413 research outputs found

    Improving Computational Efficiency in WEC Design: Spectral-Domain Modelling in Techno-Economic Optimization

    Get PDF
    Wave energy converter (WEC) optimization often underlines incremental and iterative approaches that result in suboptimal solutions, since all the elements that concur with a techno-economical evaluation are optimized separately due to computation constraints. A design process should rely on precise WEC models to ensure high result accuracy while minimizing the computational demand. These conflicting objectives can be addressed with non-linear time-domain models, known to be numerically accurate, and frequency-domain models due to their high computational efficiency. This work pursues the development of an all-encompassing optimization tool for a gyroscopic-type WEC called ISWEC that applies a new modelling technique named spectral-domain technique as a substitution to the complex time-domain model previously employed. In particular, the spectral-domain technique provides accurate and fast performance predictions of the ISWEC system and offers the possibility to model a hydraulic power take-off, not representable in the frequency domain. The article illustrates techno-economic trends associated with an early-stage design of the ISWEC in high-energy sea-sites, where the low-speed and high-torque profiles call for the use of hydraulic transmissions as opposed to the old electro-mechanical transmissions. The design tool proposed could facilitate the development of WEC technologies via efficient and accurate power assessment and via the possibility of carrying out advanced techno-economic optimisation that goes beyond linear models

    A harmonic balance framework for the numerical simulation of non-linear wave energy converter models in random seas

    Get PDF
    Numerical simulation is essential, to assist in the development of wave energy technology. In particular, tasks such as power assessment, optimisation and structural design require a large number of numerical simulations to calculate the wave energy converter (WEC) outputs of interest, over a variety of wave conditions or physical parameters. Such challenges involve a sound understanding of the statistical properties of ocean waves, which constitute the forcing inputs to the wave energy device, and computationally efficient numerical techniques for the speedy calculation of WEC outputs. This thesis studies the statistical characterisation, and numerical generation, of ocean waves, and proposes a novel technique for the numerical simulation of non-linear WEC models. The theoretical foundations, the range of validity, and the importance of the statistical representation of ocean waves are first examined. Under relatively mild assumptions, ocean waves can be best described as a stationary Gaussian process, which is entirely characterised by its spectral density function (SDF). Various wave superposition techniques are discussed and rigorously compared, for the numerical generation of Gaussian wave elevation time series from a given SDF. In particular, the harmonic random amplitude (HRA) approach can simulate the target statistical properties with perfect realism. In contrast, the harmonic deterministic amplitude (HDA) approach is statistically inconsistent (because the generated time-series are non-Gaussian, and under-represent the short-term statistical variability of real ocean waves), but can be advantageous in the context of WEC simulations since, if it can be verified that HDA results are unbiased, the HDA method requires a smaller number of random realisations than the HRA method, to obtain accurate WEC power estimates. When either HDA or HRA are used for the generation of wave inputs, the forcing terms of WEC mathematical models are periodic. Relying on a Fourier representation of the system inputs and variables, the harmonic balance (HB) method, which is a special case of spectral methods, is a suitable mathematical technique to numerically calculate the steady-state response of a non-linear system, under a periodic input. The applicability of the method to WEC simulation is demonstrated for those WEC models which are described by means of a non-linear integro-differential equation. In the proposed simulation framework, the WEC output, in a given sea state, is assessed by means of many, relatively short, simulations, each of which is efficiently solved using the HB method. A range of four case studies is considered, comprising a flap-type WEC, a spherical heaving point-absorber, an array of four cylindrical heaving point-absorbers, and a pitching device. For each case, it is shown how the HB settings (simulation duration and cut-off frequency) can be calibrated. The accuracy of the HB method is assessed through a comparison with a second-order Runge-Kutta (RK2) time-domain integration scheme, with various time steps. RK2 results converge to the HB solution, as the RK2 time step tends to zero. Furthermore, in a Matlab implementation, the HB method is between one and three orders of magnitude faster than the RK2 method, depending on the RK2 time step, and on the method chosen for the calculation of the radiation memory terms in RK2 simulations. The HB formalism also provides an interesting framework, for studying the sensitivity of the WEC dynamics to system parameter variations, which can be utilised within a gradient-based parametric optimisation algorithm. An example of WEC gradientbased parametric optimisation, carried out within the HB framework, is provided

    Optimization and Energy Maximizing Control Systems for Wave Energy Converters

    Get PDF
    The book, “Optimization and Energy Maximizing Control Systems for Wave Energy Converters”, presents eleven contributions on the latest scientific advancements of 2020-2021 in wave energy technology optimization and control, including holistic techno-economic optimization, inclusion of nonlinear effects, and real-time implementations of estimation and control algorithms

    Investigation of new layout design concepts of an array-on-device WaveSub device

    Get PDF
    Wave Energy Converters (WECs) have not yet proven their competitiveness in the mainstream energy market. Research and development of this technology are necessary to find optimal solutions in terms both of energy produced and reduced cost. A WEC farm is expected to have reduced Levelized Cost of Energy (LCoE) compared to individual devices due to shared installation and grid connection costs. Studies show that energy yield of a WEC array is highly dependent on spacing and layout of the WECs. A method for selecting an optimal array layout is desirable.Here we show a comparison between 4 different design layouts of a WaveSub device with six floats. A six float configuration has been chosen because the LCoE reduces with increasing floats per device as shown in previous research. An optimal configuration in terms of LCoE and rated power is found for linear, rectangle, triangle and circular multi-float configurations. Parameters optimised are float spacing and Power Take Off (PTO) stiffness, damping and rated power. The optimisation algorithm uses a genetic algorithm combined with a Kriging surrogate model. Numerical simulations are solved in the time-domain in WEC-Sim while the hydrodynamic coefficients are calculated in Nemoh using a linear potential flow theory.For all geometric configurations, the smallest float spacing was the most promising because of the lower cost of the structure. In fact, the influence of the float spacing on the power produced by the device is shown to be less significant than the influence of float spacing on the capital cost. Overall, the circular configuration outperformed the other configurations. This study shows that layout configurations can be investigated with optimisation and this could be applied to other configurations and other WEC concepts in future

    State of the Art in the Optimisation of Wind Turbine Performance Using CFD

    Get PDF
    Wind energy has received increasing attention in recent years due to its sustainability and geographically wide availability. The efficiency of wind energy utilisation highly depends on the performance of wind turbines, which convert the kinetic energy in wind into electrical energy. In order to optimise wind turbine performance and reduce the cost of next-generation wind turbines, it is crucial to have a view of the state of the art in the key aspects on the performance optimisation of wind turbines using Computational Fluid Dynamics (CFD), which has attracted enormous interest in the development of next-generation wind turbines in recent years. This paper presents a comprehensive review of the state-of-the-art progress on optimisation of wind turbine performance using CFD, reviewing the objective functions to judge the performance of wind turbine, CFD approaches applied in the simulation of wind turbines and optimisation algorithms for wind turbine performance. This paper has been written for both researchers new to this research area by summarising underlying theory whilst presenting a comprehensive review on the up-to-date studies, and experts in the field of study by collecting a comprehensive list of related references where the details of computational methods that have been employed lately can be obtained

    Geometric optimisation of wave energy conversion devices: A survey

    Get PDF
    Unlike more established renewable energy conversion technologies, such as wind turbines, wave power systems have reached neither commercial maturity, nor technological convergence. The significant variation in device geometries and operating principles has resulted in a diversification of effort, with little coordination or true comparative analysis. The situation is compounded by the relative lack of systematic optimisation applied to the sector, partly explained by the complexity and uncertainty associated with wave energy system models, as well as difficulties in the evaluation of appropriate target function metrics. This review provides a critical overview of the state-of-the-art in wave energy device geometry optimisation, comparing and contrasting various optimisation approaches, and attempting to detail the current limitations preventing further progress, and convergence, in the development of optimal wave energy technology

    Empowering wave energy with control technology: Possibilities and pitfalls

    Get PDF
    With an increasing focus on climate action and energy security, an appropriate mix of renewable energy technologies is imperative. Despite having considerable global potential, wave energy has still not reached a state of maturity or economic competitiveness to have made an impact. Challenges include the high capital and operational costs associated with deployment in the harsh ocean environment, so it is imperative that the full energy harnessing capacity of wave energy devices, and arrays of devices in farms, is realised. To this end, control technology has an important role to play in maximising power capture, while ensuring that physical system constraints are respected, and control actions do not adversely affect device lifetime. Within the gamut of control technology, a variety of tools can be brought to bear on the wave energy control problem, including various control strategies (optimal, robust, nonlinear, etc.), data-based model identification, estimation, and forecasting. However, the wave energy problem displays a number of unique features which challenge the traditional application of these techniques, while also presenting a number of control ‘paradoxes’. This review articulates the important control-related characteristics of the wave energy control problem, provides a survey of currently applied control and control-related techniques, and gives some perspectives on the outstanding challenges and future possibilities. The emerging area of control co-design, which is especially relevant to the relatively immature area of wave energy system design, is also covered

    Three-Tether Wave Energy Converter: Hydrodynamic Modelling, Performance Assessment and Control

    Get PDF
    Hydro, wind and solar power have become major contributors to the global renewable energy market. However, ocean wave power is emerging as a strong contender in the renewable energy mix due to its high power density and minimal environmental impact. Wave energy has the potential to provide an off-grid electricity solution to remote island communities, and fulfil offshore power needs of small industrial projects. One of the best wave energy resources in the world is concentrated along the southern margin of Australia, and if harnessed, wave power could contribute up to 27 per cent of the country’s electricity demand by 2050. Over the past few decades, a large number of concepts and designs have been suggested to convert wave energy into electricity. Despite a huge effort made by industry and the scientific community, the technology for extracting power from ocean waves still remains at a pre-commercial stage of development. The main challenge is to design an economically viable wave energy converter (WEC) where its life-cycle costs (investments, operation and maintenance) can be justified by the amount of generated electricity. This thesis focuses on the performance improvement of a particular class of wave energy converters, namely, a bottom-referenced fully submerged point absorber, by means of the three-tether mooring configuration. The main contribution is made towards the design, optimisation and control of the converter in order to answer three research questions: (i) what distinctive features of the fully submerged WECs can be utilised to increase their power absorption efficiency; (ii) how geometric parameters of the converter, such as the tether arrangement, shape, and aspect ratio affect the system performance; and (iii) what factors influence the practical implementation of the optimal control strategies on the three-tether WEC. To explore these questions, numerical frequency- and time-domain models have been developed using state-of-the-art techniques based on linear hydrodynamic theory. In order to gain background knowledge and build a core understanding of the submerged systems, the difference between floating and fully submerged point absorbers is investigated. Attention is given to the distinctive features observed in the hydrodynamic properties, power production limits, and control performance. Recommendations are provided on the choice of the buoy size and shape, depending on the wave climate of the deployment site. The advantages of employing multiple degrees of freedom in energy harvesting, especially for submerged converters, are demonstrated. The design considerations of the three-tether WEC are investigated from a number of perspectives including the tether arrangement, mass, shape, and aspect ratio of the buoy. A clear correlation between an optimal tether inclination angle and the buoy aspect ratio is identified. The comparison of three-tether WECs with different buoy geometries is performed not only based on their power output, but also taking into account a range of cost-related performance metrics. Moreover, the benefits of the three-tether converter over its single-tether counterpart are demonstrated through the detailed techno-economic analysis of both prototypes. The final aspect of this dissertation is devoted to the development of the advanced control system for the three-tether WEC. The causal velocity tracking controller is taken as a basis and extended to the multivariable control problem. It is demonstrated that the designed controller is able to improve the power absorption of the three-tether WEC as compared to a quasi-standard control approach while imposing a series of technical requirements on the power take-off machinery.Thesis (Ph.D.) -- University of Adelaide, School of Mechanical Engineering, 201

    Fast nonlinear Froude–Krylov force calculation for prismatic floating platforms: a wave energy conversion application case

    Get PDF
    AbstractComputationally fast and accurate mathematical models are essential for effective design, optimization, and control of wave energy converters. However, the energy-maximising control strategy, essential for reaching economic viability, inevitably leads to the violation of linearising assumptions, so the common linear models become unreliable and potentially unrealistic. Partially nonlinear models based on the computation of Froude–Krylov forces with respect to the instantaneous wetted surface are promising and popular alternatives, but they are still too slow when floaters of arbitrary complexity are considered; in fact, mesh-based spatial discretisation, required by such geometries, becomes the computational bottle-neck, leading to simulations 2 orders of magnitude slower than real-time, unaffordable for extensive iterative optimizations. This paper proposes an alternative analytical approach for the subset of prismatic floating platforms, common in the wave energy field, ensuring computations 2 orders of magnitude faster than real-time, hence 4 orders of magnitude faster than state-of-the-art mesh-based approaches. The nonlinear Froude–Krylov model is used to investigate the nonlinear hydrodynamics of the floater of a pitching wave energy converter, extracting energy either from pitch or from an inertially coupled internal degree of freedom, especially highlighting the impact of state constraints, controlled/uncontrolled conditions, and impact on control parameters' optimization, sensitivity and effectiveness
    corecore