6,790 research outputs found

    Modeling the pulse signal by wave-shape function and analyzing by synchrosqueezing transform

    Full text link
    We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST) to model and analyze oscillatory physiological signals. To demonstrate how the model and algorithm work, we apply them to study the pulse wave signal. By extracting features called the spectral pulse signature, {and} based on functional regression, we characterize the hemodynamics from the radial pulse wave signals recorded by the sphygmomanometer. Analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features

    Mixed Valvular Disease Following Transcatheter Aortic Valve Replacement: Quantification and Systematic Differentiation Using Clinical Measurements and Image-Based Patient‐Specific In Silico Modeling

    Get PDF
    Background: Mixed valvular disease (MVD), mitral regurgitation (MR) from pre‐existing disease in conjunction with paravalvular leak (PVL) following transcatheter aortic valve replacement (TAVR), is one of the most important stimuli for left ventricle (LV) dysfunction, associated with cardiac mortality. Despite the prevalence of MVD, the quantitative understanding of the interplay between pre‐existing MVD, PVL, LV, and post‐TAVR recovery is meager. Methods and Results: We quantified the effects of MVD on valvular‐ventricular hemodynamics using an image‐based patient‐specific computational framework in 72 MVD patients. Doppler pressure was reduced by TAVR (mean, 77%; N=72; P<0.05), but it was not always accompanied by improvements in LV workload. TAVR had no effect on LV workload in 22 patients, and LV workload post‐TAVR significantly rose in 32 other patients. TAVR reduced LV workload in only 18 patients (25%). PVL significantly alters LV flow and increases shear stress on transcatheter aortic valve leaflets. It interacts with mitral inflow and elevates shear stresses on mitral valve and is one of the main contributors in worsening of MR post‐TAVR. MR worsened in 32 patients post‐TAVR and did not improve in 18 other patients. Conclusions: PVL limits the benefit of TAVR by increasing LV load and worsening of MR and heart failure. Post‐TAVR, most MVD patients (75% of N=72; P<0.05) showed no improvements or even worsening of LV workload, whereas the majority of patients with PVL, but without that pre‐existing MR condition (60% of N=48; P<0.05), showed improvements in LV workload. MR and its exacerbation by PVL may hinder the success of TAVR

    Mathematical modeling of thrombus formation in idealized models of aortic dissection: Initial findings and potential applications

    Get PDF
    Aortic dissection is a major aortic catastrophe with a high morbidity and mortality risk caused by the formation of a tear in the aortic wall. The development of a second blood filled region defined as the “false lumen” causes highly disturbed flow patterns and creates local hemodynamic conditions likely to promote the formation of thrombus in the false lumen. Previous research has shown that patient prognosis is influenced by the level of thrombosis in the false lumen, with false lumen patency and partial thrombosis being associated with late complications and complete thrombosis of the false lumen having beneficial effects on patient outcomes. In this paper, a new hemodynamics-based model is proposed to predict the formation of thrombus in Type B dissection. Shear rates, fluid residence time, and platelet distribution are employed to evaluate the likelihood for thrombosis and to simulate the growth of thrombus and its effects on blood flow over time. The model is applied to different idealized aortic dissections to investigate the effect of geometric features on thrombus formation. Our results are in qualitative agreement with in-vivo observations, and show the potential applicability of such a modeling approach to predict the progression of aortic dissection in anatomically realistic geometries

    Model estimation of cerebral hemodynamics between blood flow and volume changes: a data-based modeling approach

    Get PDF
    It is well known that there is a dynamic relationship between cerebral blood flow (CBF) and cerebral blood volume (CBV). With increasing applications of functional MRI, where the blood oxygen-level-dependent signals are recorded, the understanding and accurate modeling of the hemodynamic relationship between CBF and CBV becomes increasingly important. This study presents an empirical and data-based modeling framework for model identification from CBF and CBV experimental data. It is shown that the relationship between the changes in CBF and CBV can be described using a parsimonious autoregressive with exogenous input model structure. It is observed that neither the ordinary least-squares (LS) method nor the classical total least-squares (TLS) method can produce accurate estimates from the original noisy CBF and CBV data. A regularized total least-squares (RTLS) method is thus introduced and extended to solve such an error-in-the-variables problem. Quantitative results show that the RTLS method works very well on the noisy CBF and CBV data. Finally, a combination of RTLS with a filtering method can lead to a parsimonious but very effective model that can characterize the relationship between the changes in CBF and CBV

    Non-invasive evaluation of left ventricular afterload, part 2 : arterial pressure-flow and pressure-volume relations in humans

    Get PDF
    The mechanical load imposed by the systemic circulation to the left ventricle is an important determinant of normal and abnormal cardiovascular function. Left ventricular afterload is determined by complex time-varying phenomena, which affect pressure and flow patterns generated by the pumping ventricle. Left ventricular afterload is best described in terms of pressure-flow relations, allowing for quantification of various components of load using simplified biomechanical models of the circulation, with great potential for mechanistic understanding of the role of central hemodynamics in cardiovascular disease and the effects of therapeutic interventions. In the second part of this tutorial, we review analytic methods used to characterize left ventricular afterload, including analyses of central arterial pressure-flow relations and windkessel modeling (pressure-volume relations). Conceptual descriptions of various models and methods are emphasized over mathematical ones. Our review is aimed at helping researchers and clinicians obtain and interpret results from analyses of left ventricular afterload in clinical and epidemiological settings

    Non-Newtonian Rheology in Blood Circulation

    Full text link
    Blood is a complex suspension that demonstrates several non-Newtonian rheological characteristics such as deformation-rate dependency, viscoelasticity and yield stress. In this paper we outline some issues related to the non-Newtonian effects in blood circulation system and present modeling approaches based mostly on the past work in this field.Comment: 26 pages, 5 figures, 2 table

    USSR Space Life Sciences Digest. Index to issues 1-4

    Get PDF
    This document is an index to issues 1 to 4 of the USSR Space Life Sciences Digest and is arranged in three sections. In section 1, abstracts from the first four issues are grouped according to subject; please note the four letter codes in the upper right hand corner of the pages. Section 2 lists the categories according to which digest entries are grouped and cites additional entries relevant to that category by four letter code and entry number in section 1. Refer to section 1 for titles and other pertinent information. Key words are indexed in section 3

    Simulation of physiological systems in order to evaluate and predict the human condition in a space flight

    Get PDF
    Simulation models were used to study theoretical problems of space biology and medicine. The reaction and adaptation of the main physiological systems to the complex effects of space flight were investigated. Mathematical models were discussed in terms of their significance in the selection of the structure and design of biological life support systems

    Modelling the evolution of cerebral aneurysms: biomechanics, mechanobiology and multiscale modelling

    Get PDF
    Intracranial aneurysms (IAs) are abnormal dilatations of the cerebral vasculature. Computational modelling may shed light on the aetiology of the disease and lead to improved criteria to assist diagnostic decisions. We briefly review models of aneurysm evolution to date and present a novel fluid-solid-growth (FSG) framework for patient-specific modelling of IA evolution. We illustrate its application to 4 clinical cases depicting an IA. The section of arterial geometry containing the IA is removed and replaced with a cylindrical section: this represents an idealised section of healthy artery upon which IA evolution is simulated. The utilisation of patient-specific geometries enables G&#38;R to be explicitly linked to physiologically realistic spatial distributions and magnitudes of haemodynamic stimuli. In this study, we investigate the hypothesis that elastin degradation is driven by locally low wall shear stress (WSS). In 3 out of 4 cases, the evolved model IA geometry is qualitatively similar to the corresponding in vivo IA geometry. This suggests some tentative support for the hypothesis that low WSS plays a role in the mechanobiology of IA evolution
    corecore