with a dynamic topology, in software or hardware.
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1 Introduction

In the realm of computer science, models are used to 
describe the workings of various systems and how they are 
said to be “computing.” These models possess various fea-
tures that depict how inputs are changed and manipulated 
to achieve the desired outputs. Present-day computers are 
based on some variants of the Turing machine and other 
“classical” models and, therefore, carry their characteristic 
advantages and disadvantages; speed, Turing-completeness, 
and space capacity are just some of the important properties 
that describe the abilities of these models. Small changes in 
any of these could spell the difference between being able 
to compute or solve a problem, and otherwise. It is thus 
imperative to come up with new models that overcome the 
obstacles that impede such classical models and, thus, solve 
problems in a more efficient way. While many new models 

still have no commercially available physical realization, 
simulation on modern computers is enough to highlight the 
abilities of such models until feasible prototypes are created.

A good example of such new models that are still in the 
simulation stage is those in the field of natural computing, 
specifically in membrane computing. These models are 
based on natural phenomena, like the transfer of chemicals 
within cells and throughout cell systems. The advantage of 
these models over classical models is their characteristic 
parallelism, even over small space constraints. The parallel-
ism could then be used to solve NP-complete and other hard 
problems in an efficient manner.

The specific model from membrane computing of interest 
in this work is the spiking neural P system (in short, SNP 
system) model [11, 20]. Much works exist about the comput-
ing power and efficiency of SNP systems: they are known to 
be Turing universal when computing (sets of) numbers or 
strings as in Refs. [7, 8, 11, 20]; they are computationally 
efficient, able to solve hard problems as in Refs. [12–14]. 
Various ideas from neuroscience and maths provide inspi-
rations to create variants of SNP systems, such as neuron 
division and budding in Ref. [17], astrocytes in Refs. [18, 
21], anti-spikes in Ref. [16], weights in synapses in Refs. 
[19, 25], rules on synapses in Ref. [23], synapse schedules in 
Ref. [1], and coloured spikes in Ref. [24]. Some real-world 
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applications have also been solved using SNP systems and 
variants, as in Refs. [22, 26, 28].

This paper focuses on a variant of SNP systems known 
as SNP systems with structural plasticity or SNPSP systems 
[4]. The matrix representation and simulation algorithm we 
present here for SNPSP systems draw inspiration from those 
mentioned in Refs. [4–6, 9, 27]. A preliminary version of the 
matrix representation in this paper is in Ref. [10].

As elaborated in Refs. [2, 6, 27], the benefits of a matrix 
representation compared to other representations are due to 
the increased parallelism when performing linear algebra 
operations. This increased parallelism when simulating com-
putations can benefit sequential (e.g. CPU) simulators but 
more so using parallel (e.g. GPU) simulators. More benefits 
using a matrix representation and other parallel computing 
techniques are recently given in Refs. [5, 9, 15]. In Ref. [15], 
variants of SN P systems that have a dynamic topology, i.e. 
adding or removing neurons, synapses, or both, is compared 
with respect to the recent technologies of GPUs. It is then 
noted in Ref. [15] that for such GPUs, the more efficient way 
to perform dynamism in the topology is the plasticity found 
in SNPSP systems.

The main contributions of this paper are the matrix rep-
resentation and simulation algorithm for SNPSP systems. 
The simulation algorithm is broken into smaller algorithms 
for clarity. We analyse the time and space complexity of 
our algorithm, which is useful for future implementations 
in computers. Our representation and algorithm are able to 
capture the syntax and semantics of SNPSP systems, and 
we show this using proofs of correctness. Features specific 
to SNPSP systems, such as creating or deleting synapses 
among neurons, are correctly simulated. This paper is struc-
tured as follows: in Sect. 2, the preliminaries for this work 
are introduced; in Sects. 3 and 4, our matrix representation 
and notations are provided, respectively; the representation 
and notations are used in our simulation algorithm in Sect. 5; 
an example of our algorithms is in Sect. 6; lastly, Sect. 7 
provides closing remarks and research directions. Detailed 
proofs of our theorems are given in Appendix 1.

2  Preliminaries

For this work, a specific variant of the SNP system would be 
in focus, namely the spiking neural P system with structural 
plasticity (SNPSP). Here, forgetting rules are replaced by 
plasticity rules, thus marking the characteristic difference 
between the two models. Plasticity rules allow for the crea-
tion, deletion, and rewiring of synapses by their respective 
source neurons. More formally, it is also given in Ref. [4]:

Definition 1 (SNPSP system) A spiking neural P system with 
structural plasticity (SNPSP system, for short) of degree 
m ≥ 1 is a construct of the form

where

1. O = {a} is the singleton alphabet (a is called spike)
2. �1,… , �m are pairs �i = (ni,Ri), 1 ≤ i ≤ m , called neu-

rons, where ni ≥ 0 and ni ∈ ℕ ∪ {0} represents the initial 
spikes in �i and Ri is a finite set of rules of �i with the 
following forms:

(a) Spiking rule: E∕ac → a , where E is a regular 
expression over O, with c ≥ 1;

(b) Plasticity rule: E∕ac → �k(i,Nj) , where c ≥ 1 , 
� ∈ {+,−,±,∓} ,  k ≥ 1 ,  1 ≤ j ≤ |Ri| ,  and 
Nj ⊆ {1,… ,m}.

3. syn ⊆ {1,… ,m} × {1,… ,m} ,  with (i, i) ∉ syn for 
1 ≤ i ≤ m, are synapses between neurons;

4. out ∈ {1,… ,m} indicates the output neuron.

Given neuron �i (we can also say neuron i or simply �i 
if there is no confusion), we denote the set of neuron labels 
which has �i as their presynaptic neuron as pres(i), i.e. 
pres(i) = {j|(i, j) ∈ syn} . Similarly, we denote the set of 
neuron labels which has �i as their postsynaptic neuron as 
pos(i) = {j|(j, i) ∈ syn}.

Plasticity rules are applied as follows. If at time t 
we have that �i has b ≥ c spikes and ab ∈ L(E) , a rule 
E∕ac → �k(i,N) ∈ Ri can be applied. The set N is a collec-
tion of neurons to which �i can connect to (synapse creation) 
or disconnect from (synapse deletion) using the applied plas-
ticity rule. The rule consumes c spikes and performs one of 
the following, depending on �:

If � = + and N − pres(i) = � , or if � = − and pres(i) = � , 
then there is nothing more to do, i.e. c spikes are con-
sumed but no synapse is created or removed. For � = + : If 
|N − pres(i)| ≤ k , deterministically create a synapse to every 
�l , l ∈ Nj − pres(i) . If, however, |N − pres(i)| > k , then non-
deterministically select k neurons in N − pres(i) and create 
one synapse to each selected neuron.

For � = − : If |pres(i)| ≤ k , deterministically delete all 
synapses in pres(i). If, however, |pres(i)| > k , then non-
deterministically select k neurons in pres(i) and delete each 
synapse to the selected neurons.

If � ∈ {±,∓} , create (respectively, delete) synapses at 
time t and then delete (respectively, create) synapses at 
time t + 1 . Only the priority of application of synapse crea-
tion or deletion is changed, but the application is similar 
to � ∈ {+,−} . The neuron is always open from time t until 

� = (O, �1,… , �m, syn, out)
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t + 1 , i.e. the neuron can continue receiving spikes. However, 
the neuron can only apply another rule at time t + 2.

An important note is that for �i applying a rule with 
� ∈ {+,±,∓} , creating a synapse always involves an embed-
ded sending of one spike when �i connects to a neuron. 
This single spike is sent at the time the synapse creation is 
applied. Whenever �i attaches to �j using a synapse during 
synapse creation, we have �i immediately transferring one 
spike to �j.

If two rules with regular expressions E1 and E2 can be 
applied at the same time, that is, L(E1) ∩ L(E2) ≠ � , then 
only one of them is nondeterministically chosen and applied. 
All neurons, therefore, apply at most one rule in one time 
step (locally sequential), but all neurons that can apply a 
rule must do so (globally parallel). Note that the application 
of rules in neurons is synchronized, that is, a global clock 
is assumed.

A system state or configuration of an SNPSP system is 
based on (a) distribution of spikes in neurons and (b) neuron 
connections based on the synapse graph syn. We can rep-
resent (a) as ⟨s1,… , sm⟩ where si, 1 ≤ i ≤ m , is the number 

of spikes contained in �i . For (b), we can derive pres(i) and 
pos(i) from syn, for a given �i . The initial configuration, 
therefore, is represented as ⟨n1,… , nm⟩ , with the possibil-
ity of a disconnected graph, i.e. syn = � . A computation 
is defined as a sequence of configuration transitions from 
an initial configuration. A computation halts if the system 
reaches a halting configuration, that is, a configuration where 
no rules can be applied and all neurons are open. Whether a 
computation is halting or not, we associate natural numbers 
1 ≤ t1 < t2 < ⋯ corresponding to the time instances when 
the neuron out sends a spike out to (or when in receives a 
spike from) the system.

A result of a computation can be defined in several ways 
in SNP systems literature, but in this work we use the follow-
ing as in [11]: We only consider the first two time instances 
t1 and t2 that �out spikes. Their difference, i.e. the number 
t2 − t1 , is said to be computed by �.

As an illustration, consider an SNPSP system �ex shown 
in Fig. 1 from [4]. Each rule in Fig. 1 is labeled as R, i to 
mean the ith rule of type R . Thus, a rule with label P, 3 
is known as rule rP,3 (more on this in Sect. 3). Neurons 2, 
out = 3 , 4, and 5 contain only the rule a → a , and we omit 
this from writing. In the initial configuration, at time t0 = 0 , 
is where only �1 has two spikes and �3 has only one spike. 
Neuron 1 is the only neuron with plasticity rules, where we 
have syn = {(2, 4), (2, 5), (4, 1), (5, 1)}.

As detailed in Ref. [4], we have �ex computing the set 
{1, 4, 7, 10,…} = {3m + 1|m ≥ 0} . In Table 1, the output of 
�ex is t2 − t1 = 1 if neuron �1 creates synapse (1, 3), where 
(!) means that the output neuron �3 fires a spike to the envi-
ronment, and t2 and t1 are the second and first time �3 fires, 
respectively. In Table 2, the output of �ex is 4 if �1 creates 
synapse (1, 2) instead of (1, 3).

1

2
3

4

5
a2

a2/a → +1(1, {2, 3})

a → −1(1, {2, 3})

a

a → a
a → a

a → a

a → a

P,1

P,2

S,1
S,2

S,3

S,4

Fig. 1  An SNPSP system �
ex

Table 1  Computation of �
ex

 
for {1}

Time �
1

�
2

�
3

�A
1

�A
2

syn

0 2 0 1 0 0 syn
t
1
= 1 1 0 1 (!) 0 0 syn ∪ {(1, 3)}

t
2
= 2 0 0 0 (!) 0 0 syn

Table 2  Computation of �
ex

 
for {4}

Time �
1

�
2

�
3

�A
1

�A
2

syn

0 2 0 1 0 0 syn
t
1
= 1 1 1 0 (!) 0 0 syn ∪ {(1, 2)}

2 0 0 0 1 1 syn
3 2 0 0 0 0 syn
4 1 0 1 0 0 syn ∪ {(1, 3)}

t
2
= 5 0 0 0 (!) 0 0 syn
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3  Matrix representation of SNPSP

To illustrate how SNPSP systems can be represented 
as specified below, we use �ex in Fig. 1. Using the for-
mal definition, the system can thus be expressed as 
�ex = ({a}, �1, �2, �3, �4, �5, syn, 3) .  The neurons are 
(from �1 to �5 ) (2, {rP,1, rP,2}) , (0, {rS,1}) , (1, {rS,2}) , 
(0, {rS,3}) , and (0, {rS,4}) ; the synapses are defined as 
syn = {(2, 4), (2, 5), (5, 1), (4, 1)}, 3) ; and finally the rules 
are rP,1 = a2∕a → +1(1, {2, 3}) , rP,2 = a → −1(1, {2, 3}) , 
and rS,i = a → a,∀i ∈ {1, 2, 3, 4}.

For SNPSP systems, a neuron is said to be defined by its 
spike count and the set of rules associated with it. With this, 
we define the spike count vector and the rule source matrix.

Definition 2 (Spike count vector) Let � be an SNPSP sys-
tem with m neurons. In a computation, for any k ∈ ℕ , the 
vector C(k) = [c

(k)

1
, c

(k)

2
,… , c(k)

m
] is called the spike count vec-

tor of the system at time k, where c(k)
i

 is the amount of spikes 
in neuron �i, i = 1, 2,… ,m at time k.

Note that a key feature of the matrix representation being 
defined is the separate ordering of the spiking and plasticity 
rules, from 1 to rS and from 1 to rP , respectively. There are 
a total of r = rS + rP rules.

Definition 3 (Rule source matrix) Let � be an SNPSP sys-
tem with m neurons. Let rR be the number of rules of type 
R ∈ {P,S} , where P and S correspond to plasticity and 
spiking rules, respectively. Let dR ∶ (R, 1),… , (R, rR) be a 
total ordering of rules of type R . The rule source matrices 
of the system � , SrR , are defined as follows:

where

We also define an aggregate rule source matrix Sr to denote 
the combination of SrP and SrS , with the rows (rules) arbi-
trarily ordered.

For �ex , the initial spike counts and the rule source matri-
ces are

SrR =

⎡⎢⎢⎣

srR,1,1 ⋯ srR,1,m

⋮ ⋱ ⋮

srR,rR,1
⋯ srR,rR,m

⎤⎥⎥⎦

srR,i,j =

{
1, if rule rR,i is in neuron �j;

0, otherwise.

(1)C(0) =
[
2 0 1 0 0

]

(2)SrP =

[
1 0 0 0 0

1 0 0 0 0

]

Next in the definition of SNPSP systems is the set of syn-
apses. Here, since these connections are not constant, the 
synapse matrix is defined to change with time. In addition 
to that, we define matrices that record the newly created (and 
deleted) synapses.

Definition 4 (Synapse matrix) In an SNPSP system � with 
m neurons, the synapse matrix, Sy(k) , at time k, is defined as 
follows:

where

Definition 5 (Synapse creation [deletion] matrix) In an 
SNPSP system � with m neurons, the synapse creation 
[deletion] matrix, Sy(k)+  [ Sy(k)

−
 ], at time k, is defined as fol-

lows ( o ∈ {+,−}):

where

and the indicated operation is deletion if o = − or creation 
if o = +.

We also  def ine  a  synapse change matr ix 
Sy

(k)

Δ
= Sy

(k)
+ − Sy(k)

−
 to be the net change in the synapse 

matrix at time k.

Given Definitions 4 and 5, we can obtain the next synapse 
matrix with

(3)SrS =

⎡⎢⎢⎢⎣

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎤⎥⎥⎥⎦

Sy(k) =
�
sy

(k)

i,j

�
m×m

=

⎡
⎢⎢⎢⎣

sy
(k)

1,1
⋯ sy

(k)

1,m

⋮ ⋱ ⋮

sy
(k)

m,1
⋯ sy(k)

m,m

⎤
⎥⎥⎥⎦

sy
(k)

i,j
=

⎧⎪⎨⎪⎩

1,
if there exists a synapse from neuron �i

to neuron �j at time k;

0, otherwise.

Sy(k)
o

=
�
sy

(k)

o,i,j

�
m×m

=

⎡⎢⎢⎢⎣

sy
(k)

o,1,1
⋯ sy

(k)

o,1,m

⋮ ⋱ ⋮

sy
(k)

o,m,1
⋯ sy(k)

o,m,m

⎤⎥⎥⎥⎦

sy
(k)

o,i,j
=

⎧⎪⎨⎪⎩

1,
if a synapse from neuron �i to neuron �j

was operated on at time k;

0, otherwise.
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Since time k = 0 is the start of the computation, no synapses 
are supposed to have been created or deleted. We see that 
Sy

(0)
+  , Sy(0)

−
 , and Sy(0)

Δ
 are thus zero. Sy(0) , on the other hand, 

shows the initial set of synapses at the start, and so that of 
the system �ex is

The synapse from neuron �3 to the environment is not shown 
here, but is indicated in the declaration of �ex , since out = 3 . 
This connection is constant throughout the computation and, 
thus, cannot be changed by either Sy+ or Sy−.

Definition 2 records the spikes stored in the neurons, but 
here we would also need to know about the spikes sent out 
to the environment. For this, we have

Definition 6 (Output spike count and output spike indicator) 
In an SNPSP system � , the output spike count at time k is 
denoted by os(k) , which is the number of spikes already sent 
out by the output neuron to the environment from time 0 
to time k. The output spike indicator at time k is defined as

In the computation as in Table 2, the output neuron spiked 
to the environment at times t1 = 1 and t2 = 5 . Table 3 shows 
the values of os(k) and sp(k).

Next, we define vectors and matrices that describe the 
rules associated with the neurons of the system � . First, we 
need to describe the regular expressions used by the rules to 
determine the number of spikes required for firing. For this 
work, we shall be limiting these regular expressions to be of 
the forms ak , a+ , a∗ , ak(aj)∗ , and ak(aj)+ , for some positive 

(4)Sy(k) = Sy(k−1) + Sy
(k)

Δ
= Sy(k−1) + Sy

(k)
+ − Sy(k)

−

(5)Sy(0) =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 0 0 1 1

0 0 0 0 0

1 0 0 0 0

1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

sp(k) =

⎧⎪⎨⎪⎩

1,
if a spike was sent out to the environment

at time k;

0, otherwise.

integers j and k. In general, we describe these regular expres-
sions to be of linear form—i.e. they can be described by the 
pattern ap+qn = ap(aq)∗ for integers p, q, n ≥ 0 , p + q ≥ 1 . 
Table 4 illustrates this.

Thus, we can describe the regular expressions by their 
corresponding p and q values.

Definition 7 (Regular expression P and Q vectors) In an 
SNPSP system � , PS and QS [ PP and QP ] are the (regular 
expression) P and Q vectors of the spiking [plasticity] rules, 
defined as PR = [pR,1,… , pR,rR

] and QR = [qR,1,… , pR,rR
] 

for R ∈ {P,S} , which describe the p and q values for the 
regular expressions of each rule, such that

where p̄ = pR,i , q̄ = qR,i , and ER,i is the regular expression 
of the rule rR,i.

We also define aggregate P and Q vectors to denote the 
combination of PP with PS , and QP with QS , respectively. 
The elements are arbitrarily ordered.

Once we can decide if a rule can fire, we can then check 
which rules would fire and which would not. Note that for 
this work, if a rule is applicable, it must fire immediately. 
Rules have also been restricted to determinism per neuron, 
and to sequentiality. Thus, for rules ra and rb both in the 
same neuron, ra ≠ rb , L(Ea) ∩ L(Eb) = � . We then have the 
following definition:

Definition 8 (Rule firing vector) In an SNPSP system � , the 
rule firing vectors at time k are defined as the vector

for R ∈ {P,S} ( P for plasticity rules, S for spiking rules). 
The vectors describe which rules will be fired, as follows:

We also define an aggregate rule firing vector Fi to denote 
the combination of FiP and FiS , with the elements arbitrar-
ily ordered.

ER,i = ap̄+q̄n = ap̄(aq̄)∗

Fi
(k)

R
=
[
fi
(k)

R,1
,… , fi

(k)

R,rR

]

fi
(k)

R,i
=

{
1, if rule rR,i is fired at time k;

0, otherwise.

Table 3  Output spike counts 
and indicators for �

ex
 

Computing {4}

Time os(k) sp(k)

0 0 0
t
1
= 1 1 1

2 1 0
3 1 0
4 1 0
t
2
= 5 2 1

Table 4  Allowed forms of 
regular expressions

Form Pattern p q

a∗ a0(a1)∗ 0 1
a+ a1(a1)∗ 1 1
ak ak(a0)∗ k 0
ak(aj)∗ ak(aj)∗ k j

ak(aj)+ ak+j(aj)∗ k + j j
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Since the regular expressions in �ex are only of the 
forms a and a2 , the Q vectors are just zero vectors of 
lengths 4 and 2 for spiking and plasticity rules, respectively. 
PS = [1, 1, 1, 1] since all the spiking rules are the same, and 
PP = [2, 1] . Nothing fires at the start of the computation, so 
Fi

(0)

S
 and Fi(0)

P
 are both zero vectors. Then, since only neurons 

�1 and �3 have spikes at the start, and both have applicable 
rules, the rule firing vectors at time 1 are Fi(1)

S
= [0, 1, 0, 0] 

and Fi(1)
P

= [1, 0].
Once a rule is fired, it consumes a specified number of 

spikes from its source neuron. Thus, we have

Definition 9 (Spike consumption vector) In an SNPSP sys-
tem � , the spike consumption vectors at time k are defined 
as the vector Co(k)

R
=
[
co

(k)

R,1
,… , co

(k)

R,rR

]
 , for R ∈ {P,S} ( P 

for plasticity rules, S for spiking rules). Here, co(k)
R,i

= c is 
the number of spikes consumed by rule rS,i = E∕ac → ap if 
R = S , or by rule rP,i = E∕ac → �k(i,N) if R = P.

We also define an aggregate spike consumption vector Co 
to denote the combination of CoP and CoS , with the elements 
arbitrarily ordered.

Since all the rules in �ex consume only one spike upon 
firing, the spike consumption vectors are CoS = [1, 1, 1, 1] 
and CoP = [1, 1].

The plasticity rules have four types of operations, namely 
+ for synapse creation, − for synapse deletion, ± for suc-
cessive creation and deletion in two time steps, and ∓ for 
successive deletion and creation. Given that for the latter two 
operations the creation and deletion occur in two consecu-
tive time steps, we can then decide when to execute which 
plasticity operation using timers in a similar manner to the 
delays in Ref. [27]. The timers count down at every time 
step, execute their respective operation upon reaching 1, and 
then stop at 0. Just as in Ref. [10], this is further illustrated 
as timers of the form (creation, deletion) follows: starting at 
an idle state, the timer is initialized at (0, 0). A + or a − oper-
ation will set it to (1, 0) and (0, 1), respectively. Lastly, the ± 
and ∓ operations, having their component operations done in 
two consecutive time steps, set the timer to (1, 2) and (2, 1), 
respectively. For all of these, the timers count down at every 
time step up to 0.

Definition 10 (Timer matrix) In an SNPSP system � , the 
timer matrix at time k is defined as the matrix

where, for o = [+,−]:

Ti(k) =

⎡⎢⎢⎢⎣

ti
(k)

1,1
ti
(k)

1,2

⋮ ⋮

ti
(k)

rP,1
ti
(k)

rP,2

⎤⎥⎥⎥⎦

We also define a primed timer matrix, Ti�(k) , which is the 
timer after ticking (counting down) at time k, but before 
rules are fired at time k. Thus, Ti(k) is also called the 
unprimed timer matrix.

Once we find out a rule should fire at time k, we then start 
the timer using the following matrix:

Definition 11 (Timer start matrix) In an SNPSP system � , 
the timer start matrix is defined as the matrix

where each sti,j would be the value that ti(k)
i,j

 should be set to 
once rule rP,i is to fire at time k.

Since rules rP,1 and rP,2 would, respectively, create and 
delete a synapse, the timer start matrix would be

Given that rule rP,1 is to fire at the beginning, the timer 
matrix at the start would then be

For the remaining parts of the plasticity rules as defined, we 
have the following:

Definition 12 (Destination candidate matrix) In an SNPSP 
system � , the destination candidate matrix is defined as 
the matrix

where

Definition 13 (Synapse count vector) In an SNPSP system 
� , the synapse count vector is defined as the vector

ti
(k)

i,j
=

{
t, if rule rP,i is to execute oj at time k + t − 1;

0, otherwise.

St =

⎡
⎢⎢⎢⎣

st1,1 st1,2
st2,1 st2,2
⋮ ⋮

strP,1 strP,2

⎤
⎥⎥⎥⎦

(6)St =

[
1 0

0 1

]

(7)Ti(0) =

[
1 0

0 0

]

NM =

⎡⎢⎢⎣

nm1,1 ⋯ nm1,m

⋮ ⋱ ⋮

nmrP,1
⋯ nmrP,m

⎤⎥⎥⎦

nmi,j =

{
1, if i ∈ Nj, for rule rP,j = E∕ac → �k(i,Nj);

0, otherwise.

KV =
[
kv1,… , kvrP

]
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where each kvi = k , for rule ri = E∕ac → �k(i,Nj).

Rules rP,1 and rP,2 are to both operate on one synapse to 
either neuron �2 or �3 , and thus

Finally, for the simulations, we need to keep track of each 
computation step and system configuration. Thus, we have 
the following definitions.

Definition 14 (Spike gain vector) In an SNPSP system � 
with m neurons, the spike gain vector at time k is defined as 
the vector G(k) =

[
g
(k)

1
,… , g(k)

m

]
 where each g(k)

i
 is the number 

of spikes gained by the neuron �i in time k, from other neu-
rons. These gains can also be segregated according to the 
type of the rule that caused that gain, as with 
G

(k)

R
=
[
g
(k)

R,1
,… , g

(k)

R,m

]
 where R = P for plasticity rules and 

R = S for spiking rules.

Definition 15 (Spike loss vector) In an SNPSP system � 
with m neurons, the spike loss vector at time k is defined as 
the vector L(k) =

[
l
(k)

1
,… , l(k)

m

]
 where each l(k)

i
 is the number 

of spikes lost by the neuron �i in time k from spike consump-
tion by rule firing. These losses can also be segregated 
according to the type of the rule that caused that loss, as with 
L
(k)

R
=
[
l
(k)

R,1
,… , l

(k)

R,m

]
 where R = P for plasticity rules and 

R = S for spiking rules.

Definition 16 (System state) In the computations of an 
SNPSP system �  , the overall system state at time k is 
defined as

where Rule(k) is the rule change node, Syn(k) is the synapse 
change node, and Conf (k) is the system configuration node, 
all for time k.

The initial state Cf (0) marks the start of a computation. A 
computation is only to be terminated by a halting state Cf (t) , 
where either (1) os(t) has been set to 2, or (2) t has reached a 
certain desired maximum time step.

The next few definitions would be for representing and 
generating computations and would be very important in the 
simulation algorithms.

(8)NM =

[
0 1 1 0 0

0 1 1 0 0

]

(9)KV =
[
1 1

]

Cf (k) = ⟨Rule(k)�Syn(k)�Conf (k)⟩
= ⟨Fi(k), Ti(k), os(k), sp(k)�Sy(k)

Δ
�C(k), Sy(k), Ti�(k)⟩

Definition 17 (Computation trace) Given an SNPSP sys-
tem � , a computation trace of � is a sequence of nodes 
{Conf (0) , Rule(1) , Syn(1) , Conf (1) , … , Conf (t)} starting with 
an initial configuration node Conf (0) followed by triples of 
nodes of (Rule(k), Syn(k),Conf (k)) representing system states. 
A computation trace is said to be valid iff the following con-
ditions are satisfied:

– each system state Cf (k) (after the initial configuration) can 
be correctly generated or computed from the previous 
system state Cf (k−1);

– the initial system state is represented by Rule(0) (not in 
the sequence but defined to be filled with 0-values), Syn(0) 
(also not in the sequence but defined to be filled with 
0-values), and Conf (0);

– the terminating (halting) system step is represented by 
the last rule change node Rule(t) either holds os(t) = 2 or 
t has reached a maximum time step.

Definition 18 (Computation tree) Given an SNPSP sys-
tem � , a computation tree/graph for � is a rooted graph 
where each path from the root (the initial configuration node 
Conf (0) ) to a leaf (halting configuration node Conf (t) ) is a 
computation trace for � . A computation tree is said to be 
correct if the set of all paths from the root to the leaves is 
equal to the set of valid computation traces.

Note that we would allow loops in generating a compu-
tation tree, thus making it more appropriate to call them 
computation graphs.

4  Notations and conventions

Here, we would describe the conventions and notations in 
writing matrices. In this work, given a matrix Mat , we would 
refer to the rth row and the cth column as Matr and Mat(c) , 
respectively. Note that these are both row vectors. For a 
matrix with subscripts and superscripts, as with Mat(k)

x
 , we 

would then have Mat(k)
x,r

 and Mat
(k)

x,(c)
 . Since scalars here would 

usually be written in lowercase, a particular element of the 
matrix (say, the (i,  j)th) would be denoted by mati,j . For 
example, for a matrix

Mat1 = [1, 2, 3] is the first row, Mat(2) = [2, 2, 2] is the sec-
ond column (as a row vector), and mat2,3 = 3 is the value at 
the intersection of the second row and third column.

Mat =

⎡⎢⎢⎣

1 2 3

1 2 3

1 2 3

⎤⎥⎥⎦
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5  Simulation algorithm

The algorithm is centered on forming the computation tree 
from a given configuration, by first branching out into rule 
nodes for the rule changes at the current time. Then, the rule 
nodes propagate into synapse nodes for the synapse changes 
(now for the next time step). Lastly, the synapse nodes branch 
out into their own configuration nodes for the system configu-
rations. Note that since we are only considering nondetermin-
ism in the synapse level, the configuration nodes will only 
ever branch out into just one single rule node each.

The simulation main algorithm will go as in Algorithm 1, 
creating a computation “tree” (strictly speaking, since identi-
cal configuration nodes will be joined, it is more of a com-
putation graph) up to a specified depth. It creates the graph 
by forming the configuration nodes in a breadth-first manner 
using a queue, then the subtree of each configuration node (up 
to two levels) if created in a depth-first manner. The history of 
the past configurations (for checking uniqueness) is created 
using some arbitrary data structure. The specific methods of 
the graph and queue (connect, dequeue, enqueue, pop, push, 
empty, tooDeep) would not be specified in detail. Details of 
the proofs of the following theorems are given in Appendix 1.

Algorithm 1: Main Algorithm
1 initializeValues()

/* gets input, initializes matrices & vectors, and generally initializes
system */

2 confs ← [Cf (0)]
3 hist ← [Cf (0) → node (Cf (0))]

/* mapping of all prev configurations to their nodes in the computation
tree */

4 while not empty( confs) :
5 conf ← dequeue(confs)
6 if not tooDeep( conf) :
7 continue

8 rules ← getRules(conf)
9 while not empty( rules) :

10 rule ← pop(rules)
11 connect(conf, rule)
12 syns ← getSyns(conf, rule)
13 while not empty( syns) :
14 syn ← pop(syns)
15 connect(rule, syn)
16 cur ← getConf(conf, rule, syn)
17 if cur in hist :
18 connect(syn, hist [ cur ] )

19 else:
20 connect(syn,cur)
21 if os < 2 : enqueue(confs,conf)

Algorithm 2 will then check the applicability of the rules. 
This is done using the P and Q vectors of the given system. 
The for loop in Line 3 would check if ani , where ni is the 
number of spikes in neuron �i , would satisfy the regular 
expression for each of the rules. Note that the output spikes 
are monitored by Line 9. newFi Line 5 returns an all-zero 
firing vector for rules of type R . Line 13 would just check 
if the rule was already fired and is still applying a plasticity 
operation, where the timer would be at 0, since it did not 
just start firing then. The primed timer would just be copied 
over to the unprimed timer without changes. Otherwise, if 
the rule would only start to be applied, then Line 16 would 
start the timer. Lastly, Line 18 would return the appropriate 

rule node. Details of newRule() would not be given, except 
for it being the constructor of rule nodes.

Algorithm 2: Get Rule Nodes
function getRules( conf ) :

1 k ← k + 1
2 os(k), sp(k) ← os(k−1), 0
3 for each R in {S,P} :
4 Sp ← (C(k−1) × SrTR)− PR

5 Fi(k)R ← newFi(R)
6 for i from 1 to rR :
7 if (qR,i, Spi > 0 and Spi mod qR,i = 0) or qR,i, Spi = 0 :
8 fi

(k)
R,i ← 1

9 if R = S and SrS,out,i = 1 : os(k), sp(k) ← os(k) + 1, 1

10 else :
11 fi

(k)
R,i ← 0

12 for i from 1 to rP :
13 if 1 in T i

′(k−1)
i :

14 fi
(k)
P,i ← 0

15 T i
(k)
i ← T i

′(k−1)
i

16 else if fi
(k)
P,i = 1 :

17 T i
(k)
i ← Sti

18 return [ newRule(Fi(k),Ti(k),os(k),sp(k)) ]

Theorem 1 For an SNPSP system � , the getRules() func-
tion (as described in Algorithm 2) generates a list of all the 
applicable rule nodes Rule(k) given Conf (k−1).

Algorithm 3 would generate each configuration based on 
the possible combinations of candidate neurons nondeter-
ministically selected by plasticity rules. �������������() 
would generate all permutations for this given these candi-
dates (based on NM and KV  and whichever of the synapses 
are existent on Sy(k) ). These candidates are all stored the 
���� stack, as pushed in Line 4. It would return a vector of 
(Sy+, Sy−) pairs.

Algorithm 3: Get Synapse Nodes
function getSyns( conf, rule ) :

1 syns ← [ ]
2 for each (Sy+,Sy−) in getCandidates(SrP , NM, KV , Sy(k)) :

/* gets a list of all possible combinations of candidate synapses
based on the N of the rule and the previous synapse

/*snoitcennoc

3 Sy(k)
∆ ← Sy(k)

+ − Sy(k)
−

4 push(syns, newSyn(Sy(k)
∆ ))

5 return syns

Theorem  2 For an SNPSP system �  , the getSyns() 
function (as described in Algorithm 3) returns Syn(k) given 
Conf (k−1) , and Rule(k).

Lastly, Algorithm 4 is focused on creating the current 
configuration given the previous one. First, we note that the 
kth configuration can be calculated from the total gain and 
the total loss as such

We are classifying the gains or losses according to the 
type of the causing rule, and thus L(k) = L

(k)

P
+ L

(k)

S
 and 

G(k) = G
(k)

P
+ G

(k)

S
.

C(k) = C(k−1) + G(k) − L(k)
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Spike gains from spiking rules can be computed by check-
ing the rules that fired and then tracing the source neurons of 
those rules and the destination of their corresponding out-
synapses. Therefore

Theorem 3 For an SNPSP system � with m neurons and 
rS spiking rules, where d ∶ 1,… , rS is a total order for the 
spiking rules, the total spike gain from spiking rules at time 
k can be computed using

On the other hand, plasticity rules can only cause spike 
gains during synapse creation. Thus, gains from plasticity 
rules can be computed by checking the destination of the 
newly created synapses, if any. In symbol form

Theorem 4 For an SNPSP system � with m neurons and rP 
plasticity rules, where d ∶ 1,… , rP is a total order for the 
plasticity rules, the total spike gain from plasticity rules at 
time k can be computed by summing all of the rows of Sy(k)+  
using G(k)

P
=
∑rP

i=1
Sy

(k)

+,i
.

Spikes are only lost on consumption during rule firing. 
So for both rule types, this is computed from checking how 
many spikes are consumed according to the rules and then 
checking the source neurons of these rules.

Theorem 5 For an SNPSP system � with m neurons, rS spik-
ing rules, rP plasticity rules, where dR ∶ 1,… , rR is a total 
order for the spiking [plasticity] rules and R = S [ R = P ], 
the total spike loss from spiking [plasticity] rules at time k 
can be computed using

where R ∈ {S,P} , and ⊙ is element-wise multiplication.

Algorithm 4: Get Configuration Nodes
function getConf( conf, rule, syn ) :

1 Sy(k) ← Sy(k−1) + Sy(k)
∆

2 G
(k)
S ← Fi(k)S × SrS × Sy(k)

3 G
(k)
P ← sumRows(Sy(k)

+ )

4 L
(k)
S ← (Fi(k)S � CoS)× SrS

5 L
(k)
P ← (Fi(k)P � CoP )× SrP

6 G(k) ← G
(k)
P +G

(k)
S

7 L(k) ← L
(k)
P + L

(k)
S

8 C(k) ← C(k−1) +G(k) − L(k)

9 for i from 1 to rP do
10 for j from 1 to 2 do
11 ti

′(k)
i,j ← max(ti(k)i,j − 1,0)

12 return newConf((C(k),Sy(k),Ti ′(k))

G
(k)

S
= Fi

(k)

S
× SrS × Sy(k)

L
(k)

R
= (Fi

(k)

R
⊙ CoR) × SrR

Theorem 6 For an SNPSP system � , the getConf() func-
tion (as described in Algorithm 4) returns Conf (k) given 
Conf (k−1) , Rule(k) , and Syn(k).

Theorem  7 For an SNPSP system �  (that follows the 
restrictions assumed in this paper), Algorithm 1 can cor-
rectly simulate the computation of � and generate a correct 
computation tree (graph).

Further algorithm analysis and proof of correctness are 
detailed in [10] and Appendix 1, with a summary in Table 5. 
In the next section, we give an example of our algorithms in 
this section to simulate a small SNPSP system.

6  Example simulation

In this section, we demonstrate the matrix representation 
and algorithms from the previous section using �ex from 
Fig. 1. Note that for the illustrations to follow, the matrices 
and vectors that define an aggregate version that combines 
those for plasticity and for spiking rules (i.e. Sr , P, Q, Fi , 
Co ), the arbitrary ordering as specified in their respective 
definitions would simply be the concatenation of those for 
the spiking rules and for the plasticity rules. In other words, 
as with the rule firing vector, the resulting vector would be

Given the initial values as computed above, the initial con-
figuration of the system is

Fi(k) =
[
fi
(k)

S,0
⋯ fi

(k)

S,rS
fi
(k)

P,0
⋯ fi

(k)

P,rP

]

Table 5  Space and time complexities of algorithms presented

Algorithm Time Complex-
ity

Space Com-
plexity

Notes

Tree (node 
count)

– O((2e)m
2 t∕2)

Algorithm 1 O(F(F + mr)) O(F + Fr∕(m2)) F = (2e)m
2 t∕2m2

Algorithm 2 – O(mr)
Algorithm 3 O((2e)m

2 t∕2m2) –

Algorithm 4 O(mr) –
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We have already computed for the rule firing vectors and the 
timer matrix at time 1, which are

Since we have already decided that rules rS,2 and rP,1 are to 
fire, we could proceed to selecting which synapses are to 
be operated on using rP,1 . Since in the rule source matrix, 
srP,1,1 = 1 (for plasticity rule number one, for the first neu-
ron), then the source neuron of rule rP,1 is neuron �1 . The 
candidate destination neurons for the same rule are neurons 
�2 and �3 , since nm1,2 = nm1,3 = 1 (for plasticity rule num-
ber one, for the second and third neurons). The operation is 
o1 = + , given that ti1,1 = 1 (for plasticity rule number one, 
for the first neuron). Thus, we are to select kv1 = 1 neuron 
from these two candidates to which we would create a syn-
apse to (since the chosen operation is op1 = + for synapse 
creation). In the example where �ex computed 4, the first 
selected neuron was �2.

Since rule rS,2 is in neuron �3 = �out and has fired, we 
know that it has caused a spike to be sent to the environment 
at time 1. Therefore, the output spike count and indicator are 
os(1) = 1 and sp(1) = 1.

Afterwards, we could now create the next configuration. 
We have

(10)

Cf (0) = ⟨Rule(0)�Syn(0)�Conf (0)⟩

=

��
0 0 0 0 0 0

�
,

�
0 0

0 0

�
, 0, 0

�����

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

�����
�
2 0 1 0 0

�
,

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 0 0 1 1

0 0 0 0 0

1 0 0 0 0

1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

,

�
0 0

0 0

��

(11)Fi(1) =
[
0 1 0 0 1 0

]

(12)Ti(1) =

[
1 0

0 0

]

(13)Sy
(1)

Δ
= Sy

(1)
+ =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

(14)

Sy(1) = Sy(0) + Sy
(1)

Δ
= Sy(0) + Sy

(1)
+ − Sy(1)

−
= Sy(0) + Sy

(1)
+

=

⎡⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 0 0 1 1

0 0 0 0 0

1 0 0 0 0

1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎣

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣

0 1 0 0 0

0 0 0 1 1

0 0 0 0 0

1 0 0 0 0

1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

Now we can use Algorithm 4 to create the matrices for the 
next configuration.

(15)

G
(1)

S
= Fi

(0)

S
× SrS × Sy

(1)

=
�
0 1 0 0

�
×

⎡
⎢⎢⎢⎣

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎤
⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎢⎣

0 1 0 0 0

0 0 0 1 1

0 0 0 0 0

1 0 0 0 0

1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

=
�
0 0 0 0 0

�

(16)

G
(1)

P
= sumRows(Sy

(1)
+ )

=
�
1 1 1 1 1

�
× Sy

(1)
+

=
�
1 1 1 1 1

�
×

⎡⎢⎢⎢⎢⎢⎣

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
=
�
0 1 0 0 0

�

(17)

L
(1)

S
= (Fi

(0)

S
⊙ CoS) × SrS

=
��
0 1 0 0

�
⊙
�
1 1 1 1

��

×

⎡⎢⎢⎢⎣

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎤⎥⎥⎥⎦
=
�
0 0 1 0 0

�

(18)

L
(1)

P
= (Fi

(0)

P
⊙ CoP) × SrP

=
([
1 0

]
⊙
[
1 1

])

×

[
1 0 0 0 0

1 0 0 0 0

]

=
[
1 0 0 0 0

]

(19)
L(1) = L

(1)

S
+ L

(1)

P
=
[
0 0 1 0 0

]
+
[
1 0 0 0 0

]
=
[
1 0 1 0 0

]
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 Finally, the timer matrix would count down and we would 
have

Given the computation as illustrated so far, the current state 
of the computation tree is shown in Fig. 2.

7  Closing remarks

The main purpose of this work is to provide a matrix rep-
resentation and simulation algorithm for SNPSP systems, 
similar to what has been done for other variants of SNP 
systems. The main difference between our representation 
and matrix representations of other variants is taking care 
of the semantics of plasticity, e.g. we take into consideration 
the plasticity of the synapses (thus we have Sy(k) to indicate 
that the synapses change per time step, as opposed to the 
Sy matrix of [27]), and the timer for ± and ∓ in plasticity 
rules. Ideas from this work may be employed to represent 
other SNP system variants, e.g. those with neuron division 
or budding mentioned in Ref. [15].

(20)
G(1) = G

(1)

S
+ G

(1)

P
=
[
0 1 0 0 0

]
+
[
0 0 0 0 0

]
=
[
0 1 0 0 0

]

(21)

C
(1) = C

(0) + G
(1) − L

(1) =
[
2 0 1 0 0

]
+
[
0 1 0 0 0

]

−
[
1 0 1 0 0

]
=
[
1 1 0 0 0

]

(22)Ti�(1) =

[
0 0

0 0

]

In implementing the simulation algorithm, the simulation 
speed can be accelerated using parallel processors such as 
GPUs. If the implementation does not check for uniqueness 
of configurations, then the simulation can be further accel-
erated by performing parallel configuration generations. 
Otherwise, the configurations would have to be checked 
sequentially. If there would be no loops in the computa-
tion tree, then the implementation can choose not to perform 
uniqueness checking.

A future work for this paper includes a software imple-
mentation of the algorithm in GPU and CPU. As previously 
mentioned, for this work we are only dealing with SNPSP 
systems with determinism on the rule-level. We also note 
that at present, the matrix representation seems to be appli-
cable to asynchronous version of SNPSP systems, see e.g. 
[3]. In asynchronous mode of rule application, as opposed 
to the synchronous mode in this work, at each step a neuron 
can nondeterministically choose not to apply a rule even if 
a rule can be applied. However, the algorithms given in this 
work must be modified to include this additional level of 
nondeterminism.
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Theorem proofs

P r o o f  f o r  T h e o r e m   1  B y  d e f i n i t i o n , 
Rule(k) = (Fi(k), Ti(k), os(k), sp(k)) . First, given that the input 
Conf (k−1) is of the previous time step (fed into the function 
as Conf (k) ), we first increment k at Line 1 for appropriate 
usage in the resulting rule node. Thus, we know that the 
newRules() constructor at Line 18 is of the right time step. 
Line 4 evaluates a formula and assigns it to a temporary 
variable Sp, for spikes. The formula consists of two parts, 
the multiplication and the subtraction. It goes as follows:

 Since srR,i,j = 1 if rule rR,i belongs to neuron �j (0 other-
wise), and c(k)

i
 is the number of spikes in neuron �i at time 

k, we have

Also noting that rules can only be associated with one neu-
ron, we can then conclude that 

∑
i c

(k−1)

i
srR,i,j is the number 

of spikes in the source neuron of rule rR,j . We let rspR,i be 
this number. Now that we know each rule’s respective source 
neuron spike count; we can now use the P and Q vectors to 
check compatibility with the rule’s respective regular expres-
sion. Thus

 With s being the current spike count of a certain neu-
ron, we need to match as with ap(aq) ∗= ap+qn , and thus 
we need to make sure s = p + qn for some nonnega-
tive integers p,q, and n. So we first subtract p in Line 4, 
and check for qn in the if clause of Line 7. There are two 

Sp =
(
C(k−1) × SrT

R

)
− PR

=

([
c
(k−1)

i

]
m
×
[
srR,i,j

]
m×rR

)
−
[
pR,i

]
rR

=

([∑
i

c
(k−1)

i
srR,i,j

]

rR

)
−

[
pR,i

]

rR

c
(k−1)

i
srR,i,j =

{
c
(k−1)

i
, rR,j ∈ Ri;

0, otherwise.

Sp =

([∑
i

c
(k−1)

i
srR,i,j

]

rR

)
−

[
pR,i

]

rR

=
[
rspR,i

]
rR

−
[
pR,i

]
rR

=
[
rspR,i − pR,i

]
rR

cases for as to match the regular expression. First, if there 
is a non-zero q for the rule, there is no problem using 
Spi�odqR,i = 0 (so long as Spi is not negative, in which case 
rspR,i − pR,i = s − p < 0 ). The other case would be if q = 0 , 
in which case the regular expression is of the form ap . Thus, 
p + qn = p , a constant, and so s = p + qn can only be sat-
isfied if s − p = rspR,i − pR,i = 0 . If the regular expression 
is matched, fiR, i(k) = 1 ; otherwise, = 0 . Since the loop of 
Line 6 iterates over all the rules of type R , and that R goes 
through both P and S (Line 3), these two loops go over all 
the rules. Thus, Fi(k) now tells us which rules have matched 
their regular expressions and can fire.

os(k) would by default copy the value from the previous 
time step, os(k) , while sp(k) would stay at 0. The former would 
only increase and the latter be set to 1 if an output spike was 
discovered to be sent to the environment at time k. This con-
dition is checked by the if clause at Line 9, which would 
only be reached if rule rR,i were to fire at time k for the 
given values of R and i. Thus, we only need to check if this 
rule sent an output spike. Since only spiking rules can send 
spikes to the environment, the condition at Line 9 should 
check if the given rule was a spiking rule ( R = S ) and if 
the current rule belonged to the output neuron ( SrS,out,i = 1 ). 
Thus, os(k) and sp(k) are now computed correctly.

Lastly, the timer matrix Ti(k) would only be touched in the 
for loop of Line 12. For each plasticity rule, we first check 
if the rule already fired at the previous time step (Line 13) 
and is still executing at the current time step (as with the ± 
and ∓ rules). This could be checked by looking for a 1 in the 
primed timers of the said rule from the previous time step 
( Ti(k−1)

i�
 ), since the timers have already counted down after 

initial rule firing. fi(k)
P,i

 is simply marked as 0 since the rule is 
not allowed to fire anew if it is still executing, and just copies 
the previous primed timers onto the current unprimed tim-
ers. Otherwise, if the rule is not to execute a second opera-
tion at the current time step, we check if it fired anew at the 
current time step (Line 9). Since Fi(k)

R
 now shows which rules 

are applicable (unless ongoing execution), we can now be 
sure that the rules will be applied at time step k and thus we 
start the timer (Line 17). Given that, we are now sure that 
Fi(k) and Ti(k) are now computed correctly.

Therefore, we are now sure that os(k) , sp(k) , Fi(k) , and 
Ti(k) are computed correctly. newRule() is thus sure to be 
fed the correct arguments, and will return the correct rule 
node.   ◻

Proof for Theorem 2 Here, we return a list of all possible 
synapse nodes Syn(k) . getCandidates() has not been 
specified in this paper and is assumed to return a list of all 
possible combinations of created/deleted synapses based 
on permutations of destination neurons and synapse counts 
of applicable plasticity rules. Given this, we are ensured 
that Sy(k)+  and Sy(k)

−
 are the appropriate synapse creation and 
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deletion matrices of each synapse node to be created. Thus, 
Sy

(k)

Δ
 would then hold the appropriate synapse change matrix 

for the same synapse node and would thus be appropriately 
passed onto the constructor for Syn(k) and be included in the 
return list. Therefore, getSyns() returns the correctly com-
puted synapse nodes appropriate for the given rule node.  
 ◻

Proof for Theorem 3 Given the definitions of FiS , SrS , and 
Sy , we have

 Since fi(k)
S,i

= 1 if rule rS,i has spiked at time k (0 otherwise), 
and srS,i,j = 1 if rS,i belongs to neuron �j (0 otherwise), we 
have

G
(k)

S

?

= Fi
(k)

S
× SrS × Sy(k)

=
[
fi
(k)

S,i

]
rR

×
[
srS,i,j

]
rR×m

×
[
sy

(k)

i,j

]
m×m

=
[∑

i

fi
(k)

S,i
srS,i,j

]
m
×
[
sy

(k)

i,j

]
m×m

 Spiking rules can only cause spike gains in a destination 
neuron if some other source neuron fires a spiking rule to 
the said destination, and so we finally have

  ◻

Proof for Theorem 4 Since plasticity rules can only cause 
spike gains by creating synapses (because creating synapses 
would inherently send one spike to the destination neuron), 
we only need to check Sy(k)+  . Given the definition of Sy+ , we 
have

  ◻

Proof for Theorem 5 Both spiking and plasticity rules can 
only cause spike loss through spike consumption upon rule 
firing. Thus 

 Since srR,i,j will only have a nonzero value if rule rR,i is in 
neuron �j , we have

Spike losses will only ever be caused by spike consump-
tion from rule firing in a given neuron. Thus, also given the 
definition of  

G
(k)

S

?
=
[
�

Σs
→

(k)
�j

]
m
=
[
g
(k)

S,j

]
m

✓
= G

(k)

S

G
(k)

P

?
=

rP∑
i=1

Sy
(k)

+,i
=
[∑

i

sy
(k)

+,i,j

]
m
=
[∑

i

�i

+
→

(k)
�j

]
m

=
[
�

Σ+
→

(k)
�i

]
m
=
[
g
(k)

P,i

]
m

✓
= G

(k)

P

Thus, 
∑

i fi
(k)

S,i
srS,i,j is the number of spiking rules that have 

spiked at time k from neuron �j . However, given that we have 
restricted neurons to only fire a maximum of one rule each, 
the value of this summation will only ever be 0 or 1, only 
indicating whether the neuron had a spiking rule fire or not. 
Continuing further, sy(k)

i,j
= 1 if neuron �i is connected to �j 

at time k (0 otherwise), so

G
(k)

S

?
=
[∑

i

fi
(k)

S,i
srS,i,j

]
m
×
[
sy

(k)

i,j

]
m×m

=
[
�i

Σs
→

(k)
�

]
m
×
[
sy

(k)

i,j

]
m×m

=
[
�i

s
→

(k)
�

]
m
×
[
�i →

(k)
�j

]
m×m

=
[∑

i

((
�i

s
→

(k)
�

)(
�i →

(k)
�j

))]
m
=
[∑

i

�i

s
→

(k)
�j

]
m
=
[
�

Σs
→

(k)
�j

]
m
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Lines 9–11 would tick the timer to get Ti�(k) , by manually 
decreasing each element of the matrix by 1 unless the value 
is 0.   ◻

Proof for Theorem 6 By definition, Conf (k) = (C(k), Sy(k), Ti�(k)) . 
Lines 1 to 8 have been proven to correctly compute for C(k) 
and Sy(k) . The loop in Line 9 iterates over all plasticity rules, 
while the inner loop of Line 10 goes over the two plasticity 
operations creation (1) and deletion (2). Line 11 would then 
either count down the current unprimed timer ( ti(k)

i,j
− 1 ), or 

keep it at zero (max). Thus, the loops correctly compute for 
Ti�(k) . Line 12 thus returns the correct configuration node via 
the constructor for Conf (k) , being passed the correct argu-
ments for C(k) , Sy(k) , and Ti�(k) .   ◻

Proof for Theorem 7 The first three lines are just for initializa-
tion. The loop in Line 4 iterates over the configuration nodes 
in a breadth-first manner (seen by the use of dequeue and 
enqueue). Line 6 would cut off the computation graph once 
it reaches a given depth. The loop in Line 9 would go through 
the rule nodes, connecting them to configuration nodes first 
before heading to the loop in Line 13. This loop would go 
through the synapse nodes and connect them to the rule nodes, 
and then generates a new configuration node in Line 16. These 
two inner loops, from the rule nodes down to the immedi-
ate next configuration nodes, would generate these three lev-
els in a depth-first manner (as seen with pop and push). 
Essentially, what happens is (1) given a configuration node, 
generate the subtree of these configuration nodes up to three 
levels in depth-first manner, (2) go through these configura-
tion nodes in breadth-first manner.   ◻
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