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ABSTRACT 

This study is a quantitative examination of intelligent tutoring systems in two similar 

suburban middle schools (grades 6-8) in the Southeastern United States.  More specifically, it is 

a causal-comparative study purposed with examining the efficacy of intelligent tutoring systems 

as they relate to math achievement for students at two similar middle schools in the Midlands of 

South Carolina.  The independent variable, use of an intelligent tutoring system in math 

instruction, is defined as the supplementary use of two intelligent tutoring systems, Pearson’s 

Math Digits and IXL, for math instruction.  The dependent variable is math achievement as 

determined by the Measures of Academic Progress (MAP) SC 6+Math test.  The student data 

examined is archived MAP SC 6+ Math scores from the 2017-2018 school year.  A one-way 

ANCOVA was used to compare the mean achievement gain scores of both groups, students 

whose math instruction included intelligent tutoring systems and students whose math instruction 

did not include intelligent tutoring systems, to establish whether or not there was any statistically 

significant difference between the adjusted population means of the two independent groups.  

The results showed that the adjusted mean of posttest scores of students who did not receive 

math instruction that involved an intelligent tutoring system were significantly higher than those 

who did.  

 

Keywords: intelligent tutoring systems, adaptive computer-assisted instruction, 

personalized learning, adaptive learning technologies 
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CHAPTER ONE: INTRODUCTION 

Overview 

In recent decades, technology, including intelligent learning systems, has proliferated in 

K-12 education as a means of personalizing learning for individual students.  The following 

chapter will provide an introduction to personalized learning with an emphasis on intelligent 

tutoring systems as a means of achieving it.  The first section will provide some background on 

both personalized learning and intelligent tutoring systems, specifically their historical, social, 

and conceptual underpinnings.  The next section will synthesis a problem found within current 

research on intelligent tutoring systems.  Finally, the remaining sections will delineate the 

purpose of this study, its significance, the accompanying research question, and any pertinent 

definitions. 

 

Background 

Personalized learning is a way to address the multitude of differences that exist in how 

people learn.  Attributes of personalized learning often include student choice based on interest; 

minimal or relaxed sequencing of topics, concepts or skills (prerequisite dependencies excluded); 

pretests for diagnostic purposes; posttests; and immediate and customized feedback to promote 

reflection and the correction of misconceptions (Gudivada, 2017).  Basham, Hall, Carter, and 

Stahl (2016) outlined a definition for personalized learning that not only includes tailoring 

instruction to each learner's strengths and needs but also one that permits learners some 

ownership and control of their learning as a means of gaining mastery.  Bingham, Pane, Steiner, 

and Hamilton (2018) recently outlined four critical components of personalized learning - learner 

profiles that highlight students' strengths and weaknesses; tailored learning paths that adjust to 

learners' goals, progress, and motivations; flexible learning environments; and competency-based 
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progression.  Paive, Ferreira, and Frade (2017) added that personalized learning is often self-

paced and designed around teaching modules with very specific learning objectives and 

outcomes. 

Problem Statement 

Personalized learning in education seeks to adapt instructional approaches and learning 

experiences to each student’s interests, strengths, weaknesses, culture, and learning styles.  

Considering the overwhelming logistics of such an endeavor and the increasing diversification 

that exists in today’s K-12 classrooms, many school leaders have turned to technology, 

specifically intelligent tutoring systems as a means of providing at least some degree of 

instructional personalization (Lee, Huh, Lin, & Reigeluth, 2018).  Over the past five decades, 

computer-assisted learning has evolved, and with this evolution has come intelligent tutoring 

systems.  These advanced, computer-assisted instructional tools boast a complicated array of 

customization on a variety of levels, complete with immediate feedback, often requiring little 

teacher intervention.  Furthermore, they “model learners’ psychological states to provide 

individualized instruction...for diverse subject areas (e.g., algebra, medicine, law, reading) to 

help learners acquire domain-specific, cognitive and metacognitive knowledge” (Ma et al., p. 

901) and can be used as either a primary or supplementary means of instruction for a variety of 

learners. 

Due in part to their potential to revolutionize modern education, intelligent tutoring 

systems have regularly been compared to non-intelligent tutoring system learning environments 

and evaluated for effectiveness.  Several meta-analyses conducted in recent years have yielded 

mixed results, and a cursory search of databases yields evaluative research on a wide array of 

intelligent tutoring system tools, the intended students and domains of which run the gamut 
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(Kulik & Fletcher, 2016; Ma, Adesope, & Nesbit, 2014).  Many of these studies, however, focus 

on very limited intervals of time, feature a relatively small sampling, and often do not include K-

12 populations.  As such, a gap in the literature exists.  The problem is few to no studies have 

been conducted on a fairly large K-12 population over an extended period of time comparing 

achievement in a particular cognitive domain, e.g., math, between populations utilizing 

intelligent tutoring systems and populations not using intelligent tutoring systems. 

Purpose Statement  

The purpose of this study is to examine the math achievement of students in two similar 

suburban middle schools (grades 6-8) in the Southeastern United States.  Both schools have 

similar demographic and socioeconomic makeups, each serving approximately 1000 students.  

School A is 73% African American, 21% white, 4% Hispanic, and 2% other, and more than half 

of its students receive subsidized breakfast and lunch.  School B is 87% African American, 6% 

Caucasian, 3% Hispanic, and 4% other, and sixty-five percent of its students are from low-

income families and receive subsidized lunch.  One school will have employed intelligent 

tutoring systems for math instruction and one will not.  As such, the dependent variable in this 

study is math achievement, and the independent variable is the use of intelligent tutoring for 

math instruction.  A quantitative approach to this study is appropriate due to the fact that 

scientific inquiry is being employed to examine the differences between the two groups (Rovai, 

Baker, & Ponton, 2013), middle school students whose math instruction included the use of an 

intelligent tutoring system and middle school students whose math instruction did not include the 

use of an intelligent tutoring system.  Moreover, a causal-comparative design is particularly 

fitting because this study seeks to explore differences that already exist between the two groups 
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(Gall, Gall, & Borg, 2007), math achievement as measured by the Measures of Academic 

Progress (MAP) Math SC 6+. 

 

Significance of the Study 

Personalization within educational contexts delineates an individualized approach to 

instruction that deviates from the one-size-fits-all approach to teaching that has dominated 

education for decades.  A personalized approach to learning not only gives a level of control to 

learners, but in doing so, cultivates academic efficacy, awareness, reflection, and motivation 

(Chatti & Muslim, 2019).  Additionally, personalized learning dictates that student learning 

experiences are customized to their specific abilities, goals, and interests (Childress & Benson, 

2014), as well as style, content, background knowledge, pace, and even location  (Hopkins, 

2019).  Personalization within classrooms is driven by more than simply aligning pedagogy to 

learner progression; rather, it is guided by a moral concern to promote life-long learning in 

addition to academic achievement (Hopkins, 2019).  

Within traditional classrooms, teachers are unable to personalize learning for each student 

because customization within an interdependent system necessitates “a complete redesign of the 

entire product or service every time” (Christensen et al., 2011, p. 31.  Because it is impractical 

for all students to have their own respective teachers, many in education are looking to 

technology for answers.  The U.S. National Education Technology Plan recognized the 

importance of technology in providing students personalized learning experiences that included 

continuous evaluation of student learning, feedback, and record-keeping (U.S. Department of 

Education, 2010).  As such, the significance of this study lies in its investigation and evaluation 

of instructional tools capable of individualizing and customizing instruction for diverse 

populations of students – an undertaking considered unlikely if not impossible in traditional 
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classrooms.  More specifically, this study endeavors to examine the efficacy of intelligent 

tutoring systems concerning math achievement and contribute to the current literature related to 

adaptive learning pedagogies within middle school math classrooms.  

 

Research Question(s) 

         RQ1: Is there a difference in the math achievement of middle school students whose 

math instruction includes an intelligent tutoring system and middle school students whose math 

instruction does not include an intelligent tutoring system? 

Definitions 

1. Adaptive learning technologies - Technologies that cater to learning styles, cognitive 

abilities, affective states and learning context (Kinshuk, 2015). 

2. Intelligent Tutoring Systems (ITS) - Advanced computer-assisted instructional tools 

capable of customizing instruction on a variety of levels (Ma, Adesope, Nesbit, & Liu, 

2014). 

3. Personalized Learning- A way to address the multitude of differences that exist in how 

people learn.  Attributes of personalized learning often include student choice based on 

interest; minimal or relaxed sequencing of topics, concepts or skills (prerequisite 

dependencies excluded); pretests for diagnostic purposes; posttests; and immediate and 

customized feedback to promote reflection and the correction of misconceptions 

(Gudivada, 2017). 
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CHAPTER TWO: LITERATURE REVIEW 

Overview 

Intelligent tutoring systems are designed to personalize instruction for individual students 

and therefore have the potential to impact education in a positive way.  Though much research 

exists comparing these adaptive learning systems to traditional teaching environments, most 

reports have been limited to small sample sizes and cover only brief intervals of time.  Moreover, 

many studies on these adaptive learning systems exclude K-12 populations and middle school 

populations in particular.  The following chapter offers a synopsis of the conceptual 

underpinnings of personalized instruction, as well as related literature on intelligent tutoring 

systems as a vehicle for achieving some degree of learning personalization. 

Conceptual or Theoretical Framework 

Chukwuedo and Uko-Aviomoh (2015) distinguished between conceptual and theoretical 

frameworks by explaining that conceptual frameworks are shaped when ideas are connected in 

studies to clarify the variables and findings in research.  Moreover, Chukwuedo and Uko-

Aviomoh (2015) asserted that the essential organization of the conceptual framework should 

include all pertinent variables related to the study, incorporate essential constructs, establish the 

problem and purpose of the research, and be connected to the study’s conclusions and findings.  

Maxwell (2012) added that when considering a conceptual framework, it is essential for 

researchers to remember that it functions as a structural model for the proposed investigation, 

specifically what is happening within the study, the interaction among variables, and the 

phenomena at play.  The overarching function of the conceptual framework Maxwell (2012) 

continued, is to inform the overall research design, evaluate and refine research goals, “develop 



18 


 


realistic and relevant research questions, select appropriate methods, and identify potential 

validity threats” to researchers’ conclusions (pp. 39-40).   

This literature review will examine personalized learning within the framework of three 

theories of influence.  It will also outline intelligent tutoring systems as a form of personalized 

learning.  Specifically, this analysis will examine the causative mechanisms of personalized 

learning.  These include the individualized learning and individual tutoring systems found in 

Bloom’s (1968) theory of mastery learning, the competency-based personalization of learning in 

Keller’s (1968) personalized system of instruction, and Vygotsky’s (1978) theories involving 

zone of proximal development and scaffolding necessary to achieve learning within this zone. 

Personalized Learning 

No standard definition exists for personalized learning, but personalization within an 

educational context typically means that students have significant input in what they learn; 

pedagogy is specifically customized to students’ achievement levels; teaching and learning are 

student-paced, and instruction is heavily influenced by individual learner profiles and 

preferences (Hallman, 2019; Horn, 2017).  In summary, personalized learning is a way to address 

the multitude of differences that exist in how people learn in order to optimize learning for all.  

Other characteristics of personalized learning often include student choice, an emphasis on out-

of-school interest or non-cognitive factors (context personalization), adapting instruction based 

on learners’ prior knowledge, experiences, and competencies, (Bernacki & Walkington, 2018), 

minimal or relaxed sequencing of topics, and customized learning platforms delivering 

instruction how when and where students want it (Horn, 2017).  Additionally, personalized 

learning relies heavily on pretests for diagnostic purposes, posttests to assess achievement, and 
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immediate and customized feedback to promote both reflection and the correction of 

misconceptions (Gudivada, 2017; Pardo, Jovanovic, Dawson, Gašević, & Mirriahi, 2019).  

Personalized learning equates to instructional attention at the individual student level 

rather than the class level and involves student-centered pedagogy designed to help teachers 

differentiate instruction for their students (Bingham, 2017; Bingham 2019; Paz-Albo, 2017).  

Large classroom sizes and the heavy demands placed on teachers in most schools, however, 

make personalized learning an impractical if not impossible task.  Much of the current literature 

on personalization within education is linked to educational technologies, the goal of which is to 

promote effective teaching through the use computer programs capable of providing digital 

curricula (Pepin, Choppin, Ruthven, & Sinclair, 2017; Godlen, 2017; Bingham, 2017; Bingham 

2019), utilizing student data, (Bingham, 2017; Bingham 2019), and providing immediate, 

formative feedback (Bingham, 2017; Bingham 2019; Wongwatkit, Srisawasdi, Hwang, & 

Panjaburee, 2017).  Additionally, advancements in technology allow for personalized learning 

that can gauge individual student progress, tailor personalized learning experiences and permit 

students to move at their own pace (Lee et al. 2018; Bingham, 2017; Kong, & Song, 2015).  

Hallman (2019) expounded on the connection between personalization in the classroom and 

technology explaining that personalized learning as pedagogy is “most often paired with 1:1 

technology initiatives” and “connotes a shift in the teaching paradigm, one increasingly oriented 

toward students’ individual learning needs” (p. 301).   

The growing emphasis on technology-driven, personalized learning has its roots in 

federal initiatives with policies related to technology use in U.S. classrooms going back several 

decades.  A Nation at Risk: 1983 Report of the Commission on Excellence in Education 

emphasized computers, electronics, and other technologies, especially as they related to work 
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environments.  Transforming American Education: Learning Powered by Technology (2010) 

outlined the importance of utilizing educational technologies to enhance student learning, as well 

as the significance of achieving personalized learning through technology in K-12 education 

(United States Office of Educational Technology, 2010).  The U.S. Department of Education 

report, Enhancing Teaching and Learning through Educational Data Mining and Learning 

Analytics, examined learning analytics as ways to determine students’ learning patterns and 

predict academic outcomes (Bienkowski, Feng, & Means, 2014).  Lastly, the U.S. National 

Education Technology Plan underscores the critical role that technology plays in personalized 

learning by “providing personalized instruction, continuously assessing students’ learning, and 

tracking their mastery of skills and competencies” (Lee et al., 2018, p.1270).  Patrick, Kennedy, 

and Powell (2013) surveyed educators who collectively defined personalized learning as 

authentic and meaningful learning experiences that take into account student’s academic and 

personal needs, interests, and styles.  Put differently, personalized learning is centered on 

individualization, and individualization has its theoretical roots in Bloom’s (1968) learning for 

mastery or mastery learning (Lee et al., 2018). 

Bloom’s Mastery Learning 

The goal of mastery learning is fairly straightforward.  All learners should master all of 

their educational objectives and curricula with as little variation in learning as possible 

(Zandvakili, Washington, Gordon, Wells, 2018; McGaghie, 2015).  Dissimilarities in the how 

and how long of learning, however, do exist.  Students differ in the amount of time it takes to 

reach mastery of specific objectives, standards, or topics.  They also likely vary in how they 

attain individual mastery (McGaghie, 2015).  
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In his original discussions on Learning for Mastery, Bloom (1968) posited that most 

students, possibly more than 90% of all learners, can be successful learners if educators 

incorporate the appropriate pedagogy and materials requisite for reaching each individual 

student.  Additionally, for mastery to be realized, students should be routinely assessed using 

formative tests and required to demonstrate a mastery level of 90% or better on these evaluations 

(Bloom, 1968).  If students fall short of the established benchmark, before they move on to more 

advanced materials, remedial teaching and additional assessments should be employed until the 

student has met the predetermined criteria.  Bloom (1968) further explained that in addition to 

regular formative assessment and periodic re-teaching, individual learning variables or 

differences must be considered including, aptitude, quality of instruction, ability to understand 

the task at hand, perseverance, and time allotted for learning for mastery learning to be realized. 

In their discussion of mastery learning, Mitee and Obaitan (2015) supported Bloom’s 

claims agreeing that almost every student can learn and learn well under optimal, appropriate 

conditions and that if teachers could see to these conditions, differences in achievement levels 

would almost disappear.  McGaghie (2015) delineated several complementary features of 

mastery learning including diagnostic testing, clear learning objectives, sequenced units 

presented in increasing difficulty, relevant instruction focused on pertinent objectives, formative 

testing to assess a predetermined mastery of objectives, conditional progression through learning 

materials contingent on mastery of prerequisite knowledge, and continual practice until mastery 

is realized.  Guskey (2007) highlighted two of these features as essential components for 

attaining mastery learning.  He argued that frequent, specific feedback that is both diagnostic and 

prescriptive in nature should be utilized by teachers to reinforce learning expectations and define 

where students are regarding these expectations.  Secondly, corrective measures should then be 
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employed to alleviate students’ learning problems and position them on the appropriate learning 

path.  

In one study, Bloom (1984) considered the findings of two doctoral students in education 

to expand his definition of mastery learning to include tutoring.  This study compared student 

learning under three conditions of instruction, conventional instruction (control group), mastery 

learning, and a combination of tutoring and mastery learning (tutoring instruction followed by 

intermittent formative tests, feedback, and corrective procedures).  Bloom (1984) discovered that 

the average student in the class that utilized mastery learning was above 84% of the students 

taught conventionally.  He also found that the average student in the class that utilized both 

tutoring and mastery learning was approximately two standard deviations above the conventional 

group and approximately one standard deviation higher than the mastery-learning-only group.  

By expanding and thus revising his definition of mastery learning, Bloom (1984) had created a 

three-pronged model of individualized learning comprised of feedback, corrective measures, and 

tutoring.  

Bloom (1984) alluded to the idiosyncrasies that exist among students beyond curricular 

and assessment related dissimilarities and advocated that teachers adapt what they do in the 

classroom to meet these varying needs.  This process, called differentiation, proposes that 

teachers appropriately increase the variation in their teaching to maximize learning within their 

classrooms (Prast, Van de Weijer-Bergsma, Kroesbergen, & Van Luit, 2018).  Within 

educational contexts, differentiation is established when teachers differentiate and individualize 

pedagogy, including content, process, products, and context to meet the individual needs of their 

students (Brevik, Gunnulfsen, & Renzulli, 2018; Anne & Haney, 2017; Tomlinson & Tomlinson, 

2017).  In addition, Bingham, Pane, Steiner, and Hamilton (2018) recently outlined four critical 
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components of differentiated, personalized learning:  learner profiles that highlight students’ 

strengths and weaknesses; tailored learning paths based on individual student’s goals, needs, 

progress and motivations; flexible learning environments; and competency-based progression 

combined with ongoing assessment of students’ progress toward delineated goals and objectives.  

These personalized learning mechanisms can find their predecessors in Bloom’s assertions.   

Keller’s Personalized System of Instruction 

There is a natural correlation between a learner’s strengths and weaknesses and 

assessment and feedback.  Assessment and feedback are antecedents for determining and 

categorizing what a student’s strengths and weaknesses are.  Moreover, customized learning 

paths are akin to the differentiated, corrective measures Bloom advocated.  The competency-

based progression of intelligent tutoring systems, however, has its origins in Keller’s (1968) 

personalized system of instruction. 

In his article “Good-Bye Teacher,” Keller (1968) delineated several features of 

individualized instruction similar to Bloom’s, including the use of tutors, repeated assessment 

and feedback.  Keller (1968) also added a “unit-perfection requirement,” which allowed students 

to advance only after demonstrating mastery of all preceding material, and a self-paced feature 

that permitted students to grapple with instructional materials at a rate that matched their abilities 

(p. 83).  In doing this, Keller’s (1968) personalized system of instruction came into being and 

with it elements of personalized learning that are still present today, including mastery-based, 

self-paced instruction designed around study guides, small units of study, and teaching modules 

with very specific learning objectives and outcomes (Paiva, Ferreira, & Frade, 2017; Akera, 

2017).  Marzano (2017) argued that a data-driven, performance-based system, one built on the 

principle that every learner is unique and one capable of tailoring instruction to engage students 
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at their current aptitude levels via multiple learning paths, is necessary to ensure that teaching 

and learning are differentiated for learners with more prevalent needs, e.g., learners with 

disabilities, struggling learners, ESOL students, and gifted and talented learners.  Vygotsky’s 

theories of social constructivism have undoubtedly influenced this kind of learning 

personalization. 

Vygotsky’s Zone of Proximal Development  

Vygotsky (1978) promoted social constructivism in education.  He argued that people 

learn within a community through the accumulation of knowledge through language and in their 

interactions with other people.  He also described the gap between a students’ potential intellect 

and their actual intellect or zone of proximal development (ZPD) as “the distance between the 

actual developmental level as determined by independent problem solving and the level of 

potential development as determined through problem solving under adult guidance or in 

collaboration with more capable peers” (Vygotsky, 1978, p. 86).  In other words, Vygotsky 

theorized that the zone of proximal development was the optimal area of instruction or the place 

where teachers or tutors should interact with their pupils to transition them from learning 

activities they can achieve independently to learning activities slightly above their current 

knowledge base (Vygotsky, 1978).   

Concepts explored in Vygotsky’s ZPD form the basis of his theories of human 

development and overtly emphasize that only material “within the very next developmental zone 

can be internalized via mediation from others, through social interactions” (Eun, 2019, p. 20).  

Instruction, therefore, has to concentrate on concepts and ideas that are “ready to develop” with 

support from the teacher or tutor, and these “developing functions, in turn, will be internalized 

and used by the learner independently after the support is withdrawn” (Eun, 2019, p. 20).  To 
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achieve this transition, teachers are encouraged to scaffold their students’ learning or actively 

direct their learning to a new and elevated position of understanding (Acedo & Hughes, 2014, p. 

510).  Even more challenging, teachers utilizing a Vygotskian approach must be able to identify 

when their students are on the verge of more advanced cognition and eventually be able to 

facilitate their transition over that border (Goggin, Rankin, Geerlings, & Taggart, 2016).  

Related Literature   

Despite research supporting the educational effectiveness of Bloom’s mastery learning 

and Keller’s PSI, several factors have limited their use.  Extended teaching time, curriculum 

pacing impediments, student self-discipline, differences in assignment completion rates, the time 

required for feedback and corrections, and difficulty modifying self-paced modules to an 

academic year have all been problematic (Pelkola, Rasila, & Sangwin, 2018; Paiva et al., 2017).  

Vygotsky’s theories concerning the zone of proximal development have also been widely 

accepted as fundamental to teaching and learning (Guseva & Solomonovich, 2017).  

Nonetheless, the logistical complications of ensuring that every student is learning within an 

optimal zone are glaring (Mestad, & Kolstø, 2014).  In recent decades, however, technologies 

have shown potential for alleviating some of these concerns.   

Intelligent Tutoring Systems Defined 

Intelligent tutoring systems are computer learning systems purposed with helping 

students grasp knowledge or skills through the use of intelligent algorithms (Serrano, Vidal‐

Abarca, & Ferrer, 2018; Graesser et al.,2018; Mousavinasab et al., 2018; Wilson, & Scott, 2017).  

Intelligent tutoring systems monitor learners’ psychological states, e.g., learning strategies, 

content knowledge, emotions, or motivations, and provide personalized, sequenced learning 

experiences with formative feedback (Serrano et al., 2018; Graesser et al.,2018; Huang, Craig, 
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Xie, Graesser, & Hu, 2016; Predrag, Jovan, Bojan, & Veis, 2016; Verdú et al., 2017).  Intelligent 

tutoring systems are engineered to work with individual students to address their particular 

cognitive profiles and knowledge insufficiencies (Graesser et al., 2018; Sharada, Shashi, & 

Madhavi, 2015).  Moreover, one of the most fundamental purposes of these systems is to assess 

learners’ competencies within certain academic domains continually and to carefully select and 

propose activities to increase these proficiencies (Clément, Roy, Oudeyer, & Lopes, 2015).   

Intelligent tutoring systems are adept at emulating human tutors to deliver personalized 

and adaptive, one-on-one instruction (Hooshyar, Ahmad, Yousefi, Yusop, & Horng, 2015; 

Malekzadeh, Mustafa, & Lahsasna, 2015; Wang, Han, Zhan, Xu, Liu, & Ren, 2015; Millis, 

Forsyth, Wallace, Graesser, & Timmins, 2017).  Within these instructional paradigms, 

immediate cognitive analysis or student modeling (Najar, Mitrovic, & McLaren, 2016; Khodier, 

Elazhary, & Wanas, 2017; Basu, Biswas, & Kinnebrew, 2017) and adaptability (Esa, 2016; Najar 

et al. 2016; Basu et al., 2017) are emphasized.  Learners are presented problems, and the 

intelligent tutoring system attempts to recognize whether or not students used the preferred 

strategy (as determined by the embedded curriculum) to solve these problems (Nye, Pavlik Jr, 

Windsor, Olney, Hajeer, & Hu, 2018) 

Underlying student models examine questions and student answers to determine students’ 

strengths and weaknesses.  Moreover, they provide learners additional, targeted problems, along 

with suitable scaffolding (within their individual zones of proximal development) to achieve the 

desired learning objectives (Millis et al., 2017; Xin et al., 2017; Elazhary, & Khodeir, 2017; Ma, 

Adesope, Nesbit, & Liu, 2014).  Specifically, this type of individualized instruction typically 

includes an explanation of the problem, solutions, and examples related to how to solve the 

problem, targeted feedback on learners’ attempts at solving the problem, and recommended 
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learning sequences as determined by the learners’ cognitive states (Wang et al., 2015; Ma et al., 

2014; Millis et al., 2017; Wilson, & Scott, 2017). 

History of Intelligent Tutoring Systems 

Intelligent tutoring systems have been examined through multiple lenses, e.g., 

technology, education, and psychology, for more than four decades.  Wilson, C. & Scott, B. 

(2017).  Intelligent tutoring systems were so named in the early 1980s, (Grasser et al., 2018), but 

the first computer tutoring systems were employed in classrooms in the 1950s (Kulik & Fletcher, 

2016).  These systems delivered instruction to students in brief frames or segments, asked 

questions, and offered opportune feedback (Kulik & Fletcher, 2016).  In the 1970s and 1980s, 

first-generation computer tutors (CAIs) came into being as computer-assisted instruction began 

evolving and artificial intelligence and cognitive theory were employed to guide students through 

concepts and problems, step by step (VanLehn, 2011; Kulik & Fletcher, 2016; Mousavinasab et 

al., 2018).  Although the modern terminology “intelligent tutoring system” had not yet come into 

play, in 1970 James Carbonell introduced SCHOLAR, now recognized as the first intelligent 

tutoring system.  This system used natural language and limited discourse to facilitate 

instructional interchanges with students as they learned South America geography via a semantic 

web of facts and knowledge (Ma et al., 2014; Mousavinsab et al., 2018).  

Over time, computer-assisted instruction increasingly used expert databases that offered 

hints and feedback to promote student learning and second-generation computer tutors were 

termed intelligent tutoring systems (Kulik & Fletcher, 2016).  BIP, another predecessor of 

modern intelligent tutors, matched student’s learning needs and capabilities to required domain-

related tasks.  In this early version of intelligent, adaptive software, like many that have been 

engineered since, the student model was a subcomponent of the domain model (Ma et al., 2014). 
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Architecture of Intelligent Tutoring Systems 

The conventional architecture of intelligent tutoring systems most often consists of three 

models: the expert module, the student model, and the tutoring model (Clément et al., 2015; 

Mousavinasab et al., 2018; Wang et al., 2015; El Mamoun, Erradi, & Mhouti, 2018; Ma et al., 

2014).  A fourth component, user interface, is also frequently included in the description of 

intelligent tutoring system components (Mousavinasab et al., 2018; El Mamoun et al., 2018; Ma 

et al., 2014).  The expert model or domain model includes the subject knowledge the intelligent 

tutoring system intends to teach the student (Ma et al., 2014; El Mamoun et al., 2018; 

Mousavinasab et al., 2018) and is a technological depiction of a domain expert’s subject 

knowledge and problem-solving capabilities (Sharada et al., 2015).  Furthermore, the expert or 

domain model may be represented as a set of rational suggestions, production constraints, or 

natural language statements (Ma et al., 2014), and the domain knowledge contained within 

allows the intelligent tutoring system to compare student choices to those of an expert for 

evaluation purposes (Sharada et al., 2015). 

The student model, also known as the learner or cognitive model, is constructed from 

students’ learning styles, behaviors, and responses, as well as their individual domain knowledge 

proficiencies (Mousavinasab et al., 2018; Wang et al., 2015; Najar et al., 2016).  This model 

exemplifies the cognitive, emotional, psychological, and affective condition of the student at the 

time of learning (El Mamoun et al., 2018)  Moreover, the student model provides the basis for 

instructive methods chosen by the intelligent tutoring system (Rastegarmoghadam, & Ziarati, 

2017; Rau, Michaelis, & Fay, 2015; Wang et al., 2015), and is essential for adapting and 

therefore personalizing instruction within the intelligent tutoring system to the specific needs of 

each student (Poitras et al., 2016; Rau et al., 2015; Rastegarmoghadam, & Ziarati, 2017). It 
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monitors the learner in an attempt to answer the question of what may be adapted and how the 

adaptations should look (Hafidi, 2015).  Intelligent analysis in this model allows for adaptation 

within an intelligent tutoring system and consists of collecting information about the student, 

identifying domain gaps and misconceptions, examining student interactions in relation to the 

domain, choosing appropriate content and pedagogy, and delivering content (Poitras et al., 2016; 

Rastegarmoghadam, & Ziarati, 2017; Reddy, & Sasikumar, 2014).  Analytics within the student 

model consider students’ competencies within the domain as they progress through the chosen 

material and update student learning pathways accordingly (Poitras et al., 2016; Rau et al., 

2015).  Adaptive error feedback, e.g., hints, explanations, examples, practice problems, etc., are 

provided to learners to correct misconceptions related to relevant domain knowledge and 

problems are assigned based on individual learner progress (Rau et al., 2015; Ma et al., 2014; 

Sharada et al., 2015). 

  The tutor model or teacher or pedagogical model represents the aforementioned adaptive 

strategies and how they are chosen (Ma et al., 2014; Clément et al., 2015; Mousavinasab et al., 

2018).  This model identifies what deficits exist in learners’ domain knowledge and determines 

what pedagogy is needed to address these deficiencies (Mousavinasab et al., 2018).  The tutor 

model typically assigns tasks or additional practice just beyond students’ current abilities or 

within their zone of proximal development (Ma et al., 2014; El Mamoun et al., 2018).  

Additional activities within this model include planning activities, providing explanations, 

determining when to intervene, and providing assistance to the learner (El Mamoun et al., 2018). 

The interface model represents a visible and tangible means by which learners 

communicate with the intelligent tutoring system (Mousavinasab et al., 2018; 

Rastegarmoghadam, & Ziarati, 2017; El Mamoun et al., 2018).  It is the environment or 
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graphical interface within which students interact with the system.  The interface model typically 

consists of pointers, buttons, menus, icons, windows, or scroll bars (El Mamoun et al., 2018).  

The interface model is also often domain-specific and regulates how learners navigate problem-

solving strategies, how they seek and locate information, and how they respond to questions (Ma 

et al., 2014). 

Types of Student Modeling 

Student modeling is the foundation of intelligent tutoring system design and is therefore 

worthy of consideration and analysis (Ma et al., 2014).  One method of cognitive modeling used 

in intelligent tutoring systems is expectation and misconception tailoring (Ma et al., 2014; 

Nesbit, Adesope, Liu, & Ma, 2014; Cuirong, Weidong, & Hongtao, 2016).  Expectation and 

misconception tailoring models student cognition by examining students’ answers as they relate 

to learning goals with predicted misunderstandings in the domain (Ma et al., 2014; Nesbit et al., 

2014; Cuirong et al., 2016).  Another student modeling technique found in intelligent tutoring 

systems is model tracing.  Model tracing aims to reduce the cognitive demands on students by 

assisting them through problematic areas, freeing them up to focus on areas that need to be 

practiced (Kessler, Stein, & Schunn, 2015).  Ma et al. explained that in model tracing, the 

concept or skill being taught is modeled as a set of production rules that can be used to solve 

problems within the domain.  Furthermore, they explained that the production rules mimic how a 

human would solve problems within the domain.  As students make their choices, the model-

tracing process employs definitive production rules specific to the particular domain.  When 

students make errors, they are provided with feedback and offered a different way to approach 

the problem.  Once model tracing has determined a student’s particular use of the production 
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rule, Bayesian knowledge-tracing is used to estimate the likelihood that the information has been 

correctly taught (Ma et al., 2014).  

Constraint-based modeling is a student knowledge modeling technique that represents 

domain knowledge as logical constraints by connecting or matching each constraint to probable 

solution difficulties (Ma et al., 204; Khodeir, Wanas, & Elazhary, 2018).  Each constraint has 

three parts, a relevance condition, a satisfaction condition, and a feedback condition (Ma et al., 

2014; Khodeir et al., 2018).  The relevance condition specifies when the constraint is 

appropriate.  The satisfaction condition evaluates the student’s solution, and the feedback 

condition advises the student of the error if the solution does not meet the satisfaction condition.  

As long as the student does not violate a constraint, he or she is headed toward a correct solution 

and no action is employed by the system (Ma et al., 2014; Khodeir et al., 2018).  Conversely, a 

Bayesian network is a decision-making framework used to manage uncertainty based on 

probability theory, (Ma et al., 2014; Hooshyar et al., 2016; Hooshyar et al., 2015).  In intelligent 

tutoring systems, Bayesian networks represent complex domain models containing numerous 

variables, and connections between variables are quantified into a network (Ma et al., 2014).    

Artificial Intelligences in Intelligent Tutoring Systems 

Intelligent tutoring systems are computer programs that utilize artificial intelligence 

techniques for the purpose of simulating human tutors.  They differ from educational 

technologies, such as Computer-Aided Instruction (CAI) because artificial intelligence allows 

intelligent tutoring systems to monitor both student learning and psychological characteristics 

(Alkhatlan, Kalita, 2018; Graesser et al., 2018).  In doing so, intelligent tutoring systems are 

adept at adapting learning sequences, continually assessing learners, classifying them, and 
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updating student models as learners interface with the intelligent tutoring system (Graesser et al., 

2018; Mousavinasab et al., 2018). 

Mousavinasab et al. (2018) examined 53 intelligent tutoring system studies from 2007 to 

2017.  They found that condition-action rule-based reasoning techniques (33.86%), data-mining 

techniques (22.64%), and Bayesian-based techniques (20.75%) were artificial intelligence most 

frequently used.  Other AI techniques included intelligent agents (15.09%), Fuzzy based 

techniques (13.20%), NLP techniques (11.32%), ANN-based techniques (9.43%), and case-

based techniques (3.73%).  Two of the more commonly used AI techniques used in recent 

intelligent tutoring systems are data mining and Bayesian knowledge tracing (Mousavinasab et 

al., 2018).   

Data mining is a method of determining patterns in large data sets (Baker & Corbett, 

2014).  Techniques for this analytic include classification, association, clustering, and sequential 

pattern mining (Lin, Yeh, Hung, & Chang, 2013).  The ever-increasing amounts of data available 

to educational practitioners and designers of educational technologies, especially from online 

learning environments, are currently being used to detect complex learning behaviors (Baker, & 

Corbett, 2014), model learning phenomena in online intelligent systems, gain insight into online 

learner’s behaviors  (Baker, 2014; Papamitsiou & Economides, 2014) and create adaptive, 

personalized learning environments (Lin et al., 2013).  Bayesian knowledge tracing (BKT) is an 

algorithm used in many intelligent tutoring systems to model students’ understanding of the 

subjects or domains represented in the intelligent tutoring system.  It is a special case of a hidden 

Markov model.  In BKT, skills are represented as known and unknown variables, and learning is 

specified as a transition between knowing and not knowing (Pelánek, 2017).  The first BKT 

model delineated two learning states, learned and unlearned, which indicated whether or not a 
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student had mastered a specific knowledge component (Zhang & Yao, 2018).  Later BKT models 

added a transitional state of learning to reflect when students were between unlearned and 

learned states (Zhang & Yao, 2018).  

Intelligent Tutoring Systems and Personalization 

As previously stated, personalized learning looks to individualize instructional 

approaches and learning experiences to match students’ individual interests, strengths, 

weaknesses, culture, and learning styles (Basham, Hall, Carter, & Stahl, 2016).  Considering the 

diversification prevalent in today’s K-12 classrooms and the subsequent logistics of meeting 

these diverse needs, some educational leaders and technology pacesetters have turned to 

technology, including intelligent tutoring systems as a means of providing personalization. 

In recent years computer-assisted learning has evolved into what is currently known as 

intelligent tutoring systems.  These advanced instructional tools often boast a complicated array 

of customization on a variety of levels, complete with immediate feedback and minimal teacher 

intervention.  Furthermore, intelligent tutoring systems are able to consider students’ 

psychological states and provide tailored instruction in every almost every discipline allowing 

learners to obtain cognitive knowledge, metacognitive knowledge, and domain-specific 

information (Ma et al., 2014).  As tools for personalizing learning, intelligent tutoring systems 

include the causative mechanisms of this type of learning previously discussed, including the 

individual learning and tutoring systems rooted in Bloom’s (1968) theory of mastery learning, 

Keller’s (1968) competency-based learning personalization, and Vygotsky’s (1978) scaffolding 

and zone of proximal development. 
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Feedback and Correctives in Intelligent Tutoring Systems 

Pardo et al. (2018) explained that students are by and large discontented with the 

feedback they receive from their teachers.  Feedback is, nonetheless, acknowledged as one of the 

most crucial factors influencing academic achievement (Pardo et al., 2018).  One obvious 

obstacle to providing personalized feedback is the amount of time it takes, but the solution may 

lie in the increased use of technologies and learning analytics to collect data and produce usable 

diagnostic information (Pardo et al., 2018; Rajendran, Iyer, & Murthy, 2019). 

As their name suggests, intelligent tutoring systems are just that - intelligent tutors, and as 

such, one of their main functions is to assess and provide feedback.  Learning assessment and 

feedback can be extremely time consuming and laborious.  In traditional classrooms, adept 

teachers provide their students regular, constructive, and detailed written or verbal criticism and 

suggestions for improvement (Farrell & Rushby, 2015; Rajendran et al., 2019).  Well-

constructed and timely delivered feedback can positively affect students’ attitudes, engagement, 

emotions, self-regulatory strategies, and learning outcomes (Muis, Ranellucci, Trevors, & Duffy, 

2015; Hooshyar et al., 2016).  The more differentiated and sophisticated the feedback, the more 

significant the effect will likely be (Farrell & Rushby, 2016).  Unfortunately, this kind of 

feedback can be costly in terms of time and money, and human checking decreases the efficiency 

of feedback (Farrell & Rushby, 2016).   

In recent years technology, including intelligent learning systems, has flourished in the 

area of assessment and feedback.  Farrell & Rushby (2016) explained that technology has 

infiltrated the entire assessment process including, diagnostic assessment,  monitoring student 

progress employing formative assessment, and even communicating essential learner data via 

summative assessment so that the necessary learning interventions can be employed.  Within a 
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technology-based learning environment like an intelligent tutoring system, assessment and 

feedback are achieved through powerful learner analytics.  Zilvinskis, Willis, and Borden (2017) 

defined learning analytics as a mechanism for utilizing real-time student data to forecast student 

achievement and provide learners personalized support.  In a study on user-centered design and 

analytics in an adaptive learning system, Vesin, Mangaroska, and Giannakos (2018) posited that 

learning analytics can be used to track learners’ development and accomplishments over time 

and provide feedback that enables both teachers and students to make informed decisions based 

on data.  Within computer-assisted technologies like intelligent tutoring systems, well-informed, 

data-driven decisions can manifest in the form of corrective measures, applications like 

customized teaching plans, adaptive learning strategies, game-based learning strategies, 

teaching-learner gap analysis and customized teaching and learning strategies (Ahad, Tripathi, 

Agarwal, 2018).  

Competency-Based Learning in Intelligent Tutoring Systems 

The primary objective of competency-based learning is to help learners attain recognized 

proficiency standards while taking into consideration the diversification that exists among 

students and employing criterion-referenced assessment rather than norm-referenced to promote 

learning (Hsu & Li, 2015).  Furthermore, competency-based learning tools deliver individualized 

adaptive learning paths equipped with recurrent evaluation, feedback, and correction (Hsu & Li, 

2015).  The primary tenants of competency-based learning, as prescribed by Keller (1968), 

revolve around mastery of learning or unit perfection, as well as students being able to grapple 

with the material at their own pace.  In technology-based learning environments, competency-

based learning capable of achieving the functions as mentioned above are often domain-specific 

and contain features like curriculum sequencing, intelligent solution analysis, and problem-
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solving support (Brusilovsky & Peylo, 2003).  Curriculum sequencing involves suggesting to 

learners a planned or optimal sequence of learning activities within a certain domain (O'Neill, 

Donnelly, & Fitzmaurice, 2014).  Intelligent analysis of solutions looks to discover not only the 

mistakes students are making but why they are making them in order to offer suggestions to help 

students over cognitive hurdles (Hafidi & Bensebaa, 2015). 

Adaptability is an essential part of competency-based learning.  Intelligent tutoring 

systems base their adaptability on didactic measures determined from the specific characteristics 

of each learner.  This student profile or learner model is constructed from observing learners in 

their instructional environment and encompasses each learner’s current state of knowledge and 

parameters concerning their personality, experience, and education (Rastegarmoghadam & 

Ziarati, 2017).  Khodeir et al. (2018) further explained that a student model represents learner 

features, e.g., interests, goals learning styles, and knowledge, and it gathers information on the 

student’s cognition within a certain domain.  Students’ problems solving behaviors, including 

correct and incorrect responses, number of attempts to achieve the correct answer are all attempts 

are analyzed to help build the student model (Khodeir et al., 2018).   

An accurate student model is dependent on prediction accuracy and is essential for 

appropriate individualization of content and difficulty level.  Common modeling techniques 

include logistic regression models, probabilistic models, and two of the most prevalent 

algorithms for estimating learner knowledge are Bayesian Knowledge Tracing and performance 

factor analysis (Kaser, Klingler, Schwing, Gross, 2017).  The presentation of the actual learning 

content or domain knowledge, e.g., math, science, language arts, etc. is also based on students’ 

learning characteristics or their learning model (Rastegarmoghadam & Ziarati, 2017). 
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Model-tracing tutors are technologies designed to mimic aspects of one-on-one tutoring 

by taking into account a student’s cognitive load, what a student can handle without becoming 

overwhelmed, and dividing complicated tasks into smaller ones (Kessler et al., 2015).  Kessler et 

al. (2015) explained that these technologies divide larger tasks into smaller, response-driven 

steps to both minimize cognitive load and assist learners in achieving automaticity with these 

individual components of the larger task.  The technology can also solve conceptually 

unimportant parts of the larger task for the student.  Put briefly, students’ competencies are 

filtered through their respective cognitive loads, and their corresponding tutoring is adjusted 

accordingly.  

Scaffolding and ZPD in Intelligent Tutoring Systems 

As previously noted, Vygotsky (1978) posited that learning improves when students are 

assisted by more knowledgeable or capable peers or teachers.  Moreover, students learn best 

within their zone of proximal development.  Vygotsky (1978) defined the zone of proximal 

development as the area between as student’s independent problem solving and a context in 

which that learner is capable of problem-solving but only with assistance from or collaboration 

with a more capable adult or peer.  Rus & Ştefănescu (2016) expounded on this idea adding that 

personalized learning requires assessing a student’s learning and choosing larger appropriate 

instructional tasks or macro-adaptation and scaffolding these tasks for students using within-task 

or micro adaptation.   

Wood, Bruner, and Ross (1976) coined the word “scaffolding” to describe the process in 

which a more knowledgeable or proficient person (within a particular area of student or 

knowledge) tutors a less competent individual.  This exchange allows the less competent person 

to engage in tasks they would be unable to perform independently of the tutor.  Considering 
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current educational technologies, namely intelligent tutoring systems, the definition of 

scaffolding must be extended to include contexts beyond interactions between individual humans 

(González‐Calero, Arnau, Puig, & Arevalillo‐Herráez, 2015; VanLehn, 2011).  Scaffolding 

procedures must be dynamic and adaptable as they adjusted to fit each unique learning situation 

(Farias, Hastie, & Mesquita, 2018). 

In recent decades educational technologies aimed at scaffolding student learning have 

increased significantly (González‐Calero et al., 2015).  Based on the learner or student model, 

constraint-based modeling is a technique used by many intelligent tutoring systems to model 

student knowledge and provide appropriate support (Khodeir et al., 2018).  In constraint-based 

modeling, a learning domain is represented as a set of constraints, and students’ knowledge is 

defined in terms of how well they satisfy or violate relevant constraints (Khodeir et al., 2018).  

Intelligent tutoring systems that employ constraint-based modeling act in place of human tutors 

often using scaffolding techniques to provide learners individualized support in the form of 

scaffolding questions (sequenced questions intended to helps students build understanding) and 

scaffolding feedback (incremental hints) (Khodeir et al., 2018).  Other scaffolding techniques 

include explanations, prompts, hints, demonstrations, or reminders (Delen, Liew, & Wilson, 

2014).   

Instructional scaffolding specifically refers to the back-and-forth between learners and 

their tutors or teachers and the process that allows the learner to access what would otherwise be 

inaccessible (Delen et al., 2014).  Vygotsky’s zone of proximal development and instructional 

scaffolding are now frequently applied in technology-based instructional tools like intelligent 

tutoring systems (Yelland & Masters, 2007) in the form of visual cueing or hyperlinks and have 

been effective in scaffolding learning (Delen et al., 2014).  Bartlet, Ghysels, Groot, Haelermans, 
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and van den Brink (2016) cautioned that within adaptive learning environments like intelligent 

tutoring systems, scaffolding must be present; otherwise differentiation will not guarantee 

learning. 

Despite its established importance, scaffolding as an instructional tool must be employed 

judiciously.  González‐Calero et al. (2015) posited that “scaffolding is a delicate balancing act” 

because too little scaffolding could lead to student failure and a subsequent frustration and loss 

of motivation, while too much could hamper learners’ efforts in attaining their learning goals (p. 

1191).  Moreover, too much scaffolding can lead to learners manipulating the systems’ support 

strategies and solving problems without the requisite knowledge (González‐Calero et al., 2015; 

Dale, & Scherrer, 2015). 

Intelligent Tutoring System Advantages 

Intelligent tutoring systems offer several advantages over traditional, teacher-led or large-

group classroom instruction, foremost of which is personalized, interactive, adaptive instruction 

(Ma et al., 2014; Sharada et al., 2015; Wilson & Scott, 2017; Huang et al., 2016; Verdú et al., 

2017).  This type of individualized instruction connotes sophisticated tutoring strategies like 

modeling or scaffolding (Serrano et al., 2018; Rastegarmoghadam & Ziarati, 2017; González-

Calero, Arnau, Puig, & Arevalillo-Herráez, 2015), increased opportunities for feedback and 

practice (Serrano et al., 2018; Huang et al., 2016), well-organized pedagogy (Huang et al., 2016; 

Hooshyar et al., 2016), more teaching and learning opportunities than in a single-teacher 

classroom (Serrano et al., 2018) and learner-centered platforms that take into account students’ 

expectations, motivations, and learning habits (Rastegarmoghadam & Ziarati, 2017). 

The adaptive features within various intelligent tutoring systems provide the foundation 

for their functionality and success.  These features include immediacy of feedback and increased 
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learner control (Ma et al., 2014; VanLehn, 2011), providing students hints based on their specific 

needs (Rau et al., 2015; Hafidi, & Bensebaa, 2015), intelligent analysis of solutions to challenge 

and correct common misconceptions (Rau et al., 2015), and carefully chosen practice problems 

based on individual student’s cognitive models (Rau et al., 2015).  These designated practice 

problems are chosen because they fall within an individual learner’s particular zone of proximal 

development.  In other words, the student has the prerequisite knowledge to complete these 

problems but has not yet achieved mastery (Rau et al., 2015).  Moreover, learning analytics in 

intelligent tutoring systems monitor learners’ activities and growth over time (Mangaroska & 

Giannakos 2018) and collect information to assist in making data-driven decisions (Vesin et al., 

2018).   

By design, many intelligent tutoring systems take into consideration multiple learner 

idiosyncrasies.  Some even consider students’ multiple intelligences, i.e., verbal-linguistic, 

logical-mathematical, visual-spatial, bodily-kinesthetic, musical, interpersonal, intrapersonal, and 

naturalist (Hafidi, & Bensebaa, 2015; Rastegarmoghadam, & Ziarati, 2017; Verdú et al., 2017).  

Research has shown that intelligent tutoring systems can also level achievement across different 

demographic groups and between genders.  They do so by reducing or eliminating culpable 

factors such as inconsistent teacher attention or biased teacher expectations (Huang et al., 2016) 

and heighten students’ problem-solving abilities (Hooshyar, Binti Ahmad, Wang, Yousefi, Fathi, 

& Lim, 2018).  

Intelligent Tutoring System Disadvantages 

 Despite the many documented advantages to the use of intelligent tutoring systems, there 

are noted disadvantages.  Due to student idiosyncrasies, it can be difficult even for artificial 

intelligence to accurately identify factors necessary to genuinely individualize learning, (Clément 
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et al., 2015), replicate human instruction (Hooshyar et al., 2016; Wang et al., 2015), and 

accurately address student misconceptions (Poitras et al., 2016).  Implementing adaptive 

strategies in intelligent tutoring systems can also be both expensive and time-consuming 

(González‐Calero et al., 2015; Graesser et al., 2018).  Moreover, these strategies are typically 

domain-specific and not easily adapted to other subject areas (González‐Calero et al., 2015; Nye 

et al., 2018).  

Maintaining student engagement and motivation in adaptive computer environments can 

also be problematic when appropriate guidance and interaction are not readily available 

Hooshyar et al., 2016; Millis et al., 2017).  Also, many students misuse the program’s hints to 

“game” the answers.  In essence, students use the tutoring model’s feedback to achieve the 

correct answer without truly mastering the concept the system is trying to teach (Millis et al., 

2017).  Finally, a significant disadvantage of adaptive software like intelligent tutoring systems 

can be their lack of flexibility and explorability, which can hamper metacognitive gains (Verdú 

et al., 2017; Wilson & Scott, 2017). 

Efficacy of Intelligent Tutoring Systems 

Since their inception, computer-based learning platforms, including intelligent tutoring 

systems and other adaptive learning technologies, have been compared to non-intelligent tutoring 

system learning environments in terms of learner outcomes.  Several studies have shown 

moderate to moderately strong positive effects between the use of intelligent tutoring systems 

and achievement gains (Ma et al., 2014; Steenbergen-Hu & Cooper, 2014; VanLehn, 2011).  

VanLehn (2011) evaluated outcomes from 54 intelligent tutoring systems and non-intelligent 

tutoring system groups and found that intelligent tutoring systems (d = 0.76), were as effective 

as human tutors (d = 0.79) at increasing student achievement across subject areas.  VanLehn 
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(2011) found an increase in test scores of 0.58 standard deviations over traditional instruction 

and further delineated results into intelligent tutoring systems with step-based tutoring systems, 

which provide hints and explanations on typical problem-solving steps, and scaffolding and 

feedback systems.  He discovered that step-based tutoring raised test scores by 0.76 standard 

deviations, while newer, more advanced scaffolding and feedback systems only raised test scores 

by only 0.40 standard deviations.  

Ma, Ma et al. (2014) conducted a meta-analysis of 107 effects sizes involving 14,331 

participants and found an average effect of 0.43 standard deviations.  They compared intelligent 

tutoring system groups to three non-intelligent tutoring system control conditions: large-group 

instruction, non-intelligent tutoring system computer-based instruction, and textbook/workbook 

instruction.  The effect sizes were 0.42, 0.57, and 0.35 respectively.  Furthermore, they found 

that intelligent tutoring systems were associated with greater academic achievement at all levels 

of education when compared to traditional, teacher-led instruction, and in almost all subject 

domains.  Gains were also significant regardless of whether or not the intelligent tutoring system 

modeled student misconceptions or provided feedback, and were also substantial irrespective of 

the degree or method of implementation, e.g., the primary form of instruction, supplemental to 

teacher instruction, homework aid, or an integral component of teacher-led instruction.  No 

significant difference, however, was found between intelligent tutoring system environments and 

groups that benefited from individualized human tutoring (g = −0.11) or small‐group instruction 

(g = 0.05).  

Steenbergen-Hu and Cooper (2014) surveyed 39 studies involving the effectiveness of 

intelligent tutoring systems at the postsecondary level, spanning over 20 years (1990-2011) and 

surveyed 22 different types of intelligent tutoring systems.  They found that intelligent tutoring 
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systems increased scores approximately 0.35 standard deviations; however, the exact results 

were contingent on the overall instruction the control group received.  Intelligent tutoring 

systems increased scores by 0.86 standard deviations compared to the group receiving no 

instruction and 0.37 standard deviations higher than the traditional, teacher-led group.  

Conversely, the intelligent tutoring system group scored 0.25 standard deviations lower than the 

control group received human tutoring.  

In their meta-analysis of 50 controlled evaluations, Kulik and Fletcher (2016) found that 

in 46 of 50 controlled cases, students who received assistance from intelligent tutors achieved 

higher test scores than students who received only traditional instruction.  Their studies revealed 

moderately strong positive effect sizes.  The median effect size in this study was 0.66, 

comparable to an increase in test achievement from the 50th to the 75th percentile.  Unlike similar 

meta-analyses, however, the study conducted by Kulik and Fletcher (2016) posited an effect size 

for intelligent tutoring system tutoring even higher than human tutoring.  They also added that 

the moderate to strong effects were smaller in evaluations that assessed outcomes on 

standardized tests as opposed to locally developed assessments. 

Graesser et al. (2018) posited a rational meta-meta estimate from all of these meta-

analyses to be d = 0.60, analogous to human tutoring, between d = 0.42 and d = .80 contingent on 

the tutor’s proficiency.  Kulik and Fletcher (2016) found that students taught with intelligent 

tutoring systems outpaced those in traditional, teacher-led classes in 46 of 50 controlled 

evaluations.  Their studies revealed moderately strong positive effect sizes and also saw 

intelligent tutoring system effects greater than those of human tutoring on locally developed 

tests, 0.73, but only 01.3 on standardized tests.  
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Xu, Wijekumar, Ramirez, Hu, BS, and Irey (2019) conducted a meta-analysis of 19 

studies examining the efficacy of intelligent tutoring systems on reading comprehension in first 

through tenth-grade classrooms.  Their findings indicated that intelligent tutoring systems 

produced larger effect sizes than traditional, teacher-led classrooms or other educational 

applications, an effect size of 0.86, and an overall random effect of 0.60.  However, as suggested 

in previous studies, they found that intelligent tutoring systems produced greater effect sizes on 

reading comprehension when compared to traditional teaching and much smaller effect sizes 

when compared to human tutoring.  

Despite the research that suggests the use of intelligent tutoring systems are positively 

associated with increased academic gains, a few older reports suggest otherwise (Slavin, Lake, & 

Groff, 2009; Steenbergen-Hu & Cooper, 2013).  The What Works Clearinghouse looked at 27 

evaluations of intelligent tutoring systems used in Algebra I classrooms and found insignificant 

effect sizes.  Slavin et al. examined intelligent tutoring system use in middle and high school 

mathematics, finding that intelligent tutoring systems increased student test scores by an average 

of only 0.12 standard deviations.   

Steenbergen-Hu and Cooper (2013) analyzed 34 cases of intelligent tutoring system use 

in K–12 mathematics and discovered a difference between intelligent tutoring system groups and 

non-intelligent tutoring system groups of only 0.05 standard deviations.  There also exists some 

discrepancy regarding whether or not stronger intensity and longer duration of intelligent 

tutoring system use is associated with larger effect sizes.  Xu et al. (2019) found that stronger 

intelligent tutoring system use produced an effect size of 0.26 and weaker intelligent tutoring 

system use yielded an effect size of 0.78 when using mixed measures (p = 0.0097) and when 

only standardized measures were analyzed there was no significant difference between the strong 
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and weak groups (0.23, and 0.26 respectively, p = 0.60).  These results differ from Cheung and 

Slavin (2013), who found stronger intensity and longer duration of an intelligent tutoring system 

to be positively associated with increased academic achievement.   

Intelligent Tutoring Systems in Mathematics 

In the last decade, the use of intelligent tutoring systems in K-12 mathematics education 

has increased significantly (Graesser et al., 2018; El Mamoun et al., 2018; Huang et al., 2016).  

Domain-specific programs have been used to increase learning gains in algebra (Sabo, Atkinson, 

Barrus, Joseph, & Perez, 2013; Graesser et al., 2018; González‐Calero et al., 2015) geometry 

(Sabo et al., 2013; Funkhouser, 2003; Graesser et al., 2018) statistics (Frith, Jaftha, and Prince, 

2004), and elementary mathematics (Roschelle, Gaudino, &Darling, 2016).  Additionally, due to 

their adaptive and interactive nature (Steenbergen-Hu & Cooper, 2013), intelligent tutoring 

systems in mathematics education are often employed as supplemental instructional tools set in 

remedial contexts (Bartelet et al., 2016).  

Some math-oriented intelligent tutoring systems have even included a simulated student 

or SimStudent for real students to assist (Li, Matsuda, Cohen, & Koedinger, 2015; Mastuda et 

al., 2013).  Within these systems, students assign problems to the SimStudent, which then 

attempts to decipher the problem using the curriculum embedded steps.  If the SimStudent has 

“difficulty” solving the problem, it seeks help from the student who has assumed the role of the 

teacher (Bringula et al., 2016).  Bringula et al. (2016) postulated that after 20 problems, the 

simulated student “could accurately predict students’ correct behavior on the mathematics 

problems more than 82% of the time” (p. 465).  
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Summary 

Personalized learning, the conceptual foundations of which can be traced to Bloom’s 

(1968) theory of mastery learning, Keller’s (1968) personalized system of instruction, and 

Vygotsky’s (1978) sociocultural theory (specifically the tenets related to zone of proximal 

development (ZPD) and scaffolding), seeks to match instructional approaches and learning 

experiences to individual students.  This is a logistical challenge; however, one that might be 

overcome through technology.  Intelligent tutoring systems have been employed for nearly four 

decades by scholars in almost every academic field and are capable of providing personal 

training assistance to learners in virtually every area of academia, including the military, the 

corporate world, colleges, and university and K-12 education (Sharada et al., 2015).  

Due in part to their potential to revolutionize modern education, adaptive learning 

computer environments like intelligent tutoring systems have regularly been compared to other 

learning environments and evaluated for effectiveness.  Meta-analyses conducted in recent years 

have yielded findings suggesting that intelligent tutoring systems, especially as a supplement to 

existing pedagogies can increase student achievement.  Moreover, a cursory database search 

yields evaluative research on a wide array of adaptive computer learning systems, including 

intelligent tutoring systems, the intended students, and domains of which run the gamut.  Many 

of these studies, however, focus on very limited intervals of time, feature a relatively small 

sampling, and often do not include K-12 populations.  Even fewer focus specifically on middle 

school populations over an extended period of time comparing achievement in a particular 

cognitive domain, e.g., math. 
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CHAPTER THREE: METHODS 

Overview 

The following chapter delineates the research design, question, hypothesis, participants, 

setting, instrumentation, procedures, and data analysis of a quantitative study.  This study 

examines middle school math achievement in a school setting that uses an intelligent tutoring 

system and a school setting that does not.  The significance of this study lies in its investigation 

and evaluation of instructional tools capable of individualizing and customizing math instruction 

for diverse populations of students.  This level of individualization and customization is an 

undertaking considered unattainable in traditional classrooms.   

Design 

This causal-comparative study endeavors to test the fundamental theories supporting 

personalized instruction and the use of intelligent tutoring systems as a means of achieving 

personalization.  Specifically, this study will examine math achievement for students at two 

similar middle schools in the Midlands of South Carolina.  The independent variable, use of an 

intelligent tutoring system in math instruction, will be defined as the supplementary use of two 

intelligent tutoring systems, Pearson’s Math Digits and IXL (both adaptive computer software 

intended to deliver customized instruction and feedback to students without requiring teacher 

intervention) for math instruction.  MAP Math is a computerized adaptive test for measuring 

math achievement administered multiple times each year in many schools across the US.  An 

advantage of utilizing MAP scores is that this assessment uses an equal interval measurement 

scale that is stable and allows for comparing assessment scores among groups of students 

(NWEA, 2008). 
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A quantitative approach to this study is appropriate because scientific inquiry is being 

employed to examine the differences between two groups (Rovai, Baker, Ponton, 2013).  A 

causal-comparative design is particularly fitting because this study seeks to explore differences 

that already exist between groups (Gall, Gall, & Borg, 2007), i.e., math achievement among 

middle school students who received math instruction that did not include the use of an 

intelligent tutoring system and middle school students who received math instruction that 

included the use of an intelligent tutoring system.  Furthermore, a causal-comparative design is 

appropriate because the independent variable, intelligent tutoring system instruction, was 

manipulated before the research, and both the effect and possible causes have already occurred 

(Rovai et al., 2013).  Other traits of this study consistent with causal-comparative studies include 

involving at least two groups, focusing on group differences rather than the relationships 

between variables, and omitting random assignment as the groups are based on their status 

(Rovai et al., 2013).  

Research Question(s) 

As previously stated, this research will focus on differences in math achievement among 

middle school groups that experienced the use of intelligent tutoring systems in their math 

instruction and middle school groups that did not.  The research question in the study is: 

 RQ1: Is there a difference in the math achievement of middle school students whose 

math instruction includes an intelligent tutoring system and middle school students whose math 

instruction does not include an intelligent tutoring system? 
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Hypothesis 

The null hypothesis for this study is: 

H01: There is no statistically significant difference in math achievement between middle 

school students whose math instruction includes an intelligent tutoring system and middle school 

students whose math instruction does not include an intelligent tutoring system, as shown by the 

Measures of Academic Progress (MAP) SC 6+Math test. 

Participants and Setting 

To answer the research question and test the corresponding hypothesis, a causal-

comparative study will be used.  Moreover, a convenience sample will be employed to identify 

the 180 participants for this research, 90 from each middle school.  Additionally, stratified 

sampling will be used to ensure that 30 students from each grade level (grades, 6, 7, and 8) are 

chosen.  Gall, Gall, & Borg (2007) explained that to achieve population validity, researchers 

must randomly select the sample from the population they wish to generalize their results, and 

the sample must be large enough to reduce the possibility that it has different characteristics of 

the target population.  A sampling size of 180 is more than the required minimum (N=166) for a 

medium effect size with a statistical power of 0.7 at the 0.05 alpha level, according to Gall et al., 

(2007). 

The settings for this study include two middle schools, grades 6-8, situated in neighboring school 

districts in the South Carolina Midlands.  Both schools are similarly sized, approximately 1000 

students, and are a mix of rural and suburban populations with similar demographic and 

socioeconomic makeup.  School A serves 930 students in grades 6-8 and employs 39 core 

teachers, 8 special education teachers, 1 ESOL teacher, 15 related arts teachers, 3 guidance 

counselors, and 4 administrators.  The school is 73% African American, 21% white, 4% 
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Hispanic, and 2% other.  Despite the school being located inside a fairly affluent neighborhood, 

many of School A's students are bused in from other neighborhoods, and more than half of its 

students receive subsidized breakfast and lunch.  Furthermore, School A is 1:1 (provides each 

student with an electronic device to access the internet, online textbooks, curriculum-related 

software, etc.) and has been since 2013.  School A has employed the use of various mathematics 

computer-assisted technologies since becoming a 1:1 school.  

School B serves 1046 students in grades 6-8 and is staffed with 41 core teachers, 11 special 

education teachers, 1 ESOL teacher, 17 related arts teachers, 4 guidance counselors, and 4 

administrators.  Additionally, School B has 13 faculty members assigned to various instructional 

support and coaching roles.  The school is 87% African American, 6% Caucasian, 3% Hispanic, 

and 4% other.  Sixty-five percent of its students are from low-income families and receive 

subsidized lunch.  Though School B is located within the city limits of the county seat, many of 

its students come from the large rural area surrounding the town in which it is situated.  Finally, 

School B is not a 1:1 school and does not use computer-assisted technologies for math 

instruction. 

Instrumentation 

The instrument that will be used to measure math achievement in this study is the 

Measures of Academic Progress Skills (MAP) Math SC 6+, a web-based, computerized adaptive 

test (CAT) published by the Northwest Evaluation Association (NWEA).  MAP Math SC 6+ is a 

standards-based, mastery measure assessment system designed to provide information about 

students’ mastery of foundational skills derived from the South Carolina mathematics standards 

(NWEA, 2011).  Foundational skills for SC mathematics are organized into four strands - 

algebraic thinking and operation; real and complex number systems; geometry and measurement; 
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and data analysis, statistics, and probability.  Moreover, the order in which students encounter 

these skills within the assessment is determined by the necessary knowledge to progress through 

the content within that strand, and the items themselves come from a large, flexible pool of 

questions rather than a rigid set of test items (NWEA, 2011).  

To measure student progress, the MAP Math SC 6+ utilizes the RIT scale (Rasch Unit), 

which was developed by NWEA over 30 years ago, according to the Item Response Theory 

principles.  The RIT scale uses individual item difficulty values to estimate student achievement, 

and test items are anchored to a vertically-aligned, equal-interval scale that covers all grades.  

This equal-interval scale ensures that the difference between scores is the same regardless of 

where the test-taker falls on the RIT scale, i.e., bottom, middle, or top.  It also has the same 

meaning regardless of grade level, making MAP Math SC 6+ appropriate for measuring math 

achievement over time.  MAP Math SC 6+ is not a fixed-form test but instead uses an adaptive 

algorithm in which test item selection is based on a momentary achievement or provisional 

ability estimate.  That is to say, the range of ability is restricted, limiting items to those based on 

the student’s provisional ability.  The assessment includes 50 multiple-choice items with four or 

five options (NWEA, 2008).  

RIT scores range from approximately 140-300.  Although it is possible to score as high 

285 or more on the math test, 250 is a typical top score.  Students typically start at the 140 to 190 

level in the third grade and progress to the 240 to 300 level by high school.  The expectation is 

that RIT scores will increase over time.  Students at lower grade levels tend to show a greater 

increase in RIT scores during a school year than students in higher grade levels.  At higher 

levels, questions become much more difficult, and the overall progress decreases (NWEA, 

2011). 



52 


 


The adaptive nature of MAP tests requires reliability to be tested using alternative means.  

Test-retest procedures are problematic because dynamic item pool selection prohibits 

administering the same test.  Parallel forms reliability is also impractical because the difficulty of 

items presented is based on students’ responses to prior items, precluding identical content 

(NWEA, 2011).  Testing the reliability of MAP tests, including MAP SC 6+, requires a 

combination of test-retest and parallel forms where the second test or retest is not the same test 

but is similar in structure and content but differing in item difficulty only (NWEA, 2011).  This 

type of reliability testing is called stratified, randomly-parallel reliability (Green, Bock, 

Humphreys, Linn, & Reckase, 1984).  NWEA reported reliabilities for the spring 2008-Fall 2008 

MAP SC 6+ with different item pool structures in the high .80s (NWEA, 2011).  NWEA (2011) 

also found similar reliability statistics (high .80s) for the fall 2008-spring 2009 test-retest 

correlations for the MAP SC 6+ with common pool structures.  

Confirming internal consistency reliabilities for MAP is difficult as well because 

conventional approaches require all examinees to take a common test comprised of the same test 

items.  Applying these techniques to adaptive tests is not only problematic but can also yield 

inaccurate results (NWEA, 2011).  Samejima (1977, 1994) posited an equally valid alternative in 

the marginal reliability coefficient, which includes measurement error as a function of the test 

score.  Calculating internal consistency in this way provides outcomes virtually identical to the 

coefficient alpha when both procedures are employed on identical fix-formed tests (NWEA, 

2011).  Marginal reliabilities for MAP Survey w/Goals 6+ were 0.965, 0.968, 0.970 for grades 6-

8 respectively.   

The validity of decisions made with MAP data assumes that they are capable of 1) 

determining if a student has a firm understanding of a skill and 2) identifying the foundational 
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skills within a grade-level content strand that a student needs to work on (Burns & Young, 2016).  

The claims were evaluated with an interpretation and use argument (IUA), based on Kane's 

(2013) framework.  Third-party reviewers rated each item of MAP mathematics on a 4-point 

scale (4= item only aligns to identified skill).  Ninety-seven percent received a rating of 4 (Burns 

& Young, 2016).  Conducting factor analysis for Computer Adaptive Tests (CAT) like MAP is 

challenging because unlike fixed-form tests, with CAT tests, different participants respond to 

different items.  In other words, there are no common forms, and an adaptive algorithm restricts 

covariance among items by limiting questions to the test-takers provisional ability.  One way to 

circumvent the sparse data problem is to conduct CFA at the item cluster-level.  Wang, McCall, 

Jio, & Harris (2013) conducted a CFA at the cluster level and came up with goodness-of-fit 

statistics for the South Carolina 6th grade MAP Math in the spring of 2011.  All values of fit 

satisfied Hu and Bentler (1999) criteria and showed that each model fit data for content.  Lastly 

NWEA (2011) expressed concurrent validity of MAP Math SC 6+ as Pearson product-moment 

correlations of concurrent performance on state accountability tests (6th grade r = 0.849, n = 

5974; 7th grade r = 0.839, n = 5920;  8th grade r = 0.833, n = 5570); predictive validity as 

Pearson product-moment correlations of predicted performance on state accountability tests (6th 

grade r = 0.827, n = 5740; 7th grade r = 0.828, n = 5748;  8th grade r = 0.826, n = 5396); and 

criterion-related validity as Pearson product-moment correlations of criterion-related 

performance on state accountability tests (6th grade r = 0.676, n = 5961; 7th grade r = 0.660, n = 

5909;  8th grade r = 0.690, n = 5569).  All Pearson product-moment correlation coefficients 

suggested a strong positive linear association. 

Procedures 

 The researcher will first obtain written permission from both district and building-level 
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administrations for both School A and School B.  Next, the researcher will seek permission for 

the study from Liberty University.  After receiving consent from the Liberty University 

Institutional Review Board, student data will be acquired from each respective district office data 

manager and keyed into two separate Microsoft Excel worksheets – one for each school, along 

with corresponding fall and spring MAP SC 6+ scores.  Students will next be separated into 

grades within each Microsoft Excel worksheet, and all student names will be removed to 

preserve anonymity.  Next, an Excel formula will be used to randomly select 30 students from 

each grade level from each school.  All data will be stored on a password-protected flash drive.   

Data Analysis 

Participant data will be attained separated into two groups - middle school students 

whose math instruction included an intelligent tutoring system (ITS) and middle school students 

whose math instruction did not include an intelligent tutoring system (NITS).  To ensure and 

equal number of participants from each grade level, the data will be further organized into six 

groups: 6th graders whose math instruction included an intelligent tutoring system (6ITS), 7th 

graders whose math instruction included an intelligent tutoring system (7ITS), 8th graders whose 

math instruction included an intelligent tutoring system (8ITS), 6th graders whose math 

instruction did not include an intelligent tutoring system (6NITS), 7th graders whose math 

instruction did not include an intelligent tutoring system (7NITS), and 8th graders whose math 

instruction did not include an intelligent tutoring system (8NITS).  An Excel formula will be 

used to select 30 students from each grade level randomly, 180 students total (n=180).   

Utilizing a one-way ANCOVA will permit the researcher to compare the posttest scores 

of both groups, students whose math instruction included intelligent tutoring systems and 

students whose math instruction did not include intelligent tutoring systems, holding constant 
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pretest score differences and determine if there exists any statistically significant differences 

between the adjust means of these independent groups (Gall, Gall, & Borg, 2007).  Post hoc 

testing will then be carried out to determine what those differences, if any, are.  

A one-way ANCOVA has several assumptions related to study design that must be 

considered.  A one-way ANCOVA assumes a continuous dependent variable (change in posttest 

scores), a continuous covariate (pretest scores), one categorical independent variable (type of 

math instruction) with two or more independent groups (NITS/ITS), and independence of 

observations (Laerd Statistics).  

A one-way ANCOVA also has several assumptions related to data, including linearity, 

homogeneity of regression slopes, normality, homoscedasticity, homogeneity of variances, no 

significant outliers in the groups of the independent variable in terms of the dependent variable, 

and normality (Laerd Statistics).   

The linearity assumption assumes that the covariate (pretest scores) is linearly related to 

the dependent variable (posttest scores) for each level of the independent variables (ITS/NITS).  

A visual inspection of a grouped scatterplot will be used to check for linearity.  A test of 

homogeneity of regression slopes will be used to check if the linear relationships established in 

the linearity assumption have the same slope.   A Shapiro-Wilk test for normality will used to 

assess that the dependent variable (posttest scores) are approximately normally distributed fore 

each group of the independent variable (ITS/NITS).  The assumption of homoscedasticity states 

that there is homoscedasticity of error variance within each group and that the error of variances 

is equal between groups.  Homoscedasticity will be assessed by a visual inspection of the 

standardized residuals plotted against the predicted values for each group.  Homogeneity of 

variances requires that the variance of residuals should be equal for all groups of the independent 
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variable.  This assumption will be assessed by Levene’s test of homogeneity of variance.  

Finally, testing for significant outliers is necessary for a one-way ANCOVA to ensure that there 

are no significant unusual points in the groups of the independent variable in terms of the 

dependent variable.  Outliers in the data will be assessed to confirm there are no cases with 

standardized residuals greater than ±3 standard deviations (Laerd Statistics).     

A one-way ANCOVA will be conducted to determine if math achievement was different 

for middle school students whose math instruction included an intelligent tutoring system and 

middle school students whose math instruction did not include an intelligent tutoring system.  An 

alpha level of 0.05 with a confidence level of 95% will be used for the one-way ANCOVA.  For 

all rejected null hypotheses, 
2 will be calculated to determine effect size. 
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CHAPTER FOUR: FINDINGS 

Overview 

This study is a causal-comparative examination of math achievement in two similar 

middle school settings, one that uses an intelligent tutoring system for math instruction and one 

that does not.  The significance of this study can be found in its examination and assessment of 

instructional tools capable of personalizing math instruction for diverse populations of students.  

The following chapter outlines the study’s findings and includes its research question, null 

hypothesis, and descriptive statistics.  Moreover, this chapter will present the results of the 

statistical analysis comparing math achievement in the aforementioned middle school settings as 

measured by the Measures of Academic Progress (MAP) SC 6+Math test. 

Research Question 

RQ1: Is there a difference in the math achievement of middle school students whose 

math instruction includes an intelligent tutoring system and middle school students whose math 

instruction does not include an intelligent tutoring system?   

Null Hypothesis 

H01:  There is no statistically significant difference in math achievement (as shown by 

the Measures of Academic Progress SC 6+ Math test scores) between middle school students 

whose math instruction includes an intelligent tutoring system and middle school students whose 

math instruction does not include an intelligent tutoring system while controlling for pretest 

scores. 

Descriptive Statistics 

The data provided from each school district’s data manager was received in Excel format 

stripped of all identifiers except grade level.  Schools were then recoded as NITS and ITS to 
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reflect the two groups examined in this study (students whose math instruction did not include an 

intelligent tutoring system and students whose math instruction included an intelligent tutoring 

system).  Fall (pretest) and spring (posttest) Measures of Academic Progress SC 6+ Math test 

scores from 180 students, 90 from each school, 30 from each grade level within each school were 

randomly chosen from all scores provided using an Excel formula.  Table 1 presents pretest and 

posttest unadjusted mean scores for both groups, as well as adjusted posttest scores for both 

levels of the intervention.  Unadjusted pretest mean scores were higher in the ITS group (221.00) 

as compared the NITS group (217.70).  Unadjusted posttest mean scores were also higher in the 

ITS group (222.777) as compared to the NITS group (221.70).   

Table 1 

Means Report 

ITS level Pretest (Fall MAP) Posttest (Spring MAP) 

NITS 

Unadjusted 

Mean 217.43 221.70 

N 90 90 

ITS 

Unadjusted 

Mean 221.00 222.77 

N 90 90 

NITS 

Adjusted 

Mean  223.491 

N  90 

 ITS 

 Adjusted 
 Mean 

 N 

 220.976 

90 

 

Data obtained for the dependent variable posttest scores for participants whose math 

instruction both included intelligent tutoring software instruction (ITS), as well as those that did 

not include intelligent tutoring software instruction (NITS), were loaded into SPSS which 

generated the descriptive statistics found in Table 2.  Table 2 presents the mean, standard 

deviation, and sample size for the dependent variable (posttest scores) for each group of the 

independent variable (ITS level).  Group sizes were equal with 90 participants in each group 

(n=90).   
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Table 2 

 

Descriptive Statistics 

Dependent Variable:   Posttest (Spring MAP)   

ITS level Mean Std. Deviation N 

NITS 221.70 16.924 90 

ITS 222.77 18.131 90 

Total 222.23 17.497 180 

 

The Estimates table, Table 3, presents the adjusted mean, standard error, and 95% confidence 

interval of the adjusted mean for the dependent variable (posttest scores) for each group of the 

independent variable.  The adjusted posttest mean for the NITS group (M=223.491) was higher 

than the adjusted posttest mean for the ITS group (M=220.976).      

Table 3 

Estimates -Adjusted Means 

Dependent Variable:   Posttest (Spring MAP)   

ITS level 

Adjusted 

Mean 
Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

NITS 223.491a .740 222.030 224.952 

ITS 220.976a .740 219.515 222.436 

a. Covariates appearing in the model are evaluated at the following values: Pretest (Fall MAP) = 

219.22. 

Results 

Assumptions Tests 

A one-way ANCOVA was used to test the null hypothesis by comparing the posttest 

scores (Spring MAP SC 6+) of both groups (ITS/NITS), holding constant pretest (Fall MAP SC 

6+) score differences and determining if there existed any statistically significant differences 

between the adjust means of these independent groups (Gall, Gall, & Borg, 2007).  A one-way 

ANCOVA has four assumptions related to study design that must be considered.  There must be 

one dependent variable measured at the continuous level (posttest scores); one independent 

variable (level of ITS intervention), which consists of two or more categorical, independent 
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groups (ITS/NITS); one covariate variable measured at the continuous level (pretest scores); and 

independence of observations (Laerd Statistics).  

 A one-way ANCOVA also has six assumptions related to how data fits the one-way 

ANCOVA model, including linearity, homogeneity of regression slopes, normality, 

homoscedasticity, homogeneity of variance, and no significant outliers in the groups of the 

independent variable in terms of the dependent variable (Laerd Statistics).  The linearity 

assumption requires that the covariate (pretest scores) be linearly related to the dependent 

variable (posttest scores) for each level of the independent variable (NITS/ITS) (Laerd 

Statistics).  There was a linear relationship between pretest scores and post-intervention posttest 

scores for each intervention group, as assessed by visual inspection of a scatterplot (see Figure 

1). 
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Figure 1.  Scatterplot showing linear relationship between pretest scores and posttest scores for 

each intervention group.  

The homogeneity of regression slopes assumption necessitates that no interaction exists 

between the covariate (pretest scores) and the independent variable (ITS/NITS) (Laerd 

Statistics).  Table 4 indicates that there was homogeneity of regression slopes as the interaction 

term was not statistically significant, ANCOVA model with and without interaction 

terms, F(1,176) = .593, p = .442. 
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Table 4 

 

Tests of Between-Subjects Effects (ITS*pretest) 

Dependent Variable:   Posttest (Spring MAP)   

Source 

Type III Sum of 

Squares 
df Mean Square F Sig. 

Corrected Model 46158.499a 3 15386.166 313.288 .000 

Intercept 4.167 1 4.167 .085 .771 

ITS 43.634 1 43.634 .888 .347 

pretest 46031.373 1 46031.373 937.275 .000 

ITS * pretest 29.127 1 29.127 .593 .442 

Error 8643.701 176 49.112   

Total 8944580.000 180    

Corrected Total 54802.200 179    

a. R Squared = .842 (Adjusted R Squared = .840) 

 

The assumption of normality is also required for statistical significance testing utilizing a 

one-way ANCOVA.  In other words, the dependent variable should be approximately normally 

distributed for each group of the independent variable (Laerd Statistics).  Standardized residuals 

for the overall model were normally distributed, as assessed by Shapiro-Wilk's test (p > .05) (see 

Table 5).  

Table 5 

Tests of Normality 

 

Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Standardized Residual for 

posttest 

.052 180 .200* .992 180 .480 

*. This is a lower bound of the true significance. 

a. Lilliefors Significance Correction 

 



63 


 


Another assumption of a one-way ANCOVA, homoscedasticity, requires that there is 

homoscedasticity of error variance within each group and the error variances are equal between 

each group.  The assumption of equal error variances can be assessed by a visual inspection of a 

plot of the standardized residuals against the predicted values for each ITS level (Laerd 

Statistics).  There was homoscedasticity, as assessed by visual inspection of the standardized 

residuals plotted against the predicted values (see Figure 2).  

 
Figure 2.  Scatterplots of standardized residuals for posttest by predicted value for posttest by 

ITS level.  

A one-way ANCOVAs also assumes that the variances of the residuals be equal for all 

groups of the independent variable (Laerd Statistics).  As is shown in Table 6, there was 

homogeneity of variances, as assessed by Levene's test of homogeneity of variance (p = .828). 
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Table 6 

Levene's Test of Equality of Error Variancesa 

Dependent Variable:   Posttest (Spring MAP)   

F df1 df2 Sig. 

.047 1 178 .828 

Tests the null hypothesis that the error variance of the dependent variable is equal across 

groups. 

a. Design: Intercept + pretest + ITS 

 

Finally, a one-way ANCOVA requires there should be no significant outliers among 

standardized residuals where the score is ±3 standard deviations (Laerd Statistics).  Potential 

outliers were assessed by consulting the standardized residuals within the data set.  The largest 

standardized residual was 2.76, and the smallest was -2.82; therefore, there were no outliers in 

the data, as assessed by no cases with standardized residuals greater than ±3 standard deviations.  

Hypothesis 

The null hypothesis states that there is no statistically significant difference in math 

achievement (as shown by the Measures of Academic Progress SC 6+ Math test scores) between 

middle school students whose math instruction includes an intelligent tutoring system and middle 

school students whose math instruction does not include an intelligent tutoring system while 

controlling for pretest scores.  A one-way ANCOVA was run to determine the effect of the use 

of intelligent tutoring systems on math achievement after controlling for pretest scores.  After 

adjustment for pre-test MAP SC 6+ scores, there was a statistically significant difference in 

posttest scores, F(1, 177) = 5.740, p = .018, partial η2 = .031 (see Table 7).   
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Table 7 

Tests of Between-Subjects Effects 

Dependent Variable:   Posttest (Spring MAP)   

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model 46129.372a 2 23064.686 470.717 .000 .842 

Intercept 4.008 1 4.008 .082 .775 .000 

pretest 46078.172 1 46078.172 940.390 .000 .842 

ITS 281.243 1 281.243 5.740 .018 .031 

Error 8672.828 177 48.999    

Total 8944580.000 180     

Corrected Total 54802.200 179     

a. R Squared = .842 (Adjusted R Squared = .840) 

 

Posttest scores were statistically significantly greater in the NITS group as compared to the ITS 

group (Mdiff = 2.516, 95% CI [0.443, 4.588], p = .018) (see Table 8).  

Table 8 

Pairwise Comparisons 

Dependent Variable:   Posttest (Spring MAP)   

ITS level ITS level 

Mean 

Difference Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

NITS ITS 2.516* 1.050 .018 .443 4.588 

ITS NITS -2.516* 1.050 .018 -4.588 -.443 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 
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CHAPTER FIVE: CONCLUSIONS 

Overview 

This study is an examination of middle school math achievement in two similar middle 

school settings, one that uses intelligent tutoring systems for math instruction and one that does 

not.  Chapter Five includes the discussion, implications, limitations, and suggestions for future 

research for this study.   

Discussion 

The purpose of this study was to examine the math achievement of students in two 

similar suburban middle schools (grades 6-8) in the Southeastern United States.  More 

specifically, this study looked to find differences in the math achievement of middle school 

students whose math instruction included intelligent tutoring systems and middle school students 

whose math instruction did not include intelligent tutoring systems.  Advocates of intelligent 

tutoring systems extol their capacity to personalize learning for students.  The conceptual 

underpinnings of personalized learning can be found in Bloom’s (1968) theory of mastery 

learning, the competency-based personalization of learning in Keller’s (1968) personalized 

system of instruction, and Vygotsky’s zone of proximal development (ZPD).   

Bloom (1984) asserted that mastery learning necessitates optimal conditions in which 

feedback, corrective measures, and tutoring are readily available to students.  Moreover, mastery 

learning requires instruction that is differentiated (Prast, Van de Weijer-Bergsma, Kroesbergen, 

& Van Luit, 2018).  Complimentary features of mastery learning often include diagnostic 

assessment, clear-cut learning objectives, sequenced units presented in increasing difficulty, 

pertinent instruction, formative testing to assess a predetermined mastery of objectives, and 

conditional progression McGaghie (2015).  
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Similar to Bloom’s mastery learning, Keller’s (1968) personalized system of instruction 

also emphasized repeated assessment, feedback, and tutoring.  Moreover, it included self-paced 

modules to ensure concept mastery before advancement (Paiva, Ferreira, & Frade, 2017).  

Keller’s (1968) condition that students demonstrate mastery or unit-perfection before 

advancement evolved into the kind of modular, competency-based learning prevalent in many of 

today’s intelligent tutoring systems (Paiva, Ferreira, & Frade, 2017). 

Vygotsky (1978) theorized that the zone of proximal development (ZPD) was the peak 

instructional context.  Said another way, ZPD is the optimal circumstances in which educators 

can interact with their students and move them from independent learning activities to activities 

just above their present understanding.  Pedagogy that involves this type of scaffolding asks 

teachers to transition their students’ learning by recognizing when they are on the brink of more 

advanced understanding (Goggin, Rankin, Geerlings, & Taggart, 2016). 

Personalized learning is customized to students’ abilities and involves learning that is 

student-paced (Hallman, 2019).  Its delivery platforms are tailored to carry out instruction 

according to each student’s needs (Horn, 2017), and it relies greatly on diagnostic pretests and 

posttests to assesses learning and provide timely, customized feedback (Pardo, Jovanovic, 

Dawson, Gašević, & Mirriahi, 2019).  In recent decades personalization within the classroom has 

been pursued through 1:1 technology initiatives (Hallman, 2019) in which programs like 

intelligent tutoring systems are employed to deliver learning experiences that are customized to 

students’ achievement levels, interests, and learning styles (Hopkins, 2019).  

The research question in this study, “Is there a difference in the math achievement of 

middle school students whose math instruction includes an intelligent tutoring system and middle 

school students whose math instruction does not include an intelligent tutoring system?” is an 
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examination of intelligent tutoring systems as a vehicle for providing personalized learning 

experiences and whether or not these instructional tools boost math achievement.   

Research comparing intelligent tutoring systems and other adaptive learning technologies 

to traditional learning environments in terms of achievement has been widely positive.  Across 

multiple academic disciplines, intelligent tutoring systems have been linked to positive effects 

(Ma et al., 2014; Steenbergen-Hu & Cooper, 2014; VanLehn, 2011; Kulik & Fletcher, 2016) and 

even found comparable to human tutors (VanLehn, 2011).  They have been linked to increased 

academic achievement at every level of education and in almost all subject domains.  However, 

in some studies, differences were not significant when compared to students who received small-

group or one-on-one instruction (Ma et al., 2014; Graesser et al., 2016).  In other research, 

outcomes supporting the use of intelligent tutoring systems found them even more effective than 

human tutors (Kulik & Fletcher, 2016).   

Still, other research suggests intelligent tutoring systems may not be significantly 

effective, especially in mathematics (Slavin, Lake, & Groff, 2009; Steenbergen-Hu & Cooper, 

2013; U.S. Department of Education, Institute of Education Sciences, What Works 

Clearinghouse, 2009).  Steenbergen-Hu and Cooper (2013) analyzed 34 cases of intelligent 

tutoring system use in K–12 mathematics and discovered a difference between intelligent 

tutoring system groups and non-intelligent tutoring system groups of only 0.05 standard 

deviations.   

The one-way ANCOVA executed in this study found a statistically significant difference 

between ITS and non-ITS interventions on math achievement as measured by the posttest 

(Spring MAP Math SC 6+) while controlling for pretest scores (Fall MAP Math SC 6+), F(1, 

177) = 5.740, p = .018, partial η2 = .031.  Additionally, posttest scores were statistically 
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significantly greater in the NITS group as compared to the ITS group (Mdiff = 2.516, 95% CI 

[0.443, 4.588], p = .018).  

This research is at odds with broader studies that examined intelligent tutoring systems 

across multiple subject domains.  VanLehn (2011) found intelligent tutoring systems comparable 

to human tutors at improving student achievement across subject areas, increasing test scores 

0.58 standard deviations over traditional instruction.  Ma, Ma et al. (2014) also found that 

intelligent tutoring systems were associated with greater academic achievement at all levels of 

education when compared to traditional, teacher-led instruction in almost all subject domains 

with an average effect of 0.43 standard deviations.  Steenbergen-Hu and Cooper (2014) surveyed 

22 different types of intelligent tutoring systems employed over a twenty-year span and found 

that intelligent tutoring systems increased scores approximately 0.35 standard deviations; 

whereas, Kulik and Fletcher (2016) found that students taught with intelligent tutoring systems 

outperformed those in traditional, teacher-led classes in 46 of 50 controlled evaluations. 

Conversely, this research seems to agree with the findings that intelligent tutoring 

systems may not be effective in mathematics instruction.  The What Works Clearinghouse 

looked at 27 evaluations of intelligent tutoring systems used in Algebra I classrooms and found 

insignificant effect sizes.  Moreover, Slavin et al. (2009) examined intelligent tutoring system 

use in middle and high school mathematics, finding that intelligent tutoring systems increased 

student test scores by an average of only 0.12 standard deviations.  

Implications 

The Program for International Student Assessment (PISA), a cross-national assessment 

administered once every three years, ranked the U.S. 38th out of 71 participating countries in 

mathematics (DeSilver, 2017).  As such, it is not surprising that technology initiatives, including 
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intelligent tutoring systems, have flourished in K-12 classrooms in the U.S. as a way of 

addressing these disparities and improving math education as a whole.  Findings from this 

research help close a gap in the literature on intelligent tutoring systems, especially as it relates 

to the efficacy of these instructional tools in middle school classrooms.  Simply put, there are 

few studies that examine the effect of intelligent tutoring systems on math achievement, and 

there are fewer still that focus on middle school populations.  As such, the implications of this 

added information are numerous.   

The financial implications of technology use in the classroom necessitate a fair evaluation 

of these practices.  According to the National Center for Education Statistics, total expenditures 

for public schools are currently over $700 billion (approximately $14,000 per/student) annually.  

Cumulative estimates on K-12 technology costs are sparse as these funds are often dispersed 

across multiple categories; however, one report analyzed $2 billion in K-12 spending and found 

that one of the most prevalent underutilized resources in early, middle, and high school settings 

was educational technology (Glimpse, 2019).   

Despite an emphasis on technology use to improve academic achievement, the National 

Assessment of Educational Progress (NAEP) pointed out that over 60% of students in the U.S. 

are deficient in math (National Center for Educational Statistics, 2016).  Additionally, those 

students who have difficulties in math consistently lag behind their classmates throughout their 

school careers (Nelson, parker, & Zaslofsky, 2016).  Math deficiencies can have far-reaching 

ramifications for students, including diminished self-efficacy in this domain, which often leads to 

an avoidance of courses and careers that require math skills (Huang, Zhang, & Hudson, 2018).  

This research is important for several reasons.  As previously mentioned, this study 

examines a population that is often neglected in educational literature, middle school students.  
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Moreover, the sampling within this study was substantial when compared to related studies, 

included all pertinent grade levels, and was pulled from the entire student enrollments of both 

schools.  Most importantly, this study serves as a reminder that pedagogical endeavors, most if 

not all of which are very costly in terms of both time and money, must be carefully scrutinized.  

The literature seems to suggest that for many academic domains, intelligent tutoring systems are 

positively linked with academic achievement.  As the foundations of these systems are inherently 

grounded in providing personalized learning experiences, their success should come with little 

surprise.  Nonetheless, delivering math instruction via an intelligent tutoring system may be 

problematic.  The results of this research suggest that math achievement scores were actually 

higher in the group that did not receive the ITS treatment.  Since these results do not suggest any 

increase in math achievement associated with the use of intelligent tutoring systems, at least in 

the population studied, it seems logical that more research is warranted.   

Limitations 

As is the case with all research, this study has its limitations, which must be 

acknowledged in order to provide perspective for future studies.  One such limitation stems from 

the populations being studied.  Though the sampling utilized is relatively large when compared 

to similar research, it nonetheless involves rural and suburban populations with similar 

demographic and socioeconomic makeup.  Both populations also share common proximity 

within a single state.  As such, the extent to which these results are generalizable to dissimilar 

populations and settings must be considered.  Moreover, there are also validity issues inherent to 

the use of convenience sampling which limits data collection to that which can be taken from 

available participants (Gall, Gall, & Borg, 2007).  Certain limitations are also inherent in causal-

comparative research in general.  A causal-comparative design does not permit the researcher to 



72 


 


influence the independent variable to discern its effect on the dependent variable.  As such, this 

type of design also does not permit strong conclusions about cause-and-effect (Gall, Gall, & 

Borg, 2007). 

Another limitation stems from the independent variable considered in this study.  For this 

research, the independent variable was specifically defined as the supplementary use of two 

intelligent tutoring systems, Pearson’s Math Digits, and IXL, for math instruction.  This research 

does not, however, delineate the degree to which either tutoring system was implemented, e.g., 

homework practice, remediation, in-class practice, etc.  Nor does it consider the amount of time 

students worked with each program nor the disparities among teaching styles, competencies, and 

pedagogies that most likely existed within each context.  It stands to reason, therefore, that any 

relationship between the independent variable and math achievement is likely influenced by 

other factors as well.  Finally, because this study features only one school that utilizes two 

specific intelligent tutoring systems, its results may not be representative of educational settings 

that use other intelligent tutoring systems for math instruction.  

Recommendations for Future Research 

Though this study of intelligent tutoring systems helps to fill a gap in the literature, the 

examination of adaptive learning software in middle school math instruction, there are still many 

questions that remain.  Considering the positives associated with personalized instruction in K-

12 environments and the inherent difficulties in achieving true customization within the 

classroom, intelligent tutoring systems make sense.  Moreover, much of the literature 

surrounding this technology has been positive.  It is, therefore, imperative to seek out 

opportunities to study this pedagogy and how it can be implemented successfully in all subject 

domains and within diverse educational settings. 
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 One recommendation for future research would be to examine the use of intelligent 

tutoring systems for math instruction in larger populations of middle school students, e.g., 

studies that involve multiple school districts or even multiple states.  It might also be beneficial 

to examine its use in populations with demographics and socioeconomics different than the ones 

included in this study.  Another recommendation would be to take a more experimental approach 

to this type of research for a more rigorous assessment of the cause-and-effect relationship 

between intelligent tutoring systems and math achievement.   

Much could also be learned if different types of intelligent tutoring software were 

included in a larger-scale study and if specific aspects of the populations were taken into 

consideration, i.e., gender, aptitude, and learning preferences.  Specifying the instructional 

degree to which the intelligent tutoring system is used (i.e., primary, 

supplementary/complementary, homework, or remediation) or even delineating the specifics of 

when and how often it is used could provide critical information.    

This study, like the studies before it, compared intelligent tutoring systems to traditional, 

teacher-led instruction.  As intelligent tutoring systems and other computer-assisted instruction 

grow in use, additional research comparing these instructional tools to one another could be 

advantageous.  In addition, research comparing the effect of similar intelligent tutoring systems 

on different domains might provide some insight into why they are more beneficial in some 

subject areas than others.  Finally, as only the MAP Math SC 6+ was used to assess math 

achievement in this study, it would benefit the study of this topic to include other assessment 

tools to help gauge learning.  
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APPENDICES 

Appendix A 

 

 

DISSERTATION RESEARCH 

APPLICATION 
 
 

DIRECTIONS: Complete this form by filling in the information requested.  Attach the file to an email message and it to 
jarnold@richland2.org.  Please type “Research Application” in the subject line of your email. 

 

SECTION 1: GENERAL INFORMATION 
 
Kevin Rholetter  Meredith Park 

(Applicant’s first and last name)  (Instructor’s first and last name) 
   
krholetter@richland2.org   

(Applicant’s email address)  (Instructor’s email address) 
   
Liberty University  Kelly Mill Med Pro Middle 

(College or University)  (Richland Two employees - list your school/location) 
   
   

SECTION 2: TIMEFRAME 
 

What is the proposed start date? 12/1/2019  What is the proposed end date? 3/1/2020 
 

SECTION 3: STATEMENT OF PURPOSE 
 

State the purpose of the proposed research study.  Limit your statement to one or two sentences that clearly identify the 
specific topic(s) and goal(s) of the study.  (Example: This study will examine the effect of the ABC Reading program on the oral 
reading fluency of first-grade students from low-income homes.) 
 

This study will examine the math achievement of students in two similar middle schools, one that used intelligent tutoring 
systems for math instruction during the 2017-2018 school year and one that did not.   
 

SECTION 4: RESEARCH QUESTION(S) AND DEFINITION OF KEY TERMS 
 

List the specific research question(s) to be investigated in this study.  (Example: What is the effect of participation by students 
from high poverty home in the ABC Reading program on blending isolated phonemes to make words?) 
 

Is there a difference in the math achievement of middle school students whose math instruction includes an intelligent tutoring 
system and middle school students whose math instruction does not include an intelligent tutoring system? 
 
Is there a difference in the math achievement of 6th-grade students whose math instruction includes an intelligent tutoring 
system and 6th-grade students whose math instruction does not include an intelligent tutoring system? 
 
Is there a difference in the math achievement of 7th-grade students whose math instruction includes an intelligent tutoring 
system and 7th-grade students whose math instruction does not include an intelligent tutoring system? 
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Is there a difference in the math achievement of 8th-grade students whose math instruction includes an intelligent tutoring 
system and 8th-grade students whose math instruction does not include an intelligent tutoring system?   
 
Provide definitions of terms that may be specific to your area of inquiry to ensure clarity and understanding. 
 

Intelligent tutoring systems are instructional programs that customize learning for students.   
 

SECTION 5: DATA COLLECTION 
 
 

Identify the data to be collected.  If you will be using student performance data, you must specifically identify the data.  (Not 
acceptable: test scores; Acceptable: SC READY Mathematics performance levels) 
 

2017-2018 Fall and Spring MAP SC 6+ Math scores 
 
Select the group(s) about or from which data will be collected.  (Check all that apply) 
 

☒ Students ☐ Administrators 
    

☐ Teachers ☐ Parents / Families 
    

☐ Others (Specify):       

 
Select the group(s) about or from which data will be collected.  (Check all that apply) 
 

☐ Early childhood (3 and 4-year-olds) ☐ High (Grades 9-12) 
    

☐ Elementary (Grades K-5) ☐ Adult Education 
   

☒ Middle (Grades 6-8)  
   

☐ Others (specify):         

 
How many participants are required? 
 

Minimum 300 
  
Maximum 300 
 
Which Richland Two schools’ students, staff, or parents will be involved in this research?  (Check all that apply) 
 

 
 
If your research will be limited to magnet programs, list the programs below: 
 

      
 

 

Explain the selection criteria for the participants. 
 

This study examines the math achievement of students who benefited from the use of intelligent tutoring systems for math 
during the 2017-2018 school year.  Students at Kelly Mill Middle School during the 2017-2018 school year utilized both Pearson’s 
digits Math Program and Math IXL.   
 

 

Describe the data collection procedures.  Include a timeline for each step as well as a description of any data collection 
activities and instruments. 
 

All data employed in this study is archival.  In addition to grade level, the necessary data will consist of fall and spring MAP SC 6+ 
scores for all students who took this assessment in both the fall and spring.   
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Describe the procedures and safeguards you will use to ensure the privacy and confidentiality of participants’ data. 
 

All data will be stripped of all identifiers except grade level before being sent to the researcher.  Data will then be kept on a 
password-protected flash drive. 
 
What are the potential risks to participants? 
 

N/A 
 

State the impact, if any, on instructional time. 
 

N/A 
 

SECTION 6: ATTACHMENTS 
 

List all supporting documents, forms, surveys, etc. that you are submitting with this proposal.   
 

1. N/A 
  

2.       
  

3.       
  

4.       
  

5.       
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Appendix C 

Kevin, 
 
The Richland Two research committee has approved your application to conduct 
research in our district.  You must complete all research activities by June 30, 2020.  
You will need to request an extension from the research committee if you need to 
continue research activities beyond that date.  Please remember the committee 
reserves the right to terminate the study at any time if circumstances change or the 
members feel it is in the best interest of our students, their families, or staff.  Finally, you 
must submit a copy of all final reports, dissertations, or publications based on this 
research to me upon completion of your study. 
 
Respectfully, 
 
John Arnold 
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Appendix D 

Good afternoon Mr. Rholetter, 
 
Fairfield County School District has approved you to use our data as part of 
your research project.  Please let me know if you have any questions. 
 
Amy Coker 
 


