243 research outputs found

    All-Hex Meshing of Multiple-Region Domains without Cleanup

    Get PDF
    AbstractIn this paper, we present a new algorithm for all-hex meshing of domains with multiple regions without post-processing cleanup. Our method starts with a strongly balanced octree. In contrast to snapping the grid points onto the geometric boundaries, we move points a slight distance away from the common boundaries. Then we intersect the moved grid with the geometry. This allows us to avoid creating any flat angles, and we are able to handle two-sided regions and more complex topologies than prior methods. The algorithm is robust and cleanup-free; without the use of any pillowing, swapping, or smoothing. Thus, our simple algorithm is also more predictable than prior art

    Optimal Point Placement for Mesh Smoothing

    Full text link
    We study the problem of moving a vertex in an unstructured mesh of triangular, quadrilateral, or tetrahedral elements to optimize the shapes of adjacent elements. We show that many such problems can be solved in linear time using generalized linear programming. We also give efficient algorithms for some mesh smoothing problems that do not fit into the generalized linear programming paradigm.Comment: 12 pages, 3 figures. A preliminary version of this paper was presented at the 8th ACM/SIAM Symp. on Discrete Algorithms (SODA '97). This is the final version, and will appear in a special issue of J. Algorithms for papers from SODA '9

    Meshes Preserving Minimum Feature Size

    Get PDF
    The minimum feature size of a planar straight-line graph is the minimum distance between a vertex and a nonincident edge. When such a graph is partitioned into a mesh, the degradation is the ratio of original to final minimum feature size. For an n-vertex input, we give a triangulation (meshing) algorithm that limits degradation to only a constant factor, as long as Steiner points are allowed on the sides of triangles. If such Steiner points are not allowed, our algorithm realizes \ensuremathO(lgn) degradation. This addresses a 14-year-old open problem by Bern, Dobkin, and Eppstein

    Doctor of Philosophy

    Get PDF
    dissertationVolumetric parameterization is an emerging field in computer graphics, where volumetric representations that have a semi-regular tensor-product structure are desired in applications such as three-dimensional (3D) texture mapping and physically-based simulation. At the same time, volumetric parameterization is also needed in the Isogeometric Analysis (IA) paradigm, which uses the same parametric space for representing geometry, simulation attributes and solutions. One of the main advantages of the IA framework is that the user gets feedback directly as attributes of the NURBS model representation, which can represent geometry exactly, avoiding both the need to generate a finite element mesh and the need to reverse engineer the simulation results from the finite element mesh back into the model. Research in this area has largely been concerned with issues of the quality of the analysis and simulation results assuming the existence of a high quality volumetric NURBS model that is appropriate for simulation. However, there are currently no generally applicable approaches to generating such a model or visualizing the higher order smooth isosurfaces of the simulation attributes, either as a part of current Computer Aided Design or Reverse Engineering systems and methodologies. Furthermore, even though the mesh generation pipeline is circumvented in the concept of IA, the quality of the model still significantly influences the analysis result. This work presents a pipeline to create, analyze and visualize NURBS geometries. Based on the concept of analysis-aware modeling, this work focusses in particular on methodologies to decompose a volumetric domain into simpler pieces based on appropriate midstructures by respecting other relevant interior material attributes. The domain is decomposed such that a tensor-product style parameterization can be established on the subvolumes, where the parameterization matches along subvolume boundaries. The volumetric parameterization is optimized using gradient-based nonlinear optimization algorithms and datafitting methods are introduced to fit trivariate B-splines to the parameterized subvolumes with guaranteed order of accuracy. Then, a visualization method is proposed allowing to directly inspect isosurfaces of attributes, such as the results of analysis, embedded in the NURBS geometry. Finally, the various methodologies proposed in this work are demonstrated on complex representations arising in practice and research

    Theory and applications of bijective barycentric mappings

    Get PDF
    Barycentric coordinates provide a convenient way to represent a point inside a triangle as a convex combination of the triangle's vertices, and to linearly interpolate data given at these vertices. Due to their favourable properties, they are commonly applied in geometric modelling, finite element methods, computer graphics, and many other fields. In some of these applications it is desirable to extend the concept of barycentric coordinates from triangles to polygons. Several variants of such generalized barycentric coordinates have been proposed in recent years. An important application of barycentric coordinates consists of barycentric mappings, which allow to naturally warp a source polygon to a corresponding target polygon, or more generally, to create mappings between closed curves or polyhedra. The principal practical application is image warping, which takes as input a control polygon drawn around an image and smoothly warps the image by moving the polygon vertices. A required property of image warping is to avoid fold-overs in the resulting image. The problem of fold-overs is a manifestation of a larger problem related to the lack of bijectivity of the barycentric mapping. Unfortunately, bijectivity of such barycentric mappings can only be guaranteed for the special case of warping between convex polygons or by triangulating the domain and hence renouncing smoothness. In fact, for any barycentric coordinates, it is always possible to construct a pair of polygons such that the barycentric mapping is not bijective. In the first part of this thesis we illustrate three methods to achieve bijective mappings. The first method is based on the intuition that, if two polygons are sufficiently close, then the mapping is close to the identity and hence bijective. This suggests to ``split'' the mapping into several intermediate mappings and to create a composite barycentric mapping which is guaranteed to be bijective between arbitrary polygons, polyhedra, or closed planar curves. We provide theoretical bounds on the bijectivity of the composite mapping related to the norm of the gradient of the coordinates. The fact that the bound depends on the gradient implies that these bounds exist only if the gradient of the coordinates is bounded. We focus on mean value coordinates and analyse the behaviour of their directional derivatives and gradient at the vertices of a polygon. The composition of barycentric mappings for closed planar curves leads to the problem of blending between two planar curves. We suggest to solve it by linearly interpolating the signed curvature and then reconstructing the intermediate curve from the interpolated curvature values. However, when both input curves are closed, this strategy can lead to open intermediate curves. We present a new algorithm for solving this problem, which finds the closed curve whose curvature is closest to the interpolated values. Our method relies on the definition of a suitable metric for measuring the distance between two planar curves and an appropriate discretization of the signed curvature functions. The second method to construct smooth bijective mappings with prescribed behaviour along the domain boundary exploits the properties of harmonic maps. These maps can be approximated in different ways, and we discuss their respective advantages and disadvantages. We further present a simple procedure for reducing their distortion and demonstrate the effectiveness of our approach by providing examples. The last method relies on a reformulation of complex barycentric mappings, which allows us to modify the ``speed'' along the edges to create complex bijective mappings. We provide some initial results and an optimization procedure which creates complex bijective maps. In the second part we provide two main applications of bijective mapping. The first one is in the context of finite elements simulations, where the discretization of the computational domain plays a central role. In the standard discretization, the domain is triangulated with a mesh and its boundary is approximated by a polygon. We present an approach which combines parametric finite elements with smooth bijective mappings, leaving the choice of approximation spaces free. This approach allows to represent arbitrarily complex geometries on coarse meshes with curved edges, regardless of the domain boundary complexity. The main idea is to use a bijective mapping for automatically warping the volume of a simple parametrization domain to the complex computational domain, thus creating a curved mesh of the latter. The second application addresses the meshing problem and the possibility to solve finite element simulations on polygonal meshes. In this context we present several methods to discretize the bijective mapping to create polygonal and piece-wise polynomial meshes

    Loopy Cuts: Surface-Field Aware Block Decomposition for Hex-Meshing.

    Full text link
    We present a new fully automatic block-decomposition hexahedral meshing algorithm capable of producing high quality meshes that strictly preserve feature curve networks on the input surface and align with an input surface cross-field. We produce all-hex meshes on the vast majority of inputs, and introduce localized non-hex elements only when the surface feature network necessitates those. The input to our framework is a closed surface with a collection of geometric or user-demarcated feature curves and a feature-aligned surface cross-field. Its output is a compact set of blocks whose edges interpolate these features and are loosely aligned with this cross-field. We obtain this block decomposition by cutting the input model using a collection of simple cutting surfaces bounded by closed surface loops. The set of cutting loops spans the input feature curves, ensuring feature preservation, and is obtained using a field-space sampling process. The computed loops are uniformly distributed across the surface, cross orthogonally, and are loosely aligned with the cross-field directions, inducing the desired block decomposition. We validate our method by applying it to a large range of complex inputs and comparing our results to those produced by state-of-the-art alternatives. Contrary to prior approaches, our framework consistently produces high-quality field aligned meshes while strictly preserving geometric or user-specified surface features

    6th International Meshing Roundtable '97

    Full text link
    corecore