213 research outputs found

    A survey of free software for the design, analysis, modelling, and simulation of an unmanned aerial vehicle

    Get PDF
    The objective of this paper is to analyze free software for the design, analysis, modelling, and simulation of an unmanned aerial vehicle (UAV). Free software is the best choice when the reduction of production costs is necessary; nevertheless, the quality of free software may vary. This paper probably does not include all of the free software, but tries to describe or mention at least the most interesting programs. The first part of this paper summarizes the essential knowledge about UAVs, including the fundamentals of flight mechanics and aerodynamics, and the structure of a UAV system. The second section generally explains the modelling and simulation of a UAV. In the main section, more than 50 free programs for the design, analysis, modelling, and simulation of a UAV are described. Although the selection of the free software has been focused on small subsonic UAVs, the software can also be used for other categories of aircraft in some cases; e.g. for MAVs and large gliders. The applications with an historical importance are also included. Finally, the results of the analysis are evaluated and discussed—a block diagram of the free software is presented, possible connections between the programs are outlined, and future improvements of the free software are suggested. © 2015, CIMNE, Barcelona, Spain.Internal Grant Agency of Tomas Bata University in Zlin [IGA/FAI/2015/001, IGA/FAI/2014/006

    Proceedings of the International Micro Air Vehicles Conference and Flight Competition 2017 (IMAV 2017)

    Get PDF
    The IMAV 2017 conference has been held at ISAE-SUPAERO, Toulouse, France from Sept. 18 to Sept. 21, 2017. More than 250 participants coming from 30 different countries worldwide have presented their latest research activities in the field of drones. 38 papers have been presented during the conference including various topics such as Aerodynamics, Aeroacoustics, Propulsion, Autopilots, Sensors, Communication systems, Mission planning techniques, Artificial Intelligence, Human-machine cooperation as applied to drones

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    A review of mathematical modelling techniques for advanced rotorcraft configurations

    Get PDF
    The paper will review the development and application of the mathematical modelling of the advanced rotorcraft configuration, including compound helicopter configurations and tilt-rotor vehicles. The mathematical model is the basis for the design of the flight control system and an essential tool to assess the flying and handling qualities for helicopters. As the helicopter is a multi-body system, the mathematical modelling of helicopter should consider the coupling effects among motion, inertia, structure, and aerodynamics, as well as the unsteady and nonlinear characteristics, to give the physical principles and mathematical expression of each part. Therefore, the mathematical modelling of a helicopter is a process of analysing and synthesizing different hypotheses and subsystem models. Moreover, the advanced helicopter configuration puts forward higher requirements for the helicopter mathematical modelling in terms of the aerodynamic interference, blade motion characteristics, and manoeuvre assessment. The critical issues of helicopter modelling, especially the modelling of the advanced rotorcraft configurations, will be illustrated in this paper. The emphasis is put on the modelling of rotor aerodynamics and aerodynamic interaction among the rotor, fuselage, and other parts. Integrated modelling methods and the manoeuvrability investigation are also the foci of the paper. Suggestions for future research on helicopter flight dynamics modelling are also provided

    Modeling and control of a new unmanned aerial vehicle (SUAVÄ°) with tilt-wing mechanism

    Get PDF
    Unmanned Aerial Vehicles (UAV) are flying robots that are either controlled by an operator from a remote location or flown autonomously according to the given commands. UAVs are often equipped with cameras, other sensors and communication units and used for missions which are dangerous, tedious or effortful for manned aircrafts. Some applications of these vehicles are surveillance, reconnaissance, traffic monitoring, exploration of disasters (fire, earthquake, flood, etc...) and agricultural pesticide spraying. This thesis work focuses on the modeling and control of a new quadrotor Unmanned Aerial Vehicle (SUAVI: Sabanci University Unmanned Aerial Vehicle) with tilt-wing mechanism. The vehicle is capable of vertical take-off and landing (VTOL) like a helicopter and flying horizontally like an airplane. The design specifications and sensor/actuator integration of SUAVI are presented. A full mathematical model that incorporates the dynamics of horizontal flight, vertical flight and the transition mode is obtained using Newton-Euler formulation. Attitude and position controllers (PID, LQR) are designed in linear framework for the VTOL mode of the vehicle. A controller for transition between vertical and horizontal flight modes is also proposed. All controllers are evaluated in simulations along with 3D visualization. For real-time experiments, Kalman filtering is employed to obtain accurate roll and pitch angle estimations. VTOL experiments with the prototype demonstrate the success of the proposed controllers

    Model-based Design Development and Control of a Wind Resistant Multirotor UAV

    Get PDF
    Multirotor UAVs have in recent years become a trend among academics, engineers and hobbyists alike due to their mechanical simplicity and availability. Commercial uses range from surveillance to recreational flight with plenty of research being conducted in regards to design and control. With applications towards search and rescue missions in mind, the main objective of this thesis work is the development of a mechanical design and control algorithm aimed at maximizing wind resistance. To these ends, an advanced multirotor simulator, based on helicopter theory, has been developed to give an accurate description of the flight dynamics. Controllers are then designed and tuned to stabilize the attitude and position of the UAV followed by a discussion regarding disturbance attenuation. In order to study the impact of different design setups, the UAV model is constructed so that physical properties can be scaled. Parameter influence is then investigated for a specified wind test using a Design of Experiments methodology. These results are combined with a concept generation process and evaluated with a control engineering approach. It was concluded that the proposed final design should incorporate a compact three-armed airframe with six rotors configured coaxially

    Aeronautical Engineering: A Continuing Bibliography with Indexes

    Get PDF
    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1998-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract

    Aeronautical Engineering: A Continuing Bibliography with Indexes

    Get PDF
    This report lists reports, articles and other documents recently announced in the NASA STI Database

    Rotary Wing Aerodynamics

    Get PDF
    This book contains state-of-the-art experimental and numerical studies showing the most recent advancements in the field of rotary wing aerodynamics and aeroelasticity, with particular application to the rotorcraft and wind energy research fields
    • …
    corecore