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Abstract. In this paper we present a Spiking Neural P system (SNP
system) simulator based on graphics processing units (GPUs). In partic-
ular we implement the simulator using NVIDIA CUDA enabled GPUs.
The massively parallel architecture of current GPUs is very suitable for
the maximally parallel computations of SNP systems. We simulate a
wider variety of SNP systems, after presenting a previous work on SNP
system matrix representation which led to their simulation in GPUs, and
the simulation algorithm included here. Finally, we compare and present
the performance speedups of the CPU-GPU based simulator over the
CPU only simulator.
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1 Introduction

Inspiration taken from nature can help us define new computing models, with the
aim of providing efficient solutions to the limitations of conventional models of
computation. In this respect Membrane Computing, a research area initiated by
Gheorghe Păun in 1998 [14], provides distributed, parallel, and nondeterministic
computing models known as P systems. These models are basically abstractions
of the compartmentalized structure and parallel processing of biochemical infor-
mation in biological cells.

Many P system variants have been defined in literature, and many of them
have been proven to be computationally complete. Moreover, several general clas-
sifications of P systems are considered depending on the level of abstraction:
cell-like (a rooted tree where the skin or outermost cell membrane is the root,
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and its inner membranes are the children or leaf nodes in the tree), tissue-like (a
graph connecting the cell membranes) and neural-like (a directed graph, inspired
by neurons interconnected by their axons and synapses). The last type refers to
Spiking Neural P systems (in short, SNP systems), where the time difference
(when neurons fire and/or spike) plays an essential role in the computations
[11].

One key reason of interest for P systems is that they are able to solve com-
putationally hard problems (e.g. NP-complete problems) usually in polynomial
to linear time only, but requiring exponential space as trade off. These solu-
tions are inspired by the capability of cells to produce an exponential number
of new membranes via methods like mitosis (membrane division) or autopoiesis
(membrane creation). However, because of this massively parallel, distributed
and nondeterministic nature of P systems, they are yet to be fully implemented
in vivo, in vitro, or even in silico. Thus, practical computations of P systems are
driven by silicon-based simulators.

Since P systems were introduced, many simulators have been produced by
using different software and hardware technologies [7]. In practice, P system
simulations are limited by the physical laws of silicon architectures, which are
often inefficient or not suitable when dealing with P system features, such as
the exponential workspace creation and massive parallelism. However, in order
to improve the efficiency of the simulators, it is necessary to exploit current
technologies, leading to solutions in the area of High Performance Computing.
In this way, many simulators have been developed over highly parallel platforms,
including reconfigurable hardware as in FPGAs [15], CPU-based clusters [6], as
well as the Graphical Processing Units (GPUs) [3,4]. These efforts show that
parallel devices are very suitable in simulating P systems, at least for the first
few P system variants to have been introduced (transition and active membrane
P systems). Efficiently simulating SNP systems would thus require new attempts
in parallel computing.

GPUs are the leading exemplars of modern high throughput-oriented archi-
tectures [9]. Nowadays, these kinds of processors are used for tackling prob-
lems where parallelism is prevalent. Indeed, GPUs have been successfully used
to speedup many parallel applications. Modern GPUs are not limited only to
graphics processing, as the first graphic cards were, since current GPUs can
now be used for general purpose computations [10]; they are now multi-core and
data-parallel processors [12]. By using GPU computing, also known as GPGPU
(General Purpose computing on the GPU), a programmer can achieve with a
single GPU, a throughput similar to that of a CPU based cluster [10,17]. Thus,
the main advantages of using GPUs are their low-cost, low-maintenance and low
power consumption relative to conventional parallel clusters and setups, while
providing comparable or improved computational power. Moreover, parallel com-
puting concepts such as hardware abstraction, scaling, and so on are handled
efficiently by current GPUs.

Given that SNP systems have already been represented as matrices due to
their graph-like properties [16], simulating them in parallel devices such as GPUs



is the next natural step. Matrix algorithms are well known in parallel computing
literature, including GPUs [8], due to the highly parallelizable nature of linear
algebra computations mapping directly to the data-parallel GPU architecture.

Previously, SNP systems have been faithfully simulated in GPUs using their
matrix representation [1]. This simulator combined both the object oriented pro-
gramming language (OOPL) Python (CPU part) and CUDA/C (GPU part)
codes, and so it has been improved [2], in performance, by using the PyCUDA
[13] library. In this paper we present an extension of [2] in order to simulate
SNP systems with more general regular expressions associated to their firing
rules. This extension allows us to simulate larger and wider varieties of SNP
systems in order to test the speedup achieved by the GPU and CPU based
simulators.

This paper is organized as follows: Section 2 introduces SNP systems formally,
as well as their matrix representation. Section 3 provides background for GPU
computing with CUDA. The design of the simulator and simulation results are
given in Section 4 and Section 5, respectively. Finally, conclusions, future work,
acknowledgements, and references end this paper.

2 Spiking Neural P Systems

In this section the SNP system model is introduced, together with a matrix
representation of the model. This representation is the basis for the simulation
algorithm in this paper. Additionally, the two examples used to test and analyse
the simulator are also described.

2.1 The SNP System Model

Many variants of SNP systems have been introduced in recent works, such as
those with delays, weights, extended firing rules, deterministic systems, division,
budding, and so on. Each one has specific features in complexity, but the majority
of them have been shown to be computationally complete [11,5]. This paper is
focused on a restricted variant of SNP systems, with no delays associated to the
rules (i.e. neurons fire immediately once they are able to do so), which are of the
following form:

Definition 1. An SNP system without delay, of degree m ≥ 1, is a construct of
the form

Π = (O, σ1, . . . , σm, syn, in, out),

where:

1. O = {a} is the alphabet made up of only one object a, called spike;
2. σ1, . . . , σm are m neurons of the form

σi = (ni, Ri), 1 ≤ i ≤ m,

where:



(a) ni ≥ 0 gives the initial number of spikes (a) contained in neuron σi;
(b) Ri is a finite set of rules of the following forms:
(b-1) E/ac → ap, are known as Spiking rules, where E is a regular expres-

sion over a, and c ≥ 1, for p ≥ 1 number of spikes are produced (with
the restriction c ≥ p), transmitted to each adjacent neuron with σi

as the originating neuron, and ac ∈ L(E);
(b-2) as → λ, are known as Forgetting rules, for s ≥ 1, such that for each

rule E/ac → ap of type (b-1) from Ri, a
s /∈ L(E);

3. syn = {(i, j) | 1 ≤ i, j ≤ m, i �= j } are the synapses i.e. connections between
neurons;

4. in, out ∈ {1, 2, . . . ,m} are the input and output neurons, respectively.

A spiking rule (type (b-1)) rs ∈ Ri, where 1 ≤ i ≤ m, is applied if the corre-
sponding σi contains k spikes, ak ∈ L(E) and k ≥ c. This means that consuming
(removing) c spikes (thus only k − c spikes remain in σi), the neuron is fired,
producing p spikes that reach all σj neurons immediately (no delays) such that
(i, j) ∈ syn. An SNP system whose spiking rules have p = 1 (they produce only
one spike) is said to be of the standard type (non-extended). Forgetting rules
(type (b-2)) are selected if σi contains s spikes. Thus, s spikes are ‘forgotten’ or
removed from the neuron once the rule is applied. Finally, a special case of (b-1)
are rules of type (b-3) where ac → a, L(E) = {ac}, k = c, p = 1.

It is noteworthy that the neurons in an SNP system operate in parallel and in
unison, under a global clock [11]. Similar to the usual way of using rules in other
P system variants, there is maximal parallelism at the level of the system, in the
sense that in each step all neurons which can spike (i.e. fire a rule) have to do
it. However, only one rule can be applied at a given time in each neuron [11,16].
The nondeterminism of SNP systems comes with this fact: L(E)∩L(E′) �= ∅ for
two different spiking rules with regular expressions E and E′, i.e. exactly one
rule among several other applicable rules is chosen nondeterministically.

2.2 Examples of SNP Systems

Next, two specific SNP systems are described to show their formal description
based on Definition 1. The examples are from [16] and [11], and they are called
Π1 and Π2 respectively. These examples are used in Section 5 to analyse the
performance of the simulator.

The SNP system Π1 shown in Figure 1 generates all numbers in the set N -
{1} (so it doesn’t halt) and the outputs of the computation are derived from the
time difference between the first spike of the output neuron (to the environment)
and its succeeding spikes. It can be seen that a total system ordering is given to
neurons (from σ1 to σ3) and rules (from R1 to R5). This SNP system is of the
form Π1 = ({a}, σ1, σ2, σ3, syn, out) where the first neuron σ1 = (2, {R1, R2}),
n1 = 2, R1 = {a2/a → a}, R2 = {a2 → a}, (σ2 to σ3 and their nis and Ris can
be similarly shown), syn = {(1, 2), (1, 3), (2, 1), (2, 3)} are the synapses for Π1,
and the output neuron out = σ3, as can be seen by the arrow not pointing to
any neuron. Π1 has no input neuron.



Fig. 1. Π1, an SNP system generating all numbers in the set N - {1}, from [16].

A second SNP system Π2, adapted from Figure 8 of [11], is shown in Figure
2. Π2 is larger (in terms of the number of neurons and rules) than Π1 (from
Figure 1) and is formally defined as follows:

Π2 = ({a}, σ1, σf1 , σf2 , σf3 , σf4 , σf5 , σf6 , σlh , σout, syn, out)

where the σ (neuron) labelling are taken from [11]. Including the total ordering
of the rules in Π2, we have the following:

σ1 = (0, {R1, R2}), n1 = 0 (σ1 in this case initially has no spikes), R1 =
a3(aa)+/a2 → a, R2 = a3 → a,

σf1 = (0, {R3}), nf1 = 0, R3 = {a → a},
σf2 = (0, {R4}), nf2 = 0, R4 = {a → a},
σf3 = (0, {R5, R6}), nf3 = 0, R5 = {a2 → a}, R6 = {a → λ},
σf4 = (0, {R7, R8}), nf4 = 0, R7 = {a2 → a}, R8 = {a → λ},
σf5 = (0, {R9}), nf5 = 0, R9 = {a → a},
σf6 = (0, {R10, R11}), nf6 = 0, R10 = {a3 → λ}, R11 = {a2 → 2},
σlh = (0, {R12, R13}), nlh = 0, R12 = {a2 → a}, R13 = {a → λ},
σout = (0, {R14}), nout = 0, R14 = {a → a}

As with Π1, it is evident that for Π2 we have 17 synapses connecting the neurons
(σs). Π2 doesn’t have an input σ but it has out = σout.

2.3 Matrix Representation of SNP Systems

In [16], a matrix representation of SNP systems without delays was introduced.
By using this algebraic representation, it is easy to describe a simulation al-
gorithm for computing configurations in SNP systems without delays by only
using vector-matrix operations. The matrix representation inherently and con-
veniently involves another SNP system variant, the variant with extended fir-
ing rules where neurons can fire more than one spike at a given time [5].
Another convenient use for this algebraic representation is the possibility of



performing backwards computation, from the current configuration to an earlier
configuration. This representation makes use of the following vectors and matrix
definitions:

Configuration vector Ck is the vector containing all spikes in every neuron
on the kth computation step/time, where C0 is the initial vector containing all
spikes in the system at the beginning of the computation. For Π1 (the example
in Figure 1) C0 =< 2, 1, 1 >. For Π2 we don’t have a default C0 so we will assign
several later, for the purpose of simulation. For this work, since we are not sim-
ulating SNP systems with delays, the steps focused on are purely computational
and not time steps.

Spiking vector Sk shows, at a given configuration Ck, if a rule is applicable
(having value 1 ) or not (having value 0 instead). For Π1 we have a spiking
vector Sk =< 1, 0, 1, 1, 0 > given C0. Note that a second spiking vector, S′

k =<
0, 1, 1, 1, 0 >, is possible and valid if we use rule (2) over rule (1) instead (but
not both at the same time). V alidity in this case means that only one among
several applicable rules is used and thus represented in the spiking vector. We
recall the applicability of rules from the definitions of (b-1) and (b-3). It is
worth mentioning that there are several Sks for every possible rule selection in
the system. We cannot have an S′′

k =< 1, 1, 1, 1, 0 > because we cannot use rule
(1) and rule (2) at the same time, hence this Sk is invalid.

Fig. 2. Π2, a larger SNP system with 9 neurons and 14 rules, adapted from [11]



Spiking transition matrix MSNP is a matrix comprised of aij elements where
aij is given as

Definition 2

aij =

⎧
⎪⎪⎨

⎪⎪⎩

−c, rule ri is in σj and is applied consuming c spikes;
p, rule ri is in σs (s �= j and (s, j) ∈ syn)

and is applied producing p spikes in total;
0, rule ri is in σs (s �= j and (s, j) /∈ syn).

In such a scheme, rows represent rules and columns represent neurons. As men-
tioned earlier, SNP systems with extended firing rules can be also represented
by the spiking transition matrix.

A negative entry in the spiking transition matrix corresponds to the consump-
tion of spikes. Thus, it is easy to observe that each row has exactly one negative
entry, and each column has at least one negative entry [16]. For Π1 and Π2, the
spiking transition matrices MΠ1 and MΠ2 are shown in the equations (1) and
(2), respectively.

MΠ1 =

⎛

⎜
⎜
⎜
⎜
⎝

−1 1 1
−2 1 1
1 −1 1
0 0 −1
0 0 −2

⎞

⎟
⎟
⎟
⎟
⎠

(1)

MΠ2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−2 0 0 1 1 1 1 0 0
−3 0 0 1 1 1 1 0 0
0 −1 1 1 0 0 1 0 0
0 0 −1 0 0 0 0 0 1
0 0 0 −2 1 0 1 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 1 −2 0 1 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 −3 0 0
0 0 0 0 0 0 −2 0 1
1 1 0 0 0 1 0 −2 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 −1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(2)

Finally, the following equation provides the configuration vector at the (k+1)th
step, given the configuration vector (Ck) and spiking vector (Sk) at the kth step,
and MΠ :

Ck+1 = Ck + Sk ·MΠ (3)



3 GPU Computing

High Performance Computing provides solutions for improving the performance
of software applications by using accelerators or many-core processors. In this
respect, Graphics Processing Units (GPUs) have been consolidated as accelera-
tors thanks to their throughput-oriented highly-parallel architecture [9], as well
as their low-power consumption and low-cost compared to other parallel clus-
ters and setups. At the moment, for around $500, the latest GPUs of NVIDIA
with 512 cores and with a performance comparable to a cluster of multi-core
CPUs, is readily available at consumer electronics stores. The programming and
architectural aspects of GPUs are described in this section.

3.1 Compute Unified Device Architecture (CUDA)

As many-core based platforms, GPUs are massively parallel processors which
have high chip scalability in terms of processing units (core), and high band-
width with internal GPU memories. The common CPU architectures are com-
posed of transistors associated with different computing tasks: control, caching,
DRAM, and ALU (arithmetic and logic). In contrast, only a fraction of the
CPU’s transistors allocated for control and caching are used by GPUs, since far
more transistors are devoted for ALU [12]. This architectural difference is a very
distinct and significant reason why GPUs offer larger performance increase over
CPU only implementation of parallel code working on large amounts of input
data.

The programmability of GPUs has been focused on graphics, but using a
type of parallel computing technique called GPGPU (General Purpose compu-
tation on GPUs), the large amount of internal cores can be used in parallel
for accelerating the execution of data-parallel algorithms. In order to provide a
straightforward, easy-to-learn, and scalable programming framework for GPUs,
NVIDIA corporation (a well known manufacturer of graphics processors) intro-
duced the Compute Unified Device Architecture (CUDA) in 2007 [12]. CUDA is
a programming model and hardware architecture for general purpose computa-
tions in NVIDIA’s GPUs (G80 and newer family of GPUs)[12]. By extending
popular languages such as C, CUDA allows programmers to easily create soft-
ware that will be executed in parallel, avoiding low-level graphics and hardware
primitives[17]. Among the other benefits of CUDA are abstracted and automated
scaling: GPUs with more cores will make the parallelized code run faster than
GPUs with fewer cores [17].

As seen in Figure 3, CUDA implements a heterogeneous computing architec-
ture, where two different parts are often considered: the host (CPU side) and the
device (GPU side). The host/CPU part of the code is responsible for controlling
the program execution flow, allocating memory in the host or device/GPU, and
obtaining results from the device by executing specific codes. The device (or
devices if there are several GPUs in the setup) acts as a parallel co-processor
to the host. The host outsources the parallel part of the program as well as the
data to the device, since it is more suited to parallel computations than the host.



Fig. 3. Structure of the CUDA programming model, from [4]

The code to be executed in a GPU is written in CUDA C (CUDA extended
ANSI C programming language). The parallel distribution of the execution units
(threads) in CUDA can be split up into multiple threads within multiple thread
blocks, each contained within a grid of (thread) blocks (see Figure 3). These
grids belong to a single device/single GPU. Each device has multiple cores, each
capable of running its own block of threads [12,17]. A function known as a kernel
function is one that is called from the host but executed in the device. Using
kernel functions, the programmer can specify the GPU resources: the layout of
the threads (from one to three dimensions) and the blocks (from one to two
dimensions). GPUs with the same architecture as the one used in this work has
a maximum number of threads per block equal to 512. The maximum size of
each dimension of a thread block is (512×512×64), pertaining to the x,y, and z
dimensions of a block respectively. Lastly, the maximum size of each dimension of
a grid of thread block is (65535×65535×1) for the grid’s x,y, and z dimensions.

3.2 SNP System GPU Simulation Considerations

To successfully simulate SNP systems, the input files are file versions of Ck, Sk,
MSNP , and a file r containing the list of rules Ri. Since SNP systems involve



regular expressions (similar to other P system variants), string manipulation of
the number of spikes in a neuron satisfying the regular expression E is involved.
An OOPL such as Python is very well suited for string manipulation. For the
computations involving linear algebra, since Ck, Sk andMSNP only have integral
values, the C programming language (which NVIDIA extended for their purposes
as CUDA C) is well suited. Another reason for using C is because of this C
language extension of CUDA. In actuality, only the kernel functions are written
in C, and those functions are embedded within the Python code. A row-major
ordering, a well known linear array input format where rows are placed one after
another from top to bottom, was used to input the elements of MSNP . As an
example, row-major ordering of MΠ1 is: 1, 1, 1, 2, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 2.

The current dichotomy of the CUDA programming model is that the data
or inputs are loaded and ‘prepared’ in the host part, then they are moved to
the device part and the parallel part of the process is executed on the data.
Finally, the results of the parallel processing are moved back to the host for
further processing. As seen from Figure 3 kernel functions are called from the
host sequentially but once executed in the device, their blocks and the threads
within these blocks are executed in parallel.

PyCUDA was chosen in order to fully utilize the speedup of CUDA as well as
minimize development time, and is a Python programming interface to CUDA
[13]. PyCUDA was developed by mathematician Andreas Klöckner for his dis-
sertation for a more efficient parallel computing on CUDA using Python: safer in
terms of memory handling, object cleanup (among others), and faster in terms
of development time via abstractions [13].

4 Simulating SNP Systems in CUDA

In this paper we designate as snpgpu-sim3 our improved simulator, as compared
to snpgpu-sim2 from [2]. The simulation algorithm for snpgpu-sim3, as with
snpgpu-sim2, is shown in Algorithm 1. Algorithm 1 shows which part of the
algorithm (and hence the simulation) is run: whether in the host part or the
device part, or both.

Firstly, the simulation inputs are loaded as mentioned in Subsection 3.2, as
white space separated files (for Ck, Sk, and M) and using delimiters ‘@’ and
‘&’ in r to delineate one rule from another in the same neuron, and from one
neuron to another, respectively. For example, the file r pertaining to the rules
of Π1 contains: aa 1 1@aa 2 1&a 1 1&a 1 1@aa 1 0. R1 of Π1 pertains to aa
1 1. In this encoding, the first part is the regular expression E (in this case, a2

or aa), the middle part is the number of spikes consumed (one spike) and lastly,
the number of spikes produced (again, one spike).

In part II, the number of spikes in a neuron are checked if they satisfy the
regular expression E. In snpgpu-sim2 only rules of the form (b-3), and not (b-1),
were simulated, thus snpgpu-sim3 can simulate more general SNP systems. A
function created in Python, chkRegExp( regexp, spikNum ) returns a boolean
value of True if and only if the number of spikes given by spikNum (and hence



the number of spikes in a σ) are in the language generated by the regular ex-
pression regexp. Otherwise, function chkRegExp returns a boolean False. Part II
is responsible for generating all possible and valid Sks out of the current Cks
and the rule file r. Note that not all possible Sks (strings of 1s and 0s) are valid,
since exactly one rule only, chosen nondeterministically, is applied per neuron
per time step. The simulation ‘implements’ the nondeterminism (as nondeter-
minism is yet to be fully realized in hardware) by producing all the possible
and valid Sks for the given Cks, and proceeds to compute each of the Ck+1

from these.
The process by which all possible and valid Sks are produced is as follows:

Once all the rules in the system are identified, given the current nis (number
of spikes present in each of the σis), the {1,0} strings (at the moment they are
treated as strings, and then as integral values later on) are produced on a per
neuron level. As an example, given that n1 = 2 for Π1, and its two rules R1

and R2, we have the neuron-level strings ‘10’ (we choose to use R1 instead of
R2) and ‘01’ (use R2 instead of R1). For σ2 we only have ‘1’ (R3 of σ2 has the
needed single spike, and it has only one rule) while σ3 gives us ‘10’ since its
single spike enables R4 only and not R5. After producing the neuron-level {1,0}
strings, the strings are exhaustively paired up, from left to right (since there is
a need for ordering), until finally all the valid and possible Sks from the current
Cks are produced. For Π1, given C0 =< 2, 1, 1 > we have Sks (1,0,1,1,0) and
(0,1,1,1,0).

Part III performs Equation 3, which is done in parallel in the device. The
previously loaded values of Ck, Sk, r, and M which were treated as strings (for
the purposes of concatenation, regular expression checking, among others) are
now treated as integral values. Each thread in the device contains either a matrix
element from M or a vector element from Sk or Ck, and Equation 3 is performed
in parallel. The newly produced Ck+1 are then moved back from the device to
the host. Part IV then checks whether to proceed or to stop based on 2 stopping
criteria for the simulation: (I) if a zero vector (vector of zeros) is encountered,
(II) if the succeeding Cks have all been produced in previous computations. Both
(I) and (II) make sure that the simulation halts and does not enter an infinite
loop.

Algorithm 1. Overview of SNP system simulation algorithm

Require: Input files: Ck, M, r (file counterparts of Ck, M , Ri).
I. (HOST) Load input files. M , r are loaded once only. C0 is also loaded once, then
Cks, 1 ≤ k ≤ m, afterwards.
II. (HOST) Determine if a rule in r is applicable based on the numbers of spikes
present in each neuron/σ seen in Ck. Then generate all valid and possible spiking
vectors in a list of lists Sk given the 3 inputs.
III. (DEVICE) Run kernel function on all valid and possible Sks from the current
Ck. Produce the next configurations, Ck +1 and their corresponding Sks.
IV. (HOST+DEVICE) Repeat steps I to IV, till at least one of the two Stopping
criteria is encountered.



In Figure 4 we see a graphical illustration of the simulation process, emphasiz-
ing the parts executed in the host/CPU and in the device/GPU. In the figure,
it is assumed that there are n number of Ck+1s produced from the current
Ck. The CPU executes the simulation from top to bottom, calling the kernel
function, and hence the GPU, in the third box. The smaller, multiple boxes in
the device/GPU part illustrate the parallel computations of all the Ck+1s using
Equation 3. Afterwards, the computed Ck+1s are sent back to the CPU which
then decides what to do next, based on Algorithm 1, part IV.

Fig. 4. Diagram showing the simulation flow, with the host and device emphasized

5 Simulation Results and Observations

Similar to the setup of snpgpu-sim2, snpgpu-sim3 simulated Π1 and Π2 using an
Apple iMac running Mac OS X 10.5.8, with an Intel Core2Duo CPU with 2 cores
at 2.66GHz (maximum clock speed) per core, and with a 6MB L2 cache having
4GB of RAM. The GPU of the iMac is an NVIDIA GeForce 9400 graphics card
at 1.15 GHz, with 256 MB Video RAM (or around 266 × 106 bytes), 16 cores,
running CUDA version 3.1.

In order to compare the CPU-only SNP system simulator (we designate this
as snpcpu-sim) the parallel parts of snpgpu-sim3 were executed in a sequential
manner. Hence, snpcpu-sim runs entirely on the CPU only, while snpgpu-sim3
uses both the CPU and the GPU of the iMac. Both simulators use Python and C,
however only snpgpu-sim3 use the CUDA enabled GPU. The simulations were
done such that both snpcpu-sim and snpgpu-sim3 have the same C0 or starting
configuration as inputs. The simulations are run three times and the average
of the three trial runs is taken. The simulation comparison for Π1 run in both
simulators is shown in Figure 5.



Fig. 5. Runtime graph of snpcpu-sim versus snpgpu-sim3 for Π1

From Figure 5, the five C0 values used in the simulation comparison are:
(2,1,2), (3,1,3), (4,1,4), (6,1,6), and (9,1,9). The horizontal axis in Figure 5 are
the C0 values, while the vertical axis is the running time (in seconds) of the
simulation on a given C0. We see in Figure 5 that snpgpu-sim3 performs faster
than snpcpu-sim given increasing values of C0. A speedup of up to 1.4 times is
achieved if Π1 is run in snpgpu-sim3 instead of snpcpu-sim.

For Π2, we introduce a variable CkCnt in both simulators to limit the num-
ber of Cks produced to a certain integer value so the simulation will not run
indefinitely. Figure 6 shows the simulation of Π2 for different values of n (the
number of spikes in σ1 of Π2 is 2n) and CkCnt. In particular, the (n, CkCnt)
pairs used are (5, 20), (10, 25), (15, 30), (20, 35), (50, 45), (70, 50), (100, 55),
and (200, 60).

From Figure 6 we see that, for increasing values of n and CkCnt, the simu-
lation time of Π2 in snpcpu-sim increases dramatically, unlike in snpgpu-sim3.
The lack of a dramatic increase in simulation time in snpgpu-sim3 is because of
the fact that Π2 has more rules and neurons, and hence, exploits the parallel
nature of the CUDA GPU all the more. A speedup of up to 6.8 times is achieved
from the simulation on snpgpu-sim3 over snpcpu-sim.

We can calculate the maximum number of neurons snpgpu-sim3 can simulate
using the 266 × 106 bytes of the NVIDIA GeForce 9400 GPU. Global memory
used is GbMem = 4× sizeof(Ck) + sizeof(M). Here we speak in terms of the
sizeof operator in the standard C language since we use the data type int which
is of size 4 bytes or 32 bits. The length of Ck is the number of neurons, andM is of
size R (rows are the number of rules) × Ck (columns are number of neurons). We
multiply Ck to 4 because we also alocate memory for Sk, Ck+1, andMSk which
temporarily holds the product of M and Sk, all of which are of the same size
as Ck. We therefore have the following, substituting the real value of GbMem:
266×106(bytes) = 16(bytes)×Ck+4(bytes)×R×Ck. Simplifying this equation
and isolating Ck we have Ck = 266× 106(bytes)/(16(bytes) + 4(bytes)×R) i.e.
the number of neurons that can be simulated is a function of the number of rules
in the system.



Fig. 6. Runtime graph of snpcpu-sim versus snpgpu-sim3 for Π2

Additionally, aside from the iMac setup mentioned above (setup 1), a second
setup was used to provide further insights of the current simulator implementa-
tion. Setup 2 consisted of two Intel Xeon E5504 processors, each having 4 cores
(2 GHz max per core), an L2 cache of 1MB and an additional L3 cache of 4MB.
The GPU is an NVIDIA Tesla C1060 running at 1.3 GHz with 4GB of Video
RAM and having 240 cores. Setup 2 has 64bit Ubuntu 10.04.1 Linux OS, and
effectively has 8 cores: 2 × 4 core Intel Xeon processor. The first 4 cores of pro-
cessor 1 are labeled core 0 to 3, and the next 4 cores of processor 2 are labeled
core 4 to 7.

Using the Linux command taskset, snpgpu-sim3 and snpcpu-sim were run for
both Π1 and Π2 in setup 2. The taskset command allows the setting of the
CPU affinity of a process, thus “bonding” the process to a specified number of
processor cores alone. For both snpcpu-sim and snpgpu-sim3, tests were done to
set the simulation affinity to 2, 4, 8 cores, and a natural affinity setting (this is
the default in the Linux OS). For simulations with 2 and 4-core affinities, the
cores chosen are from the same processor i.e. either between cores 0 to 3, or 4
to 7, but not cores 3 and 4 together (for 2-core affinity) or 2,3,4, and 5 together
(for 4-core affinity), since these core selections come from different processors
and simulations will incur performance penalties. From the setup 2 tests (and
for both snpcpu-sim and snpgpu-sim3 ), simulations done with a 2-core affinity
executed in less time than with 4-core affinity simulations. Similarly, and again
for both snpcpu-sim and snpgpu-sim3, 4-core affinity simulations executed in
less time than 8-core affinity simulations. The 8-core affinity simulations were
practically indistinguishable from the default (natural) affinity by the Linux OS.

6 Conclusions and Future Work

In this paper we have simulated a wider variety of SNP systems using snpgpu-
sim3, while maintaining the efficiency of the previous simulator snpgpu-sim2.



The extension of the previous simulator snpgpu-sim2, presented here as snpgpu-
sim3, can now simulate larger and wider varities of SNP systems by way of more
general regular expressions (those of the form (b-1)). Two SNP systems were
simulated: a basic one, Π1 (primarily for illustration purposes of the simulator)
and a larger one (in terms of rules and neurons), Π2, to exemplify the speedup
when using GPUs over CPU-only simulators. The speedup of snpgpu-sim3 over
snpcpu-sim for Π1 went up to 1.4 times, while it was 6.8 for Π2. These results
show that SNP system simulation on GPUs can greatly benefit from the parallel
architecture of GPUs, and that increasing the parameters (in this case neurons
and rules) offer even larger speedups. This benefit in speedup is coupled with
the fact that the CUDA enabled graphics cards are readily available in consumer
electronic stores. These cards offer boosts in general purpose computations as
co-processors of commonly used CPUs, at a fraction of the power consumption
of CPU clusters.

From setup 2 which is a “larger” setup compared to setup 1, we see that for
“small” systems e.g. Π1, the CPU can outperform the GPU for snpgpu-sim3.
Setup 2 helped validate and support the performance results from setup 1 using
snpgpu-sim3. The current simulation in Algorithm 1 is thus recommended for up
to 4 cores on a single processor only, as the CPU part is not multi-threaded (only
the GPU part is). Using more than 4 cores on a single processor, or more than one
core from more than one processor in a multiprocessor setup will not yield better
performance. Alternatively, simulating “larger” SNP systems can capitalize on
the massively parallel architecture of GPUs compared to multi-core CPUs, and
thus increase the speedup even further.

For future work, a generic P system parser based using P-lingua would be
able to provide a more standardized input parser and formatting for the GPU
based SNP system simulator. P-lingua is programming environment for Mem-
brane computing which takes in as input a certain P system variant, and outputs
a standardized XML file format for the simulator to use. This standardized simu-
lator input format would then be carried on to other simualtors when simulating
other P system variants.

Further understanding of the CUDA architecture as well as adapting the
simulator to GPUs with more cores and their newer parallel technologies, as
well as their subtleties, are also for future work. Increasing the level of simulation
parallelism is also part of this work, to gain even higher performance speedups
over CPU only simulations.

More SNP system variants can be simulated by extending the current GPU
simulator (with neuron budding, with delays et al). Lastly, the use of the simu-
lator to empirically test the models of problems solved with SNP systems is also
a future work.
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Păun, G., Rozenberg, G., Salomaa, A. (eds.) CMC 2010. LNCS, vol. 6501, pp.
377–391. Springer, Heidelberg (2010)

17. NVIDIA corporation, NVIDIA CUDA C programming guide, version 3.0. NVIDIA,
CA, USA (2010)


	A Spiking Neural P System Simulator Based on CUDA
	Introduction
	Spiking Neural P Systems
	The SNP System Model
	Examples of SNP Systems
	Matrix Representation of SNP Systems

	GPU Computing
	Compute Unified Device Architecture (CUDA)
	SNP System GPU Simulation Considerations

	Simulating SNP Systems in CUDA
	Simulation Results and Observations
	Conclusions and Future Work
	References




