
Vol.:(0123456789)1 3

Journal of Membrane Computing (2019) 1:145–160
https://doi.org/10.1007/s41965-019-00020-3

REGULAR PAPER

Matrix representation and simulation algorithm of spiking neural P
systems with structural plasticity

Zechariah B. Jimenez1 · Francis George C. Cabarle1,2 · Ren Tristan A. de la Cruz1 · Kelvin C. Buño1 · Henry N. Adorna1 ·
Nestine Hope S. Hernandez1 · Xiangxiang Zeng3

Received: 26 January 2019 / Accepted: 25 July 2019 / Published online: 19 August 2019
© Springer Nature Singapore Pte Ltd. 2019

Abstract
In this paper, we create a matrix representation for spiking neural P systems with structural plasticity (SNPSP, for short),
taking inspiration from existing algorithms and representations for related variants. Using our matrix representation, we
provide a simulation algorithm for SNPSP systems. We prove that the algorithm correctly simulates an SNPSP system: our
representation and algorithm are able to capture the syntax and semantics of SNPSP systems, e.g. plasticity rules, dynamism
in the synapse set. Analyses of the time and space complexity of our algorithm show that its implementation can benefit
using parallel computers. Our representation and simulation algorithm can be useful when implementing SNPSP systems
and related variants with a dynamic topology, in software or hardware.

Keywords Spiking neural P systems · Structural plasticity · Matrix representation · Membrane computing

1 Introduction

In the realm of computer science, models are used to
describe the workings of various systems and how they are
said to be “computing.” These models possess various fea-
tures that depict how inputs are changed and manipulated
to achieve the desired outputs. Present-day computers are
based on some variants of the Turing machine and other
“classical” models and, therefore, carry their characteristic
advantages and disadvantages; speed, Turing-completeness,
and space capacity are just some of the important properties
that describe the abilities of these models. Small changes in
any of these could spell the difference between being able
to compute or solve a problem, and otherwise. It is thus
imperative to come up with new models that overcome the
obstacles that impede such classical models and, thus, solve
problems in a more efficient way. While many new models

still have no commercially available physical realization,
simulation on modern computers is enough to highlight the
abilities of such models until feasible prototypes are created.

A good example of such new models that are still in the
simulation stage is those in the field of natural computing,
specifically in membrane computing. These models are
based on natural phenomena, like the transfer of chemicals
within cells and throughout cell systems. The advantage of
these models over classical models is their characteristic
parallelism, even over small space constraints. The parallel-
ism could then be used to solve NP-complete and other hard
problems in an efficient manner.

The specific model from membrane computing of interest
in this work is the spiking neural P system (in short, SNP
system) model [11, 20]. Much works exist about the comput-
ing power and efficiency of SNP systems: they are known to
be Turing universal when computing (sets of) numbers or
strings as in Refs. [7, 8, 11, 20]; they are computationally
efficient, able to solve hard problems as in Refs. [12–14].
Various ideas from neuroscience and maths provide inspi-
rations to create variants of SNP systems, such as neuron
division and budding in Ref. [17], astrocytes in Refs. [18,
21], anti-spikes in Ref. [16], weights in synapses in Refs.
[19, 25], rules on synapses in Ref. [23], synapse schedules in
Ref. [1], and coloured spikes in Ref. [24]. Some real-world

 * Francis George C. Cabarle
 fccabarle@up.edu.ph

1 Department of Computer Science, University
of the Philippines Diliman, 1101 Quezon City, Philippines

2 Shenzhen Research Institute of Xiamen University, Xiamen
University, Shenzhen 518000, Guangdong, China

3 School of Information Science and Engineering, Hunan
University, 410082 Changsha, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s41965-019-00020-3&domain=pdf

146 Z. B. Jimenez et al.

1 3

applications have also been solved using SNP systems and
variants, as in Refs. [22, 26, 28].

This paper focuses on a variant of SNP systems known
as SNP systems with structural plasticity or SNPSP systems
[4]. The matrix representation and simulation algorithm we
present here for SNPSP systems draw inspiration from those
mentioned in Refs. [4–6, 9, 27]. A preliminary version of the
matrix representation in this paper is in Ref. [10].

As elaborated in Refs. [2, 6, 27], the benefits of a matrix
representation compared to other representations are due to
the increased parallelism when performing linear algebra
operations. This increased parallelism when simulating com-
putations can benefit sequential (e.g. CPU) simulators but
more so using parallel (e.g. GPU) simulators. More benefits
using a matrix representation and other parallel computing
techniques are recently given in Refs. [5, 9, 15]. In Ref. [15],
variants of SN P systems that have a dynamic topology, i.e.
adding or removing neurons, synapses, or both, is compared
with respect to the recent technologies of GPUs. It is then
noted in Ref. [15] that for such GPUs, the more efficient way
to perform dynamism in the topology is the plasticity found
in SNPSP systems.

The main contributions of this paper are the matrix rep-
resentation and simulation algorithm for SNPSP systems.
The simulation algorithm is broken into smaller algorithms
for clarity. We analyse the time and space complexity of
our algorithm, which is useful for future implementations
in computers. Our representation and algorithm are able to
capture the syntax and semantics of SNPSP systems, and
we show this using proofs of correctness. Features specific
to SNPSP systems, such as creating or deleting synapses
among neurons, are correctly simulated. This paper is struc-
tured as follows: in Sect. 2, the preliminaries for this work
are introduced; in Sects. 3 and 4, our matrix representation
and notations are provided, respectively; the representation
and notations are used in our simulation algorithm in Sect. 5;
an example of our algorithms is in Sect. 6; lastly, Sect. 7
provides closing remarks and research directions. Detailed
proofs of our theorems are given in Appendix 1.

2 Preliminaries

For this work, a specific variant of the SNP system would be
in focus, namely the spiking neural P system with structural
plasticity (SNPSP). Here, forgetting rules are replaced by
plasticity rules, thus marking the characteristic difference
between the two models. Plasticity rules allow for the crea-
tion, deletion, and rewiring of synapses by their respective
source neurons. More formally, it is also given in Ref. [4]:

Definition 1 (SNPSP system) A spiking neural P system with
structural plasticity (SNPSP system, for short) of degree
m ≥ 1 is a construct of the form

where

1. O = {a} is the singleton alphabet (a is called spike)
2. �1,… , �m are pairs �i = (ni,Ri), 1 ≤ i ≤ m , called neu-

rons, where ni ≥ 0 and ni ∈ ℕ ∪ {0} represents the initial
spikes in �i and Ri is a finite set of rules of �i with the
following forms:

(a) Spiking rule: E∕ac → a , where E is a regular
expression over O, with c ≥ 1;

(b) Plasticity rule: E∕ac → �k(i,Nj) , where c ≥ 1 ,
� ∈ {+,−,±,∓} , k ≥ 1 , 1 ≤ j ≤ |Ri| , and
Nj ⊆ {1,… ,m}.

3. syn ⊆ {1,… ,m} × {1,… ,m} , with (i, i) ∉ syn for
1 ≤ i ≤ m, are synapses between neurons;

4. out ∈ {1,… ,m} indicates the output neuron.

Given neuron �i (we can also say neuron i or simply �i
if there is no confusion), we denote the set of neuron labels
which has �i as their presynaptic neuron as pres(i), i.e.
pres(i) = {j|(i, j) ∈ syn} . Similarly, we denote the set of
neuron labels which has �i as their postsynaptic neuron as
pos(i) = {j|(j, i) ∈ syn}.

Plasticity rules are applied as follows. If at time t
we have that �i has b ≥ c spikes and ab ∈ L(E) , a rule
E∕ac → �k(i,N) ∈ Ri can be applied. The set N is a collec-
tion of neurons to which �i can connect to (synapse creation)
or disconnect from (synapse deletion) using the applied plas-
ticity rule. The rule consumes c spikes and performs one of
the following, depending on �:

If � = + and N − pres(i) = � , or if � = − and pres(i) = � ,
then there is nothing more to do, i.e. c spikes are con-
sumed but no synapse is created or removed. For � = + : If
|N − pres(i)| ≤ k , deterministically create a synapse to every
�l , l ∈ Nj − pres(i) . If, however, |N − pres(i)| > k , then non-
deterministically select k neurons in N − pres(i) and create
one synapse to each selected neuron.

For � = − : If |pres(i)| ≤ k , deterministically delete all
synapses in pres(i). If, however, |pres(i)| > k , then non-
deterministically select k neurons in pres(i) and delete each
synapse to the selected neurons.

If � ∈ {±,∓} , create (respectively, delete) synapses at
time t and then delete (respectively, create) synapses at
time t + 1 . Only the priority of application of synapse crea-
tion or deletion is changed, but the application is similar
to � ∈ {+,−} . The neuron is always open from time t until

� = (O, �1,… , �m, syn, out)

147Matrix representation and simulation algorithm of spiking neural P systems with structural…

1 3

t + 1 , i.e. the neuron can continue receiving spikes. However,
the neuron can only apply another rule at time t + 2.

An important note is that for �i applying a rule with
� ∈ {+,±,∓} , creating a synapse always involves an embed-
ded sending of one spike when �i connects to a neuron.
This single spike is sent at the time the synapse creation is
applied. Whenever �i attaches to �j using a synapse during
synapse creation, we have �i immediately transferring one
spike to �j.

If two rules with regular expressions E1 and E2 can be
applied at the same time, that is, L(E1) ∩ L(E2) ≠ � , then
only one of them is nondeterministically chosen and applied.
All neurons, therefore, apply at most one rule in one time
step (locally sequential), but all neurons that can apply a
rule must do so (globally parallel). Note that the application
of rules in neurons is synchronized, that is, a global clock
is assumed.

A system state or configuration of an SNPSP system is
based on (a) distribution of spikes in neurons and (b) neuron
connections based on the synapse graph syn. We can rep-
resent (a) as ⟨s1,… , sm⟩ where si, 1 ≤ i ≤ m , is the number

of spikes contained in �i . For (b), we can derive pres(i) and
pos(i) from syn, for a given �i . The initial configuration,
therefore, is represented as ⟨n1,… , nm⟩ , with the possibil-
ity of a disconnected graph, i.e. syn = � . A computation
is defined as a sequence of configuration transitions from
an initial configuration. A computation halts if the system
reaches a halting configuration, that is, a configuration where
no rules can be applied and all neurons are open. Whether a
computation is halting or not, we associate natural numbers
1 ≤ t1 < t2 < ⋯ corresponding to the time instances when
the neuron out sends a spike out to (or when in receives a
spike from) the system.

A result of a computation can be defined in several ways
in SNP systems literature, but in this work we use the follow-
ing as in [11]: We only consider the first two time instances
t1 and t2 that �out spikes. Their difference, i.e. the number
t2 − t1 , is said to be computed by �.

As an illustration, consider an SNPSP system �ex shown
in Fig. 1 from [4]. Each rule in Fig. 1 is labeled as R, i to
mean the ith rule of type R . Thus, a rule with label P, 3
is known as rule rP,3 (more on this in Sect. 3). Neurons 2,
out = 3 , 4, and 5 contain only the rule a → a , and we omit
this from writing. In the initial configuration, at time t0 = 0 ,
is where only �1 has two spikes and �3 has only one spike.
Neuron 1 is the only neuron with plasticity rules, where we
have syn = {(2, 4), (2, 5), (4, 1), (5, 1)}.

As detailed in Ref. [4], we have �ex computing the set
{1, 4, 7, 10,…} = {3m + 1|m ≥ 0} . In Table 1, the output of
�ex is t2 − t1 = 1 if neuron �1 creates synapse (1, 3), where
(!) means that the output neuron �3 fires a spike to the envi-
ronment, and t2 and t1 are the second and first time �3 fires,
respectively. In Table 2, the output of �ex is 4 if �1 creates
synapse (1, 2) instead of (1, 3).

1

2
3

4

5
a2

a2/a → +1(1, {2, 3})

a → −1(1, {2, 3})

a

a → a
a → a

a → a

a → a

P,1

P,2

S,1
S,2

S,3

S,4

Fig. 1 An SNPSP system �
ex

Table 1 Computation of �
ex

for {1}

Time �
1

�
2

�
3

�A
1

�A
2

syn

0 2 0 1 0 0 syn
t
1
= 1 1 0 1 (!) 0 0 syn ∪ {(1, 3)}

t
2
= 2 0 0 0 (!) 0 0 syn

Table 2 Computation of �
ex

for {4}

Time �
1

�
2

�
3

�A
1

�A
2

syn

0 2 0 1 0 0 syn
t
1
= 1 1 1 0 (!) 0 0 syn ∪ {(1, 2)}

2 0 0 0 1 1 syn
3 2 0 0 0 0 syn
4 1 0 1 0 0 syn ∪ {(1, 3)}

t
2
= 5 0 0 0 (!) 0 0 syn

148 Z. B. Jimenez et al.

1 3

3 Matrix representation of SNPSP

To illustrate how SNPSP systems can be represented
as specified below, we use �ex in Fig. 1. Using the for-
mal definition, the system can thus be expressed as
�ex = ({a}, �1, �2, �3, �4, �5, syn, 3) . The neurons are
(from �1 to �5) (2, {rP,1, rP,2}) , (0, {rS,1}) , (1, {rS,2}) ,
(0, {rS,3}) , and (0, {rS,4}) ; the synapses are defined as
syn = {(2, 4), (2, 5), (5, 1), (4, 1)}, 3) ; and finally the rules
are rP,1 = a2∕a → +1(1, {2, 3}) , rP,2 = a → −1(1, {2, 3}) ,
and rS,i = a → a,∀i ∈ {1, 2, 3, 4}.

For SNPSP systems, a neuron is said to be defined by its
spike count and the set of rules associated with it. With this,
we define the spike count vector and the rule source matrix.

Definition 2 (Spike count vector) Let � be an SNPSP sys-
tem with m neurons. In a computation, for any k ∈ ℕ , the
vector C(k) = [c

(k)

1
, c

(k)

2
,… , c(k)

m
] is called the spike count vec-

tor of the system at time k, where c(k)
i

 is the amount of spikes
in neuron �i, i = 1, 2,… ,m at time k.

Note that a key feature of the matrix representation being
defined is the separate ordering of the spiking and plasticity
rules, from 1 to rS and from 1 to rP , respectively. There are
a total of r = rS + rP rules.

Definition 3 (Rule source matrix) Let � be an SNPSP sys-
tem with m neurons. Let rR be the number of rules of type
R ∈ {P,S} , where P and S correspond to plasticity and
spiking rules, respectively. Let dR ∶ (R, 1),… , (R, rR) be a
total ordering of rules of type R . The rule source matrices
of the system � , SrR , are defined as follows:

where

We also define an aggregate rule source matrix Sr to denote
the combination of SrP and SrS , with the rows (rules) arbi-
trarily ordered.

For �ex , the initial spike counts and the rule source matri-
ces are

SrR =

⎡⎢⎢⎣

srR,1,1 ⋯ srR,1,m

⋮ ⋱ ⋮

srR,rR,1
⋯ srR,rR,m

⎤⎥⎥⎦

srR,i,j =

{
1, if rule rR,i is in neuron �j;

0, otherwise.

(1)C(0) =
[
2 0 1 0 0

]

(2)SrP =

[
1 0 0 0 0

1 0 0 0 0

]

Next in the definition of SNPSP systems is the set of syn-
apses. Here, since these connections are not constant, the
synapse matrix is defined to change with time. In addition
to that, we define matrices that record the newly created (and
deleted) synapses.

Definition 4 (Synapse matrix) In an SNPSP system � with
m neurons, the synapse matrix, Sy(k) , at time k, is defined as
follows:

where

Definition 5 (Synapse creation [deletion] matrix) In an
SNPSP system � with m neurons, the synapse creation
[deletion] matrix, Sy(k)+ [Sy(k)

−
], at time k, is defined as fol-

lows (o ∈ {+,−}):

where

and the indicated operation is deletion if o = − or creation
if o = +.

We also def ine a synapse change matr ix
Sy

(k)

Δ
= Sy

(k)
+ − Sy(k)

−
 to be the net change in the synapse

matrix at time k.

Given Definitions 4 and 5, we can obtain the next synapse
matrix with

(3)SrS =

⎡⎢⎢⎢⎣

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎤⎥⎥⎥⎦

Sy(k) =
�
sy

(k)

i,j

�
m×m

=

⎡
⎢⎢⎢⎣

sy
(k)

1,1
⋯ sy

(k)

1,m

⋮ ⋱ ⋮

sy
(k)

m,1
⋯ sy(k)

m,m

⎤
⎥⎥⎥⎦

sy
(k)

i,j
=

⎧⎪⎨⎪⎩

1,
if there exists a synapse from neuron �i

to neuron �j at time k;

0, otherwise.

Sy(k)
o

=
�
sy

(k)

o,i,j

�
m×m

=

⎡⎢⎢⎢⎣

sy
(k)

o,1,1
⋯ sy

(k)

o,1,m

⋮ ⋱ ⋮

sy
(k)

o,m,1
⋯ sy(k)

o,m,m

⎤⎥⎥⎥⎦

sy
(k)

o,i,j
=

⎧⎪⎨⎪⎩

1,
if a synapse from neuron �i to neuron �j

was operated on at time k;

0, otherwise.

149Matrix representation and simulation algorithm of spiking neural P systems with structural…

1 3

Since time k = 0 is the start of the computation, no synapses
are supposed to have been created or deleted. We see that
Sy

(0)
+ , Sy(0)

−
 , and Sy(0)

Δ
 are thus zero. Sy(0) , on the other hand,

shows the initial set of synapses at the start, and so that of
the system �ex is

The synapse from neuron �3 to the environment is not shown
here, but is indicated in the declaration of �ex , since out = 3 .
This connection is constant throughout the computation and,
thus, cannot be changed by either Sy+ or Sy−.

Definition 2 records the spikes stored in the neurons, but
here we would also need to know about the spikes sent out
to the environment. For this, we have

Definition 6 (Output spike count and output spike indicator)
In an SNPSP system � , the output spike count at time k is
denoted by os(k) , which is the number of spikes already sent
out by the output neuron to the environment from time 0
to time k. The output spike indicator at time k is defined as

In the computation as in Table 2, the output neuron spiked
to the environment at times t1 = 1 and t2 = 5 . Table 3 shows
the values of os(k) and sp(k).

Next, we define vectors and matrices that describe the
rules associated with the neurons of the system � . First, we
need to describe the regular expressions used by the rules to
determine the number of spikes required for firing. For this
work, we shall be limiting these regular expressions to be of
the forms ak , a+ , a∗ , ak(aj)∗ , and ak(aj)+ , for some positive

(4)Sy(k) = Sy(k−1) + Sy
(k)

Δ
= Sy(k−1) + Sy

(k)
+ − Sy(k)

−

(5)Sy(0) =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 0 0 1 1

0 0 0 0 0

1 0 0 0 0

1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

sp(k) =

⎧⎪⎨⎪⎩

1,
if a spike was sent out to the environment

at time k;

0, otherwise.

integers j and k. In general, we describe these regular expres-
sions to be of linear form—i.e. they can be described by the
pattern ap+qn = ap(aq)∗ for integers p, q, n ≥ 0 , p + q ≥ 1 .
Table 4 illustrates this.

Thus, we can describe the regular expressions by their
corresponding p and q values.

Definition 7 (Regular expression P and Q vectors) In an
SNPSP system � , PS and QS [PP and QP] are the (regular
expression) P and Q vectors of the spiking [plasticity] rules,
defined as PR = [pR,1,… , pR,rR

] and QR = [qR,1,… , pR,rR
]

for R ∈ {P,S} , which describe the p and q values for the
regular expressions of each rule, such that

where p̄ = pR,i , q̄ = qR,i , and ER,i is the regular expression
of the rule rR,i.

We also define aggregate P and Q vectors to denote the
combination of PP with PS , and QP with QS , respectively.
The elements are arbitrarily ordered.

Once we can decide if a rule can fire, we can then check
which rules would fire and which would not. Note that for
this work, if a rule is applicable, it must fire immediately.
Rules have also been restricted to determinism per neuron,
and to sequentiality. Thus, for rules ra and rb both in the
same neuron, ra ≠ rb , L(Ea) ∩ L(Eb) = � . We then have the
following definition:

Definition 8 (Rule firing vector) In an SNPSP system � , the
rule firing vectors at time k are defined as the vector

for R ∈ {P,S} (P for plasticity rules, S for spiking rules).
The vectors describe which rules will be fired, as follows:

We also define an aggregate rule firing vector Fi to denote
the combination of FiP and FiS , with the elements arbitrar-
ily ordered.

ER,i = ap̄+q̄n = ap̄(aq̄)∗

Fi
(k)

R
=
[
fi
(k)

R,1
,… , fi

(k)

R,rR

]

fi
(k)

R,i
=

{
1, if rule rR,i is fired at time k;

0, otherwise.

Table 3 Output spike counts
and indicators for �

ex

Computing {4}

Time os(k) sp(k)

0 0 0
t
1
= 1 1 1

2 1 0
3 1 0
4 1 0
t
2
= 5 2 1

Table 4 Allowed forms of
regular expressions

Form Pattern p q

a∗ a0(a1)∗ 0 1
a+ a1(a1)∗ 1 1
ak ak(a0)∗ k 0
ak(aj)∗ ak(aj)∗ k j

ak(aj)+ ak+j(aj)∗ k + j j

150 Z. B. Jimenez et al.

1 3

Since the regular expressions in �ex are only of the
forms a and a2 , the Q vectors are just zero vectors of
lengths 4 and 2 for spiking and plasticity rules, respectively.
PS = [1, 1, 1, 1] since all the spiking rules are the same, and
PP = [2, 1] . Nothing fires at the start of the computation, so
Fi

(0)

S
 and Fi(0)

P
 are both zero vectors. Then, since only neurons

�1 and �3 have spikes at the start, and both have applicable
rules, the rule firing vectors at time 1 are Fi(1)

S
= [0, 1, 0, 0]

and Fi(1)
P

= [1, 0].
Once a rule is fired, it consumes a specified number of

spikes from its source neuron. Thus, we have

Definition 9 (Spike consumption vector) In an SNPSP sys-
tem � , the spike consumption vectors at time k are defined
as the vector Co(k)

R
=
[
co

(k)

R,1
,… , co

(k)

R,rR

]
 , for R ∈ {P,S} (P

for plasticity rules, S for spiking rules). Here, co(k)
R,i

= c is
the number of spikes consumed by rule rS,i = E∕ac → ap if
R = S , or by rule rP,i = E∕ac → �k(i,N) if R = P.

We also define an aggregate spike consumption vector Co
to denote the combination of CoP and CoS , with the elements
arbitrarily ordered.

Since all the rules in �ex consume only one spike upon
firing, the spike consumption vectors are CoS = [1, 1, 1, 1]
and CoP = [1, 1].

The plasticity rules have four types of operations, namely
+ for synapse creation, − for synapse deletion, ± for suc-
cessive creation and deletion in two time steps, and ∓ for
successive deletion and creation. Given that for the latter two
operations the creation and deletion occur in two consecu-
tive time steps, we can then decide when to execute which
plasticity operation using timers in a similar manner to the
delays in Ref. [27]. The timers count down at every time
step, execute their respective operation upon reaching 1, and
then stop at 0. Just as in Ref. [10], this is further illustrated
as timers of the form (creation, deletion) follows: starting at
an idle state, the timer is initialized at (0, 0). A + or a − oper-
ation will set it to (1, 0) and (0, 1), respectively. Lastly, the ±
and ∓ operations, having their component operations done in
two consecutive time steps, set the timer to (1, 2) and (2, 1),
respectively. For all of these, the timers count down at every
time step up to 0.

Definition 10 (Timer matrix) In an SNPSP system � , the
timer matrix at time k is defined as the matrix

where, for o = [+,−]:

Ti(k) =

⎡⎢⎢⎢⎣

ti
(k)

1,1
ti
(k)

1,2

⋮ ⋮

ti
(k)

rP,1
ti
(k)

rP,2

⎤⎥⎥⎥⎦

We also define a primed timer matrix, Ti�(k) , which is the
timer after ticking (counting down) at time k, but before
rules are fired at time k. Thus, Ti(k) is also called the
unprimed timer matrix.

Once we find out a rule should fire at time k, we then start
the timer using the following matrix:

Definition 11 (Timer start matrix) In an SNPSP system � ,
the timer start matrix is defined as the matrix

where each sti,j would be the value that ti(k)
i,j

 should be set to
once rule rP,i is to fire at time k.

Since rules rP,1 and rP,2 would, respectively, create and
delete a synapse, the timer start matrix would be

Given that rule rP,1 is to fire at the beginning, the timer
matrix at the start would then be

For the remaining parts of the plasticity rules as defined, we
have the following:

Definition 12 (Destination candidate matrix) In an SNPSP
system � , the destination candidate matrix is defined as
the matrix

where

Definition 13 (Synapse count vector) In an SNPSP system
� , the synapse count vector is defined as the vector

ti
(k)

i,j
=

{
t, if rule rP,i is to execute oj at time k + t − 1;

0, otherwise.

St =

⎡
⎢⎢⎢⎣

st1,1 st1,2
st2,1 st2,2
⋮ ⋮

strP,1 strP,2

⎤
⎥⎥⎥⎦

(6)St =

[
1 0

0 1

]

(7)Ti(0) =

[
1 0

0 0

]

NM =

⎡⎢⎢⎣

nm1,1 ⋯ nm1,m

⋮ ⋱ ⋮

nmrP,1
⋯ nmrP,m

⎤⎥⎥⎦

nmi,j =

{
1, if i ∈ Nj, for rule rP,j = E∕ac → �k(i,Nj);

0, otherwise.

KV =
[
kv1,… , kvrP

]

151Matrix representation and simulation algorithm of spiking neural P systems with structural…

1 3

where each kvi = k , for rule ri = E∕ac → �k(i,Nj).

Rules rP,1 and rP,2 are to both operate on one synapse to
either neuron �2 or �3 , and thus

Finally, for the simulations, we need to keep track of each
computation step and system configuration. Thus, we have
the following definitions.

Definition 14 (Spike gain vector) In an SNPSP system �
with m neurons, the spike gain vector at time k is defined as
the vector G(k) =

[
g
(k)

1
,… , g(k)

m

]
 where each g(k)

i
 is the number

of spikes gained by the neuron �i in time k, from other neu-
rons. These gains can also be segregated according to the
type of the rule that caused that gain, as with
G

(k)

R
=
[
g
(k)

R,1
,… , g

(k)

R,m

]
 where R = P for plasticity rules and

R = S for spiking rules.

Definition 15 (Spike loss vector) In an SNPSP system �
with m neurons, the spike loss vector at time k is defined as
the vector L(k) =

[
l
(k)

1
,… , l(k)

m

]
 where each l(k)

i
 is the number

of spikes lost by the neuron �i in time k from spike consump-
tion by rule firing. These losses can also be segregated
according to the type of the rule that caused that loss, as with
L
(k)

R
=
[
l
(k)

R,1
,… , l

(k)

R,m

]
 where R = P for plasticity rules and

R = S for spiking rules.

Definition 16 (System state) In the computations of an
SNPSP system � , the overall system state at time k is
defined as

where Rule(k) is the rule change node, Syn(k) is the synapse
change node, and Conf (k) is the system configuration node,
all for time k.

The initial state Cf (0) marks the start of a computation. A
computation is only to be terminated by a halting state Cf (t) ,
where either (1) os(t) has been set to 2, or (2) t has reached a
certain desired maximum time step.

The next few definitions would be for representing and
generating computations and would be very important in the
simulation algorithms.

(8)NM =

[
0 1 1 0 0

0 1 1 0 0

]

(9)KV =
[
1 1

]

Cf (k) = ⟨Rule(k)�Syn(k)�Conf (k)⟩
= ⟨Fi(k), Ti(k), os(k), sp(k)�Sy(k)

Δ
�C(k), Sy(k), Ti�(k)⟩

Definition 17 (Computation trace) Given an SNPSP sys-
tem � , a computation trace of � is a sequence of nodes
{Conf (0) , Rule(1) , Syn(1) , Conf (1) , … , Conf (t)} starting with
an initial configuration node Conf (0) followed by triples of
nodes of (Rule(k), Syn(k),Conf (k)) representing system states.
A computation trace is said to be valid iff the following con-
ditions are satisfied:

– each system state Cf (k) (after the initial configuration) can
be correctly generated or computed from the previous
system state Cf (k−1);

– the initial system state is represented by Rule(0) (not in
the sequence but defined to be filled with 0-values), Syn(0)
(also not in the sequence but defined to be filled with
0-values), and Conf (0);

– the terminating (halting) system step is represented by
the last rule change node Rule(t) either holds os(t) = 2 or
t has reached a maximum time step.

Definition 18 (Computation tree) Given an SNPSP sys-
tem � , a computation tree/graph for � is a rooted graph
where each path from the root (the initial configuration node
Conf (0)) to a leaf (halting configuration node Conf (t)) is a
computation trace for � . A computation tree is said to be
correct if the set of all paths from the root to the leaves is
equal to the set of valid computation traces.

Note that we would allow loops in generating a compu-
tation tree, thus making it more appropriate to call them
computation graphs.

4 Notations and conventions

Here, we would describe the conventions and notations in
writing matrices. In this work, given a matrix Mat , we would
refer to the rth row and the cth column as Matr and Mat(c) ,
respectively. Note that these are both row vectors. For a
matrix with subscripts and superscripts, as with Mat(k)

x
 , we

would then have Mat(k)
x,r

 and Mat
(k)

x,(c)
 . Since scalars here would

usually be written in lowercase, a particular element of the
matrix (say, the (i, j)th) would be denoted by mati,j . For
example, for a matrix

Mat1 = [1, 2, 3] is the first row, Mat(2) = [2, 2, 2] is the sec-
ond column (as a row vector), and mat2,3 = 3 is the value at
the intersection of the second row and third column.

Mat =

⎡⎢⎢⎣

1 2 3

1 2 3

1 2 3

⎤⎥⎥⎦

152 Z. B. Jimenez et al.

1 3

5 Simulation algorithm

The algorithm is centered on forming the computation tree
from a given configuration, by first branching out into rule
nodes for the rule changes at the current time. Then, the rule
nodes propagate into synapse nodes for the synapse changes
(now for the next time step). Lastly, the synapse nodes branch
out into their own configuration nodes for the system configu-
rations. Note that since we are only considering nondetermin-
ism in the synapse level, the configuration nodes will only
ever branch out into just one single rule node each.

The simulation main algorithm will go as in Algorithm 1,
creating a computation “tree” (strictly speaking, since identi-
cal configuration nodes will be joined, it is more of a com-
putation graph) up to a specified depth. It creates the graph
by forming the configuration nodes in a breadth-first manner
using a queue, then the subtree of each configuration node (up
to two levels) if created in a depth-first manner. The history of
the past configurations (for checking uniqueness) is created
using some arbitrary data structure. The specific methods of
the graph and queue (connect, dequeue, enqueue, pop, push,
empty, tooDeep) would not be specified in detail. Details of
the proofs of the following theorems are given in Appendix 1.

Algorithm 1: Main Algorithm
1 initializeValues()

/* gets input, initializes matrices & vectors, and generally initializes
system */

2 confs ← [Cf (0)]
3 hist ← [Cf (0) → node (Cf (0))]

/* mapping of all prev configurations to their nodes in the computation
tree */

4 while not empty(confs) :
5 conf ← dequeue(confs)
6 if not tooDeep(conf) :
7 continue

8 rules ← getRules(conf)
9 while not empty(rules) :

10 rule ← pop(rules)
11 connect(conf, rule)
12 syns ← getSyns(conf, rule)
13 while not empty(syns) :
14 syn ← pop(syns)
15 connect(rule, syn)
16 cur ← getConf(conf, rule, syn)
17 if cur in hist :
18 connect(syn, hist [cur])

19 else:
20 connect(syn,cur)
21 if os < 2 : enqueue(confs,conf)

Algorithm 2 will then check the applicability of the rules.
This is done using the P and Q vectors of the given system.
The for loop in Line 3 would check if ani , where ni is the
number of spikes in neuron �i , would satisfy the regular
expression for each of the rules. Note that the output spikes
are monitored by Line 9. newFi Line 5 returns an all-zero
firing vector for rules of type R . Line 13 would just check
if the rule was already fired and is still applying a plasticity
operation, where the timer would be at 0, since it did not
just start firing then. The primed timer would just be copied
over to the unprimed timer without changes. Otherwise, if
the rule would only start to be applied, then Line 16 would
start the timer. Lastly, Line 18 would return the appropriate

rule node. Details of newRule() would not be given, except
for it being the constructor of rule nodes.

Algorithm 2: Get Rule Nodes
function getRules(conf) :

1 k ← k + 1
2 os(k), sp(k) ← os(k−1), 0
3 for each R in {S,P} :
4 Sp ← (C(k−1) × SrTR)− PR

5 Fi(k)R ← newFi(R)
6 for i from 1 to rR :
7 if (qR,i, Spi > 0 and Spi mod qR,i = 0) or qR,i, Spi = 0 :
8 fi

(k)
R,i ← 1

9 if R = S and SrS,out,i = 1 : os(k), sp(k) ← os(k) + 1, 1

10 else :
11 fi

(k)
R,i ← 0

12 for i from 1 to rP :
13 if 1 in T i

′(k−1)
i :

14 fi
(k)
P,i ← 0

15 T i
(k)
i ← T i

′(k−1)
i

16 else if fi
(k)
P,i = 1 :

17 T i
(k)
i ← Sti

18 return [newRule(Fi(k),Ti(k),os(k),sp(k))]

Theorem 1 For an SNPSP system � , the getRules() func-
tion (as described in Algorithm 2) generates a list of all the
applicable rule nodes Rule(k) given Conf (k−1).

Algorithm 3 would generate each configuration based on
the possible combinations of candidate neurons nondeter-
ministically selected by plasticity rules. �������������()
would generate all permutations for this given these candi-
dates (based on NM and KV and whichever of the synapses
are existent on Sy(k)). These candidates are all stored the
���� stack, as pushed in Line 4. It would return a vector of
(Sy+, Sy−) pairs.

Algorithm 3: Get Synapse Nodes
function getSyns(conf, rule) :

1 syns ← []
2 for each (Sy+,Sy−) in getCandidates(SrP , NM, KV , Sy(k)) :

/* gets a list of all possible combinations of candidate synapses
based on the N of the rule and the previous synapse

/*snoitcennoc

3 Sy(k)
∆ ← Sy(k)

+ − Sy(k)
−

4 push(syns, newSyn(Sy(k)
∆))

5 return syns

Theorem 2 For an SNPSP system � , the getSyns()
function (as described in Algorithm 3) returns Syn(k) given
Conf (k−1) , and Rule(k).

Lastly, Algorithm 4 is focused on creating the current
configuration given the previous one. First, we note that the
kth configuration can be calculated from the total gain and
the total loss as such

We are classifying the gains or losses according to the
type of the causing rule, and thus L(k) = L

(k)

P
+ L

(k)

S
 and

G(k) = G
(k)

P
+ G

(k)

S
.

C(k) = C(k−1) + G(k) − L(k)

153Matrix representation and simulation algorithm of spiking neural P systems with structural…

1 3

Spike gains from spiking rules can be computed by check-
ing the rules that fired and then tracing the source neurons of
those rules and the destination of their corresponding out-
synapses. Therefore

Theorem 3 For an SNPSP system � with m neurons and
rS spiking rules, where d ∶ 1,… , rS is a total order for the
spiking rules, the total spike gain from spiking rules at time
k can be computed using

On the other hand, plasticity rules can only cause spike
gains during synapse creation. Thus, gains from plasticity
rules can be computed by checking the destination of the
newly created synapses, if any. In symbol form

Theorem 4 For an SNPSP system � with m neurons and rP
plasticity rules, where d ∶ 1,… , rP is a total order for the
plasticity rules, the total spike gain from plasticity rules at
time k can be computed by summing all of the rows of Sy(k)+
using G(k)

P
=
∑rP

i=1
Sy

(k)

+,i
.

Spikes are only lost on consumption during rule firing.
So for both rule types, this is computed from checking how
many spikes are consumed according to the rules and then
checking the source neurons of these rules.

Theorem 5 For an SNPSP system � with m neurons, rS spik-
ing rules, rP plasticity rules, where dR ∶ 1,… , rR is a total
order for the spiking [plasticity] rules and R = S [R = P],
the total spike loss from spiking [plasticity] rules at time k
can be computed using

where R ∈ {S,P} , and ⊙ is element-wise multiplication.

Algorithm 4: Get Configuration Nodes
function getConf(conf, rule, syn) :

1 Sy(k) ← Sy(k−1) + Sy(k)
∆

2 G
(k)
S ← Fi(k)S × SrS × Sy(k)

3 G
(k)
P ← sumRows(Sy(k)

+)

4 L
(k)
S ← (Fi(k)S � CoS)× SrS

5 L
(k)
P ← (Fi(k)P � CoP)× SrP

6 G(k) ← G
(k)
P +G

(k)
S

7 L(k) ← L
(k)
P + L

(k)
S

8 C(k) ← C(k−1) +G(k) − L(k)

9 for i from 1 to rP do
10 for j from 1 to 2 do
11 ti

′(k)
i,j ← max(ti(k)i,j − 1,0)

12 return newConf((C(k),Sy(k),Ti ′(k))

G
(k)

S
= Fi

(k)

S
× SrS × Sy(k)

L
(k)

R
= (Fi

(k)

R
⊙ CoR) × SrR

Theorem 6 For an SNPSP system � , the getConf() func-
tion (as described in Algorithm 4) returns Conf (k) given
Conf (k−1) , Rule(k) , and Syn(k).

Theorem 7 For an SNPSP system � (that follows the
restrictions assumed in this paper), Algorithm 1 can cor-
rectly simulate the computation of � and generate a correct
computation tree (graph).

Further algorithm analysis and proof of correctness are
detailed in [10] and Appendix 1, with a summary in Table 5.
In the next section, we give an example of our algorithms in
this section to simulate a small SNPSP system.

6 Example simulation

In this section, we demonstrate the matrix representation
and algorithms from the previous section using �ex from
Fig. 1. Note that for the illustrations to follow, the matrices
and vectors that define an aggregate version that combines
those for plasticity and for spiking rules (i.e. Sr , P, Q, Fi ,
Co), the arbitrary ordering as specified in their respective
definitions would simply be the concatenation of those for
the spiking rules and for the plasticity rules. In other words,
as with the rule firing vector, the resulting vector would be

Given the initial values as computed above, the initial con-
figuration of the system is

Fi(k) =
[
fi
(k)

S,0
⋯ fi

(k)

S,rS
fi
(k)

P,0
⋯ fi

(k)

P,rP

]

Table 5 Space and time complexities of algorithms presented

Algorithm Time Complex-
ity

Space Com-
plexity

Notes

Tree (node
count)

– O((2e)m
2 t∕2)

Algorithm 1 O(F(F + mr)) O(F + Fr∕(m2)) F = (2e)m
2 t∕2m2

Algorithm 2 – O(mr)
Algorithm 3 O((2e)m

2 t∕2m2) –

Algorithm 4 O(mr) –

154 Z. B. Jimenez et al.

1 3

We have already computed for the rule firing vectors and the
timer matrix at time 1, which are

Since we have already decided that rules rS,2 and rP,1 are to
fire, we could proceed to selecting which synapses are to
be operated on using rP,1 . Since in the rule source matrix,
srP,1,1 = 1 (for plasticity rule number one, for the first neu-
ron), then the source neuron of rule rP,1 is neuron �1 . The
candidate destination neurons for the same rule are neurons
�2 and �3 , since nm1,2 = nm1,3 = 1 (for plasticity rule num-
ber one, for the second and third neurons). The operation is
o1 = + , given that ti1,1 = 1 (for plasticity rule number one,
for the first neuron). Thus, we are to select kv1 = 1 neuron
from these two candidates to which we would create a syn-
apse to (since the chosen operation is op1 = + for synapse
creation). In the example where �ex computed 4, the first
selected neuron was �2.

Since rule rS,2 is in neuron �3 = �out and has fired, we
know that it has caused a spike to be sent to the environment
at time 1. Therefore, the output spike count and indicator are
os(1) = 1 and sp(1) = 1.

Afterwards, we could now create the next configuration.
We have

(10)

Cf (0) = ⟨Rule(0)�Syn(0)�Conf (0)⟩

=

��
0 0 0 0 0 0

�
,

�
0 0

0 0

�
, 0, 0

�����

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

�����
�
2 0 1 0 0

�
,

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 0 0 1 1

0 0 0 0 0

1 0 0 0 0

1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

,

�
0 0

0 0

��

(11)Fi(1) =
[
0 1 0 0 1 0

]

(12)Ti(1) =

[
1 0

0 0

]

(13)Sy
(1)

Δ
= Sy

(1)
+ =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

(14)

Sy(1) = Sy(0) + Sy
(1)

Δ
= Sy(0) + Sy

(1)
+ − Sy(1)

−
= Sy(0) + Sy

(1)
+

=

⎡⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 0 0 1 1

0 0 0 0 0

1 0 0 0 0

1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎣

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣

0 1 0 0 0

0 0 0 1 1

0 0 0 0 0

1 0 0 0 0

1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

Now we can use Algorithm 4 to create the matrices for the
next configuration.

(15)

G
(1)

S
= Fi

(0)

S
× SrS × Sy

(1)

=
�
0 1 0 0

�
×

⎡
⎢⎢⎢⎣

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎤
⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎢⎣

0 1 0 0 0

0 0 0 1 1

0 0 0 0 0

1 0 0 0 0

1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

=
�
0 0 0 0 0

�

(16)

G
(1)

P
= sumRows(Sy

(1)
+)

=
�
1 1 1 1 1

�
× Sy

(1)
+

=
�
1 1 1 1 1

�
×

⎡⎢⎢⎢⎢⎢⎣

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
=
�
0 1 0 0 0

�

(17)

L
(1)

S
= (Fi

(0)

S
⊙ CoS) × SrS

=
��
0 1 0 0

�
⊙
�
1 1 1 1

��

×

⎡⎢⎢⎢⎣

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎤⎥⎥⎥⎦
=
�
0 0 1 0 0

�

(18)

L
(1)

P
= (Fi

(0)

P
⊙ CoP) × SrP

=
([
1 0

]
⊙
[
1 1

])

×

[
1 0 0 0 0

1 0 0 0 0

]

=
[
1 0 0 0 0

]

(19)
L(1) = L

(1)

S
+ L

(1)

P
=
[
0 0 1 0 0

]
+
[
1 0 0 0 0

]
=
[
1 0 1 0 0

]

155Matrix representation and simulation algorithm of spiking neural P systems with structural…

1 3

 Finally, the timer matrix would count down and we would
have

Given the computation as illustrated so far, the current state
of the computation tree is shown in Fig. 2.

7 Closing remarks

The main purpose of this work is to provide a matrix rep-
resentation and simulation algorithm for SNPSP systems,
similar to what has been done for other variants of SNP
systems. The main difference between our representation
and matrix representations of other variants is taking care
of the semantics of plasticity, e.g. we take into consideration
the plasticity of the synapses (thus we have Sy(k) to indicate
that the synapses change per time step, as opposed to the
Sy matrix of [27]), and the timer for ± and ∓ in plasticity
rules. Ideas from this work may be employed to represent
other SNP system variants, e.g. those with neuron division
or budding mentioned in Ref. [15].

(20)
G(1) = G

(1)

S
+ G

(1)

P
=
[
0 1 0 0 0

]
+
[
0 0 0 0 0

]
=
[
0 1 0 0 0

]

(21)

C
(1) = C

(0) + G
(1) − L

(1) =
[
2 0 1 0 0

]
+
[
0 1 0 0 0

]

−
[
1 0 1 0 0

]
=
[
1 1 0 0 0

]

(22)Ti�(1) =

[
0 0

0 0

]

In implementing the simulation algorithm, the simulation
speed can be accelerated using parallel processors such as
GPUs. If the implementation does not check for uniqueness
of configurations, then the simulation can be further accel-
erated by performing parallel configuration generations.
Otherwise, the configurations would have to be checked
sequentially. If there would be no loops in the computa-
tion tree, then the implementation can choose not to perform
uniqueness checking.

A future work for this paper includes a software imple-
mentation of the algorithm in GPU and CPU. As previously
mentioned, for this work we are only dealing with SNPSP
systems with determinism on the rule-level. We also note
that at present, the matrix representation seems to be appli-
cable to asynchronous version of SNPSP systems, see e.g.
[3]. In asynchronous mode of rule application, as opposed
to the synchronous mode in this work, at each step a neuron
can nondeterministically choose not to apply a rule even if
a rule can be applied. However, the algorithms given in this
work must be modified to include this additional level of
nondeterminism.

Acknowledgements R.T.A. de la Cruz is supported by a graduate
scholarship from the DOST-ERDT project. F.G.C. Cabarle thanks the
support from the DOST-ERDT project; the Dean Ruben A. Garcia PCA
AY2018–2019, and an RLC AY2018–2019 grant of the OVCRD, both
from UP Diliman. H. Adorna would like to appreciate and thank the
support granted by UPD-OVCRD RCL grant, ERDT Research Pro-
gram of the College of Engineering, UP Diliman and the Semirara
Mining Corporation Professorial Chair for Computer Science. N. Her-
nandez is supported by the Vea Technology for All professorial chair.
The work of X. Zeng was supported by the National Natural Science
Foundation of China (Grant Nos. 61472333, 61772441, 61472335,

Fig. 2 Incomplete computation
tree for �

ex
 computing {4}

Conf 0 0
t = 0 0 0

2 0 1 0 0
0 0 0 0 0
0 0 0 1 1
0 0 0 0 0
1 0 0 0 0
1 0 0 0 0

Rule 1 0
0 1 0 0
sp = 1 1 0
os = 1 0 0 Syn

0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Conf 0 0
t = 1 0 0

1 1 0 0 0
0 1 0 0 0
0 0 0 1 1
0 0 0 0 0
1 0 0 0 0
1 0 0 0 0

Syn
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Legend
Conf

Ti ′(t)
t

C(t)

Sy(t)

Rule Fi (t+1)
P

Fi (t+1)
S

sp
Ti (t+1)

os

Syn

Sy(t+1)

156 Z. B. Jimenez et al.

1 3

61672033, 61425002, 61872309, 61771331), Project of marine eco-
nomic innovation and development in Xiamen (No. 16PFW034SF02),
Natural Science Foundation of the Higher Education Institutions of
Fujian Province (No. JZ160400). K. Buño would like to thank Dr.
Olegario G. Villoria Jr. Professorial Chair on Transportation/Logistics
since 2018 until present.

Theorem proofs

P r o o f f o r T h e o r e m 1 B y d e f i n i t i o n ,
Rule(k) = (Fi(k), Ti(k), os(k), sp(k)) . First, given that the input
Conf (k−1) is of the previous time step (fed into the function
as Conf (k)), we first increment k at Line 1 for appropriate
usage in the resulting rule node. Thus, we know that the
newRules() constructor at Line 18 is of the right time step.
Line 4 evaluates a formula and assigns it to a temporary
variable Sp, for spikes. The formula consists of two parts,
the multiplication and the subtraction. It goes as follows:

 Since srR,i,j = 1 if rule rR,i belongs to neuron �j (0 other-
wise), and c(k)

i
 is the number of spikes in neuron �i at time

k, we have

Also noting that rules can only be associated with one neu-
ron, we can then conclude that

∑
i c

(k−1)

i
srR,i,j is the number

of spikes in the source neuron of rule rR,j . We let rspR,i be
this number. Now that we know each rule’s respective source
neuron spike count; we can now use the P and Q vectors to
check compatibility with the rule’s respective regular expres-
sion. Thus

 With s being the current spike count of a certain neu-
ron, we need to match as with ap(aq) ∗= ap+qn , and thus
we need to make sure s = p + qn for some nonnega-
tive integers p,q, and n. So we first subtract p in Line 4,
and check for qn in the if clause of Line 7. There are two

Sp =
(
C(k−1) × SrT

R

)
− PR

=

([
c
(k−1)

i

]
m
×
[
srR,i,j

]
m×rR

)
−
[
pR,i

]
rR

=

([∑
i

c
(k−1)

i
srR,i,j

]

rR

)
−

[
pR,i

]

rR

c
(k−1)

i
srR,i,j =

{
c
(k−1)

i
, rR,j ∈ Ri;

0, otherwise.

Sp =

([∑
i

c
(k−1)

i
srR,i,j

]

rR

)
−

[
pR,i

]

rR

=
[
rspR,i

]
rR

−
[
pR,i

]
rR

=
[
rspR,i − pR,i

]
rR

cases for as to match the regular expression. First, if there
is a non-zero q for the rule, there is no problem using
Spi�odqR,i = 0 (so long as Spi is not negative, in which case
rspR,i − pR,i = s − p < 0). The other case would be if q = 0 ,
in which case the regular expression is of the form ap . Thus,
p + qn = p , a constant, and so s = p + qn can only be sat-
isfied if s − p = rspR,i − pR,i = 0 . If the regular expression
is matched, fiR, i(k) = 1 ; otherwise, = 0 . Since the loop of
Line 6 iterates over all the rules of type R , and that R goes
through both P and S (Line 3), these two loops go over all
the rules. Thus, Fi(k) now tells us which rules have matched
their regular expressions and can fire.

os(k) would by default copy the value from the previous
time step, os(k) , while sp(k) would stay at 0. The former would
only increase and the latter be set to 1 if an output spike was
discovered to be sent to the environment at time k. This con-
dition is checked by the if clause at Line 9, which would
only be reached if rule rR,i were to fire at time k for the
given values of R and i. Thus, we only need to check if this
rule sent an output spike. Since only spiking rules can send
spikes to the environment, the condition at Line 9 should
check if the given rule was a spiking rule (R = S) and if
the current rule belonged to the output neuron (SrS,out,i = 1).
Thus, os(k) and sp(k) are now computed correctly.

Lastly, the timer matrix Ti(k) would only be touched in the
for loop of Line 12. For each plasticity rule, we first check
if the rule already fired at the previous time step (Line 13)
and is still executing at the current time step (as with the ±
and ∓ rules). This could be checked by looking for a 1 in the
primed timers of the said rule from the previous time step
(Ti(k−1)

i�
), since the timers have already counted down after

initial rule firing. fi(k)
P,i

 is simply marked as 0 since the rule is
not allowed to fire anew if it is still executing, and just copies
the previous primed timers onto the current unprimed tim-
ers. Otherwise, if the rule is not to execute a second opera-
tion at the current time step, we check if it fired anew at the
current time step (Line 9). Since Fi(k)

R
 now shows which rules

are applicable (unless ongoing execution), we can now be
sure that the rules will be applied at time step k and thus we
start the timer (Line 17). Given that, we are now sure that
Fi(k) and Ti(k) are now computed correctly.

Therefore, we are now sure that os(k) , sp(k) , Fi(k) , and
Ti(k) are computed correctly. newRule() is thus sure to be
fed the correct arguments, and will return the correct rule
node. ◻

Proof for Theorem 2 Here, we return a list of all possible
synapse nodes Syn(k) . getCandidates() has not been
specified in this paper and is assumed to return a list of all
possible combinations of created/deleted synapses based
on permutations of destination neurons and synapse counts
of applicable plasticity rules. Given this, we are ensured
that Sy(k)+ and Sy(k)

−
 are the appropriate synapse creation and

157Matrix representation and simulation algorithm of spiking neural P systems with structural…

1 3

deletion matrices of each synapse node to be created. Thus,
Sy

(k)

Δ
 would then hold the appropriate synapse change matrix

for the same synapse node and would thus be appropriately
passed onto the constructor for Syn(k) and be included in the
return list. Therefore, getSyns() returns the correctly com-
puted synapse nodes appropriate for the given rule node.
 ◻

Proof for Theorem 3 Given the definitions of FiS , SrS , and
Sy , we have

 Since fi(k)
S,i

= 1 if rule rS,i has spiked at time k (0 otherwise),
and srS,i,j = 1 if rS,i belongs to neuron �j (0 otherwise), we
have

G
(k)

S

?

= Fi
(k)

S
× SrS × Sy(k)

=
[
fi
(k)

S,i

]
rR

×
[
srS,i,j

]
rR×m

×
[
sy

(k)

i,j

]
m×m

=
[∑

i

fi
(k)

S,i
srS,i,j

]
m
×
[
sy

(k)

i,j

]
m×m

 Spiking rules can only cause spike gains in a destination
neuron if some other source neuron fires a spiking rule to
the said destination, and so we finally have

 ◻

Proof for Theorem 4 Since plasticity rules can only cause
spike gains by creating synapses (because creating synapses
would inherently send one spike to the destination neuron),
we only need to check Sy(k)+ . Given the definition of Sy+ , we
have

 ◻

Proof for Theorem 5 Both spiking and plasticity rules can
only cause spike loss through spike consumption upon rule
firing. Thus

 Since srR,i,j will only have a nonzero value if rule rR,i is in
neuron �j , we have

Spike losses will only ever be caused by spike consump-
tion from rule firing in a given neuron. Thus, also given the
definition of

G
(k)

S

?
=
[
�

Σs
→

(k)
�j

]
m
=
[
g
(k)

S,j

]
m

✓
= G

(k)

S

G
(k)

P

?
=

rP∑
i=1

Sy
(k)

+,i
=
[∑

i

sy
(k)

+,i,j

]
m
=
[∑

i

�i

+
→

(k)
�j

]
m

=
[
�

Σ+
→

(k)
�i

]
m
=
[
g
(k)

P,i

]
m

✓
= G

(k)

P

Thus,
∑

i fi
(k)

S,i
srS,i,j is the number of spiking rules that have

spiked at time k from neuron �j . However, given that we have
restricted neurons to only fire a maximum of one rule each,
the value of this summation will only ever be 0 or 1, only
indicating whether the neuron had a spiking rule fire or not.
Continuing further, sy(k)

i,j
= 1 if neuron �i is connected to �j

at time k (0 otherwise), so

G
(k)

S

?
=
[∑

i

fi
(k)

S,i
srS,i,j

]
m
×
[
sy

(k)

i,j

]
m×m

=
[
�i

Σs
→

(k)
�

]
m
×
[
sy

(k)

i,j

]
m×m

=
[
�i

s
→

(k)
�

]
m
×
[
�i →

(k)
�j

]
m×m

=
[∑

i

((
�i

s
→

(k)
�

)(
�i →

(k)
�j

))]
m
=
[∑

i

�i

s
→

(k)
�j

]
m
=
[
�

Σs
→

(k)
�j

]
m

158 Z. B. Jimenez et al.

1 3

Lines 9–11 would tick the timer to get Ti�(k) , by manually
decreasing each element of the matrix by 1 unless the value
is 0. ◻

Proof for Theorem 6 By definition, Conf (k) = (C(k), Sy(k), Ti�(k)) .
Lines 1 to 8 have been proven to correctly compute for C(k)
and Sy(k) . The loop in Line 9 iterates over all plasticity rules,
while the inner loop of Line 10 goes over the two plasticity
operations creation (1) and deletion (2). Line 11 would then
either count down the current unprimed timer (ti(k)

i,j
− 1), or

keep it at zero (max). Thus, the loops correctly compute for
Ti�(k) . Line 12 thus returns the correct configuration node via
the constructor for Conf (k) , being passed the correct argu-
ments for C(k) , Sy(k) , and Ti�(k) . ◻

Proof for Theorem 7 The first three lines are just for initializa-
tion. The loop in Line 4 iterates over the configuration nodes
in a breadth-first manner (seen by the use of dequeue and
enqueue). Line 6 would cut off the computation graph once
it reaches a given depth. The loop in Line 9 would go through
the rule nodes, connecting them to configuration nodes first
before heading to the loop in Line 13. This loop would go
through the synapse nodes and connect them to the rule nodes,
and then generates a new configuration node in Line 16. These
two inner loops, from the rule nodes down to the immedi-
ate next configuration nodes, would generate these three lev-
els in a depth-first manner (as seen with pop and push).
Essentially, what happens is (1) given a configuration node,
generate the subtree of these configuration nodes up to three
levels in depth-first manner, (2) go through these configura-
tion nodes in breadth-first manner. ◻

References

 1. Cabarle, F. G. C., Adorna, H. N., Jiang, M., & Zeng, X. (2017).
Spiking neural p systems with scheduled synapses. IEEE Transac-
tions on Nanobioscience, 16(8), 792–801.

 2. Cabarle, F. G. C., Adorna, H. N., Martínez-del-Amor, M. Á., &
Pérez-Jiménez, M. J. (2012). Improving GPU simulations of spik-
ing neural P systems. ROMJIST, 15(1), 5–20.

 3. Cabarle, F.G.C., Adorna, H.N., & Pérez-Jiménez, M.J. (2015)
Asynchronous spiking neural P systems with structural plastic-
ity. In C. S. Calude, M. J. Dinneen (Eds.), International confer-
ence on unconventional computation and natural computation
(pp. 132–143). Cham: Springer.

 4. Cabarle, F. G. C., Adorna, H. N., Pérez-Jiménez, M. J., & Song, T.
(2015). Spiking neural p systems with structural plasticity. Neural
Computing and Applications, 26(8), 1905–1917.

 5. Carandang, J. P., Cabarle, F. G. C., Adorna, H. N., Hernan-
dez, N. H. S., & Martinez-del Amor, M. A. (2019). Handling

non-determinism in spiking neural P systems: Algorithms and
simulations. Fundamenta Informaticae, 164, 139–155. https ://doi.
org/10.3233/FI-2019-1759.

 6. Carandang, J. P. A., Villaflores, J. M. B., Cabarle, F. G. C.,
Adorna, H. N., & Martinez-del Amor, M. A. (2017). Cusnp: Spik-
ing neural p systems simulators in cuda. Romanian Journal for
Information Science and Technology (ROMJIST), 20(1), 57–70.

 7. Chen, H., Freund, R., Ionescu, M., Păun, G., & Pérez-Jiménez,
M. J. (2007). On string languages generated by spiking neural p
systems. Fundamenta Informaticae, 75(1–4), 141–162.

 8. Chen, H., Ionescu, M., Ishdorj, T. O., Păun, A., Păun, G., & Pérez-
Jiménez, M. J. (2008). Spiking neural p systems with extended
rules: Universality and languages. Natural Computing, 7(2),
147–166.

 9. Dela Cruz, R. T., Cailipan, D., Cabarle, F. G. C., Hernandez, N.,
Buño, K., Adorna, H., & Carandang, J. (2018) Matrix representa-
tion and simulation algorithm for spiking neural p systems with
rules on synapses. In Proceedings of 18th Philippine Computing
Science Congress (PCSC2018), 15–17 March, 2018, Cagayan
de Oro City, Misamis Oriental, Philippines (pp. 104–112). https
://sites .googl e.com/site/2018p csc/proce eding s. Accessed 4 Aug
2019.

 10. Dela Cruz, R. T., Jimenez, Z. B., Cabarle, F. G. C., Hernandez,
N., Buño, K., Adorna, H., & Carandang, J. (2018) Matrix repre-
sentation of spiking neural p systems with structural plasticity.
In Proceedings of 18th Philippine Computing Science Congress
(PCSC2018), 15–17 March, 2018, Cagayan de Oro City, Misamis
Oriental, Philippines (pp. 104–112). https ://sites .googl e.com/
site/2018p csc/proce eding s. Accessed 4 Aug 2019

 11. Ionescu, M., Păun, G., & Yokomori, T. (2006). Spiking neural p
systems. Fundamenta informaticae, 71(2, 3), 279–308.

 12. Ishdorj, T. O., & Leporati, A. (2008). Uniform solutions to sat and
3-sat by spiking neural p systems with pre-computed resources.
Natural Computing, 7(4), 519–534.

 13. Ishdorj, T. O., Leporati, A., Pan, L., Zeng, X., & Zhang, X.
(2010). Deterministic solutions to qsat and q3sat by spiking neu-
ral p systems with pre-computed resources. Theoretical Computer
Science, 411(25), 2345–2358.

 14. Leporati, A., Mauri, G., Zandron, C., Păun, G., & Pérez-Jiménez,
M. J. (2009). Uniform solutions to sat and subset sum by spiking
neural p systems. Natural Computing, 8(4), 681.

 15. Martínez-del-Amor, M. Á., Orellana-Martín, D., Cabarle, F. G. C.,
Pérez-Jiménez, M. J., & Adorna, H. N. (2017) Sparse-matrix rep-
resentation of spiking neural P systems for GPU. In C. Graciani,
G. Păun, A. Riscos-Núñez, L. Valencia-Cabrera (Eds.), Proceed-
ings of 15th brainstorming week on membrane computing (pp.
161–170). Seville: Fénix Editora. http://www.gcn.us.es/15bwm
c_proce eding s.

 16. Pan, L., & Păun, G. (2009). Spiking neural p systems with anti-
spikes. International Journal of Computers Communications and
Control, 4(3), 273–282.

 17. Pan, L., Păun, G., & Pérez-Jiménez, M. J. (2011). Spiking neural
p systems with neuron division and budding. Science China Infor-
mation Sciences, 54(8), 1596.

 18. Pan, L., Wang, J., & Hoogeboom, H. J. (2012). Spiking neural p
systems with astrocytes. Neural Computation, 24(3), 805–825.

 19. Pan, L., Zeng, X., Zhang, X., & Jiang, Y. (2012). Spiking neural
p systems with weighted synapses. Neural Processing Letters,
35(1), 13–27.

 20. Păun, G. (2007). Spiking neural p systems. a tutorial. Bulletin of
the European Association for Theoretial Computer Science 91,

https://doi.org/10.3233/FI-2019-1759
https://doi.org/10.3233/FI-2019-1759
https://sites.google.com/site/2018pcsc/proceedings
https://sites.google.com/site/2018pcsc/proceedings
https://sites.google.com/site/2018pcsc/proceedings
https://sites.google.com/site/2018pcsc/proceedings
http://www.gcn.us.es/15bwmc_proceedings
http://www.gcn.us.es/15bwmc_proceedings

159Matrix representation and simulation algorithm of spiking neural P systems with structural…

1 3

145–159. http://cs.ioc.ee/yik/schoo ls/win20 07/paun/snppa lmse.
pdf. Accessed 4 Aug 2019.

 21. Paun, G. (2007). Spiking neural p systems with astrocyte-like
control. Journal of UCS, 13(11), 1707–1721.

 22. Peng, H., Wang, J., Pérez-Jiménez, M. J., Wang, H., Shao, J., &
Wang, T. (2013). Fuzzy reasoning spiking neural p system for
fault diagnosis. Information Sciences, 235, 106–116.

 23. Song, T., Pan, L., & Păun, G. (2014). Spiking neural p systems
with rules on synapses. Theoretical Computer Science, 529,
82–95.

 24. Song, T., Rodríguez-Patón, A., Zheng, P., & Zeng, X. (2017).
Spiking neural p systems with colored spikes. IEEE Transactions
on Cognitive and Developmental Systems, 10(4), 1106–1115.

 25. Wang, J., Hoogeboom, H. J., Pan, L., Păun, G., & Pérez-Jiménez,
M. J. (2010). Spiking neural p systems with weights. Neural Com-
putation, 22(10), 2615–2646.

 26. Wang, T., Zhang, G., Zhao, J., He, Z., Wang, J., & Pérez-Jiménez,
M. J. (2014). Fault diagnosis of electric power systems based on
fuzzy reasoning spiking neural p systems. IEEE Transactions on
Power Systems, 30(3), 1182–1194.

 27. Zeng, X., Adorna, H. N., Martínez-del Amor, M. Á., Pan, L.,
& Pérez-Jiménez, M. J. (2010). Matrix representation of spiking
neural p systems. In M. Gheorghe, T. Hinze, G. Păun, G. Rozen-
berg, A. Salomaa (Eds.), International conference on membrane
computing (pp. 377–391). Springer.

 28. Zhang, G., Rong, H., Neri, F., & Pérez-Jiménez, M. J. (2014). An
optimization spiking neural p system for approximately solving
combinatorial optimization problems. International Journal of
Neural Systems, 24(05), 1440006.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Zechariah B. Jimenez completed
the bachelor’s degree in com-
puter science in 2019 from the
University of the Philippines
Diliman. At present, he is a mas-
ter’s student in the same univer-
sity. His research interests
include membrane computing
and parallel computing.

F r a n c i s G e o r g e C .
Cabarle received the Ph.D.
degree in computer science from
the Algorithms and Complexity,
at the Department of Computer
Science, in the University of the
Philippines Diliman, Quezon
City, Philippines, in 2015. His
current research interests include
membrane computing, parallel
computing, and automata and
formal languages.

Ren Tristan A. de la Cruz is Ph.D.
student in computer science from
the Algorithms and Complexity
Laboratory, Department of Com-
puter Science, University of the
Philippines Diliman, Quezon
City, Philippines. He received
his M.S. degree in computer sci-
ence from the same university.
His current research interests
include membrane computing,
parallel computing, and autom-
ata and formal languages.

Kelvin C. Buño received the mas-
ters degree in 2011 from the Uni-
versity of the Philippines Dili-
man. His research Interests
include Automata Theory, Mem-
brane Computing, Communica-
tion Complexity.

Henry N. Adorna received the
Ph.D. degree in mathematics
from the University of the Phil-
ippines in 2002. He is currently
a Professor with the Algorithms
and Complexity, Department of
Computer Science, University of
the Philippines Diliman, Quezon
City, Philippines. His research
interests include automata and
formal languages, algorithmics
for hard problems, discrete math-
ema t i c s , and membrane
computing.

Nestine Hope S. Hernan-
dez received the masters
degrees in mathematics (2003)
and computer science (2009)
both from the University of the
Phil ippines Diliman. Her
research interests include natural
computing and combinatorial
interconnection networks.

http://cs.ioc.ee/yik/schools/win2007/paun/snppalmse.pdf
http://cs.ioc.ee/yik/schools/win2007/paun/snppalmse.pdf

160 Z. B. Jimenez et al.

1 3

Xiangxiang Zeng is an Yuelu
distinguished Professor with the
College of Information Science
and Engineering, Hunan Univer-
sity, Changsha, China. Before
joining Hunan University in
2019, he was with Department of
Computer Science in Xiamen
University. He received the B.S.
degree in automation from
Hunan University, China, in
2005, the Ph.D. degree in system
engineering from Huazhong
University of Science and Tech-
nology, China, in 2011. His main
research interests include mem-

brane computing, neural computing and bioinformatics.

	Matrix representation and simulation algorithm of spiking neural P systems with structural plasticity
	Abstract
	1 Introduction
	2 Preliminaries
	3 Matrix representation of SNPSP
	4 Notations and conventions
	5 Simulation algorithm
	6 Example simulation
	7 Closing remarks
	Acknowledgements
	References

