851 research outputs found

    Introduction to the Literature On Programming Language Design

    Get PDF
    This is an introduction to the literature on programming language design and related topics. It is intended to cite the most important work, and to provide a place for students to start a literature search

    Introduction to the Literature on Programming Language Design

    Get PDF
    This is an introduction to the literature on programming language design and related topics. It is intended to cite the most important work, and to provide a place for students to start a literature search

    Publication list of Zoltán Ésik

    Get PDF

    Introduction to the Literature on Semantics

    Get PDF
    An introduction to the literature on semantics. Included are pointers to the literature on axiomatic semantics, denotational semantics, operational semantics, and type theory

    The Formal Theory of Monads, Univalently

    Get PDF
    We develop the formal theory of monads, as established by Street, in univalent foundations. This allows us to formally reason about various kinds of monads on the right level of abstraction. In particular, we define the bicategory of monads internal to a bicategory, and prove that it is univalent. We also define Eilenberg-Moore objects, and we show that both Eilenberg-Moore categories and Kleisli categories give rise to Eilenberg-Moore objects. Finally, we relate monads and adjunctions in arbitrary bicategories. Our work is formalized in Coq using the https://github.com/UniMath/UniMath library

    Displayed Monoidal Categories for the Semantics of Linear Logic

    Get PDF
    We present a formalization of different categorical structures used to interpret linear logic. Our formalization takes place in UniMath, a library of univalent mathematics based on the Coq proof assistant.All the categorical structures we formalize are based on monoidal categories. As such, one of our contributions is a practical, usable library of formalized results on monoidal categories. Monoidal categories carry a lot of structure, and instances of monoidal categories are often built from complicated mathematical objects. This can cause challenges of scalability, regarding both the vast amount of data to be managed by the user of the library, as well as the time the proof assistant spends on checking code. To enable scalability, and to avoid duplication of computer code in the formalization, we develop "displayed monoidal categories". These gadgets allow for the modular construction of complicated monoidal categories by building them in layers; we demonstrate their use in many examples. Specifically, we define linear-non-linear categories and construct instances of them via Lafont categories and linear categories
    • …
    corecore