
15/05/17, 10(17Games, Full Abstraction and Full Completeness (Stanford Encyclopedia of Philosophy)

Pagina 1 di 28https://plato.stanford.edu/entries/games-abstraction/

Stanford Encyclopedia of Philosophy
Games, Full Abstraction and Full Completeness
First published Thu Jan 12, 2017

Computer programs are particular kinds of texts. It is therefore natural to ask what is the meaning of a
program or, more generally, how can we set up a formal semantical account of a programming language.

There are many possible answers to such questions, each motivated by some particular aspect of
programs. So, for instance, the fact that programs are to be executed on some kind of computing machine
gives rise to operational semantics, whereas the similarities of programming languages with the formal
languages of mathematical logic has motivated the denotational approach that interprets programs and
their constituents by means of set-theoretical models.

Each of these accounts induces its own synonymy relation on the phrases of the programming language:
in a nutshell, the full abstraction property states that the denotational and operational approaches define
the same relation. This is a benchmark property for a semantical account of a programming language, and
its failure for an intuitive denotational account of a simple language based on lambda-calculus has led
eventually to refinements of the technical tools of denotational semantics culminating in game semantics,
partly inspired by the dialogue games originally used in the semantics of intuitionistic logic by Lorenzen
and his school, and later extended by Blass and others to the intepretation of Girard’s linear logic. This
bridge between constructive logic and programming has also suggested stronger forms of relation
between semantics and proof-theory, of which the notion of full completeness is perhaps the most
remarkable instance.
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1. Introduction

1.1 Interpretations of programming languages

The notion of full abstraction arises from the Scott-Strachey approach to the semantical analysis of
programming languages (Scott & Strachey 1971; Strachey 1966, 1967), also known as denotational
semantics. One fundamental aim of a denotational semantics of a programming language  is to give a
compositional interpretation  of the program phrases of  as elements of abstract
mathematical structures (domains) .

We may choose another way of giving meaning to programs, based on their execution. This operational
interpretation is only defined on the set Prog of programs of , and involves the definition of a suitable set
of program values, which are the observables of . If the execution of program  terminates with value ,
a situation expressed by the notation , then  is the operational meaning of . This defines the
operational interpretation of programs as a partial function  from programs to values, where 
when .

Both interpretations induce natural equivalence relations on program phrases. In one of its formulations,
full abstraction states the coincidence of the denotational equivalence on a language with one induced by
the operational semantics. Full abstraction has been first defined in a paper by Robin Milner (1975), which
also exposes the essential conceptual ingredients of denotational semantics: compositionality, and the
relations between observational and denotational equivalence of programs. For this reason, full
abstraction can be taken as a vantage point into the vast landscape of programming language semantics,
and is therefore quite relevant to the core problems of the philosophy of programming languages (White
2004) and of computer science (Turner 2016).

1.2 Compositionality

Compositionality (Szabó 2013) is a desirable feature of a semantical analysis of a programming language,
because it allows one to calculate the meaning of a program as a function of the meanings of its
constituents. Actually, in Milner’s account (see especially 1975: sec. 1, 4), compositionality applies even
more generally to computing agents assembled from smaller ones by means of appropriate composition
operations. These agents may include, beside programs, hardware systems like a computer composed of a
memory, composed in turn of two memory registers, and a processing unit, where all components are
computing agents. This allows one to include in one framework systems composed of hardware, of
software and even of both. Now, the syntactic rules that define inductively the various categories of
phrases of a programming language allow us to regard  as an algebra of program phrases, whose
signature is determined by these rules. One account of compositionality that is especially suitable to the
present setting (Szabó 2013: sec. 2) identifies a compositional interpretation of programs with a
homomorphism from this algebra to the domain of denotations associating with every operation of the
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algebra of programs a corresponding semantical operation on denotations.

As an example, consider a simple imperative language whose programs  denote state transformations 
. Among the operations on programs of this language there is sequential composition,

building a program  from programs  and . The intended operational meaning of this program
is that, if  is executed starting from a state , we first execute  starting form state . If the
execution terminates we obtain a state , from which we start the execution of  reaching, if the
execution terminates, a state . The latter state is the state reached by the execution of  from state 

. From a denotational point of view, we have an operation of composition on states as functions ,
and the compositional interpretation of our program is given by the following identity, to be read as a
clause of a definition of  by induction on the structure of programs:

or, more explicitly, for any state :

As most programming languages have several categories of phrases (for instance expressions,
declarations, instructions) the algebras of programs will generally be multi-sorted, with one sort for each
category of phrase. Denotational semantics pursues systematically the idea of associating compositionally
to each program phrase a denotation of the matching sort (see Stoy 1977 for an early account).

1.3 Program equivalence and full abstraction

The existence of an interpretation of a programming language  induces in a standard way an equivalence
of program phrases:

Definition 1.1 (Denotational equivalence). Given any two program phrases , they are
denotationally equivalent, written , when .

If  is compositional, then  is a congruence over the algebra of programs, whose derived operation,
those obtained by composition of operations of the signature, are called contexts. A context 
represents a program phrase with a “hole” that can be filled by program phrases  of appropriate type to
yield the program phrase . By means of contexts we can characterize easily the compositionality of a
semantic mapping:

Proposition 1.1. If  is compositional, then for all phrases  and all contexts :

This formulation highlights another valuable aspect of compositionality, namely the referentially
transparency of all contexts, equivalently their extensionality: denotationally equivalent phrases can be
substituted in any context leaving unchanged the denotation of the resulting phrase. The implication ( )
states, in particular, that  is a congruence. In order to compare denotational and operational
congruence, therefore, we must carve a congruence out of the naive operational equivalence defined by
setting  if and only if . This can be done by exploiting program contexts ,
representing a program with a “hole” that can be filled by program phrases  of suitable type to yield a
complete program .

Definition 1.2 (Observational equivalence) Given any two program phrases , they are

#
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observational equivalent, written , when, for all program contexts  and all program values 
:

Observational equivalence is then a congruence over the algebra of program phrases, and in fact it is the
largest congruence contained in . From the general point of view of the account of Milner (1975), that
we are following closely, the context of a computing agent represents one of its possible environments. If
we adopt the principle that “the overt behavior constitutes the whole meaning of a computing agent”
(Milner 1975: 160), then the contexts represents intuitively the observations that we can make on the
behavior of the computing agent. In the case of programs, the observables are the values, so observational
equivalence identifies phrases that cannot be distinguished by means of observations whose outcomes are
distinct values. One consequence of Milner’s methodological principle is that a computing agent becomes
a

transducer, whose input sequence consists of enquiries by, or responses from, its
environment, and whose output sequence consists of enquiries of, or responses to, its
environment. (Milner 1975: 160)

A behavior of a computing agent takes then the form of a dialogue between the agent and its environment,
a metaphor that will be at the heart of the game theoretic approaches to semantics to be discussed in
Section 3. This behavioral stance, which has its roots in the work of engineers on finite state devices has
also been extended by Milner to a methodology of modeling concurrent systems, with the aim

to describe a concurrent system fully enough to determine exactly what behaviour will be
seen or experienced by an external observer. Thus the approach is thoroughly extensional;
two systems are indistinguishable if we cannot tell them apart without pulling them apart.
(Milner 1980: 2)

In addition, the roles of system and observer are symmetric, to such an extent that

we would like to represent the observer as a machine, then to represent the composite
observer/machine as a machine, then to understand how this machine behaves for a new
observer. (Milner 1980: 19)

While observational equivalence is blind to the inner details of a computing agent but only observes the
possible interactions with its environment in which it takes part, denotational equivalence takes as given
the internal structure of a computing agent and, in a compositional way, synthesizes its description from
those of its internal parts. The notion of full abstraction is precisely intended to capture the coincidence of
these dual perspectives:

Definition 1.3 (Full abstraction). A denotational semantics  is fully abstract with respect to an
operational semantics  if the induced equivalences  and  coincide.

As a tool for investigating program properties, full abstraction can be seen as a completeness property of
denotational semantics: every equivalence of programs that can be proved operationally, can also be
proved by denotational means. Equivalently, a denotational proof that two terms are not equivalent will be
enough to show that they are not interchangeable in every program context.

Full abstraction also functions as a criterion for assessing a translation  from a language  into a (not
necessarily different) language , provided the two languages have the same sets of observables, say
Obs (Riecke 1993). Then  is fully abstract if observational equivalence (defined with respect to Obs) of 
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 is equivalent to observational equivalence of . The existence of fully abstract
translation between languages can be used to compare their expressive power, following a suggestion of
(Mitchell 1993; Riecke 1993):  is no more expressive than  if there is a fully abstract translation of 

 into .

Before going on in this general introduction to full abstraction and related notions in the area of
programming languages semantics, in order to show the broad relevance of these notions, it is interesting
to observe that there is a very general setting in which it is possible to study the full abstraction property,
suggested by recent investigations on compositionality in natural and artificial languages by Hodges
(2001) and others. In this setting, full abstraction is connected to the problem of finding a compositional
extension of a semantic interpretation of a subset  of a language  to an interpretation of the whole
language, via Frege’s Context Principle (see Janssen 2001 on this), stating that the meaning of an
expression in  is the contribution it makes to the meaning of the expressions of  that contain it. In the
original formulation by Frege  was the set of sentences and  the set of all expressions, while in
programming theory  is the set of programs,  the set of all program phrases.

A weakening of the definition of full abstraction represents an essential adequacy requirement for a
denotational interpretation of a language:

Definition 1.4 (Computational adequacy). A denotational semantics  is computationally adequate
with respect to an operational semantics  if, for all programs  and all values 

An equivalent formulation of computational adequacy allows to highlight its relation to full abstraction:

Proposition 1.2. Assume that  is a compositional denotational interpretation such that 
implies . The following two statements are equivalent:

1.  is computationally adequate with respect to ;
2. for any two programs ,

While the definition of the full abstraction property is straightforward, fully abstract models for very
natural examples of programming languages have proved elusive, giving rise to a full abstraction problem.
In our discussion of full abstraction we shall mainly concentrate on the full abstraction problem for the
language PCF (Programming language for Computable Functions, Plotkin 1977), a simply typed -
calculus with arithmetic primitives and a fixed-point combinator at all types proposed in Scott 1969b. This
language is important because it includes most of the programming features semantic analysis has to cope
with: higher-order functions, types and recursion, with reduction rules that provide an abstract setting for
experimenting with several evaluation strategies. Furthermore, PCF is also a model for other extensions of
simply typed -calculus used for experimenting with programming features, like the Idealized Algol of
Reynolds (1981). The efforts towards a solution of the full abstraction problem for PCF contributed, as a
side effect, to the systematic development of a set of mathematical techniques for semantical analysis
whose usefulness goes beyond their original applications. We shall describe some of them in Section 2,
devoted to the semantic analysis of PCF based on partially ordered structures, the domains introduced by
Dana Scott (1970), that we examine in Section 2.3. Technical developments in the theory of domains and
also in the new research area focussed on Girard’s linear logic (Girard 1987) have led to game semantics
(Abramsky, Jagadeesan, & Malacaria 2000; Hyland & Ong 2000), which is now regarded as a viable
alternative to standard denotational semantics based on domains. It is to this approach that we shall
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dedicate Section 3 trying to provide enough details to orient the reader in an extensive and still growing
literature documenting the applications of games to the interpretation of a wide spectrum of programming
language features.

2. Sequential higher-order computation: the full abstraction
problem for PCF
The full abstraction problem has proved especially hard for a version of simply typed -calculus with
arithmetic primitives called PCF (Programming with Computable Functions) (Plotkin 1977), a toy
programming language based on the Logic for Computable Functions of Scott (1969) and Milner (1973).
In this section we introduce (a version of) the language with its operational and denotational semantics,
and outline how the full abstraction problem arises for this language. The problem has been one of the
major concerns of the theoretical investigation of programming languages for about two decades, from its
original formulation in the landmark papers (Milner 1977; Plotkin 1977) to the first solutions proposed in
1993 (Abramsky et al. 2000; Hyland & Ong 2000) using game semantics, for which see Section 3.

2.1 Syntax of PCF

PCF is a language based on simply typed -calculus extended with arithmetic and boolean primitives, and
its type system is defined accordingly:

Definition 2.1 (PCF types). The set Types of types of PCF is defined inductively as follows

the ground types num (for terms representing natural numbers), bool (for terms representing
boolean values) are types,
if  are types, also  is a type.

Parentheses will be omitted whenever possible, with the convention that they associate to the right, so
that a type  is equivalent to 

PCF terms are the terms of simply typed -calculus extended with the following arithmetic constants, of
the indicated type:

a constant , representing the natural number 0;
a constant  of type  representing the successor function over natural numbers;
a constant  of type  representing the predecessor function over natural numbers;
constants  and ;
constants of type  and  for
conditionals of type num and of type bool, respectively: these are both written as 

, and we let context make clear what is the intended type of the result;
a constant  for the test for zero of type ;
a unary function symbol  for the fixed point combinator, where  for any .

Terms are built inductively according to rules that allow to infer judgements of the form ,
stating that term  is of type  under the assumption that the variables occurring free in  are given unique
types in a basis  of the form

The rule for building PCF-terms are therefore inference rules for such judgements. In particular there are

λ

λ

σ, τ (σ → τ)

→ ⋯ → τσ1 σn ( → ( → (⋯ ( → τ) ⋯)))σ1 σ2 σn

λ

0 : /01
20## /01 → /01
3+45 /01 → /01

66 77
8,,9 → /01 → /01 → /01 8,,9 → 8,,9 → 8,,9 → 8,,9

:7 ⋅  6<4/ ⋅  4924 ⋅
=4+,? /01 → 8,,9

>(⋅) >(e) : σ e : σ → σ
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rules for typed constants, for example in any basis  there is a judgement ,
and we have rules for typed -abstractions

and applications

and a rule for the fixed-point operator:

2.2 Operational semantics

A PCF program is a closed term of ground type. We specify how programs are to be executed by defining
an evaluation relation  between closed terms  and values , where the values are the constants and
abstractions of the form . In particular, values of ground type bool are , and values of the
ground type num are  and all terms of the form

Evaluation is defined by cases according to the structure of terms, by means of inference rules for
judgements of the form . These rules state how the result of the evaluation of a term depends on the
result of the evaluation of other terms, the only axioms having the form  for every value . For
example there is a rule

that states that, if the result of the evaluation of  is , then the result of the evaluation of  is 
. Similarly we can describe the evaluation of the other constants. The evaluation of a term of the

form  proceeds as follows: first  is evaluated; if the evaluation terminates with value , then the
evaluation of  proceeds with the evaluation of ; if this terminates with value , this is the value
of , formally

For a value of the form , its application to a term  has the value (if any) obtained by
evaluating the term  resulting by substituting  to all free occurrences of  in :

These implement a call-by-name evaluation strategy: in an application, the term in function position must
be evaluated completely before the term in argument position, which is then passed as actual parameter.
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n
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The fixed point combinator is essential to the encoding of recursive definitions. Its evaluation is described
by the rule

which is the only rule whose premiss involves the evaluation of a larger term than the one to be evaluated:
this is why the definition of the evaluation relation cannot be reduced to structural induction.

We shall be especially interested in situations when the evaluation of a term  does not have a value; in
these case we say that  diverges, and write . It is in the presence of divergent terms that the causal
structure of the evaluation process is exposed. The initial example is in fact a term that diverges in a very
strong sense:

Definition 2.2 (Undefined). For any ground type , define  as

By inspecting the evaluation rules we see that the only possible evaluation process gives rise to an infinite
regress, therefore .

We can define the usual boolean operations by means of the conditional operator, as in the following
examples:

with the usual truth tables. However, we have now to take into account the possibility of divergence of the
evaluation process, for example in a term like , therefore we extend the usual truth tables by
adding a new boolean value, representing absence of information,  (read as “undefined”) to  and ,
as the value of the term . Here, the first argument to be evaluated is the one on the left, and if the
evaluation of this diverges then the whole evaluation process diverges. Consider now an operator por
whose interpretation is given by the table

In this case : this is the parallel-or which plays a central role in the full
abstraction problem for PCF. It will turn out that is is not definable by any PCF term, precisely because of
its parallel nature. In order to carry out a semantical analysis of PCF, we need a theory of data types with
partial elements and of functions over them that support an abstract form of recursive definition through
fixed point equations: this is what is achieved in Scott’s theory of domains, the original mathematical
foundation for denotational semantics of programming languages as conceived by Strachey (1966, 1967).

2.3 Denotational semantics

2.3.1 Types as domains

e(>(e)) ⇓ v
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e
e e⇑
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>(λx : γ . x)
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What are the general structural properties of a space of partial data? The mathematical theory of
computation elaborated by Dana Scott (1970) is an answer to this question, that takes partially ordered
sets generically called domains as basic structures. The partial order of a domain describes a qualitative
notion of “information” carried by the elements. In such a framework it is natural to reify divergence by
introducing a new element  representing absence of information. When  in this partial order,

 is consistent with  and is (possibly) more accurate than  thus  means that 
and  want to approximate the same entity, but  gives more information about it. This means
we have to allow “incomplete” entities, like , containing only “partial” information. (Scott
1970: 171)

The resulting partially ordered sets should also have the property that sequences of approximations, in
particular infinite chains  should converge to a limit containing the information
cumulatively provided by the . The same structure is also exploited in Kleene’s proof of the First
Recursion Theorem in Kleene 1952 (secs. 66, 348–50), and will allow to define a notion of continuous
function in terms of preservation of limits.

Definition 2.3 (Complete partial orders). A complete partial order (cpo) is a partially ordered set 
 with a least element , and such that every increasing chain  of elements of 

has a least upper bound .

Given any set , we write  for the set  obtained by adding a new element . It is natural to
order the elements of  according to their amount of information, by setting for ,

Partially ordered structures of the form  are called flat domains, among which we have 
 and , that will be used to interpret the ground types of PCF.

A general requirement on domains is that every element be a limit of its finite approximations, for a
notion of finiteness (or compactness) that can be formulated entirely in terms of the partial order structure:

Definition 2.4 (Finite elements of a cpo). If  is a cpo, an element  is finite if, for every
increasing chain 

For , the notation  denotes the set of finite elements below ;  is the set of finite
elements of . Finite elements are also called compact.

Observe that finite subsets of a set  are exactly the finite elements of the complete lattice of subsets of 
. It is useful also to observe that this definition only partially matches our intuition: consider for example

the finite element  in the cpo

Definition 2.5 (Algebraic cpo). A  is algebraic if, for every , there is an increasing chain 
 of finite approximations of  such that

⊥ x ⊑ y
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If  is algebraic, we say that the finite elements form a basis of .

One last completeness assumption on algebraic cpo’s is needed in order to get a category of domains
suitable for the interpretation of PCF:

Definition 2.6. Given a cpo , if  has an upper bound we say that  is consistent, and write 
, or  when .  is consistently complete if every  such that  has a least

upper bound.

The following notion of domain that has proved extremely convenient as a framework for the denotational
semantics of programming languages (Scott 1982):

Definition 2.7 (Domain). A domain is a consistently complete algebraic cpo with a countable basis.

2.3.2 An abstract theory of computable functions of higher-types

How can we use the notion of information implicit in the ordering on the elements of domains to develop
an abstract notion of computability? Clearly, a computable function should preserve monotonically any
increase of information on its inputs:  whenever . In particular, strict functions 

 over flat domains, those for which , are monotonic.

Consider the domain  whose elements are finite and infinite sequences of bits , where 
if either  is infinite and , or  is finite and  is a prefix of . What properties should be true of a
computable function taking as arguments an infinite sequence of bits ? Take as an example
the function  whose value is  if, for ,  occurs in  at least once,
otherwise . Think of the sequence  as given one element at a time: the initial segments
obtained in this process are an increasing chain of finite elements of ,

having  as a limit (i.e., least upper bound). By monotonicity we have a corresponding
increasing chain of values

If , then there must be a finite initial segment  for which 
, and this will be the cumulative value of the function for the infinite

sequence . In general, a computable function  should (be monotonic and) have
the property that a finite amount of information on the output  must be already obtainable by giving a
finite amount of information on the input . This is equivalent to the notion of continuity originally
introduced by Scott in his theory of computable functions over domains:

Definition 2.8 (Continuous functions). If  are cpo’s and  is monotonic, 
is continuous if

for every increasing chain .

From the point of view of denotational semantics, a fundamental property of continuous functions 
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 is that they admit a least fixed point, whose construction can be carried out uniformly and
continuously:

Theorem 2.1 (The Fixed Point Theorem for continuous functions) Let  be a continuous
function and  be such that . Then the element

is the least  such that .

Definition 2.9. The least fixed point of a continuous  is the element of  defined by

The continuous functions from  to , for cpo’s  e , form a cpo , ordered
pointwise by setting, for :

 is a domain if  and  are, and  is continuous. A further construction
on cpo’s which also extends to domains and is very frequently used is cartesian product: given cpo’s 

, their cartesian product is defined as the set  of pairs  where  and , ordered
pointwise:  if and only if  and . We can summarize these constructions
in categorical language (Plotkin 1978, Other Internet Resources), saying that the category whose objects
are domains and whose morphisms are the continuous functions is cartesian closed.

2.3.3 Continuous semantics for PCF

The standard interpretation of PCF consists of a family of cpos , for each type , where 
and ,  and the PCF constants have the natural interpretation as strict
continuous functions of the appropriate type, for example  is
interpreted as:

Furthermore, the operator  is interpreted as the continuous functional  at the appropriate type.
This is the interpretation considered in Scott 1969b) and Milner 1973.

The possibility that  may contain free occurrences of variables (whose types are given by a basis )
slightly complicates the interpretation of terms, making it depend on a further parameter, an environment 

 mapping each free variable  of  to an element of  (if the latter condition is satisfied, we say that
 respects ). Of course, the environment is irrelevant when  is closed.

The standard interpretation of PCF terms  (from a basis ) is then an element , for any
environment  such that  respects , built by structural induction on terms, interpreting application as
function application and -abstractions by (continuous) functions. More generally, an interpretation is

D → D

f : D → D
x ∈ D x ⊑ f (x)

(x)⨆
n∈ℕ

f (n)

y ⊒ x f (y) = y

f : D → D D

7:R(f ) (⊥).=def ⨆
n∈ℕ

f (n)

D E ⟨D, ⟩⊑D ⟨E, ⟩⊑E [D → E]
f , g : D → E

f ⊑ g ⟺ ∀d ∈ D. f (d) g(d).⊑E

[D → E] D E 7:R(⋅) : [D → D] → D

D, E D × E ⟨d, e⟩ d ∈ D e ∈ E
⟨d, e⟩ ⊑ ⟨ , ⟩d ′ e′ d ⊑D d ′ e ⊑E e′

Dσ σ =D/01 ℕ⊥
=D8,,9 P⊥ = [ → ]Dσ→τ Dσ Dτ

#,/5 : → → →P⊥ ℕ⊥ ℕ⊥ ℕ⊥

cond(b)(x)(y) =
⎧

⎩
⎨⎪⎪

x
y
⊥

if b = 66
if b = 77
if b = ⊥,

>(⋅) 7:R(⋅)

e B

ρ x : τ e Dτ

ρ B e

e : σ B [[e]]ρ ∈ Dσ

ρ ρ B
λ

Dσ Dσ→τ →Dσ Dτ



15/05/17, 10(17Games, Full Abstraction and Full Completeness (Stanford Encyclopedia of Philosophy)

Pagina 12 di 28https://plato.stanford.edu/entries/games-abstraction/

continuous if every  is a cpo and  consists of continuous functions .

A model of PCF is an interpretation that satisfies the expected identities between terms of the same type.
We shall omit the details of the general characterization of models of PCF, for which the reader is referred
to Ong (1995: sec. 3.2) and Berry, Curien, & Lévy (1985: sec. 4), but just to point out an example of what
must be taken into account when such a generality is needed, in order to admit interpretations where the
elements at function types are not, strictly speaking, functions, we have to assume a family of application
operations

so that, if  and , . A model is order-
extensional if, for all elements ,  if and only if  for all . A model
is extensional if, for all elements ,  if and only if  for all . An
element  of a model is definable is there is a closed terms  such that .

2.4 Relating operational and denotational semantics

The general setting for discussing full abstraction requires that we introduce the following notions:

Definition 2.11 (Observational preorder and equivalence) Given PCF terms  and  of the same type 
, we write  (read  is observationally less defined than ) if, for every program context 

with a hole of type  and any value ,

We say that  and  are observationally equivalent, and write , if  and .

Observational equivalence is a congruence. Another congruence on PCF terms is given by equality of
denotations in a model:

Definition 2.11 (Denotational preorder and equivalence). Given PCF terms  and  of the same type 
relative to a basis , we write  if  for all environments  respecting . We
write  if  and  .

Proposition 2.1 (Computational adequacy for PCF). The following two statements hold for the
standard model of PCF, and are equivalent:

1. For any two PCF terms of the same ground type ,  implies ;
2. For any closed PCF term  of ground type and any value  of that type,  if and only if

;

We can now justify our intuitive interpretation of  in the standard model, where ground types are
interpreted as flat domains:

Corollary 2.1. For any closed PCF term  of ground type,  if and only if .

In Section 1.3 we have already defined a very general notion of (equational) full abstraction, based on
synonymy, i.e., equality of interpretation of terms. In the case PCF, whose intended models are partially
ordered at all types, we can define a stronger property:

Definition 2.12 (Inequational full abstraction). A continuous model  of
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PCF is inequationally fully abstract if, for closed terms ,  implies .

Definability is the key to full abstraction, as shown by the following important result of Milner and
Plotkin:

Theorem 2.2. A continuous, order-extensional model of PCF is fully abstract if and only if for every
type ,  is a domain whose finite elements are definable.

We turn now to the failure of the full abstraction property for the standard model of PCF, as shown by
Plotkin in his classic study (Plotkin 1977):

Proposition 2.2. The standard model of PCF is not fully abstract with respect to call-by-name
evaluation.

The proof is based on the observation that we can build PCF terms of type 
 that recognize the parallel-or function. Specifically, consider the

“test” terms  defined as follows, where :

Then, , where por is defined by table , so  does not
hold. However, no program context in PCF can separate  and  because por is not definable. This can
be shown by characterizing in a combinatorial way the relations of dependence induced by the evaluation
process of a program among the evaluation processes of its (sub)terms, as Plotkin does in the Activity
Lemma (Plotkin 1977: Lemma 4.2). As an alternative, it is possible to build a computationally adequate
models of PCF whose functions enjoy a weak sequentiality property (that we discuss below, in Section
2.5.1) and where, therefore, the function por is ruled out: a complete formal proof along these lines is
given in Gunter 1992 (sec. 6.1).

One option to solve the full abstraction problem is to extend the language: a remarkable result of Plotkin
(1977) shows that adding parallel-or is enough:

Proposition 2.3. The standard model is fully abstract for the language PCF extended with parallel-or.

Milner (1977) has shown that there is a fully abstract model of PCF, by taking the set of closed terms at
each type  identifying observationally equivalent terms and by completing the resulting partially ordered
set turning it into a cpo.

Corollary 2.2. There is a unique continuous, order extensional, inequationally fully abstract model of
PCF, up to isomorphism.

The full abstraction problem for PCF consists in finding a direct description of the class of domains and
continuous functions that make up the fully abstract model. A solution to this problem would require a
precise criterion for assessing the extent to which a proposed description of the model is satisfactory. If
one accepts the “precise minimal condition that a semantic solution of the full abstraction problem should
satisfy” given by Jung & Stoughton (1993), namely the possibility of describing in an effective way the
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domains  of a finitary version of PCF (whose only ground type is bool), then the story of failed
attempts to give such a direct description of the fully abstract model is justified, with hindsight, by a result
of Loader (2001):

Theorem 2.3. Observational equivalence for finitary PCF is not decidable.

It is still possible, however, that one could find a direct description of an intensionally fully abstract model
(Abramsky et al. 2000: 411):

Definition 2.13 (Intensional full abstraction). A model of PCF is intensionally fully abstract if every 
 is algebraic and all its compact elements are definable.

Pursuing this line of development of the full abstraction problem leads us to game semantics, which will
be the topic of the next Section. Before that, we outline the main attempts to reduce the model by means
of a semantical characterization of higher-order sequential computation.

2.5 Towards a sequential semantics

The reason for the failure of full abstraction of the continuous semantics of PCF is the existence of
functions whose evaluation requires parallel computation. We describe now some proposals for
characterizing sequentiality of functions by means of properties related to the structure of the domains on
which they are defined. This has been an area of intensive research toward the solution of the full
abstraction problem for PCF, and some of the insights that emerged from it lead very naturally to the
game models discussed in Section 3. In addition, the following summary of attempts at a characterization
of sequentiality is also a very interesting demonstration of the expressive power of the language of partial
order in the semantic analysis of programming concepts.

Intuitively, a sequential function is one whose evaluation proceeds serially: this means that it is possible to
schedule the evaluation of its arguments so that the evaluation of the function terminates with the correct
value; if the evaluation of one of them diverges, the whole evaluation diverges. At each stage of this
process there is an argument whose value is needed to obtain more information on the output of the
function. In order to account for this causal structure of computations at the semantical level, we need to
enrich the domain structure so that the order on the elements reflect the happening of computational
events and their causal order. This suggests another way of interpreting the abstract notion of information
that motivated the axioms of a cpo in Section 2.3.1. Now,

information has to do with (occurrences of) events: namely the information that those events
occurred. For example in the case of ,  might mean that no event occurred and an integer

, might mean that the event occurred of the integer  being output (or, in another
circumstance being input). (Plotkin 1978, Other Internet Resources)

2.5.1 Stability

One interpretation of events regards them as the production of values in the evaluation of an expression.
This interpretation originates in the context of bottom-up computation of recursive programs developed
by Berry (1976), where a recursive definition is translated into a graph displaying the dependence of
results of an expression on results of its subexpressions. This context naturally suggests the notion of
producer of an event , as a set of events that must have happened in order that  may happen.
Reformulating this observation in the language of partial orders, Berry (1976) defined:

Definition 2.14 (Stability). Let  be flat cpo’s and  monotonic

Dσ

Dσ

ℕ⊥ ⊥
n n

x x

, … , , DD1 Dn f : × … × → DD1 Dn
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(hence continuous). Then  is stable if for every  there is a unique
minimal element  such that .

Clearly, the parallel-or function is not stable: the value  has no minimal
producer. A remarkable property of stable functions is that they allow to build a new model of PCF, where

 is the set of stable functions on the domains that interpret the types  and , which are refinements
of Scott domains called dI-domains (Berry 1978). From our point of view, the important outcome of these
definitions is the following adequacy result (Gunter 1992: chap. 6):

Proposition 2.4. The interpretation of PCF terms as elements of dI-domains, where  is the dI-
domain of stable functions from  to  with the stable order, is a computationally adequate model of
PCF.

This result completes the argument showing the failure of full abstraction for the continuous model of
PCF at the end of Section 2.4, if the informal notion of sequentiality used there is formalized as stability.
The stable model of PCF has recently been shown to be fully abstract for an extension of PCF (Paolini
2006).

2.5.2 Sequential functions

The first definitions of sequentiality, due to Vuillemin (1974) and Milner (1977) stated that an -ary
functions  over flat domains is sequential at argument  if there is a sequentiality index  of ,
depending on , such that every increase in the output information must increase the
information at argument . For example, the function  is sequential in this
sense at any input tuple. In fact, its sequentiality index at  is 1; its sequentiality index at 

 is 2, and its sequentiality index at  is 3. There is however no sequentiality index for the
function  at the input .

While all sequential functions (over flat domains) are stable, sequentiality is strictly stronger than stability.
For example, the continuous function from  to  defined as the smallest continuous
extension of the three assignments

has no sequentiality index at the argument , but is stable because the arguments 
 are pairwise inconsistent.

The following result adds support to the search for a semantical characterizations of sequentiality:

Proposition 2.5. Let  be a continuous function, where  are either  or 
. Then  is sequential if and only if it is definable in PCF.

2.5.3 Concrete data structures and sequential algorithms

If the domains needed for an adequate definition of sequentiality are to describe the causality relations
among occurrences of computational events, then it is necessary to enrich our picture by considering
events as located at places, generalizing the notion of argument place in the definitions of Vuillemin and
Milner which depends on how a function is presented. This led to a notion of concrete data structure (cds)
(Kahn & Plotkin 1993) and to an axiomatization of the order-theoretic properties of domains of first-order
data. Kahn and Plotkin obtained a representation theorem for the domains described by their axioms, the
concrete domains, in terms of the states of a process of exploration of a concrete data structure that
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consists in filling, given a state , any cell enabled by sets of events that have already happened in ,
starting from initial cells enabled in the initial, empty state: this is similar to proving theorems in an
abstract deductive system whose rules are the enablings. As a motivating example, think of a linked list
of, say, natural numbers. The initial cell may be filled at any time with any value . This event enables
the second cell of the list, which may then (and only then) be filled with any value , and so on for all
later cells.

Observe that the framework of concrete data structures gives the necessary notions to reconstruct a
semantical version of sequentiality. Roughly, a monotonic function  from states of  to states of  is
sequential (at state ) if, for any output cell , there is an input cell  that must be filled in any transition
from  to  such that the transition from  to  fills  (if such a  does exist) (Curien 1986:
Def. 2.4.5). The cell  is the sequentiality index for  at  for .

The category whose objects are the concrete data structures and whose morphisms are the sequential
functions just defined is, however, not cartesian closed, not unexpectedly. This observation (for a simple
proof, see Amadio & Curien 1998 (theorem 14.1.12)) prevents the use of this category as a model of PCF.
However, it is possible to define for every two concrete data structures  a new one 
whose states represent sequential algorithms and which is the exponential object of  and  in a
cartesian closed category whose morphisms are sequential algorithms (Curien 1986: sec. 2.5). The
generalizations of the model theory of PCF to categorical models allows us to obtain a model of PCF from
this new category, even though its morphisms are not functions in the usual set-theoretic sense. It turns out
that the sequential algorithm model is not extensional, because there are distinct PCF terms that denote
the same continuous function yet represent distinct algorithms. As an example, consider the following two
terms, that denote the same function but different algorithms:

By suitably introducing error values  in the semantics, and enforcing an error-propagation
property of the interpretations of terms (thus enlarging the observables of the language), the functions
corresponding to the above terms can then be distinguished: clearly, for the interpreting functions  and

 we have

which also points to the possibility of proving full abstraction of this (non-standard) extensional model
with respect to an extension of PCF with control operators (Cartwright, Curien, & Felleisen 1994).

Before leaving this overview of the quest for an extensional characterization of higher-order sequentiality,
we should mention Bucciarelli & Ehrhard (1994) who introduced a refinement of the dI-domains of Berry
supporting a notion of strongly stable function which allows them to build an extensional model of PCF,
which is not fully abstract. The reason for the failure of full abstraction in this case depends on the fact
that PCF-definable functionals satisfy extensionality properties that fail when functions are ordered by the
stable order. This was also the reason that motivated the introduction of bidomains (Berry 1978), where
the stable and extensional (= pointwise) orderings of functions coexist.

2.6 Historical notes and further readings
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The problem of full abstraction has been anticipated in a large amount of work on the relations between
the denotational and operational interpretations of programming languages. In particular, the pioneering
work on the semantics of recursive programs carried out in Stanford in the early 1970s by a group of
people gathering around Zohar Manna, and including Jean Marie Cadiou, Robin Milner and Jean
Vuillemin, also interacting with Gilles Kahn.

A related tradition was also quite influential on the background of the full abstraction problem, namely the
characterizations of semantical notions like continuity and sequentiality inside syntactic models of the
(untyped) -calculus based on Böhm trees (Barendregt 1984), mainly due to Lévy and Berry (see Berry et
al. 1985 and Curien 1992) for accounts of the search for fully abstract models of PCF along this line).

The basic papers on full abstraction for PCF are Milner 1977; Plotkin 1977. They can be read together as
giving a coherent picture of the semantic analysis of this language. An independent approach to full
abstraction came from the Russian logician Vladimir Sazonov who characterized definability in PCF in
terms of a certain class of sequential computational strategies (Sazonov 1975, 1976). His work, however,
had no direct influence on the bulk of research on the full abstraction problem, and only recently there
have been attempts to relate Sazonov’s characterization to the game theoretic approaches (Sazonov 2007).

Another, completely different approach to full abstraction, exploits special kinds of logical relations in
order to isolate quotients of the continuous model. The first use of logical relations in the context of the
problem of full abstraction is Mulmuley 1987, but the resulting construction of a fully abstract model is
obtained by brute force and therefore is not what the full abstraction problem searches for. Later, Sieber
(1992) and O’Hearn & Riecke (1995) have employed refinements of this technique to gain a better insight
into the structure of the fully abstract models, characterizing the definable elements of the standard
continuous model by means of invariance under special logical relations cutting out the non-sequential
functions.

Detailed accounts of the full abstraction problem for PCF can be found in Gunter 1992 (chaps 5,6),
Streicher 2006, Ong 1995, Stoughton 1988 and Amadio & Curien 1998 (chaps 6, 12, 14), in
approximately increasing order of technical complexity. The emphasis on the recursion-theoretic aspects
of PCF and its full abstraction problem are dealt with in detail in the textbook (Longley & Normann 2015:
chaps 6, 7); a shorter account can be found in Longley 2001 (sec. 4).

3. Game semantics

3.1 Full completeness

Theorem 2.2 highlights the fundamental role of definability of finite elements in the fully abstract model
of PCF, an aspect that has been stressed recently in Curien 2007. As a smooth transition to the formalisms
based on games, and partly following the historical development of the subject, we pause shortly to
examine another aspect of definability that arises at the border between computation and the proof theory
of constructive logical systems. It has been a remarkable discovery that the structure of natural deduction
proofs for, say, the implicative fragment of intuitionistic propositional calculus is completely described by
terms of the simply typed -calculus, where a provable propositional formula of the form  is read
as the type of the terms representing its proofs. This is the propositions-as-types correspondence, to be
attributed to Curry, de Bruijn, Scott, Läuchli, Lawvere and Howard, which extends to much richer formal
systems (for a history of this notion see Cardone & Hindley 2009: sec. 8.1.4).

The existence of this correspondence makes it possible to speak of a semantics of proofs, that extends to
constructive formal proofs the denotational interpretations of typed -calculi, and in this context it also

λ

λ σ → τ

λ
Dσ λ
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makes sense to ask whether an element  of some  in a model of a typed -calculus is the
interpretation of some proof of formula . A further question asks whether every element of  satisfying
a suitably chosen property is the interpretation of a proof of formula . Suitable properties may be for
example invariance under logical relations, suitably defined over each , like in several results of
Plotkin, Statman and others summarized in Barendregt, Dekkers, & Statman 2013 (I.3, I.4). We can read
the latter question as asking for a strong form of completeness for that system called full completeness
(Abramsky & Jagadeesan 1994), whose definition can be better understood in a categorical semantics of
systems of constructive logic. It is common to interpret formulas  of such systems as objects  of
suitable categories , and proofs  of sequents  as morphisms . While
ordinary completeness states that for every valid sequent  the set  of morphisms is
not empty, in the present setting full completeness expresses the stronger requirement that every
morphism  in a semantical category  arises as the interpretation of some proof, i.e., 

 for some proof  of the sequent . Full completeness results have been proved for several
subsystems of linear logic Girard (1987), see Abramsky (2000) for a general framework. Furthermore, it
has also suggested techniques for achieving the definition of models of PCF enjoying the strong
definability property required by intensional full abstraction.

3.2 Interaction

In our description of the refinements to the continuous model of PCF in order to guarantee the definability
of finite elements at each type, we have progressively come closer to an interactive explanation of
computation. For example, the action of a sequential algorithm  (Curien 1986: sec. 3.4) exploits
an external calling agent which triggers a cycle of requests and responses on input cells leading (possibly)
to the emission of an output value. That interaction should be a central notion in the analysis of
computation, especially in relation to full abstraction, is perhaps a natural outcome of the observational
stance taken in the definition of operational equivalence. Our short account of game semantics starts
precisely from an analysis of a general notion of interaction as a motivation to a first formalization of
games which is however rich enough to provide a universe for the interpretation of a restricted set of types
and terms. Later we shall add to this definition of game and strategies the features needed to express the
constraints that allow strategies to characterize precisely higher-order, sequential computations, which is
the aim set for denotational semantics by the full abstraction problem. The present account of the
conceptual background of game semantics owes much to the work of Abramsky and Curien (Abramsky
1994, 1996, 1997; Curien 2003a).

The relevant notion of interaction has been isolated as the result of contributions that come from widely
different research areas intensively investigated only in relatively recent years, notably linear logic
(Girard 1987) and the theory of concurrent processes. It is in these areas that a notion of composition as
interaction of modules takes shape. We give here just a simple example where the composition of
modules in the form of “parallel composition + hiding” is found in nature, in order to connect it with the
origin of this idea in the semantics of concurrent processes developed by Hoare (1985), and also to afford
a first glimpse into a simplified game formalism.

Consider a module  with four channels labeled . The module is intended to return on
channel  the successor of the number  incoming through channel , therefore its behavior can be
specified as follows:

 receives an input signal  on channel , then
emits a signal  on channel , and
waits for a value  on channel  and then, after receiving it,
emits a value  on channel .

x Dσ λ
σ Dσ

σ
Dσ

A [[A]]
\ p A ⊢ B [[p]] : [[A]] ⟶ [[B]]

A ⊢ B \([[A]], [[B]])

f : [[A]] ⟶ [[B]] \
f = [[p]] p A ⊢ B

M → M ′

S , , ,ain aout rin rout
aout n ain

S ?in rin
?out rout

n ain
n + 1 aout
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(This pattern of interaction is formally identical to the handshake protocol which is used in hardware
design to synchronize components in order to avoid hazards caused by interference of signals.) This
behavior can be mapped on the channels as follows:

FIGURE 1: A module for the successor function.

where  means input or, more generally, a passive involvement of the module in the corresponding action,
whereas  means output, or active involvement in the action. We can describe the behavior of  using
traces (Hoare 1985), i.e., finite sequences of symbols from the infinite alphabet 

If we consider another instance  of  with alphabet  we can compose  and 
 by identifying (= connecting) channels , and , and the signals passing through them, as

shown:

This represents the parallel composition of the modules, :

FIGURE 2

The behavior of the compound module is described by the set of traces

The symbols  can now be hidden, representing the behavior of the final system

FIGURE 3

whose traces have the required form
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This example contains many of the ingredients on which game semantics is based. There is the idea of a
System, whose behavior is triggered by an incoming request from its Environment: in a game formalism
these are the roles of Proponent and Opponent in a two-person game. The behavior of each module is
described as the trace of its possible interactions with other agents, and the behaviors can be composed by
a peculiar change of role whereby the module who plays as System (in the above example,  emitting a
request signal on channel ) is made to behave as Environment with respect to  when this signal is
received in input on channel . Let us see how this example can be generalized.

3.3 Games and strategies

We only give the definitions needed to understand the basic constructions on games and to see how these
form a category, following Abramsky 1997 and Hyland 1997 that contain more formal details and proofs.

3.3.1 Games

Definition 3.1 A game  is specified by giving a set of moves , a labeling  of the moves as
either moves of the Proponent ( ) or as moves of the Opponent ( ). Furthermore, there is a set of
positions  which is a set of sequences of moves where: (1) the two players alternate, starting with ;
(2) if  then every prefix  of  is also in .

As an example, consider a game associated with the data-type of Boolean values, . There are three
possible moves,

an -move  and
two -moves 

(i.e., ). The positions in this game are

think of  as a cell (as in a concrete data structure) which can be filled by one of the two values  and 
, or as a question by the Opponent that admits as answers by the Proponent either  or . Similarly we

can describe a game  with an -move  and -moves .

3.3.2 Strategies and their composition

The players move in a game  alternately, at each move reaching a legal position in . Their behavior is
best thought of as describing a strategy that prescribes deterministically what is ’s response to  in a
position where it is its turn to move.

Definition 3.2. A strategy  on a game  is a prefix-closed set of even-length positions of  such that,
each time , we have .

For example, the strategies on  are  and all sequences , corresponding respectively to the
elements  and  of the domain .

We would like to consider the behavior of the successor module described above as an element of a set 
 of strategies that compute functions over the natural numbers. If we consider only the

sequences of interactions of  taking place either on the left or on the right side of the module of Figure 1,
we see that they describe positions of , with an inversion of polarity (active/passive) depending on

S
rout S ′

r′
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which side the interactions take place: the module is initially passive, and becomes active upon receiving
a request from the environment. Such inversion, represented by the complementary labeling of the moves 

, assigning to Proponent the moves of the Opponent in  and conversely, is essential to the definition
of a game :

Definition 3.3. Given any pair of games , the game  has moves  the disjoint union 
 of the games  and , where

and a position in  is any alternating sequence  of moves (of ) whose restrictions 
 to the moves in  and , respectively, are positions of  and .

The strategy that interprets  corresponds to the behavior of the module  used above
as a guiding example. The parallel composition + hiding approach used to compose two instances of the
successor module can now be reinterpreted as composition of strategies, suggesting a general pattern:

Definition 3.4. The composition  on  of strategies  on  and  on  consists
of the sequences of moves of  obtained by hiding the moves of  from the sequences  of
moves in  such that  is in  and  is in .

There is one strategy that deserves a special name, because it is the identity morphism in the category
whose objects are games and whose morphisms from  to  are the strategies on . The copy-cat
strategy  on  is defined as the set of sequences of moves  such that the restriction of  to the
left instance of  coincides with its restriction to the right instance.

3.4 Special kinds of strategies

The game formalism just introduced is not detailed enough to characterize the kind of sequential
computation at higher types needed to achieve definability. For this purpose, a richer structure on games is
needed, making them closer to dialogue games between Proponent and Opponent exchanging questions
and answers. This allows to formulate restrictions on plays by matching answers with the corresponding
questions in an appropriate manner. The strategies for this refined game notion, that we study next
essentially through examples, will yield a richer notion of morphism between games, allowing to make
finer distinctions of a computational nature needed for intensionally fully abstract model of PCF,
following essentially the approach of Hyland & Ong (2000) drawing also material from Abramsky &
McCusker (1999) and Curien (2006).

λG
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The moves of the refined game notion will be either questions or answers played by Proponent or by the
Opponent. We have then four classes of moves each represented by a kind of (round or square) bracket:
Proponent’s questions ‘(’; Opponent’s answers ‘)’; Opponent’s questions ‘[’; and Proponent’s answer ‘]’.
This labeling of the moves subsumes under the usual well-formedness criterion for bracket sequences, at
one time: the alternation between Proponent and Opponent, the fact that Opponent is the first to move and
that each answer of a player answers a unique question of the partner. This is not enough, however: a
further justification structure on questions and answers is needed to discipline the nesting of
(sub)dialogues in the evaluation of higher-order functions, allowing to characterize the well-bracketed
strategies. Consider now the strategy in , described informally
using a labeling of the copies of  as shown:

(1) Opponent asks question  in ;
(2) Proponent asks question  in , justified by , in order to know about the output of the input

value ;
(3.1) if Opponent asks question , Proponent answers  in : the computation examines

first the first argument of ;
(3.2) if Opponent asks question , Proponent answers  in : the computation examines

first the second argument of ;

Here, the Proponent’s moves at steps (3. ) answer the question asked by Opponent at step (1), not the
questions asked by the Opponent at steps (3.1), (3.2) that are still pending. This violates a “no dangling
question mark” condition on dialogues introduced under this name by Robin Gandy in his unpublished
work on higher-type computability (and well-known in the tradition of game semantics for intuitionistic
logic initiated by Lorenzen (1961)). Strategies such as these interpret control operators that do not exist in
the fully abstract game model of PCF, but do exist, for example, in the model based on sequential
algorithms (Curien 1986: sec. 3.2.7, 3.2.8). A different phenomenon occurs in a variation of the previous
example:

(1) Opponent asks question  in ;
(2) Proponent asks question  in ;
  (3.1)   if Opponent asks question , Proponent answers  in ;
   (3.1.1)    if Opponent answers  in , Proponent answers  in ;
  (3.2)   if Opponent answers  in , Proponent answers  in 

Here the strategy prescribes a response to the moves by Opponent depending on the internal detail of the
latter’s behavior. The response prescribed to Proponent by the strategy to the initial question should not
depend on what happens between the Proponent’s question  and the Opponent’s answer . This is the
property of innocence, that limits the amount of detail that a strategy for  can access. For this reason,
failure of innocence allows strategies to model storage phenomena.

This gives us the necessary terminology to understand the statement of the intensional full abstraction
theorem proved in Hyland & Ong 2000 (th. 7.1), where the types of PCF are interpreted as games and
terms as innocent and well-bracketed strategies, see also Abramsky et al. 2000 (th. 3.2), Curien 2006
(th. 5.1):

Theorem 3.1. For every PCF type  with  or , every
(compact) innocent and well-bracketed strategy corresponds to the denotation of a closed term.

This closes our quick overview of game semantics applied to the full abstraction problem for PCF, but
opens a broad research area in the classification of programming disciplines according to the possible
combinations of restrictions (innocence, well-bracketing) on general strategies for games as defined
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above. An introductory picture (the “semantic square” by Abramsky and his students) of this landscape,
that we leave to the contemplation of the reader, can be found in Abramsky & McCusker 1999.

3.5 Historical notes and further readings

Games as a semantic framework have a longstanding tradition, from ancient logic onwards. Here we list
of the main sources and further readings pertaining to game semantics applied to programming languages.

The use of game semantic for dealing with the full abstraction problem for PCF originates from
Abramsky et al. 2000 and Hyland & Ong 2000. Hanno Nickau (1994) proposed independently a game
model similar to that of Hyland and Ong: their games are sometimes called collectively “H2O games”.

As a background for game semantics, from intuitionistic logic we have the very early Lorenzen (1961) on
dialogue games, then from linear logic Lafont and Streicher (1991) and Blass (1992) and from Coquand’s
game theoretical analysis of classical provability (Coquand 1995). From combinatorial game theory the
categorical account by Joyal (1977), “the first person to make a category of games and winning strategies”
according to Abramsky & Jagadeesan (1994). A readable historical account of the first uses of games in
the interpretation of constructive logical formalisms, especially linear logic, is included in Abramsky &
Jagadeesan 1994. It should be observed that games for logic require winning strategies in order to capture
validity, an issue that we have not dealt with at all in this entry.

Connections with concrete data structures were first noticed by Lamarche (1992) and Curien (1994), see
Curien 2003b. Antonio Bucciarelli (1994) explains the connections between Kleene’s unimonotone
functions and concrete data structures: the use of dialogues in the former is mentioned in Hyland & Ong
2000 (sec. 1.4).

Finally, among the introductions to game semantics for PCF and other languages, we suggest Abramsky
1997; Abramsky & McCusker 1999. The latter also contains a description of the applications of game
semantics to imperative languages, notably Idealized Algol. Other excellent introductions to game
semantics are Hyland 1997 and Curien 2006. A broad account of the use of games in the semantics of
programming languages with many pointers to Lorenzen games, and intended for a philosophical
audience, is Jürjens 2002.
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