7,114 research outputs found

    A Causal-Comparative Study on the Efficacy of Intelligent Tutoring Systems on Middle-Grade Math Achievement

    Get PDF
    This study is a quantitative examination of intelligent tutoring systems in two similar suburban middle schools (grades 6-8) in the Southeastern United States. More specifically, it is a causal-comparative study purposed with examining the efficacy of intelligent tutoring systems as they relate to math achievement for students at two similar middle schools in the Midlands of South Carolina. The independent variable, use of an intelligent tutoring system in math instruction, is defined as the supplementary use of two intelligent tutoring systems, Pearsonโ€™s Math Digits and IXL, for math instruction. The dependent variable is math achievement as determined by the Measures of Academic Progress (MAP) SC 6+Math test. The student data examined is archived MAP SC 6+ Math scores from the 2017-2018 school year. A one-way ANCOVA was used to compare the mean achievement gain scores of both groups, students whose math instruction included intelligent tutoring systems and students whose math instruction did not include intelligent tutoring systems, to establish whether or not there was any statistically significant difference between the adjusted population means of the two independent groups. The results showed that the adjusted mean of posttest scores of students who did not receive math instruction that involved an intelligent tutoring system were significantly higher than those who did

    Improving mathematics in key stages two and three:evidence review

    Get PDF
    This document presents a review of evidence commissioned by the Education Endowment Foundation to inform the guidance document Improving Mathematics in Key Stages Two and Three (Education Endowment Foundation, 2017). There have been a number of recent narrative and systematic reviews of mathematics education examining how students learn and the implications for teaching (e.g., Anthony & Walshaw, 2009; Conway, 2005; Kilpatrick et al., 2001; Nunes et al., 2010). Although this review builds on these studies, this review has a different purpose and takes a different methodological approach to reviewing and synthesising the literature. The purpose of the review is to synthesise the best available international evidence regarding teaching mathematics to children between the ages of 9 and 14 and to address the question: what is the evidence regarding the effectiveness of different strategies for teaching mathematics? In addition to this broad research question, we were asked to address a set of more detailed topics developed by a group of teachers and related to aspects of pupil learning, pedagogy, the use of resources, the teaching of specific mathematical content, and pupil attitudes and motivation. Using these topics, we derived the 24 research questions that we address in this review. Our aim was to focus primarily on robust, causal evidence of impact, using experimental and quasi-experimental designs. However, there are a very large number of experimental studies relevant to this research question. Hence, rather than identifying and synthesising all these primary studies, we focused instead on working with existing meta-analyses and systematic reviews. This approach has the advantage that we can draw on the findings of a very extensive set of original studies that have already been screened for research quality and undergone some synthesis. Using a systematic literature search strategy, we identified 66 relevant meta-analyses, which synthesise the findings of more than 3000 original studies. However, whilst this corpus of literature is very extensive, there were nevertheless significant gaps. For example, the evidence concerning the teaching of specific mathematical content and topics was limited. In order to address gaps in the meta-analytic literature, we supplemented our main dataset with 22 systematic reviews identified through the same systematic search strategy

    English Learners and Mathematical Word Problem Solving: A Systematic Review

    Get PDF
    Successful solution of mathematics word problems (MWPs) requires students to be able to understand the language of the MWP, which may be particularly challenging for English Learners (ELs). In this chapter, we review 21 empirical studies about specific linguistic features of MWPs, and the effects of modifying linguistic features on mathematics word problem-solving performance. Results of our review indicated that a variety of linguistic features has differential effects on the mathematics word problem-solving performance of ELs (compared to non-ELs), and that the effects vary by linguistic feature and grade level. Additionally, the effects of modifying the linguistic features of items were mixed, with some studies indicating positive effects, some indicating negative effects, and others indicating mixed effects across different groups of students. We include recommendations for future research, particularly the need to test the effects of modifying specific linguistic features while holding other features constant. We conclude with implications for practice, both for test developers, who have direct control over the language of MWPs, and for teachers, who can use this information to scaffold their mathematics instruction

    The Effect Of Self-Explanation And Strategy Training On L2 Reading Comprehension Using An Intelligent Tutoring System

    Get PDF
    While research suggests that secondary language (L2) learners at postsecondary institutions face academic reading challenges, and that reading strategy training can improve primary language (L1) learners\u27 reading comprehension, it remains a challenge to find scalable ways to deliver such training to L2 learners. Intelligent tutoring systems (ITS) have been shown to be nearly as effective as human tutors while reaching potentially unlimited numbers of learners in a variety of subjects, including reading comprehension. However, few studies have explored the effectiveness of such systems for improving L2 learners\u27 reading comprehension. Self-Explanation Reading Training (SERT) is an instructional model that combines self-explanation and five reading strategies (monitoring, paraphrasing, prediction, elaboration, and bridging), and has been shown to be effective. SERT has also been built into a game-based intelligent tutoring system environment called Interactive Strategy Trainer for Active Reading and Thinking ---Motivationally Enhanced (iSTART-ME). Studies have demonstrated the effects of iSTART-ME in improving L1 students\u27 reading comprehension and learning motivation, but little evidence exists for its efficacy for L2 learners. This research tested the reading strategy training effect through iSTART-ME on 34 incoming international L2 students admitted to a large public American higher institution in the Southwest. In addition to pretests, presurveys, posttests, and postsurveys, these students received three hours training within two consecutive days right before their fall semester school courses formally started. The results showed that their self-explanation quality scores, short-answer reading comprehension test scores, and learning motivation scores were significantly improved with a medium effect size. The results also suggested that students with lower self-explanation and comprehension ability benefited the most, although all students benefitted from the training. After the training, the interviewees reported that their learning with iSTART-ME was interesting and successful, expressed a desire to learn more strategies with iSTART-ME in the future, and expected to apply the strategies they learned to other subjects. This study implied that iSTART-ME, with low cost in reaching large numbers of students, effectively taught the incoming international college students reading strategies, and improved their L2 reading comprehension abilities and learning motivations

    ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ ์‚ฌ์šฉ์— ๋Œ€ํ•œ ์ค‘๊ตญ ๊ต์‚ฌ์˜ ์ธ์‹

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์‚ฌ๋ฒ”๋Œ€ํ•™ ๊ต์œกํ•™๊ณผ, 2021. 2. ์กฐ์˜ํ™˜.์ตœ๊ทผ ๊ต์œก ๋ถ„์•ผ์—์„œ ์ธ๊ณต์ง€๋Šฅ(AI)์˜ ๋„์ž…์ด ํฐ ๊ด€์‹ฌ์„ ๋Œ๊ณ  ์žˆ๋‹ค. ํŠนํžˆ AI ๊ธฐ์ˆ ๊ณผ ํ•™์Šต ๋ถ„์„์ด ๊ฒฐํ•ฉํ•œ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์€ ์ง€๊ธˆ๊ป ์‹คํ˜„๋˜๊ธฐ ์–ด๋ ค์› ๋˜ ๋งž์ถคํ˜• ํ•™์Šต(personalized learning)๊ณผ ์ ์‘์  ํ•™์Šต(adaptive learning)์— ๋„์›€์ด ๋  ์ˆ˜ ์žˆ๋„๋ก ๋ฐœ์ „ํ•˜๊ณ  ์žˆ๋‹ค. ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ(AI-based education platform)์€ ํ•™์Šต์ž์˜ ํ–‰๋™ ์ถ”์  ๋“ฑ์„ ํ†ตํ•ด ์ด๋“ค์˜ ํŠน์„ฑ์„ ๋ถ„์„ํ•˜๊ณ  ์ง„๋‹จ์„ ์ œ๊ณตํ•œ ๋’ค ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ํ† ๋Œ€๋กœ ํ•™์Šต์ž์—๊ฒŒ ์ธ์ง€ ์ˆ˜์ค€์— ๋งž๋Š” ๋งž์ถคํ˜• ํ•™์Šต์ž์›๊ณผ ํ”ผ๋“œ๋ฐฑ์„ ์ œ๊ณตํ•œ๋‹ค. ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์€ ๊ต์‚ฌ์™€ ํ•™์ƒ์—๊ฒŒ ์‹ค์‹œ๊ฐ„ ํ•™์Šต ๋ฐ์ดํ„ฐ์™€ ๋ถ„์„ ๊ฒฐ๊ณผ, ๊ทธ๋ฆฌ๊ณ  ํ”ผ๋“œ๋ฐฑ์„ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์–ด ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์ด ๋งž์ถคํ˜• ํ•™์Šต์— ๊ธ์ •์ ์ธ ์˜๋ฏธ๊ฐ€ ์žˆ๋‹ค๋Š” ์„ ํ–‰ ์—ฐ๊ตฌ๋„ ์žˆ์—ˆ๋‹ค. ๊ทธ๋Ÿผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ๋ชจ๋ธ ๊ฐœ๋ฐœ์˜ ์ฐจ์›์—์„œ๋‚˜ ์—„๋ฐ€ํ•œ ์‹คํ—˜์‹ค ํ™˜๊ฒฝ์—์„œ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์˜ ํšจ๊ณผ๋ฅผ ์—ฐ๊ตฌํ•ด์™”์œผ๋ฉฐ, ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์— ๋Œ€ํ•œ ๊ต์‚ฌ์˜ ์ธ์‹๊ณผ ๊ด€๋ จ๋œ ์—ฐ๊ตฌ๋Š” ๋“œ๋ฌผ์—ˆ๋‹ค. ๊ต์‚ฌ๋Š” ์ธ๊ณต์ง€๋Šฅ ๊ต์œก ๊ธฐ์ˆ ์˜ ์‚ฌ์šฉ์ž์ด๊ธฐ ๋•Œ๋ฌธ์— ์ธ๊ณต์ง€๋Šฅ ๊ต์œก ๊ธฐ์ˆ ์˜ ๊ต์œก ๋„์ž…์— ์žˆ์–ด ๊ต์‚ฌ๋“ค์˜ ์ธ์‹๊ณผ ์˜๊ฒฌ์€ ์ค‘์š”ํ•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์„ ํ™œ์šฉํ•˜๋Š” ๊ฒƒ์— ๋Œ€ํ•œ ๊ต์‚ฌ๋“ค์˜ ์ธ์‹์„ ํƒ๊ตฌํ•˜์˜€๋‹ค. ์•„๋ž˜ ์—ฐ๊ตฌ ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃจ๊ธฐ ์œ„ํ•ด ์งˆ์  ์—ฐ๊ตฌ๋ฅผ ์‹œํ–‰ํ•˜์˜€๋‹ค. ์ฒซ์งธ, ์ค‘๊ตญ ๊ต์‚ฌ๋“ค์€ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์ด ์ค‘ํ•™๊ต ๊ต์œก์— ํ™œ์šฉ ์žˆ์–ด ์–ด๋– ํ•œ ์žฅ์ ์ด ์žˆ๋‹ค๊ณ  ์ธ์‹ํ•˜๋Š”๊ฐ€? ๋‘˜์งธ, ์ค‘๊ตญ ๊ต์‚ฌ๋“ค์€ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ๊ณผ ์ค‘ํ•™๊ต ๊ต์ˆ˜ ํ™œ๋™ ์š”์†Œ ๊ฐ„ ์–ด๋– ํ•œ ๋ชจ์ˆœ์ด ์žˆ๋‹ค๊ณ  ์ธ์‹ํ•˜๋Š”๊ฐ€? ์…‹์งธ, ์ค‘๊ตญ ๊ต์‚ฌ๋“ค์€ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์„ ์ค‘ํ•™๊ต ๊ต์œก์— ๋„์ž…ํ•  ๋•Œ ๋ฌด์—‡์ด ํ•„์š”ํ•˜๋‹ค๊ณ  ์ธ์‹ํ•˜๋Š”๊ฐ€? ๋ณธ ์—ฐ๊ตฌ๋Š” ์ค‘๊ตญ ๊ต์‚ฌ๋“ค์„ ์—ฐ๊ตฌ๋Œ€์ƒ์œผ๋กœ ์˜จ๋ผ์ธ ์‹ฌ์ธต ๋ฉด๋‹ด์„ ํ•˜์˜€๋‹ค. ๋ฌธํ—Œ ๋ฆฌ๋ทฐ๋ฅผ ํ†ตํ•ด ๋ฉด๋‹ด ์งˆ๋ฌธ์ง€๋ฅผ ์„ค๊ณ„ํ•˜๋˜ ๋ˆˆ๋ฉ์ดํ‘œ์ง‘๋ฒ• (snowball sampling)์„ ํ†ตํ•ด ์ค‘๊ตญ ์ค‘ํ•™๊ต ๊ต์‚ฌ 14๋ช…์„ ์—ฐ๊ตฌ์ฐธ์—ฌ์ž๋กœ ์„ ์ •ํ•˜์˜€๋‹ค. ์„ ์ •๋œ ๊ต์‚ฌ๋“ค์€ ๋ชจ๋‘ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ ์‚ฌ์šฉ ๊ฒฝํ—˜์ด ์žˆ์œผ๋ฉฐ ๊ฐ ๊ต์‚ฌ๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์•ฝ 1์‹œ๊ฐ„ ์ •๋„ ๋ฉด๋‹ด์„ ์ง„ํ–‰ํ•˜๊ณ  ๋…น์Œํ•˜์˜€๋‹ค. ๋ฉด๋‹ด์ด ๋๋‚œ ํ›„ ๋…น์Œ ๋‚ด์šฉ์„ ์ „์‚ฌํ•˜์˜€์œผ๋ฉฐ, ์ฃผ์ œ๋ถ„์„์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฉด๋‹ด ๋‚ด์šฉ์„ ์ดˆ๊ธฐ ์ฝ”๋“œ ์ƒ์„ฑํ•˜๊ณ  ๋ฉด๋‹ด ์ž๋ฃŒ ์†์—์„œ ์ฃผ์ œ๋ฅผ ๋„์ถœํ•˜์˜€๋‹ค. ํŠนํžˆ ์—ฐ๊ตฌ ๋ฌธ์ œ 2๋ฒˆ์˜ ๊ฒฝ์šฐ, ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ ํ™œ์šฉ๊ณผ ๊ต์ˆ˜ ํ•™์Šตํ™œ๋™ ๋‚ด ์—ฌ๋Ÿฌ ์š”์†Œ ๊ฐ„์˜ ๋ชจ์ˆœ์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด ํ™œ๋™์ด๋ก ์„ ์—ฐ๊ตฌ์˜ ํ‹€๋กœ ์ด์šฉํ•˜์˜€๋‹ค. ์ตœ์ข…์ ์œผ๋กœ ์—ฐ๊ตฌ๋ฌธ์ œ 1์— ๋Œ€ํ•œ ์ฃผ์ œ 4๊ฐœ, ์—ฐ๊ตฌ๋ฌธ์ œ 2์— ๋Œ€ํ•œ ์ฃผ์ œ 6๊ฐœ, ์—ฐ๊ตฌ๋ฌธ์ œ 3์— ๋Œ€ํ•œ ์ฃผ์ œ 4๊ฐœ๋ฅผ ๋„์ถœํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋กœ ๊ต์‚ฌ๋“ค์€ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์˜ ์žฅ์ ์— ๋Œ€ํ•ด ์ฆ‰๊ฐ์ ์ธ ํ”ผ๋“œ๋ฐฑ ์ œ๊ณต, ๊ต์ˆ˜ํ•™์Šต ์ง€์›, ๊ต์‚ฌ์˜ ์—…๋ฌด๋Ÿ‰ ๊ฐ์†Œ ๋“ฑ์œผ๋กœ ์ธ์‹ํ•˜์˜€๊ณ , ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์ด ๋‹ค์–‘ํ•œ ๊ต์ˆ˜ํ•™์Šต ์ž์›์„ ํ†ตํ•ฉํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ์ธ์‹ํ•˜์˜€๋‹ค. ์•„์šธ๋Ÿฌ ๊ต์‚ฌ๋“ค์€ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์˜ ์‚ฌ์šฉ์— ์žˆ์–ด ๊ธฐ์กด์˜ ๊ต์ˆ˜ํ•™์Šต ํ™œ๋™๊ณผ ์ƒ์ถฉ๋œ ๋ถ€๋ถ„์ด ์žˆ๋‹ค๋Š” ์ ์„ ์ธ์‹ํ•˜์˜€๋‹ค. ๊ต์‚ฌ๋“ค์€ ๊ธฐ์กด ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์˜ ์ถ”์ฒœ ๋ชจ๋ธ์ด ์ฐจ๋ณ„ํ™”๋œ ํ•™์ƒ๋“ค์—๊ฒŒ ์ž˜ ์ ์šฉ๋˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ๊ฒƒ์„ ์ธ์‹ํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๊ธฐ์กด ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์ด ๋‹ค์–‘ํ•œ ํ•™์Šต ์ž์›์„ ์ž˜ ๋ถ„๋ฅ˜๋˜์ง€ ๋ชปํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๊ต์‚ฌ๋“ค์ด ์‚ฌ์šฉํ•˜๊ธฐ ๋ถˆํŽธํ•˜๋‹ค. ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์„ ์ด์šฉํ•  ๋•Œ ๊ต์‚ฌ์˜ ์ง€์ ์žฌ์‚ฐ๊ถŒ์„ ๋ณดํ˜ธํ•˜๊ธฐ ์œ„ํ•œ ๋ช…ํ™•ํ•œ ๊ทœ์ œ๊ฐ€ ๋ถ€์กฑํ•˜๋‹ค๊ณ  ์ธ์‹ํ•˜์˜€๋‹ค. ์ด์™€ ํ•จ๊ป˜ ํ•™๋ถ€๋ชจ๋“ค์€ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์„ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ํ•™์Šต์ž์˜ ์ธํ„ฐ๋„ท ๋‚จ์šฉ๊ณผ ์‹œ๋ ฅ ์ €ํ•˜ ๋ฌธ์ œ๋ฅผ ์šฐ๋ คํ•˜์˜€๋‹ค. ๋˜ ์ค‘๊ตญ์˜ ์‚ฌํšŒ๋ฌธํ™”์  ๋ฐฐ๊ฒฝ๊ณผ ๊ต์œก ํŠน์„ฑ์œผ๋กœ ์ธํ•ด ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์„ ํ™œ์šฉํ•˜๋Š” ๋ฐ ํ•™์ƒ๋“ค์˜ ๊ธ€์”จ ์“ฐ๊ธฐ ๋Šฅ๋ ฅ์— ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ํ•™๊ต ๋‚ด ์ „์ž๊ธฐ๊ธฐ ์‚ฌ์šฉ ์ œํ•œ๋„ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘์˜ ์ง€์†์„ฑ๊ณผ ํšจ์œจ์„ฑ์— ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ๋‹ค๊ณ  ์ธ์‹ํ•˜์˜€๋‹ค. ๊ต์‚ฌ๋“ค์€ ์œ„์˜ ๋ฌธ์ œ๋“ค์ด ์ธ๊ณต์ง€๋Šฅ ๊ต์œก ํ”Œ๋žซํผ ์‚ฌ์šฉ์— ๋Œ€ํ•œ ๊ทœ์น™ ๋งˆ๋ จ๊ณผ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ์ˆ ์„ ๊ฐœ์„ ํ•จ์œผ๋กœ์จ ์™„ํ™”๋  ์ˆ˜ ์žˆ๋‹ค๊ณ  ์ธ์‹ํ•˜์˜€๋‹ค. ๋˜ํ•œ ๊ต์‚ฌ์˜ ์‹ค์ œ ์š”๊ตฌ์— ๋งž๊ฒŒ ๊ฐœ๋ฐœ๋  ์ˆ˜ ์žˆ๋„๋ก ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ ๊ฐœ๋ฐœ ๊ณผ์ •์— ๊ต์œก ์ „๋ฌธ๊ฐ€์™€ ๊ต์‚ฌ๊ฐ€ ์ฐธ์—ฌํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ค‘๊ตญ ๊ต์‚ฌ๋“ค์ด ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์— ๋Œ€ํ•œ ์ธ์‹์„ ํƒ์ƒ‰ํ•˜์˜€์œผ๋ฉฐ, ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์ด ๊ต์ˆ˜ํ•™์Šต์—์„œ์˜ ์žฅ์ ๊ณผ ๋ฌธ์ œ์ ์„ ๋ฐํ˜”๋‹ค. ์•„์šธ๋Ÿฌ ๋ณธ ์—ฐ๊ตฌ๋Š” ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์ด ๊ต์œก ๋ถ„์•ผ์— ๋Œ€๊ทœ๋ชจ๋กœ ๋„์ž…๋  ์ˆ˜ ์žˆ๋„๋ก ๊ทœ์น™, ์ธ๊ณต์ง€๋Šฅ ๊ธฐ์ˆ , ๊ทธ๋ฆฌ๊ณ  ๊ต์œก ๊ณตํ•™์˜ ์ฐจ์›์—์„œ ์‚ฌ์šฉ ๊ทœ๋ฒ”๊ณผ ๊ธฐ์ˆ  ๊ฐœ์„ ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ํƒ์ƒ‰ํ•œ ๋‚ด์šฉ์ด ํ–ฅํ›„ ๊ต์œก ๋ถ„์•ผ์˜ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ ๋„์ž…์— ํ™œ์šฉ๋œ๋‹ค๋ฉด ์ธ๊ณต์ง€๋Šฅ ๊ต์œก ๊ธฐ์ˆ ์— ๊ด€ํ•œ ์—ฐ๊ตฌ์˜ ๋ฐœ์ „์—๋„ ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.In recent years, the introduction of artificial intelligence (AI) in education has attracted widespread attention. In particular, the AI-based education platform based on the combination of AI technology and learning analysis brings new light to the long-standing difficulties in personalized learning and adaptive learning. The AI-based education platform analyzes learners' characteristics by collecting their data and tracking their learning behavior. It then generates cognitive diagnosis for learners and provides them with personalized learning resources and adaptive feedback that match their cognitive level based on systematic analysis. With the help of the AI-based education platform, teachers and students can get real-time educational data and analysis result๏ผŒas well as the feedback and treatment corresponding to the results. Previous studies have already demonstrated and proved its positive significance to personalized learning. However, these studies mostly start from a model development perspective or in a rigorous laboratory environment. There has been little research on teachers' perceptions of AI-based education platform. As a direct user of AI educational technologies, teachers' perceptions and suggestions are vital for introducing AIEd in education. In this study, the researcher explored teachers' perceptions of using AI-based education platform in teaching. The study conducted qualitative research to address the following research questions: 1) How do Chinese teachers perceive the advantages of AI-based education platforms for teaching and learning in secondary school? 2) How do Chinese teachers perceive the contradictions between AI-based education platforms and the secondary school system? 3๏ผ‰How do Chinese teachers suggest applying AI-based education platforms in secondary school? And it referred to the in-depth online interview with Chinese teachers who had experience with AI-based education platform. Interview questions were constructed through the literature review, and 14 secondary school teachers were selected by the snowball sampling method. The interviews lasted for an average of one hour per teacher and were transcribed from the audio recordings to text documents when finished. Afterward, the data were analyzed using thematic analysis, including generating initial codes, searching and reviewing the categories, and deriving the themes finally. Notably, for research question two, the researcher used the activity theory framework to analyze the contradictions among the use of the AI-based education platform and the various elements of the teaching and learning activities. Finally, four themes for research question 1, six themes for research question 2, and four themes for research question 3 were derived. As for the advantages, teachers believe that AI-based education platforms can provide instant feedback, targeted and systematic teaching support, and reduce teachers' workload. At the same time, AI-based education platforms can also integrate teaching resources in different areas. Teachers also recognized that the AI-based education platforms might trigger contradictions in existing teaching activities. They are aware of the situation that the recommended model of the AI-based education platform is not suitable for all levels of students; that a large number of learning resources are not classified properly enough to meet the needs of teachers, and that there lack clear rules and regulations to protect teachers' intellectual property rights when using the platform. Besides, parents are also concerned about the potential risk of internet addiction and vision problems using AI-based education platforms. Moreover, the use of the AI-based education platform may also affect students' ability to write Chinese characters due to the socio-historical background and educational characteristics in China. Furthermore, the restricted use of electronic devices on campus may also impact the consistent and effective education data collection. Teachers believe that these problems can be solved by improving rules and AI technology. Moreover, to make the platform more in line with the actual teaching requirements, teachers and education experts can also be involved in the development process of AI-based education platform. This study explored how Chinese teachers perceive the AI-based education platform and found that the AI-based education platform was conducive to personalized teaching and learning. At the same time, this study put forward some suggestions from the perspective of rules, AI technology, and educational technology, hoping to provide a good value for the future large-scale introduction of AI-based education platforms in education.CHAPTER 1. INTRODUCTION 1 1.1. Problem Statement 1 1.2. Purpose of Research 7 1.3. Definition of Terms 8 CHAPTER 2. LITERATURE REVIEW 10 2.1. AI in Education 10 2.1.1 AI for Learning and Teaching 10 2.1.2 AI-based Education Platform 14 2.1.3 Teachers' Perception on AI-based Education Platform 18 2.2. Activity Theory 20 CHAPTER 3. RESEARCH METHOD 23 3.1. Research Design 23 3.2. Participants 25 3.3. Instrumentation 26 3.3.1 Potential Value of AI System in Education 26 3.4. Data Collection 33 3.5. Data Analysis 34 CHAPTER 4. FINDINGS 36 4.1. Advantages of Using AI-based Education Platform 36 4.1.1 Instant Feedback 37 4.1.2 Targeted and Systematic Teaching Support 42 4.1.3 Educational Resources Sharing 46 4.1.4 Reducing Workload 49 4.2. Tensions of Using AI-based Education Platform 51 4.2.1 Inadequately Meet the Needs of Teachers 52 4.2.2 Failure to Satisfy Low and High Achievers 54 4.2.3 Intellectual Property Violation 56 4.2.4 Guardian's Concern 57 4.2.5 School Rules about the Use of Electronic Devices 58 4.2.6 Implication for Chinese Character Education 59 4.3. Suggestion of Using AI-based Education Platform 61 4.3.1 Improving Rules of Using the AI-based Education Platform 61 4.3.2 Improving Rules of Protecting Teachers Right 62 4.3.3 Improving AI Technology 64 4.3.4 Participatory Design 66 CHAPTER 5. DISCUSSION AND CONCLUSION 68 5.1. Discussion 68 5.2. Conclusion 72 REFERENCE 75 APPENDIX 1 98 APPENDIX 2 100 ๊ตญ๋ฌธ์ดˆ๋ก 112Maste

    EDM 2011: 4th international conference on educational data mining : Eindhoven, July 6-8, 2011 : proceedings

    Get PDF
    • โ€ฆ
    corecore