12,913 research outputs found

    Is countershading camouflage robust to lighting change due to weather?

    Get PDF
    Countershading is a pattern of coloration thought to have evolved in order to implement camouflage. By adopting a pattern of coloration that makes the surface facing towards the sun darker and the surface facing away from the sun lighter, the overall amount of light reflected off an animal can be made more uniformly bright. Countershading could hence contribute to visual camouflage by increasing background matching or reducing cues to shape. However, the usefulness of countershading is constrained by a particular pattern delivering ‘optimal’ camouflage only for very specific lighting conditions. In this study, we test the robustness of countershading camouflage to lighting change due to weather, using human participants as a ‘generic’ predator. In a simulated three-dimensional environment, we constructed an array of simple leaf-shaped items and a single ellipsoidal target ‘prey’. We set these items in two light environments: strongly directional ‘sunny’ and more diffuse ‘cloudy’. The target object was given the optimal pattern of countershading for one of these two environment types or displayed a uniform pattern. By measuring detection time and accuracy, we explored whether and how target detection depended on the match between the pattern of coloration on the target object and scene lighting. Detection times were longest when the countershading was appropriate to the illumination; incorrectly camouflaged targets were detected with a similar pattern of speed and accuracy to uniformly coloured targets. We conclude that structural changes in light environment, such as caused by differences in weather, do change the effectiveness of countershading camouflage

    Patterned probes for high precision 4D-STEM bragg measurements.

    Get PDF
    Nanoscale strain mapping by four-dimensional scanning transmission electron microscopy (4D-STEM) relies on determining the precise locations of Bragg-scattered electrons in a sequence of diffraction patterns, a task which is complicated by dynamical scattering, inelastic scattering, and shot noise. These features hinder accurate automated computational detection and position measurement of the diffracted disks, limiting the precision of measurements of local deformation. Here, we investigate the use of patterned probes to improve the precision of strain mapping. We imprint a "bullseye" pattern onto the probe, by using a binary mask in the probe-forming aperture, to improve the robustness of the peak finding algorithm to intensity modulations inside the diffracted disks. We show that this imprinting leads to substantially improved strain-mapping precision at the expense of a slight decrease in spatial resolution. In experiments on an unstrained silicon reference sample, we observe an improvement in strain measurement precision from 2.7% of the reciprocal lattice vectors with standard probes to 0.3% using bullseye probes for a thin sample, and an improvement from 4.7% to 0.8% for a thick sample. We also use multislice simulations to explore how sample thickness and electron dose limit the attainable accuracy and precision for 4D-STEM strain measurements

    The Sunyaev-Zel'dovich Infrared Experiment: A Millimeter-wave Receiver for Cluster Cosmology

    Get PDF
    Measurements of the Sunyaev-Zel'dovich (S-Z) effect towards distant clusters of galaxies can be used to determine the Hubble constant and the radial component of cluster peculiar velocities. Determination of the cluster peculiar velocity requires the separation of the two components of the S-Z effect, which are due to the thermal and bulk velocities of the intracluster plasma. The two components can be separated practically only at millimeter (mm) wavelengths. Measurements of the S-Z effect at mm wavelengths are subject to minimal astrophysical confusion and, therefore, provide an important test of results obtained at longer wavelengths. We describe the instrument used to make the first significant detections of the S-Z effect at millimeter wavelengths. This instrument employs new filter, detector, and readout technologies to produce sensitive measurements of differential sky brightness stable on long time scales. These advances allow drift scan observations which achieve high sensitivity while minimizing common sources of systematic error.Comment: 19 pages, 15 postscript figures, LaTeX(aaspptwo.sty), ApJ(in press

    Effect of Scatterering on Coherent Anti-Stokes Raman Scattering (CARS) signals

    Get PDF
    We develop a computational framework to examine the factors responsible for scattering-induced distortions of coherent anti-Stokes Raman scattering (CARS) signals in turbid samples. We apply the Huygens-Fresnel Wave-based Electric Field Superposition (HF-WEFS) method combined with the radiating dipole approximation to compute the effects of scattering-induced distortions of focal excitation fields on the far-field CARS signal. We analyze the effect of spherical scatterers, placed in the vicinity of the focal volume, on the CARS signal emitted by different objects (2{\mu}m diameter solid sphere, 2{\mu}m diameter myelin cylinder and 2{\mu}m diameter myelin tube). We find that distortions in the CARS signals arise not only from attenuation of the focal field but also from scattering-induced changes in the spatial phase that modifies the angular distribution of the CARS emission. Our simulations further show that CARS signal attenuation can be minimized by using a high numerical aperture condenser. Moreover, unlike the CARS intensity image, CARS images formed by taking the ratio of CARS signals obtained using x- and y-polarized input fields is relatively insensitive to the effects of spherical scatterers. Our computational framework provide a mechanistic approach to characterizing scattering-induced distortions in coherent imaging of turbid media and may inspire bottom-up approaches for adaptive optical methods for image correction.Comment: 15 pages, 7 figure
    • …
    corecore