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Abstract

Barycentric coordinates provide a convenient way to represent a point inside a
triangle as a convex combination of the triangle’s vertices, and to linearly inter-
polate data given at these vertices. Due to their favourable properties, they are
commonly applied in geometric modelling, finite element methods, computer
graphics, and many other fields. In some of these applications it is desirable to
extend the concept of barycentric coordinates from triangles to polygons. Sev-
eral variants of such generalized barycentric coordinates have been proposed in
recent years.

An important application of barycentric coordinates consists of barycentric
mappings, which allow to naturally warp a source polygon to a corresponding
target polygon, or more generally, to create mappings between closed curves or
polyhedra. The principal practical application is image warping, which takes as
input a control polygon drawn around an image and smoothly warps the image
by moving the polygon vertices. A required property of image warping is to avoid
fold-overs in the resulting image. The problem of fold-overs is a manifestation of
a larger problem related to the lack of bijectivity of the barycentric mapping. Un-
fortunately, bijectivity of such barycentric mappings can only be guaranteed for
the special case of warping between convex polygons or by triangulating the do-
main and hence renouncing smoothness. In fact, for any barycentric coordinates,
it is always possible to construct a pair of polygons such that the barycentric map-
ping is not bijective. In the first part of this thesis we illustrate three methods to
achieve bijective mappings.

The first method is based on the intuition that, if two polygons are sufficiently
close, then the mapping is close to the identity and hence bijective. This suggests
to “split” the mapping into several intermediate mappings and to create a com-
posite barycentric mapping which is guaranteed to be bijective between arbitrary
polygons, polyhedra, or closed planar curves. We provide theoretical bounds on
the bijectivity of the composite mapping related to the norm of the gradient of
the coordinates. The fact that the bound depends on the gradient implies that
these bounds exist only if the gradient of the coordinates is bounded. We fo-
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cus on mean value coordinates and analyse the behaviour of their directional
derivatives and gradient at the vertices of a polygon.

The composition of barycentric mappings for closed planar curves leads to
the problem of blending between two planar curves. We suggest to solve it by
linearly interpolating the signed curvature and then reconstructing the interme-
diate curve from the interpolated curvature values. However, when both input
curves are closed, this strategy can lead to open intermediate curves. We present
a new algorithm for solving this problem, which finds the closed curve whose
curvature is closest to the interpolated values. Our method relies on the defini-
tion of a suitable metric for measuring the distance between two planar curves
and an appropriate discretization of the signed curvature functions.

The second method to construct smooth bijective mappings with prescribed
behaviour along the domain boundary exploits the properties of harmonic maps.
These maps can be approximated in different ways, and we discuss their respec-
tive advantages and disadvantages. We further present a simple procedure for
reducing their distortion and demonstrate the effectiveness of our approach by
providing examples.

The last method relies on a reformulation of complex barycentric mappings,
which allows us to modify the “speed” along the edges to create complex bijective
mappings. We provide some initial results and an optimization procedure which
creates complex bijective maps.

In the second part we provide two main applications of bijective mapping.
The first one is in the context of finite elements simulations, where the discretiza-
tion of the computational domain plays a central role. In the standard discretiza-
tion, the domain is triangulated with a mesh and its boundary is approximated
by a polygon. We present an approach which combines parametric finite el-
ements with smooth bijective mappings, leaving the choice of approximation
spaces free. This approach allows to represent arbitrarily complex geometries
on coarse meshes with curved edges, regardless of the domain boundary com-
plexity. The main idea is to use a bijective mapping for automatically warping
the volume of a simple parametrization domain to the complex computational
domain, thus creating a curved mesh of the latter.

The second application addresses the meshing problem and the possibility to
solve finite element simulations on polygonal meshes. In this context we present
several methods to discretize the bijective mapping to create polygonal and piece-
wise polynomial meshes.
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Overview

This dissertation is divided into two parts: theory and practice. In the first part,
we start by explaining the contextualization of the problem of mapping between
two domains (Section 1.1). While doing so we introduce the concept of barycen-
tric coordinates for polygons and polyhedra, and explore its extension to the com-
plex plane (Section 1.2) and to closed curves (Section 1.3). Chapter 2 gives an
overview of existing methods for creating bijective maps, starting from barycen-
tric mappings between convex polygons (Section 2.1.1) and then showing that
bijectivity cannot be guaranteed for such mappings (Section 2.1.2). To over-
come this limitation we illustrate several alternatives based on an optimization
procedure (Section 2.2).

We then present different strategies for interpolating shapes (Chapter 3), fo-
cusing on the case of closed planar curves (Section 3.3), which is based on

Saba, Schneider, Scateni and Hormann [2014]. Curvature-based blend-
ing of closed planar curves. 76(5): 263–272. Computer Aided Geometric
Design, proceeding of Geometric Modelling and Processing.

Chapter 4 is based on two contributions

Schneider, Hormann and Floater [2013]. Bijective composite mean value
mappings. 35(5): 125–135. Computer Graphics Forum, proceeding of
Symposium on Geometry Processing.

Schneider [2017]. Generalized Barycentric Coordinates in Computer Graph-
ics and Computational Mechanics. (Chapter 4) In K. Hormann and N. Suku-
mar (eds), CRC Press, Florida, to appear in August.

These two contributions illustrate a method to create bijective mappings between
arbitrary shapes based on a composition of barycentric mappings and shape in-
terpolation.

Chapter 5 proposes an alternative approach for creating bijective maps using
harmonic mappings. It is based on

1



2 Overview

Schneider and Hormann [2015]. Smooth bijective maps between arbi-
trary planar polygons. 35–36(C): 243–354. Computer Aided Geometric
Design, proceeding of Geometric Modelling and Processing.

As composite barycentric mappings require the norm of the gradient of the un-
derlying barycentric coordinates to be bounded. This motivation leads to the
study of the directional derivative of Wachspress (Section 6.1) and mean value
(Section 6.2.1) coordinates which is based on

Anisimov, Hormann and Schneider [n.d.] Behaviour of exponential three-
point coordinates at the vertices of convex polygons. Work in progress.

The chapter continues by providing some initial results on an actual bound of
mean value coordinates obtained in collaboration with K. Hormann.

Finally, we exploit the expressiveness of complex coordinates (Chapter 7) to
modify complex barycentric mappings for achieving bijectivity. This chapter is
based on initial work performed together with E. Cirillo and K. Hormann.

The second part of the dissertation regards the applications of bijective map-
pings to concrete examples. We start by providing some classical examples and
use-cases in computer graphics (Chapter 8). We then explain how these map-
pings can be used in the context of parametric finite elements (Section 9.1). The
explanation is based on

Zulian, Schneider, Hormann and Krause [n.d.]. Parametric finite ele-
ments with bijective mappings. Accepted at BIT Numerical mathematics.

We conclude by giving an overview of the meshing challenges in finite elements
(Chapter 10) and show how an approximation of the bijective map can be used
as a meshing technique (Section 10.3), which is based on

Schneider, Zulian, Krause and Hormann [n.d.]. Multigrid method with
parametric finite elements for arbitrarily shaped 2D meshes. Work in progress.
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Theory
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Chapter 1

Introduction

Let Ω ⊂ Rd be an open domain, where by Ω̄ we denote the closure of Ω. The
problem we address is the creation of the mapping

f : Ω0→ Ω1,

where Ω0 is the source domain and Ω1 is the target domain. In the following we
consider the cases where the domains are described by polygons, polyhedra, or
planar closed curves. Our main purpose is to construct bijective mappings, and
we show different approaches to achieve bijectivity. Moreover, with the applica-
tions in sight, we discuss three main properties. First, the linearity of f along the
boundary of the domain, which allows to achieve more natural results. Second,
the natural distortion introduced by the mapping. Third, the symmetry of the
construction; that is, if we construct the mapping

g : Ω1→ Ω0

by inverting the roles of Ω0 and Ω1, then g = f −1.
For the two-dimensional case, let P be a polygon with n≥ 3 vertices v1, . . . , v n ∈

R2 in anticlockwise order. Then the open domain Ω is the interior of P. Note that
throughout this dissertation we consider vertex indices cyclically over 1, . . . , n, so
that v n+1 = v1 and v0 = v n, for instance. Similarly, let

γ : I → R2

be a closed planar curve parametrized over the interval I , therefore Ω is the
interior of γ(s).

For d = 3, let P be a polyhedron with n≥ 4 vertices v1, . . . , v n ∈ R3 and l ≥ 4
triangular faces F1, . . . ,Fl , where the domain Ω is the interior of P.
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6 1.1 Generalized barycentric coordinates

1.1 Generalized barycentric coordinates

Barycentric coordinates were first discovered by August Ferdinand Möbius [Mö-
bius, 1827], while considering the problem of defining a coordinate system with
respect to simplices inRd . For instance, Möbius defined the triangular barycentric
coordinates as the ratio of signed areas of a triangle

φi(x ) =
Ai

A1 +A2 +A3
, for i = {1, 2,3} (1.1)

where Ai = A(v , v i−1, v i+1) is the signed area of the triangle opposite to v i. It
turns out that these coordinates provide a natural way to interpolate function
values at the vertices. Let hi, i = 1, . . . , 3 be some values defined at the vertices
of the triangle, then

h(x ) =
3
∑

i=1

φi(x )hi,

interpolates the values on the interior.
This essential application led to the generalization of barycentric coordinates

from simplices to arbitrary polyhedra. This generalization results in coordinates
that are no longer unique, therefore their definition follows from the fundamen-
tal properties of simplicial barycentric coordinates.

Definition 1. A set of functions φ1, . . . ,φn : Ω̄→ Rd is called a set of generalized
barycentric coordinates, if φi satisfy the three properties

1) Partition of unity:
n
∑

i=1

φi(x ) = 1, x ∈ Ω̄, (1.2a)

2) Barycentric property:
n
∑

i=1

φi(x )v
i = x , x ∈ Ω̄, (1.2b)

3) Lagrange property: φi(v
j) = δi j, j = 1, . . . , n, (1.2c)

where δi j is the Kronecker delta.

As for simplices, they can be used to interpolate values at the vertices of the
domain. Let hi ∈ R, i = 1, . . . , n be some values defined at the vertices of the
domain, then

h: Ω ⊂ Rd → R h(x ) =
n
∑

i=1

φi(x )hi, (1.3)
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Figure 1.1. Notations for Wachspress, discrete harmonic, mean value coordi-
nates, first figure. Last two figures illustrate the notation for three point family.

interpolates the function on the interior (1.2c). Moreover, if hi is sampled from
a linear function h̃(x ), then h(x ) = h̃(x ), by (1.2b).

The lack of uniqueness of generalized barycentric coordinates, drove research-
ers in the past few years to come up with many different definitions, striving for
different properties. For instance, positivity is important for interpolation, as it
guarantees that the interpolated function remains in the convex hull of the input
data, that is

max
x∈Ω̄

h(x )≤ max
i=1,...,n

hi and min
x∈Ω̄

h(x )≥ min
i=1,...,n

hi.

For applications requiring efficient evaluation, the existence of a simple closed
form is a fundamental requirement. Finally, a certain degree of smoothness (e.g.,
C1) is required when barycentric coordinates are used in optimization proce-
dures.

Following a similar approach as in triangular coordinates (1.1), a common
way to define barycentric coordinates consists of first defining a weight function
wi that satisfies (1.2b) and (1.2c). Then let

φi(x ) =
wi(x )
W (x )

, with W (x ) =
n
∑

j=1

w j(x ), i = 1, . . . , n. (1.4)

One of the first two-dimensional generalizations of barycentric coordinates
to arbitrary convex polygons was provided by Wachspress [1975]

wi =
cotγi−1 + cotβi

r2
i

, i = 1, . . . , n, (1.5)

see Figure 1.1 for the notation. These coordinates are C∞ and there is a simple
formula to evaluate them. In the 90s Dziuk [1990], Eck et al. [1995], and Pinkall
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Wachspress discrete harmonic mean value

Figure 1.2. Visualization of Wachspress, discrete harmonic, and mean value
coordinates, for a simple polygon.

and Polthier [1993] defined discrete harmonic coordinates as

wi = cotβi−1 + cotγi, i = 1, . . . , n (1.6)

which are based on the discretization of the Laplace operator. Note that these co-
ordinates seems to have first appeared in Duffin [1959]. Similarly to Wachspress
coordinates they are well defined (i.e.,they do not contain poles) only for convex
polygons. Ten years later Floater [2003] discovered mean value coordinates

wi =
tan(αi−1/2) + tan(αi/2)

ri
, i = 1, . . . , n (1.7)

which are well defined for any polygon and for any point in the plane [Hormann
and Floater, 2006]. Figure 1.2 shows an example of these three coordinates for
the first vertex.

In 2006 a general recipe for constructing barycentric coordinates called three
point family was found [Floater et al., 2006]

wp
i =

r p
i+1Ai−1 − r p

i Bi + r p
i−1Ai

Ai−1Ai
. (1.8)

It turns out that the aforementioned coordinates fall in this generalization, that
is, p = 0 leads to Wachspress, p = 1 to mean value and p = 2 to harmonic
coordinates.

These three main coordinates have also been extended to three dimensions.
For Wachspress coordinates Wachspress [1975], Warren [1996]; Ju, Schaefer,
Warren and Desbrun [2005], and Warren et al. [2007] provided the first defi-
nition. Note that the constructions in [Warren, 1996; Warren et al., 2007] also
extend to higher dimensions. For discrete harmonics Meyer et al. [2003] in-
troduced their formula for three-dimensional shapes. Finally, 3D mean value
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harmonic maximum entropy

Figure 1.3. Visualization of harmonic and maximum entropy coordinates for a
simple polygon.

coordinates are based on spherical triangles [Floater et al., 2005; Ju, Schaefer
and Warren, 2005; Langer et al., 2006].

The aforementioned coordinates have either the disadvantage of being well
defined only for a particular set of shapes or becoming negative inside the do-
main. One possibility to overcome these problems is to renounce the closed-form
formula and to define coordinates based on an optimization procedure, at the
price of making their evaluation and construction more costly. The first example
of such coordinates is harmonic coordinates [Joshi et al., 2007], which are the
solution of the Laplace equation

∆φi = 0, (1.9)

subject to suitable Dirichlet boundary conditions. That is, φi(v i) = 1, the La-
grange property on the vertices and linear on the edges.

A second case of computational coordinates is maximum entropy coordi-
nates [Hormann and Sukumar, 2008]. It requires to maximize an entropy func-
tion by enforcing the coordinates to be positive

max
φ1(x ),...,φn(x )∈R+

−
n
∑

i=1

φi(x ) ln
φi(x )
ωi(x )

∀x ∈ Ω, (1.10)

whereωi : Ω→ R+ is a prior estimate. Note that both of these coordinates can be
naturally extended to higher dimensions. Figure 1.3 shows an example of these
coordinates for a simple polygon.

All of these, as well as the Poisson coordinates [Li and Hu, 2013], positive
mean value [Lipman et al., 2007], and Green coordinates [Lipman et al., 2008],
are piece-wise linear along ∂Ω, but giving up this property can be beneficial if
conformal mappings are preferred [Weber et al., 2009].
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Figure 1.4. Notations for complex barycentric coordinates.

1.2 Complex barycentric coordinates

If we interpret the two-dimensional plane as the complex plane we can define
complex barycentric coordinates. Let the coordinates of v i = (x i, y i), then we
have the complex polygon P with n vertices z i = x i + iy i ∈ C, i = 1, . . . , n.
With this interpretation we define the generalized complex barycentric coordi-
nates [Weber et al., 2009] as complex functions φi : C→ C that satisfy

1) Partition of unity:
n
∑

i=1

φi(z) = 1, z ∈ Ω̄, (1.11a)

2) Barycentric property:
n
∑

i=1

φi(z)z
i = z, z ∈ Ω̄. (1.11b)

Notice that these two properties are the complex equivalent of (1.2a) and (1.2b).
Similarly to the real case, these coordinates can be used to interpolate values
hi ∈ C, i = 1, . . . , n defined at the vertices by the function

h: Ω ⊂ C→ C h(z) =
n
∑

i=1

φi(z)hi.

Following the same idea as in the real case, for defining complex barycentric
coordinates we first introduce the weight functions

wi : Ω ⊂ C→ C i = 1, . . . , n,

that satisfy property (1.11b). Then, to ensure partition of unity (1.11a) let

φi : Ω ⊂ C→ C φi(z) =
wi(z)

∑n
j=1 w j(z)

, i = 1, . . . , n.
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It turns out that there is a simple recipe for creating such weight functions. For
any set of complex functions γi : Ω→ C, i = 1, . . . , n the weight functions

wi(z) = γi
ρi+1

ei
− γi−1

ρi−1

ei−1
, i = 1, . . . , n

satisfy (1.11b), see Figure 1.4 for the notation.
An interesting aspect of complex coordinates [Weber et al., 2011] is that the

whole three point family can be expressed in complex settings by letting

γi =
ei

ℑ(ρ̄iρi+1)

� r p
i+1

ρi+1
−

r p
i

ρi

�

=
ei

ℑ(ρ̄iρi+1)

� |ρi+1|
p

ρi+1
−
|ρi|

p

ρi

�

.

By using this notation [Weber et al., 2011], we can rewrite complex barycentric
interpolation as

h(z) =

∑n
j=1 γ j(z)s j(z)
∑n

j=1 γ j(z)
, with s j(z) =

ρ j+1(z)h j −ρ j(z)h j+1

e j
. (1.12)

This reformulation allows us to change the “parametrization” of h from γi to the
set of monotonic polynomial “speed” functions

σi : [0,1]→ R σi(0) = 0 and σi(1) = 1, (1.13)

with
si = hi + (hi+1 − hi)

�

σi(ℜ(−ρi/ei)) + ℑ(−ρi/ei)i
�

and

γi =
e j

ℑ(ρ̄iρi+1)

�

|ρ j+1|
ρ j+1

−
|ρ j|
ρ j

�

This reformulation provides a convenient way to construct bijective mappings
(Chapter 5).

1.3 Transfinite barycentric coordinates

In this section we consider the continuous counterparts of generalized barycen-
tric coordinates. As shown in (1.3), generalized barycentric coordinates can be
used to interpolate function values defined at the vertices of a polygon or a poly-
hedron. Transfinite barycentric coordinates are the equivalent of discrete coor-
dinates for interpolation over smooth domains defined by closed planar curves.
Similarly to the discrete case, let us consider the curve γ: I = [a, b] ⊂ R→ R2
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which encloses the domain Ω. A smooth function φ(x , s), x ∈ Ω and s ∈ I that
satisfies the two properties

1) Partition of unity:

∫

∂Ω

φ(x , s)ds = 1, x ∈ Ω̄, (1.14a)

2) Barycentric property:

∫

∂Ω

sφ(x , s)ds = x , x ∈ Ω̄, (1.14b)

is called transfinite barycentric coordinate. Note that these two conditions are
the continuous analogue of (1.2a) and (1.2b). Following this analogy, we define
the transfinite interpolant. For any h̄: ∂Ω→ R, the function

h: Ω ⊂ R2→ R h(x ) =

∫

∂Ω

h̄(s)φ(x , s)ds,

interpolates the values of h̄ to any point in the domain. An analogous definition
of the three main barycentric coordinates exists for transfinite settings [Belyaev,
2006] as well as for the three point family [Schaefer et al., 2007].



Chapter 2

Bijective mappings

2.1 Barycentric mappings

A barycentric mapping between a source polygon Ω̄0 ⊂ R2 with n ≥ 3 source
vertices v i

0, i = 1, . . . , n, ordered anticlockwise, and a target polygon Ω̄1 ⊂ R2

with the same number of target vertices v i
1, is a mapping

f : Ω̄0→ Ω̄1, f (x ) =
n
∑

i=1

φi(x )v
i
1, (2.1)

where the functions φi : Ω̄0 → R, i = 1, . . . , n are barycentric coordinates with
respect to Ω̄0 (Section 1.1). Because f depends on the particular choice of co-
ordinates we denote the mapping f with the name of the coordinate generating
it. For instance, a Wachspress mapping is a barycentric mapping based on Wach-
spress coordinates.

Because of the Lagrange property (1.2c) it is clear that f (v i
0) = v i

1. Moreover,

source Wachspress mean value discrete harmonic

Figure 2.1. Example of a barycentric mapping based on different barycentric
coordinates. For the discrete-harmonic mapping we only show the image of the
interior of Ω̄0.

13



14 2.1 Barycentric mappings

if a point x = (1 − µ)v i
0 + µv i+1

0 lies on the edge [v i
0, v i+1

0 ] the only non-zero
coordinates are φi(x ) = 1 − µ and φi+1(x ) = µ, if the coordinates are linear
along the edges of the polygon. Hence the mapping is f (x ) = (1−µ)v i

1+µv i+1
1 ,

which means that it is also linear along the edges. Finally, the mapping f is
always surjective, because the coordinates φi are continuous, which implies that
f is continuous on Ω̄0, and edges are mapped to edges.

Figure 2.1 shows an example of a barycentric mapping for different coordi-
nates. We see that the mapping is linear along the edges, regardless of the choice
of coordinates, and that it is not bijective, that is, the grid folds over in concave
regions.

Barycentric mappings [Hormann and Floater, 2006; Weber et al., 2011] nat-
urally provide smooth solutions with piecewise linear boundary behaviour, but
they are not necessarily bijective. This limitation can be overcome by restricting
the set of possible domains. Wachspress mappings are known to be bijective as
long as both the source and the target polygon are convex [Floater and Kosinka,
2010], and barycentric mappings based on harmonic coordinates [Joshi et al.,
2007] are bijective as long as the target polygon is convex. The latter is not sur-
prising, once we notice that they are in fact harmonic maps and hence bijective
as a consequence of the Radó–Kneser–Choquet theorem [Choquet, 1945; Kneser,
1926; Radó, 1926].

Image warping has first been mentioned as an application of barycentric map-
pings in the context of mean value [Hormann and Floater, 2006] and transfinite
Wachspress coordinates [Warren et al., 2007], but neither these nor any of the
follow-up work [Jacobson et al., 2011; Manson and Schaefer, 2010; Weber and
Gotsman, 2010] is guaranteed to avoid fold-overs in the warped image. Even
ad-hoc methods based on radial basis functions [Arad et al., 1994] fail to guar-
antee bijectivity. Modifying the interpolation speed along the boundary of Ω has
the potential to overcome this problem [Weber et al., 2011], but it is unclear if
this approach works for arbitrary source and target polygons.

2.1.1 Convex polygons

So far, bijectivity can only be guaranteed for the special case of Wachspress map-
pings between convex polygons [Floater and Kosinka, 2010] or by triangulating
Ω and computing a piecewise linear mapping which preserves the orientation
of each triangle (Section 2.2), but this solution comes at the price of giving up
smoothness.

Figure 2.2 shows an extreme example of a barycentric mapping between two
convex polygons. In the close-up we see that the mean value mapping is not
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source Wachspress mean value

Figure 2.2. Example of a convex source and a convex target polygon with 5 ver-
tices, taken from [Floater and Kosinka, 2010], for which the mean value mapping
(right) is not bijective, whereas the Wachspress (middle) is.

bijective, whereas the Wachspress mapping is.

2.1.2 Arbitrary polygons

For any choice of barycentric coordinates, it is possible to construct a source and
a target polygon such that the barycentric mapping is not bijective [Jacobson,
2012]. In order to construct such a counterexample, let us consider the barycen-
tric mapping between a square and a deformed square, as shown in Figure 2.3.

Because we only move v3
0 , we know that v i

1 − v i
0 = 0 for i = 1,2, 4, and we

can rewrite the mapping f , evaluated at the origin, as

f (0) =
4
∑

i=1

φi(0)(v
i
1−v i

0+v i
0) =

4
∑

i=1

φi(0)(v
i
1−v i

0) = φ3(0)(v
3
1−v3

0 ) = φ3(0)(v
3
1+v1

0 ),

where we exploit the fact that v3
0 = −v1

0 in the last step.

(−1, 0) = v1
0

v2
0 = (0,−1)

v3
0 = (1, 0)

v4
0 = (0,1)

x = (0,0) v1
1

v2
1

v3
1

v4
1

f (x )

Figure 2.3. Source and target polygon for the construction of a non-bijective
barycentric mapping.
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We first assume that φ3(0) > 0.5 and show that there exists a choice of v3
1

such that f (0) = v1
1 , which contradicts the bijectivity of the mapping. To this

end, observe that

x =
φ3(0)− 1
φ3(0)

> −1

by assumption and choose v3
1 = (x , 0) = −xv1

0 . With this choice,

f (0) = φ3(0)(1− x)v1
0 = v1

1 .

Assuming next that φ3(0) < 0.5, we conclude with similar considerations that
f (0) = v3

1 , again contradicting the bijectivity of f .
Finally, consider the case when φ3(0) = 0.5. Rotating the source polygon by

90 degrees, keeping in mind that f is invariant under rotations, and repeating
the same reasoning as in the previous two cases, we conclude that φi(0) = 0.5
for all i, which contradicts the partition of unity property.

2.2 Optimization

To overcome this limitation, one possibility consists of renouncing to the use of
barycentric mappings and considering the more general problem of mapping be-
tween polygons or polyhedra. In these settings, a common approach consists of
discretizing the polygon Ω with a triangulation and formulating an optimization
process that prevents the triangles from flipping. For instance, Alexa et al. [2000]
propose to first interpolate all triangles in the triangulation by decomposing the
morphing into rotation and scale-shear. Then they propose a global optimiza-
tion problem that “glues” all triangles together. Fu and Liu [2016] extended the
previous method to also include the possibility to minimize a certain energy.

To simplify this problem, the concept of polygon mappings can be relaxed to
positional constraints. The advantage is that the algorithm attempts to satisfy
them while maintaining bijectivity. Schüller et al. [2013] and Poranne and Lip-
man [2014] formulate an energy that encapsulates the mapping distortion, the
positional constraints, and a barrier function to prevent triangles from flipping.

Surface parametrization methods [Floater and Hormann, 2005; Sheffer et al.,
2006] can be used to create bijective maps that are piecewise linear along the
boundary by interpreting Ω̄0 as a (planar) mesh and parametrizing it over the
domain Ω̄1. However, they require triangulating Ω̄0 and provide only piecewise
linear solutions [Weber and Zorin, 2014]. The same restriction holds for quasi-
conformal maps [Weber et al., 2012] and variational methods that minimize the
distortion of the map [Aigerman et al., 2014; Lipman, 2012].
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Finally, a continuous bijective mapping can be obtained trough simplicial fo-
liations [Campen et al., 2016]. In other words, the mesh is decomposed in 1D
sub-manifolds and the mapping consists of parametrizing them. In contrast with
the “mesh-based” approaches, this method constructs “a bijection” without pro-
viding flexibility for optimization.
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Chapter 3

Shape interpolation

Shape blending or shape morphing is a very active research field in computer
graphics, which deals with the mathematical theory and the algorithms for con-
structing a gradual and continuous transformation between two planar or solid
shapes. The problem is typically divided into two steps: the vertex correspondence
problem, which establishes a correspondence between the two shapes [Belongie
et al., 2002; Liu et al., 2004; Sederberg and Greenwood, 1992; Xu et al., 2009;
Zhang, 1996], and the vertex path problem, which actually determines the inter-
polated shape.

3.1 Polygons

Given two planar polygons P0 ⊂ R2 and P1 ⊂ R2, the problem of blending be-
tween these two polygons consists of finding for any t ∈ [0,1] a polygon Pt ⊂ R2

such that the mapping t → Pt is at least continuous in t and reproduces P0 for
t = 0 and P1 for t = 1. One can then interpolate continuously between P0 and
P1 by varying the parameter t.

The simplest approach consists of linearly interpolating the vertices from
source to target. This method has two main disadvantages: first it depends
on the global position of the two polygons; second, it is likely to produce self-
intersecting polygons. Instead, the intermediate polygons can be computed by
linearly interpolating the turning angle and the edge lengths [Sederberg et al.,
1993], which generates more natural results. Moreover, this method is intrinsic,
since edges and angles are invariant with respect to similarity transformations.

An alternative approach consists of creating a multi-resolution representation
of the two input curves (or polygons) and to interpolate between these multi-
resolution representations to create the intermediate shape [Goldstein and Gots-

19
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man, 1995].
Other methods propose to formulate the problem as a shape interpolation by

either using skeletons [Michal and Ari, 1995; Mortara and Spagnuolo, 2001] or
triangular meshes [Alexa et al., 2000]. The main advantage of this reformulation
is that the whole body is considered in the algorithm, which makes it is really
hard to produce self-intersecting intermediate polygons.

Unfortunately, none of these methods guarantees that the intermediate shapes
are intersection-free. To overcome this limitation in two dimensions, initial re-
sults deal with pairs of polygons that have corresponding parallel edges [Guibas
et al., 1999] or by interpolating simple polylines [Alon et al., 2001].

A more general method embeds the two polygons inside a convex region,
generates a pair of compatible triangulations and interpolates the stochastic ma-
trices whose eigenvectors encode the geometry [Gotsman and Surazhsky, 2001].

An alternative idea is to create the intermediate polygons by “unfolding” the
source polygon and “refolding” it back to the target polygon [Iben et al., 2009].

3.2 Polyhedra

The problem is the same in three dimensions. However, instead of considering a
pair of polygons, we consider a pair of polyhedra. In other words, let P0 ⊂ R3 and
P1 ⊂ R3 source and target polyhedra, we seek for a mapping t ∈ [0, 1]→ Pt ⊂ R3

that is at least continuous in t and reproduces P0 and P1 for t = 0 and t = 1
respectively.

By combining two-dimensional ideas in 3D, we first interpolate edges and
dihedral angles, and then we follow a hierarchical shape-matching approach, to
derive a globally coherent solution [Winkler et al., 2010]. An alternative and
simpler approach involves decomposing the global interpolation problem into
local affine transformations and splitting them into a rotational part and a scale-
shear part [Sumner and Popović, 2004; Sumner et al., 2005]. While the scale-
shear part can then be interpolated linearly, the rotational part should be treated
in log-space. However, the problem is that this method cannot properly handle
large global rotations.

3.3 Curves

Given two planar parametric curves γ0 : I0→ R2 and γ1 : I1→ R2, the problem of
blending between these two curves is to find for any t ∈ [0,1] a curve γt : It → R2
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Figure 3.1. Deformation of the source curve γ0 (left) into the target curve γ1

(right). The top row shows the parametrization-based interpolant, the middle
row the curvature-based interpolant, and the third row the results of our closing
process. The dot indicates the start and end point of the curves.

such that the mapping t → γt is at least continuous in t and reproduces γ0 for
t = 0 and γ1 for t = 1. One can then interpolate continuously between γ0 and
γ1 by varying the parameter t.

If we assume that γ0 and γ1 are parametrized over a common interval I = I0 =
I1, then the simplest blending is given by γt : I → R2, γt(s) = (1− t)γ0(s)+ tγ1(s),
but this choice is undesirable for two reasons. First, it depends on the particular
parametrizations of γ0 and γ1 and second, it can lead to either naturally (Fig-
ure 3.1, first row) or unnaturally looking intermediate curves (Figure 3.2, first
row).

A more promising approach [Surazhsky and Elber, 2002] consists of defining
the intermediate curve by linearly interpolating the signed curvature functions
of γ0 and γ1 and to reconstruct the intermediate curve γt from the interpolated
curvature values. However, if γ0 and γ1 are closed, then this procedure can result
in an open curve γt , which is again undesirable. Surazhsky and Elber [2002] fix
this problem by adapting the strategy of Sederberg et al. [1993] to close γt in
a post-processing step. Note that the idea of working in curvature space is also
useful for computing isometric curvature flow [Crane et al., 2013].

We propose to interpolate two smooth closed curves in curvature space, us-
ing an appropriate discretization of the curvature space. Since the interpolated
curves happen to be open, we introduce and use a new distance to assure that
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Figure 3.2. Deformation of the same input curves as in Figure 3.1, except that
the target curve γ1 is rotated clockwise by ninety degrees. The rows shows the
same approaches as in Figure 3.1.

any interpolated curve can be approximated by the closest closed piecewise lin-
ear curve. We then fit a spline in a least square sense to the sampled points of
the piecewise linear curve, to obtain the final smooth result. Our method lets
the user choose the desired degree of approximation via three parameters: the
number of samples on the curve, the degree of the fitting spline, and the number
of its control points.

Let the two given curves γ0 and γ1 be C2-continuous and closed, and assume
without loss of generality that they are parametrized with respect to arc length
over the intervals I0 = [0, L0] and I1 = [0, L1], respectively, where Li is the length
of the curve γi. That is, γi(0) = γi(Li) and ‖γ′i(s)‖= 1 for any s ∈ Ii.

It is well known [do Carmo, 1976] that for any given signed curvature func-
tion k : [0, L]→ R there exists a unique regular planar curve γ: [0, L]→ R2 up
to rigid motions, such that the signed curvature of γ with respect to arc length is
exactly k, and there even exists an explicit way of constructing γ. We simply let

θs =

∫ s

0

k(u)du+ θ0, (3.1a)

and then

γ(s) =
�

∫ s

0

cosθudu+ x0,

∫ s

0

sinθudu+ y0

�T

, (3.1b)
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where x0, y0, and θ0 are the constants of integration which determine the afore-
mentioned rigid motion, that is γ(0) = (x0, y0) and γ′(0) = (cosθ0, sinθ0).

Motivated by this property, Surazhsky and Elber [2002] propose to blend
between γ0 and γ1 by linearly interpolating k0 and k1 and let γt be the curve that
corresponds to the signed curvature function (1− t)k0+ tk1 and an appropriately
chosen rigid motion. Since curvature is an intrinsic property of a curve, this
approach has the advantage of being independent of the particular positions,
orientations, and parametrizations of γ0 and γ1, which results in a very intuitive
interpolation of their shapes. Unfortunately, the curve γt is not necessarily closed,
as shown in the middle row of Figures 3.1 and 3.2.

To overcome this problem, we propose the following approach. Let I = [0, 1]
be the unit interval and consider the set

Γ = {γ: I → R2 | ‖γ′(s)‖= 1,∀s ∈ I}

of all planar C2 curves with unit length, parametrized with respect to arc length,
as well as the subset

Γ◦ = {γ ∈ Γ | γ(0) = γ(1),γ′(0) = γ′(1),γ′′(0) = γ′′(1)}

of all closed C2 curves.
After scaling the given curves uniformly by 1/L0 and 1/L1, respectively, we

can assume without loss of generality that γ0,γ1 ∈ Γ◦ and k0, k1 ∈ C[0, 1]. To
account for this simplification we simply re-scale all intermediate curves γt ∈ Γ◦
uniformly by the linearly interpolated length Lt = (1− t)L0 + t L1, so as to get a
smooth blend from γ0 to γ1.

For any t ∈ [0, 1], let

k̄t = (1− t)k0 + tk1 ∈ C[0,1]

be the linearly interpolated signed curvature function and γ̄t be the unique curve
that corresponds to k̄t with

γ̄t(0) = (1− t)γ0(0) + tγ1(0),

γ̄′t(0) = (1− t)γ′0(0) + tγ′1(0).

Since γ̄t is not necessarily closed, we would like to take as intermediate curve
the closed curve γt ∈ Γ◦ that is closest to γ̄t with respect to some metric, that is

d(γ, γ̃) = ‖k− k̃‖2,

where ‖·‖2 is the classical L2-norm and k, k̃ ∈ C[0,1] are the signed curvature.
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Figure 3.3. Approximation of a smooth curve γ by a polygon P, which can also
be seen as a piecewise linear curve γ̂. The exterior angle at vertex v i of P is
denoted by αi.

Interestingly, this choice guarantees not only that γ is close to γ̃ with respect
to curvature, but also with respect to the parametric distance

d̄(γ, γ̃) = max
s∈[0,1]

‖γ(s)− γ̃(s)‖,

at least once they have been aligned properly as proven in [Saba et al., 2014].
The final problem consists of finding a closed curve γt such that

d(γt , γ̃t) =min
γ∈Γ◦

d(γ, γ̃t), (3.2)

is minimal.

3.3.1 Discretization

Solving the optimization problem (3.2) in the smooth setting is difficult for two
reasons. The first problem is that parametric curves are usually not given with
respect to arc length and an analytic form of the signed curvature function with
respect to arc length usually does not exist. The second problem is that there is no
easy way to see if the curve γ which corresponds to some given signed curvature
function k is closed. But minimizing over the set Γ◦, without having at hand a
simple criterion for determining if γ ∈ Γ◦, is infeasible. Hence, we propose to use
an approximate solution in practice.

Computing the signed curvature function

To tackle the first problem, we sample an arbitrary given curve γ: [a, b] → R2

at n+ 1 uniformly distributed parameter values ui = a + (b − a)i/n, giving the
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polygon P = [v0, . . . , v n] with points v i = γ(ui) for i = 0, . . . , n (Figure 3.3). If
the curve γ is closed, then so is P with v0 = v n.

Now consider the partition σ = (s0, . . . , sn) of [0,1] with s0 = 0 and

si =
i
∑

j=1

‖v j − v j−1‖
Á n
∑

j=1

‖v j − v j−1‖

for i = 1, . . . , n. The polygon P can then also be seen as the curve γ̂: [0,1]→ R2,
which is piecewise linear overσ with γ̂(si) = v i for i = 0, . . . , n. The curve γ̂ is an
arc length parametrized approximation of γ and the Hausdorff distance between
γ and γ̂ is of order 1/n2 [Floater, 2005].

We also use the sample points v i to estimate the signed curvature of γ at v i

as

κi =
2αi

‖v i − v i−1‖+ ‖v i+1 − v i‖
(3.3)

for i = 1, . . . , n− 1, where αi is the signed angle between v i − v i−1 and v i+1− v i

(Figure 3.3).
For closed curves we also compute κ0 = κn by the same formula, using v−1 =

v n−1 and v n+1 = v1. The function k̂ : [0,1]→ R, which is piecewise linear over σ
with k̂(si) = κi for i = 0, . . . , n is then an approximation of the signed curvature
function k of γ with respect to arc length.

The polygon P or the curve γ̂ can be reconstructed up to a uniform scaling and
a rigid motion from k̂ and the parametrization σ, because the edge lengths of P
are proportional to the distances si−si−1 and the turning angles αi at the vertices
of P can be recovered from the values k̂(si) using (3.3). We first specify v0 and
α0 to fix the rigid motion and then proceed in the spirit of (3.1) by defining the
rotation of the edge [v i, v i+1] as θi =

∑i
j=0α j and the vertices of P as

v i = v i−1 + |si − si−1|
�

cosθi−1

sinθi−1

�

, (3.4)

for i = 1, . . . , n.

Solving the optimization problem

To solve the optimization problem (3.2) we start by approximating the two given
curves γ0 and γ1 as described above and considering the linearly interpolated
signed curvature function

k̂t = (1− t)k̂0 + t k̂1.
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With K denoting the space of all functions that are piecewise linear over the joint
partition σt = σ0 ∪σ1 with nodes s0, . . . , sm, for some m< 2n, we have k̂t ∈ K .

We can now reconstruct a corresponding piecewise linear curve γ̂t as ex-
plained at the end of the previous section, but as in the continuous case, this curve
will usually not be closed. Therefore, our goal is to change k̂t in the least possible
way, so as to close the curve. That is, we want to find values δ0, . . . ,δm ∈ R with
δ0 = δm, such that the piecewise linear curve γ̃t , which corresponds to k̃t ∈ K
with k̃t(si) = k̂t(si) + δi for i = 0, . . . , m, is closed. To solve (3.2), we thus need
to minimize

‖k̃t − k̂t‖2 =

� m
∑

i=1

δi
2

�

1
2

.

A slightly more intuitive understanding of this optimization procedure is the fol-
lowing. First note that the two initial piecewise linear curves γ̂0 and γ̂1, which we
assume to have unit length, can also be seen as piecewise linear curves over the
joint partition σt . For the corresponding closed polygons P0 and P1 this means
that we have to refine them by inserting some points on the edges. For instance,
if si ∈ σt is a node in σ1 but not in σ0 then we add the point γ̂0(si) to P0 and vice
versa. The refined closed polygons P̂0 = [v0

0 , . . . , vm
0 ] and P̂1 = [v0

1 , . . . , vm
1 ] then

have the same number of points and matching edge lengths

ei = ‖v i
0 − v i−1

0 ‖= ‖v
i
1 − v i−1

1 ‖

for i = 1, . . . , m, because they share the same parametrization σt .
The procedure above, which keeps the parametrization, then searches for a

closed intermediate polygon P̂t = [v0
t , . . . , vm

t ] with edge lengths ‖v i
t − v i−1

t ‖= ei

for i = 1, . . . , m and exterior angles which are as-close-as-possible to the linearly
interpolated target values α̂i

t for i = 0, . . . , m. Note that we cannot use the angles
(1− t)α̂i

0 + tα̂i
1 as α̂i

t , because about half of the exterior angles α̂i
0 and α̂i

1 at the
vertices of P̂0 and P̂1 are zero, and this would introduce unexpected artefacts in
the result. Instead, we use the linearly interpolated signed curvature function k̂t

and (3.3) to convert the curvature values k̂t(si) into α̂i
t .

In order to close the polygon we have to ensure that v0
t = vm

t . One possible
approach for closing the curve is to follow Sederberg et al. [1993] who keep the
linearly interpolated angles fixed and modify the edge lengths to ensure that the
polygon is closed. While this procedure also modifies the curvature as defined
in (3.3), the big advantage is that it leads to a closed-form solution. However,
in our setting we want to keep the edge lengths fixed, because we want to pre-
serve the common arc length parametrization σt , and hence modify the angles.
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Figure 3.4. Convergence of the piecewise linear signed curvature function in
the L2-norm.

Unfortunately this leads to the non-linear optimization problem

min
α̃t

n−1
∑

i=0







2
ei−1 + ei

(α̃i
t − α̂

i
t)






2
,

subject to v0
t = vm

t . In order to find α̃t we use the off-the-shelf solver fmincon in
MATLAB and implement the closing constraint by constructing vm

t with (3.4) and
for the initial guess we use α̂t .

To finally obtain a smooth closed intermediate curve, we compute γt ∈ Γ◦
by fitting a closed B-spline curve in the least squares sense to the vertices of the
piecewise linear curve γ̃t (or rather the polygon P̂t). For this fitting procedure,
we use the nodes of σt as initial parameter values, but perform several iterations
of parameter optimization [Hoschek, 1988] to improve the result and to get a
B-spline curve that is very close to being arc-length parametrized. Note that this
would be difficult to achieve if we directly optimized the B-spline coefficients.

3.3.2 Results

In Section 3.3.1 we discuss how to approximate the signed curvature function of a
smooth curve with respect to arc length by a piecewise linear function. To verify
the approximation order of this approach we consider the following example.
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t = 0 t = 1/4 t = 1/2 t = 3/4 t = 1

Figure 3.5. Interpolation results using initial polygons P0 and P1 with 500 vertices
and fitting quintic B-Spline curves with 100 control points to the interpolated
closed polygons P̂t . The dot indicates the start and end point of the curves.

We sample the smooth curve in the upper left of Figure 3.4 with n sample points,
with n ranging from 10 to 50000, construct the approximate piecewise linear
signed curvature functions as described in (3.3), and compute the L2-norm of
the difference to the exact signed curvature function. Figure 3.4 shows that the
error behaves like O(1/n2).

Figure 3.5 shows some results of the non-linear optimization procedure de-
scribed in Section 3.3.1 for interpolating between two cosine functions in polar
coordinates with different periods. For this example we need initial polygons P0

and P1 with 500 vertices in order to accurately approximate the input curves and
quintic B-splines with 100 control points to capture the details of the interpolated
polygons P̂t during the fitting step.

Figure 3.6 shows another example, where the input curves are arc-splines
with piecewise constant signed curvature functions. Hence, the linearly interpo-
lated target curvature is piecewise linear, too, but our method still interpolates
successfully between the two curves. Figure 3.7 illustrates how the parameters
of our method (that is, the number of samples used to create the initial polygons

t = 0 t = 1/4 t = 1/2 t = 3/4 t = 1

Figure 3.6. Interpolation results using initial polygons P0 and P1 with 500 vertices
and fitting quintic B-Spline curves with 50 control points to the interpolated
closed polygons P̂t . The dot indicates the start and end point of the curves.
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Figure 3.7. Target curvature (blue) and curvature of the interpolated closed curve
for the example in Figure 3.6 at t = 1/2, varying the number of sample points
used for creating P0 and P1 and the number of control points of the B-spline
curve.

and the number of control points of the B-spline curve in the fitting step) influ-
ence the interpolated closed curve. We notice that increasing both the number of
samples and the number of control points helps to reduce the difference between
the target curvature and the curvature of the interpolated curve.

Figures 3.8 and 3.9 show a comparison of different methods for interpolating
between two given B-spline curves with the same degree and the same number
of control points. The simplest approach is to linearly interpolate the coordinates
of the control points, with the obvious disadvantage that the result depends on
the orientation of the initial curves and is not very intuitive. A much better and
orientation-independent solution is obtained by using the algorithm of Sederberg
et al. [1993] to interpolate between the control polygons of the initial curves and
to take the resulting polygon as the control polygon of the interpolated curve.
Following the idea of Surazhsky and Elber [2002], another approach is to fit a B-
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Figure 3.8. Comparison of the interpolation results by different methods. Source,
target, and intermediate curves are quintic B-splines with 10 control points, and
we used 100 samples for the initial polygons. The dot indicates the start and
end point of the curves.

spline curve to the open intermediate curve γ̄t , which corresponds to the linearly
interpolated signed curvature function, and to then apply a closing procedure to
the control polygon to close the B-spline curve.

Even though it is not entirely clear which of the results is visually best, Fig-
ures 3.10 and 3.11 clearly show that the signed curvature functions of the closed
intermediate curves generated by our method are closer to the linearly inter-
polated target curvature than for the other methods. Note that the L2-error
in Figure 3.11 for the curves generated by the approach of Surazhsky and El-
ber [Surazhsky and Elber, 2002] does not converge to 0 as t approaches 0 or
1, because the fitting step always generates an open B-spline curve, even if γ̄t

happens to be closed. Hence, the initial curves are not reproduced. Further, note
that the “spikes” in the black, blue, and green plots in Figure 3.11 result from the
intermediate curves having cusps, that is, containing singular points with infinite
curvature.
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Figure 3.9. Comparison of the interpolation results by different methods. Source,
target, and intermediate curves are quintic B-splines with 16 control points, and
we used 200 samples for the initial polygons. The dot indicates the start and
end point of the curves.
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Figure 3.10. Comparison of the target curvature (black) and the curvatures of
the interpolated closed curves at t = 1/2 for the examples in Figures 3.8 (left)
and 3.9 (right).
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Figure 3.11. L2-norms of the differences between target curvatures and curva-
tures of the interpolated curves for the example in Figure 3.8.

3.3.3 Limitations

When the two source and target curves are simple and closed, it is desirable
to have all the interpolants both closed and simple. Our method always gen-
erates closed intermediate curves, but is not able to ensure the absence of self-
intersections. For this it is necessary to either take intersections explicitly into
account [Iben et al., 2009] or to consider the curve as the boundary of a (possibly
triangulated) shape [Gotsman and Surazhsky, 2001; Chen et al., 2013].

It is hard to tell what should be the correct behaviour of a method when
blending two curves with different turning numbers. This is challenging for test-
ing our approach of wanting to be as compliant as possible with the “natural”
deformation of the curves, since it involves one or more foldings or un-foldings.
We experimented by blending a circle into an “8-shaped” curve. The results are
reported in Figure 3.12. One can see how all methods, including ours, have a
rather unpredictable behaviour.

Another limitation of our current implementation is that we cannot guarantee
temporal smoothness, that is, smoothness of the mapping t → γt , because the
non-linear solver may run into a slightly different local minimum if t is changed
by some small ε. It remains future work to study this behaviour in theory and
to see if it can be fixed by implementing a better solver. However, a practical
solution is to use our approach to compute intermediate curves for t = k/N , k =
1, . . . , N−1 (with N = 20, for example) and to then use the method of Sederberg
et al. [1993] for interpolating between the resulting curves.

We further believe that shape matching (that is, taking into account the se-
mantics of the shapes and not only the geometry) will further improve our results,
but it is beyond the scope of this chapter to properly address this issue, which
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Figure 3.12. Comparison of the methods when interpolating two curves with
different turning numbers. In this case, γ0 (left) has turning number 1 and γ1

(right) has turning number 0.

is a major problem in computer vision and pattern recognition [Belongie et al.,
2002; Xu et al., 2009].

For example, we could apply our method to topologically similar shapes, us-
ing their topological skeleton, thus not being limited to examining the curve,
but taking also into account its orientation (that is, what is inside or outside the
curve) to define which shape it bounds. This will extend our method from curves
to surfaces. If we want to blend two shapes having the same topology (that is,
they have the same graphs of the skeleton), it is possible to use information con-
tained in the skeleton [Michal and Ari, 1995] to avoid self-intersections, and,
more generally speaking, to keep track of the shape while blending them.
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Chapter 4

Composite barycentric mapping

Let us denote the partial derivatives of the barycentric mapping f = ( f1, f2)
in (2.1) at x = (x1, x2) ∈ Ω̄0 by ∂k f (x ) = ∂ f /∂ xk, k = 1,2, and the gradients of
its two components fi by ∇ fi = (∂1 fi,∂2 fi).

Since we consider only source and target polygons without self-intersections
and assume that the barycentric coordinates φi are at least continuously differ-
entiable, a sufficient condition for the injectivity of f is that its Jacobian deter-
minant

J f =

�

�

�

�

∂1 f1 ∂2 f1

∂1 f2 ∂2 f2

�

�

�

�

is strictly positive in Ω̄0 [Meisters and Olech, 1963]. As it follows from (2.1)
that a barycentric mapping between identical source and target polygons is the
identity with J f (x ) = 1 for all x ∈ Ω̄0, it is reasonable to expect that a small
perturbation of the target vertices keeps J f positive and the mapping bijective,
as shown in Figure 4.1.

1

0.5

0

1.5

<0

>1.5

Ω̄0 Ω̄1 Ω̄1 Ω̄1

Figure 4.1. Colour-coded plots of J f for the mean value mapping f : Ω̄0 → Ω̄1

for different target polygons, which remains positive when the perturbation is
small, but becomes negative for large deformations.

35
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v i
0

ui
v i

1 v i
0

ui
v i

1

Figure 4.2. Perturbation of one vertex (left) and all vertices (right) of the target
polygon.

4.1 Perturbed target polygons

Consider first a target polygon with a single perturbed vertex, as shown in Fig-
ure 4.2. Formally, the target vertices are v i

1 = v i
0 + u for some i and v j

1 = v j
0

for j 6= i. Substituting these target vertices v i
1 in (2.1) and recalling the linear

reproduction property, we obtain

f (x ) = x +φi(x )u

for any x ∈ Ω̄0 and further

J f (x ) =

�

�

�

�

1+ ∂1φi(x )u1 ∂2φi(x )u1

∂1φi(x )u2 1+ ∂2φi(x )u2

�

�

�

�

= 1+∇φi(x ) · u.

Therefore,
J f (x )≥ 1− |∇φi(x ) · u| ≥ 1− ‖u‖‖∇φi(x )‖,

which is strictly positive for ‖u‖< 1/Mi with

Mi = sup
x∈Ω̄0

‖∇φi(x )‖.

This result nicely extends to a perturbation of all vertices, where we consider
a target polygon with vertices v i

1 = v i
0 + ui for i = 1, . . . , n (Figure 4.2). Using

again the linear reproduction property, we reformulate the mapping as

f (x ) = x +
n
∑

i=1

φi(x )ui
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Ω0

v i
0

v i
tk

v i
1

ψi

Ωtk
Ω1

Figure 4.3. Construction of the intermediate polygon Ω̄tk using the vertex paths
ψi.

for any x ∈ Ω̄0, hence

J f (x ) =

�

�

�

�

1+
∑

i ∂1φi(x )ui,1

∑

i ∂2φi(x )ui,1
∑

i ∂1φi(x )ui,2 1+
∑

i ∂2φi(x )ui,2

�

�

�

�

= 1+
∑

i
∇φi(x ) · ui +

∑

i

∑

j
∂1φi(x )∂2φ j(x )(ui × u j),

where ui = (ui,1, ui,2) and the sums range from 1 to n. Therefore,

J f (x )≥ 1−Md −M2d2

with M = M1 + · · · + Mn and d = max1≤i≤n ‖ui‖. Overall, this implies that the
mapping f is injective if

d <

p
5− 1
2M

.

4.2 Bijective composite barycentric mapping

Section 4.1 suggests that if the source and target polygons are sufficiently close,
the mapping is close to the identity and hence bijective. Therefore, by “splitting”
the barycentric mapping from source to target polygon into a finite number of
intermediate steps, where each step perturbs the vertices only slightly, it should
be possible to obtain a bijective composite mapping.

To this end, suppose thatψi : [0,1]→ R2, i = 1, . . . , n are a set of continuous
vertex paths between each source vertex v i

0 =ψi(0) and its corresponding target
vertex v i

1 = ψi(1), as shown in Figure 4.3. Let τ = (t0, t1, . . . , tm) with t0 = 0,
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f0 =
n
∑

i=1

φ0
i v i

0.5 f0.5 =
n
∑

i=1

φ0.5
i v i

1

fτ = f0.5 ◦ f0

Ω0 Ω0.5 Ω1

Figure 4.4. Construction of a composite barycentric mapping for τ= [0,0.5, 1].

tm = 1, and tk < tk+1 for k = 0, . . . , m− 1 be a partition of [0, 1] and fk be the
barycentric mapping from Ω̄tk

to Ω̄tk+1
, based on the barycentric coordinates φ tk

i .
The mapping

fτ = fm−1 ◦ fm−2 ◦ · · · ◦ f0

is called a composite barycentric mapping from Ω̄0 to Ω̄1 [Schneider et al., 2013].
An example of a composite barycentric mapping between a square and a concave
quadrilateral is shown in Figure 4.4.

Denoting the maximum displacement distance between Ω̄tk
and Ω̄tk+1

by

dk = max
1≤i≤n



v i
tk
− v i

tk+1



,

it follows from the previous results that fτ is bijective if

dτ = max
0≤k<m

dk <

p
5− 1

2nM ∗
, (4.1)

where

M ∗ = max
1≤i≤n

sup
t∈[0,1]

sup
x∈Ω̄t

‖∇φ t
i (x )‖.

For the special case of mean value mappings, this bound can provably be satisfied
for mappings between any convex polygons [Floater, 2014]. Figure 4.5 shows
that with enough intermediate steps the mapping f becomes bijective.

In particular, there exists some m ∈ N such that the uniform partition τm with
tk = k/m gives a bijective composite barycentric mapping fτm

. Figure 4.6 shows
an example of a composite mean value mapping for two nested squares, where
the interior square rotated by 90 degrees in the target configuration using the
uniform partition τ1000.
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t =0 t =0.25 t =0.5 t =0.75 t =1

1 step 4 steps 10 steps 20 steps

Figure 4.5. Examples of uniform composite mean value mappings for different
numbers of uniform steps.

4.3 Limit of composite barycentric mappings

The idea of uniform composite barycentric mappings leads to the interesting
question of the behavior in the limit. To this end, we consider the infinite compos-
ite barycentric mapping f∞ = limm→∞ fτm

and its backward mapping g∞ : Ω̄1 →
Ω̄0. Figure 4.7 shows the result of mapping a star with a uniform composite
mapping fτm

composed with its backward mapping gτm
: Ω̄1→ Ω̄0 with the same

number of steps. Computing the maximum distance ‖x − gτm
( fτm
(x ))‖ for one

million random points x ∈ Ω̄0 indicates that this distance converges to zero and
so gτm

= f −1
τm

as m → ∞. Consequently, the inverse of an infinite barycentric

source targett =0.75

t =0.5

t =0.25

Figure 4.6. Example of a composite mean value mapping with 1000 uniform
steps. The resolution of the grid is increased by a factor of four in the close-up.
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target 100 steps 200 steps 400 steps

Figure 4.7. Composing the mapping fτm
and the backward mapping gτm

con-
verges to the identity as the number of uniform steps m increases.

mapping is likely to be an infinite barycentric mapping itself, which is not the
case for standard barycentric mappings.

This observation can be proven by considering the difference between two
successive steps and taking its limit [Floater, 2015]. For any point x 0 ∈ Ω̄0 we
evaluate the first step f0 of the composite mapping f ,

x t1 = f0(x
0) =

n
∑

i=1

φ
t0
i (x

0)ψi(t1).

Because of the linear reproduction property,

x 0 =
n
∑

i=1

φ
t0
i (x

0)ψi(t0),

hence

x t1 − x 0 =
n
∑

i=1

φ
t0
i (x

0)(ψi(t1)−ψi(t0)).

Dividing by t1 − t0 and taking the limit for t1→ t0, yields

x ′(t) =
n
∑

i=1

φi(x (t), t)ψ′i(t),

which is a first-order differential equation in x (t) of the form

x ′(t) = F(t, x (t)).

with initial condition x (0) = x 0.
If the barycentric coordinatesφi and the vertex pathsψi are Lipschitz-continuous

in x and t, then F is Lipschitz-continuous, too, which is a sufficient condition for
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source
t = 0.2 t = 0.4 t = 0.6 t = 0.8

target

Figure 4.8. Example of a composite mean value mapping between two closed
planar curves. The grid shows how the interior of the source curve is morphed
to the interior of the target curve.

the existence of a local unique solution, according to the Picard–Lindelöf Theo-
rem [Picard, 1893; Lindelöf, 1894]. The solution of the differential equation is
also a global solution, since x (t) stays inside all intermediate polygons. This is
the case because the mapping is bijective and edges are mapped to edges.

In order to show that g−1 = f we consider, for any point x 1 = x (1) ∈ Ω̄1

y ′(t) =
n
∑

i=1

φi(x (1− t), 1− t)ψ̄′i(t), ψ̄i(t) =ψi(1− t)

with y(0) = x (1) as the mapping of x 1 from Ω̄1 to Ω̄0. Because ψ̄′i(t) = −ψ
′
i(1−

t), we conclude that y(t) = x (1− t). Therefore, y(1) = x 0 and g has an inverse
generated by the previous equation with g−1 = f .

4.4 Extensions

The sufficient condition for guaranteeing bijectivity of a composite barycentric
mapping between polygons can be naturally extended to mappings between
closed curves and polyhedra.

4.4.1 Closed planar curves

We define the barycentric mapping between a closed planar source curve γ0(s)
and a closed-planar target curve γ1(s) with s ∈ [0,1], as

f (x ) =

∫ 1

0

φ(s, x )γ1(s)ds,

where φ(s, x ) are the transfinite barycentric coordinates with respect to γ0 (Sec-
tion 1.3). Analogously to the polygonal case, we now consider a perturbed target
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curve γ1(s) = γ0(s)+ u(s) and assume that the maximum displacement distance
satisfies

d = sup
s∈[0,1]

‖u(s)‖<
p

5− 1
2M

,

where
M = sup

s∈[0,1]
sup
x∈γ0

‖∇φ(s, x )‖.

We exploit the linear reproduction property to rewrite

f (x ) = x +

∫ 1

0

φ(s, x )u(s)ds

and compute

J f (x ) =

�

�

�

�

1+
∫

∂1φ(s, x )u1(s)ds
∫

∂2φ(s, x )u1(s)ds
∫

∂1φ(s, x )u2(s)ds 1+
∫

∂2φ(s, x )u2(s)ds

�

�

�

�

= 1+

∫

∇φ(s, x ) · u(s)ds+

∫∫

∂1φ(s, x )∂2φ(r, x )(u(s)× u(r))ds dr,

where the integrals range from zero to one. Therefore,

J f (x )≥ 1−Md −M2d2,

which is strictly positive for Md < (
p

5− 1)/2. Hence the mapping is injective
as long as d <

p
5−1
2M . It is interesting to note that this bound is the same as in the

polygonal case.
Now suppose that ψ is a continuous closed curve interpolation function be-

tween the source curve γ0 =ψ(0) and the target curve γ1 =ψ(1). Again we let
τ = (t0, t1, . . . , tm) with t0 = 0, tm = 1, and tk < tk+1 for k = 0, . . . , m− 1 be a
partition of [0,1] and let fk be the barycentric mapping from γtk

to γtk+1
, based

on the barycentric coordinates φ tk . The mapping

fτ = fm−1 ◦ fm−2 ◦ · · · ◦ f0,

is called a composite barycentric mapping from γ0 to γ1. An example of a com-
posite barycentric mapping between two closed curves is shown in Figure 4.8.

Denoting the maximum displacement distance between γtk
and γtk+1

by

dk = sup
s∈[0,1]



γtk
(s)− γtk+1

(s)


,
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source t = 0.2 t = 0.4 t = 0.6 t = 0.8 target

Figure 4.9. Example of a composite mean value mapping between two polyhe-
dra. The color shows how the interior of the source polyhedron is morphed to
the interior of the target polyhedron.

it follows from the previous result that fτ is bijective if

dτ = max
0≤k<m

dk <

p
5− 1

2nM ∗
,

where
M ∗ = sup

s∈[0,1]
sup

t∈[0,1]
sup
x∈γt

‖∇φ t(s, x )‖.

4.4.2 Polyhedra

A barycentric mapping between two polyhedra with the same number of vertices
n and the same topology is defined as a function

f : Ω̄0→ Ω̄1, f (x ) =
n
∑

i=1

φi(x )v
i
1,

where v i
1 are the vertices of the target polyhedron and φi(x ) are 3D barycen-

tric coordinates (Section 1.1). An example of such a mapping is illustrated in
Figure 4.9.

As in the polygonal case we first perturb only one vertex and consider a target
polyhedron with vertices v i

1 = v i
0 + u for some i and v j

1 = v j
0 for j 6= i. Then,

J f (x ) =

�

�

�

�

�

�

1+ ∂1φi(x )u1 ∂2φi(x )u1 ∂3φi(x )u1

∂1φi(x )u2 1+ ∂2φi(x )u2 ∂3φi(x )u2

∂1φi(x )u3 ∂2φi(x )u3 1+ ∂3φi(x )u3

�

�

�

�

�

�

= 1+∇φi(x ) · u

and
|J f (x )| ≥ 1− |φi(x ) · u| ≥ 1− ‖φi(x )‖‖u‖,

which is positive for ‖u‖< 1/Mi with

Mi = sup
x∈Ω
‖∇bi(x )‖.
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Again, we perturb all vertices of the polyhedron and consider a target poly-
hedron with vertices v i

1 = v i
0 + ui for i = 1, . . . , n, to get

J f (x ) =

�

�

�

�

�

�

1+
∑

i ∂1φi(x )ui,1

∑

i ∂2φi(x )ui,1

∑

i ∂3φi(x )ui,1
∑

i ∂1φi(x )ui,2 1+
∑

i ∂2φi(x )ui,2

∑

i ∂3φi(x )ui,2
∑

i ∂1φi(x )ui,3

∑

i ∂2φi(x )ui,3 1+
∑

i ∂3φi(x )ui,3

�

�

�

�

�

�

= 1+
∑

i
∇φi(x ) · u +

∑

i

∑

j

∑

k
∂1φi(x )∂2φ j(x )∂3φk(x ) |(ui u j uk)|

+
∑

i

∑

j

�

∂1φi(x )∂2φ j(x )D3 + ∂1φi(x )∂3φ j(x )D2 + ∂2φi(x )∂3φ j(x )D1

�

,

where the sums range from 1 to n and Dk is the k-th component of ui × u j.
Therefore,

J f (x )≥ 1−Md − 3M2d2 −M3d3,

where
d = max

1≤i≤n
‖ui‖ and M = M1 + · · ·+Mn,

which is positive if Md <
p

2− 1, implying that f is injective for d <
p

2−1
M .

Now, suppose thatψi : [0, 1]→ R3, i = 1, . . . , n are a set of continuous vertex
paths between each source vertex v i

0 =ψi(0) and its corresponding target vertex
v i

1 =ψi(1). We define the composite barycentric mapping from Ω̄0 to Ω̄1 as

fτ = fm−1 ◦ fm−2 ◦ · · · ◦ f0,

where fk : Ω̄tk
→ Ω̄tk+1

are barycentric mappings based on the partition τ =
(t0, t1, . . . , tm) of the interval [0, 1].

Denoting the maximum displacement distance between Ω̄tk
and Ω̄tk+1

by

dk = max
1≤i≤n



v i
tk
− v i

tk+1



,

it follows that fτ is bijective if

dτ = max
0≤k<m

dk <

p
2− 1

2nM ∗
,

where
M ∗ = max

1≤i≤n
sup

t∈[0,1]
sup
x∈Ω̄t

‖∇φ t
i (x )‖.

The composite barycentric mapping fτ can also be extended to closed smooth
surfaces, and by following a similar reasoning we can conclude that the mapping
fτ is bijective if dτ < (

p
2− 1)/(2nM ∗).



45 4.5 Practical considerations

Source Mean value Harmonic Maximum entropy

Figure 4.10. Composite barycentric map for different types of barycentric coor-
dinates for 100 uniform steps.

4.5 Practical considerations

Composite barycentric mappings depend on two main choices: the underlying
barycentric coordinates φ and the vertex paths ψ. In this section we illustrate
the influence of these choices on the composite mapping.

4.5.1 Choosing the coordinates

In general, the vertex paths ψi produce an arbitrary intermediate shape, which
may be concave or weakly convex. For this reason we need barycentric coordi-
nates that are well-defined for arbitrary simple polygons. We suggest to use mean
value 1.7, harmonic 1.9, or maximum entropy coordinates 1.10. Figure 4.10
shows an example of a composite barycentric mapping for these three different
coordinates.

4.5.2 Choosing the vertex paths

To create intermediate shapes, the natural vertex path that works in any dimen-
sion and for any shape, is to linearly interpolate the shapes from source to target.
However, this interpolation is not invariant with respect to similarity transfor-
mations, while the mapping is. Moreover, linear interpolation of the vertices
is more likely to produce self-intersecting polygons in case of rotations, which
invalidates the mapping since barycentric coordinates are well-defined only for
non-self-intersecting polygons. For these reasons linear interpolation is not well-
suited for creating intermediate shapes for the composite barycentric mappings.
In Chapter 3 we provide an extensive list of methods to define the vertex path.
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t =0 t =0.25 t =0.5 t =0.75 t =1

Linear

Sederberg et al. [1993]

Figure 4.11. Example of a composite barycentric map for different vertex paths
for 100 uniform steps.

Figure 4.11 shows how the composite barycentric mapping changes when this
method is used instead of linearly interpolating the vertices.

4.5.3 Efficient implementation

We show that for a sufficiently large number of steps m, we can guarantee bijec-
tivity of a composite mean value mapping. However, it is important to choose m
small, because the computations scale linearly with m. To find such a small m
that is large enough to produce mappings which are bijective up to pixel accuracy,
we adopt the following strategy, which relies on the minimum of the Jacobian

Jmin =min
x∈Ω

det J f (x ).

Suppose we start with the initial partition τ= (0,1) and consider the classical
mean value mapping fτ : Ω0 → Ω1. We can now compute Jmin for this mapping
and check for positivity. If Jmin is negative, and hence the mapping is not bijective,
we can try to restore bijectivity by inserting 0.5 into the partition τ and consider-
ing the intermediate polygon Ω0.5. We then recalculate Jmin for the two mappings
f1 : Ω0 → Ω0.5 and f2 : Ω0.5 → Ω1 and test both for positivity. We continue this
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binary refinement of τ until Jmin is positive for all mappings f k or until the dis-
tance between two steps becomes numerically too small, that is, smaller than
some threshold ε > 0 (we used ε = 0.01 in our examples). The pseudo-code 1
illustrates a recursive algorithm for finding such a binary partition. Given two
domains Ωa and Ωb for 0 ≤ a < b ≤ 1, the algorithm’s core consists of comput-
ing Jmin for the mapping between Ωa and Ωb. Then, by checking the positivity of
the minimum, the algorithm decides whether to introduce an intermediate step.
Overall, this produces a binary partition which guarantees that the corresponding
composite mapping is bijective and consists of a small number of intermediate
steps. Figure 4.12 shows an example of the result of this algorithm.

In order to compute Jmin, we need a formula for the partial derivatives of
the mean value coordinates (1.7). To efficiently evaluate expression (1.7), we
express the tangent t i as

t i = tan(αi/2) =
sinαi

1+ cosαi
=

si × si+1

ri ri+1 + si · si+1
,

where si = vi − v. Therefore, the gradient of φi can now be derived from the
gradients of the cross product,

∇(si × si+1) = (v
i+1 − v i)⊥ =

�

v i
2 − v i+1

2
v i+1

1 − v i
1

�

,

the distance,

∇ri =
−si

ri
.

Algorithm 1: Pseudo-code of the algorithm for finding a binary partition
with a small number of steps.

Function buildPartition(a, b)
Data: Interval [a, b]
Result: Partition τ

Jmin← compute Jmin for the mapping f : Ωa→ Ωb

if Jmin ≤ 0 and |b− a|> ε
c← (a+ b)/2
τ← τ∪ c

buildPartition(a, c)
buildPartition(c, b)
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source binary partition

f : Ω0→ Ω1 f0 : Ω0→ Ω0.5 f1 : Ω0.5→ Ω0.75

f2 : Ω0.75→ Ω0.875 f3 : Ω0.875→ Ω0.9375 f4 : Ω0.9375→ Ω1

Figure 4.12. Example of a composite mean value mapping with a 5-step binary
partition.

and the dot product

∇(si · si+1) = −(si + si+1),

and by using the chain rule, which first gives

∇t i =
∇(si × si+1)− t i(∇ri ri+1 + ri∇ri+1 +∇(si · si+1))

ri ri+1 + si · si+1
,

then

∇wi =
∇t i−1 +∇t i −wi∇ri

ri
,
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and finally

∇φi =
∇wi −φi∇

∑

j w j
∑

j w j
. (4.2)

A common technique for constructing fast algorithms is to parallelize them.
In such algorithms the speed-up factor is given by the nature of the problem,
as only unrelated computations can be performed in parallel. In our case, the
computations of the determinants for several points x ∈ Ω are completely inde-
pendent of each other, hence our problem is perfectly suited for parallelization.
There are three main practices for parallelizing an algorithm: using the CPU with
threads (SIMD), cluster computing, and exploiting the parallel nature of the GPU.
To compute Jmin, we need to compute the determinant for a large number of ver-
tices. For example, if we want pixel resolution for an image of 512×512, then we
need to consider 262,144 points. An implementation with CPU threads becomes
impractical for such large numbers, as we would need approximately the same
number of threads as points. We also discard cluster computing, because this
technique is not made for real-time applications. The most reasonable choice
is to implement a GPU algorithm. Among the various possible GPU implemen-
tations, we opt for implementing the algorithm as a vertex shader. This shader
receives the vertices of the source and target polygons, computes the Jacobian,
and writes it as a colour. Figure 4.1 shows some examples of the values of J f

computed this way. The major drawback of this approach is that the output of
the shader is a full resolution image, which must be read back and analysed by
the CPU, which should be avoided whenever possible.

The vertex shader knows only the position of the currently processed vertex,
hence finding the global minimum is impossible. To circumvent this problem we
exploit the z-buffer. This particular OpenGL-buffer is used to determine which
object is closer to the camera. Using this trick we modify the shader to “collapse”
all the points to the same (x , y) position and we artificially set the z-component to
the value of the Jacobian (clamped to zero if negative). In this way the generated
image contains only one pixel which is the one closest to the camera, and the
colour of this pixel corresponds to Jmin. At the end, the CPU reads only one
pixel and produces a sequence of domains Ωi, i = 1, . . . , n such that the mapping
between two successive domains is visually bijective.

Once we have computed a suitable binary partition, the last problem to solve
is the evaluation of the composite mapping. Again, this problem can be paral-
lelized nicely, like the problem of computing the Jacobian, because the compu-
tations for each point are independent of the computations in other points.

The shader receives two successive domains Ωk and Ωk+1 and moves the ver-
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tex position according to the mapping fk. In this case the main challenge is how
to pass the moved vertices, without passing them back to the CPU, so the GPU can
compute the next step of the visually bijective composition. We then exploit the
transform feedback buffer, a technique that allows to alter the rendering pipeline
of OpenGL such that the primitives, in our case the vertex positions, are written
into a buffer object. Hence the algorithm becomes a “ping pong” between two
transform feedback buffers. We use the first buffer as output (where the vertex
position is written) and the second as input (from where the positions are read).
In the next step the role of the two buffers is inverted and so on. At the end,
the last output buffer contains the vertex positions of the composite mapping.
Figure 4.12 shows the warping of the star for different choices of intermediate
steps. When the partition is sufficiently refined, the morphing is visually bijective
and prevents fold-overs.



Chapter 5

Composite harmonic mappings

An alternative approach to build bijective maps consists of combining two har-
monic maps to define a smooth map between two arbitrary planar polygons. In
contrast with respect to the composite barycentric mapping (Chapter 4), this con-
struction is symmetric. However, the mapping can be only evaluated numerically
and can be approximated in different ways, each with its own pros and cons. The
different implementations provide a high degree of flexibility, ranging from an
efficient computation to the exact point-wise evaluation. While these methods
are guaranteed to generate bijective maps only in the limit, as they converge to
the exact solution, our experiments show that they produce bijective results in
practice.

The behaviour of the map along the boundary can be prescribed (for exam-
ple, to be piecewise linear), giving the user an intuitive way of controlling the
map in applications such as image warping and surface cross-parametrization
(Figure 5.8).

f = '1
¡1 ± '0

'1

'0

¤

Figure 5.1. Main idea for defining smooth bijective maps.
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The simplicity of this construction allows for several extensions (Sections 5.3
and 5.4), including a simple non-linear optimization procedure to reduce the
distortion of the map without compromising the other properties and a strategy
which appears to give almost conformal results. Moreover, this method trivially
extends to smooth volumetric maps between polyhedral domains, and although
the theoretical guarantees on bijectivity are lost [Snyder Laugesen, 1996], our
experiments demonstrate that the maps are bijective even for non-trivial exam-
ples.

Given two planar domains Ω̄0, Λ̄ and a bijective boundary mapping g : ∂ Ω̄0→
∂ Λ̄, the unique map ϕ : Ω̄0→ Λ̄ that solves the Laplace equation

∆ϕ = 0 (5.1a)

subject to the continuous Dirichlet boundary condition

ϕ|∂ Ω̄0
= g (5.1b)

is called a harmonic map. The map ϕ is smooth, and it follows from the Radó–
Kneser–Choquet theorem [Choquet, 1945; Kneser, 1926; Radó, 1926] that ϕ is
bijective if Λ̄ is convex.

In order to define the smooth bijective map f between Ω̄0 and Ω̄1, we simply
introduce an intermediate convex polygon Λ̄ with n vertices, combine the two
harmonic maps ϕ0 : Ω̄0→ Λ̄ and ϕ1 : Ω̄1→ Λ̄ as shown in Figure 5.1, and let

f = ϕ−1
1 ◦ϕ0. (5.2)

For simplicity, we can use a regular n-gon as Λ̄ and piecewise linear boundary
constraints g0 and g1, but it is possible to deviate from this default choice (Sec-
tions 5.3 and 5.4).

The concept of constructing bijective maps in this way has already been used
in the context of mesh parametrization [Weber and Zorin, 2014], mesh morph-
ing [Kanai et al., 1997], and surface correspondences [Lipman and Funkhouser,
2009], but only in the discrete setting. Instead, we consider smooth maps, and
we also discuss two extensions Sections 5.3 and 5.4.

This approach poses two practical challenges. First, we need to solve the
boundary value problem (5.1), and the exact solution is known only for simple
domains like rectangles. However, an approximate solution can be computed in
different ways (Section 5.1). Second, we have to invert the map ϕ1, and again
we treat this problem numerically (Section 5.2).
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5.1 Solving the Laplace equation

There are three main methods for solving the Laplace equation: the finite ele-
ment method [Strang and Fix, 2008] (FEM), the boundary element method [Hall,
1994; Rustamov, 2007] (BEM), and the method of fundamental solutions [Fair-
weather and Karageorghis, 1998; Martin et al., 2008] (MFS). Each method comes
with certain advantages and disadvantages. Since these methods are designed
to find harmonic functions ϕ : Ω→ R, we apply them to both components of the
harmonic maps ϕ0, ϕ1 separately.

5.1.1 Finite element method

By calculus of variations, ϕ solves (5.1a), if and only if
∫

Ω

∆ϕ ψ= 0 (5.3)

for a certain set of test functionsψ. In the finite element approach this set contains
all functions that vanish on the boundary of Ω. Using this fact and integration
by parts, the weak form (5.3) can be rewritten as

∫

Ω

∇ϕ∇ψ= 0. (5.4)

In our implementation, we consider the space of piecewise linear functions over
a constrained Delaunay triangulation of Ω, spanned by the hat functions

B1, . . . , Bm : Ω→ R,

and the approximation

ϕ ≈
m
∑

i=1

ciBi.

Assuming that the first k < m basis functions correspond to the interior nodes
and thus vanish at the boundary, the weak form (5.4) becomes

m
∑

i=1

ci

∫

Ω

∇Bi∇B j = 0, j = 1 . . . , k.

The coefficients ck+1, . . . , cm are given by the boundary condition (5.1b), and the
others can be found by solving a sparse linear system of size k, where the off-
diagonal elements are the well-known cotangent weights [Eck et al., 1995; Pinkall
and Polthier, 1993; Strang and Fix, 2008].
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vi
xj xj

si

Figure 5.2. Nodes used by BEM (left) and nodes and sites used by MFS (right).

5.1.2 Boundary element method

The principal idea of the boundary element method is to first solve a small prob-
lem on the boundary and then extend this solution to the interior. To this end,
we use the divergence theorem to rewrite (5.3) as

∫

∂Ω

∂ ϕ

∂ n
ψ−

∫

Ω

∇ϕ∇ψ= 0

and then apply integration by parts to the last term to obtain

∫

∂Ω

∂ ϕ

∂ n
ψ−

∫

∂Ω

∂ψ

∂ n
ϕ +

∫

Ω

ϕ∆ψ= 0,

where n is the unit normal to ∂Ω. In the boundary element approach, the set of
test functions is {Gx : x ∈ Ω}, where

Gx (y) = −
1

2π
log(‖x − y‖) (5.5)

are 2D Green’s functions. Since ∆Gx (y) = δ(x − y), we obtain the boundary
integral equation

∫

∂Ω

∂ ϕ

∂ n
Gx −

∫

∂Ω

∂ Gx

∂ n
ϕ +ω(x )ϕ(x ) = 0, x ∈ Ω, (5.6)

where

ω(x ) =

¨

α(x )
2π , for x ∈ ∂Ω,

1, otherwise,

with α(x ) denoting the exterior angle at x ∈ ∂Ω, that is, α(x ) = π along the
open edges of Ω.

In our implementation, we sample the boundary ofΩwith the nodes x1, . . . , xm,
which include the vertices v i (Figure 5.2), and consider the corresponding space
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of piecewise linear functions, spanned by the one-dimensional hat functions
B1, . . . , Bm : ∂Ω→ R. This allows us to use

ϕ(x ) =
m
∑

i=1

ciBi(x ),
∂ ϕ

∂ n
(x )≈

m
∑

i=1

diBi(x )

for all x ∈ ∂Ω, so that (5.6), evaluated at x j, turns into
m
∑

i=1

di

∫

∂Ω

BiGx j
≈

m
∑

i=1

ci

�

∫

∂Ω

∂ Gx j

∂ n
Bi +ω(x j)Bi(x j)

�

for j = 1, . . . , m. Since ci are given by the boundary condition (5.1b), we then
determine the coefficients di by solving a dense linear system of size m. After
solving this small system on the boundary, we are ready to evaluate ϕ at any
x ∈ Ω by rearranging (5.6),

ϕ(x )≈
1

ω(x )

m
∑

i=1

�

di

∫

∂Ω

BiGx − ci

∫

∂Ω

∂ Gx

∂ n
Bi

�

.

We employ Gaussian quadrature for evaluating all the required boundary inte-
grals numerically, because they do not have closed forms in general. Note that for
points near to the boundary the integrals my be numerically unstable due to the
poles of the Green functions. To avoid this problem we “snap” these points to the
boundary where the value of the function is given by the boundary conditions.

5.1.3 Method of fundamental solutions

The main idea of the method of fundamental solutions is to exploit the fact that
Green’s functions (5.5) and linear functions are harmonic by construction. We
approximate ϕ by

ϕ̂ =
m
∑

i=1

wi Gsi
+ A

for certain sites s1, . . . , sm (Figure 5.2) and some linear function A. In order to
avoid singularities inside the domain Ω, the sites need to be placed outside the
polygon, and we follow the strategy in [Martin et al., 2008] to determine their
positions. The unknown weights wi and the coefficients of A are then determined
by minimizing

k
∑

j=1

|ϕ̂(x j)− b(x j)|
2

for k� m uniformly spaced nodes x j ∈ ∂Ω, which can be done by solving a dense
over-determined linear system of size k× (m+ 3) in the least squares sense.
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Ω
FEM

m= 8 407572
BEM

m= 213
BEM

m= 996
MFS

m= 159
MFS

m= 1209

Figure 5.3. Behaviour of the different approximations to the harmonic mapping
ϕ from Ω to the regular hexagon Λ̄ near the boundary. The curves correspond
to the images of the boundary (darkest blue) and boundary offsets at distances
0.001, 0.002, 0.004, and 0.008 (from dark to light blue), relative to the size of
the bounding box of Ω.

5.1.4 Comparison

The main advantages of FEM are speed and robustness, but it provides only
piecewise linear approximations of the exact solution. Consequently, the first
derivatives are constant per triangle and higher derivatives vanish, which is a
disadvantage for applications that rely on these quantities being smooth. An-
other disadvantage is that FEM requires choosing the triangulation a priori, re-
sulting in a fixed resolution of the result. If later a higher resolution is needed,
the problem needs to be solved again from scratch. Finally, the result is not guar-
anteed to be bijective, because the cotangent weights can be negative. Although
non-bijectivity usually does not occur in practice, especially at high resolution, it
can be prevented by replacing the cotangents with positive weights [Weber and
Zorin, 2014]. The resulting piecewise linear mapping is then guaranteed to be
bijective, but it does no longer approximate the harmonic solution.

The principal benefits of BEM and MFS are that they give smooth closed-form
approximations of ϕ and that derivatives can be computed analytically. For BEM,
every function evaluation requires calculating 2m boundary integrals, which is
rather slow, whereas evaluating the MFS approximation and its derivatives is fast,
because they have simple closed forms. The main disadvantage of both methods
is that the boundary conditions are not satisfied exactly and hence they do not
guarantee to linearly map the edges from source to target polygon. Instead, the
image of ∂Ω can exhibit oscillations, especially near concave corners, as shown
in Figure 5.3. This effect extends to the interior, but disappears quickly with in-
creasing distance to the boundary. Moreover, these oscillations shrink as we raise
the number m of basis functions. In the case of BEM, this behaviour stems from
the fact that the normal derivative at the boundary of Ω is only approximated
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Ω0

Λ̄

Ω1

FEM BEM MFS

Figure 5.4. Comparison between different methods to approximate a smooth
bijective map between Ω0 and Ω1. The middle row visualizes the mapping itself,
while the determinant of its Jacobian is colour-coded in the bottom row.

by a piecewise linear function. For MFS, it is a consequence of enforcing the
boundary constraints only in a least squares sense and at k discrete nodes.

On a theoretical level, this lack of linear precision along the boundary means
that the target domain is not convex, and even though both the BEM and the
MFS approximations are harmonic by construction, the Radó–Kneser–Choquet
theorem cannot be used to conclude their bijectivity. However, as m increases,
both methods converge to the exact harmonic and bijective solution, and so they
are bijective for a sufficiently large m. In all our examples we observe that even
moderately large values of m (less than 1000) are enough to obtain mappings
which are practically bijective, in the sense that the Jacobian is positive at a dense
set of sample points. However, BEM is usually more precise near the boundary
than MFS and seems to converge faster.

Figure 5.4 shows an example of a smooth bijective map and the determinant
of its Jacobian, approximated with the different methods. The close-ups confirm
that the FEM solution is only piecewise linear, while the others are smooth, and
that the MFS solution has artefacts near the boundary due to the oscillations
mentioned before. Table 5.1 summarizes the advantages and disadvantages of
the methods.
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smooth meshless exact on ∂Ω precise near ∂Ω fast
FEM E E Ø Ø Ø
BEM Ø Ø E Ø E
MFS Ø Ø E E Ø

Table 5.1. Pros and cons of the different methods.

5.2 Approximation of the inverse of the second har-
monic mapping

Inverting the FEM approximation of ϕ1 is simple, because it is a piecewise linear
map between a Delaunay triangulation of Ω1 and a corresponding triangulation
of Λ̄. Hence, for any x ∈ Λ̄ we search for the triangle T in Λ̄ that contains x
using a k-d tree, compute the local coordinates of x with respect to T , and apply
them to the corresponding triangle inΩ1. This gives an approximation ofϕ−1

1 (x ),
where the accuracy depends on the size of T . However, even if the triangles inΩ1

are small, their images under ϕ1 in Λ̄ can be large and the only way to improve
the accuracy is to recompute the approximation of ϕ1 with a finer mesh.

For BEM and MFS we can proceed similarly by first triangulating Ω1 and then
mapping the nodes, which induces a triangulation of Λ̄. Since both methods
provide smooth solutions, we can now employ an adaptive refinement strategy
that finds all the large triangles in Λ̄, refines the corresponding triangles in Ω1,
and repeats this process until all triangles in Λ̄ are sufficiently small (Figure 5.5).
In practice this requires only few steps of refinement.

A better option is to exploit the fact that BEM and MFS provide gradients and
Hessians of the solution. Hence, we can use efficient numerical solvers to approx-
imate ϕ−1

1 (x ) more accurately. In our implementation we use IPOPT [Wächter

initial Ω1 initial Λ̄ refined Ω1 refined Λ̄

Figure 5.5. One step of the adaptive refinement strategy: regions with large
triangles in Λ̄ are detected (grey) and the corresponding regions in Ω1 are refined
by inserting new points (orange), so that the large triangles are removed from Λ̄.
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Figure 5.6. Inverting ϕ1 with a piecewise linear approximation (left) and point-
wise minimization (right).

and Biegler, 2006] to minimize the function

d(y) = ‖x −ϕ1(y)‖
2,

which is convex and guaranteed to be zero at the optimal solution y∗. This
minimization needs to constrain y to the interior of Ω, because the harmonic
functionϕ is undefined outsideΩ. This is no problem for convex domains, but we
need to be careful ifΩ is concave. In that case we decomposeΩ into triangles and
constrain the optimization to the triangle T whose image ϕ(T ) contains x . If the
solver finds a minimum at some y with d(y)> 0, then we know that the optimal
y∗ needs to be found in some other triangle. But when this happens, y lies on
one of the edges of T and we keep searching in the neighbouring triangle which
shares this edge. However, this approach is much slower, because it requires
several evaluations of ϕ1 and its derivatives.

Figure 5.6 illustrates the results obtained by both inversion procedures. The
close-ups clearly show that the first method provides only piecewise linear re-
sults, while the result of the second approach is smooth. However, the mini-
mization procedure takes several minutes, whereas the other procedure can be
computed in a few seconds.

Figure 5.7. Deforming a source image (left) by means of smooth bijective maps
(centre) and composite mean value maps (right). The results are globally similar,
but smooth bijective map has less distortion (grey boxes).
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Ω̄0 Λ̄ Ω̄1

S0 S1

Figure 5.8. Using a smooth surface cross-parametrization to transfer a colour-
valued signal from S0 to S1.

5.3 Reducing the distortion

An interesting fact to observe is that the mapping f depends on the shape of
Λ̄, as illustrated in Figure 5.9. In this example we compare the results obtained
by using a regular polygon versus an irregular cyclic polygon with edge lengths
proportional to the average lengths of corresponding source and target edges.

This flexibility can actually be used to reduce the distortion of the map. We
implemented a simple strategy, which minimizes a given distortion energy by
moving one vertex of Λ̄ at a time under the constraint that Λ̄ remains convex.
More specifically, to optimize the position of a vertex v of Λ̄, we approximate
the gradient of the distortion energy with respect to v , using finite differences,
resulting in a displacement vector ∆v . We then move from v to v +∆v and
check if this new position violates the convexity constraints of Λ̄. If that is the
case, then we iteratively halve ∆v until the constraints are met.

An example of this optimization procedure, where we reduce the overall con-
formal distortion of the map by about 10%, is shown in Figure 5.10. A similar
improvement can be obtained for the isometric distortion of the map, as illus-

Figure 5.9. Effect of mapping from Ω̄0 (centre) to Ω̄1 using a regular (left) and an
irregular (right) intermediate polygon.
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Λ̄

Figure 5.10. Optimizing the shape of Λ̄ for the example in Figure 5.16 reduces
the overall conformal distortion from 7.03 to 6.45.

trated in Figure 5.11, which also compares the result to the method in Chapter 4.
Table 5.2 summarizes the distortions obtained with this method, using regular
and optimized intermediate polygons, and with the method shown in Chapter 4
for all examples shown in this chapter.

Ω̄0

Λ̄

Λ̄′

Figure 5.11. Comparison of smooth bijective maps generated the method in
Chapter 4 (left) and this method for an irregular (centre) and the optimized
(right) intermediate polygon. The respective overall isometric distortions are
7.34, 3.02, and 2.49.
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Average distortion

Figure
conformal isometric

Chapter 4 Λ̄ Λ̄′ Chapter 4 Λ̄ Λ̄′

5.4 2.93 2.84 2.78 2.85 2.60 2.15
5.7 2.91 2.85 — 2.10 1.95 —
5.9 7.99 6.41 — 3.63 3.59 —

5.10 203.77 7.03 6.45 232.05 5.57 5.18
5.11 9.32 4.85 4.53 7.34 3.02 2.49
5.12 9.26 6.13 — 8.28 5.02 —

Maximum distortion
5.4 104.86 89.53 75.01 57.53 96.80 83.17
5.7 96.59 96.07 — 88.14 68.61 —
5.9 99.96 99.41 — 99.25 94.30 —

5.10 107 402 2 481.40 1 968.75 122 576 1 883.76 1 679.25
5.11 99.76 99.86 89.14 99.98 97.79 84.67
5.12 99.61 83.26 — 100.00 82.35 —

Table 5.2. Average and maximum conformal and isometric distortions for com-
posite mean value maps (Chapter 4) and composite harmonic mapping based
on regular intermediate polygons Λ̄ and optimized polygons Λ̄′.

5.4 Boundary conditions

Most applications require linearity on the boundary, but with this method we can
also impose a different boundary behaviour, similar to how it is suggested in [We-
ber et al., 2011]. In the example in Figure 5.12 we specify a linear behaviour
for the edges of Ω̄0 and a quadratic behaviour for the edges of Ω̄1. That is, the
boundary condition b1 for any point x = (1 − t)v1

1 + tv2
1 on the edge [v1

1 , v2
1]

Ω̄0

Λ̄

Figure 5.12. Effect of changing the behaviour of the boundary conditions for ϕ1

from linear (left) to quadratic (right).
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Ω̄0

Λ̄

Figure 5.13. Effect of replacing Dirichlet boundary conditions (left) with mixed
Neumann/Dirichlet boundary conditions (right).

of Ω̄1 is set to b1(x ) = (1− t2)w 1 + t2w 2, where [w 1, w 2] is the corresponding
edge of Λ̄, and similarly for the other edges. This increases the density of the
grid lines near the concave vertex as well as the lower left target vertex and also
happens to reduce the conformal distortion. It remains future work to exploit
this flexibility to further reduce the distortion of the mapping.

Another extension consists of imposing natural boundary conditions, which
requires Λ̄ to be the unit square, possibly with side nodes. This particular choice
allows us to interpret the components of ϕ as two coordinate functions

x , y : Ω̄0→ [0, 1].

We then solve for x by specifying Dirichlet boundary conditions on the two hori-
zontal edges and Neumann boundary conditions on the two vertical edges of the
unit square, and vice versa when solving for y . For the example in Figure 5.13,
this approach produces more conformal results, but we have not further investi-
gated this behaviour, yet.

Ω̄0

Λ̄

Ω̄1

Figure 5.14. Using a smooth volumetric mapping to transfer a colour-valued
signal from one polyhedron to another.
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Ω̄0

Λ̄
Ω̄1

Figure 5.15. Smooth volumetric mapping between two polyhedral domains with
quadrilateral faces.

5.5 Three dimensional mappings

This approach easily extends to volumetric mappings between two polyhedral
domains in R3 with the same topology, as shown in Figure 5.14. Unfortunately,
the Radó–Kneser–Choquet theorem does not hold in R3, and there is no mathe-
matical guarantee that this mapping is bijective. However, in our experiments we
did not observe any problems, and it even works for the rather extreme example
in Figure 5.15.

5.6 Comparison to composite barycentric mappings

We now compare this method with the one described in Chapter 4. The example
in Figure 5.7 suggests that this method gives maps with lower distortion. To
support this hypothesis, we measured and compared the actual distortion of both
maps.

Ω̄0

Λ̄

Figure 5.16. Comparison of the method in Chapter 5 (left) with the one in Chap-
ter 4 (right). The energy plots show the conformal distortion per point, clamped
at 10. The overall L2-distortion of this map is 7.03, compared to 203.77 for the
method in Chapter 4.
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In Figure 5.16 we visualize the conformal distortionσ1/σ2+σ2/σ1 [Hormann
and Greiner, 2000], where σ1 and σ2 are the singular values of the Jacobian of
the map. The energy plot and the close-ups illustrate that this map behaves bet-
ter around the concave corners of the target polygon, and the overall distortion
is much lower. A similar behaviour can be observed in Figure 5.11, where the
isometric distortion max(σ1, 1/σ2) [Sorkine et al., 2002] is considered. We per-
formed similar tests with different polygons and energies, and since the results
are all similar, we decided to show only a few prototypical examples.

For these comparisons we use BEM, because it provides the most reliable
derivative data, which is needed for computing the distortion.
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Chapter 6

Smoothness of barycentric
coordinates

The bound (4.1) that guarantees bijectivity of the composite barycentric map-
pings exists only if the norm of gradient of the barycentric coordinates is bounded.
It turns out that a large part of the three point family (1.8) is C1 continuous for
convex polygons (Section 6.1), which implies that the norm of the gradient is
bounded. The only case (p = 1) in this family which is well defined for con-
cave polygons is mean value coordinates, which are not smooth [Hormann and
Floater, 2006]. However, we show that their directional derivative is bounded
(Section 6.2.1) and provide numerical evidence of the boundedness of their gra-
dient (Section 6.2.2).

The first two sections of this chapter are part of a larger work where we show
that the whole three point family (1.8) is linear along the edges and well-defined
for convex polygons. Since the weights wi diverge to infinity as x approaches
the edges, we introduce the products

A =
n
∏

j=1

A j, Ai =
n
∏

j=1
j 6=i

A j, Ai−1,i =
n
∏

j=1
j 6=i−1,i

A j, i = 1, . . . , n,

of all areas A j and those with one or two terms missing, respectively, and consider
the weights

w̃i = wiA = r p
i+1Ai − r p

i BiAi−1,i + r p
i−1Ai−1, i = 1, . . . , n, (6.1)

and

W̃ =WA =
n
∑

i=1

w̃i. (6.2)

67
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Since A is well-defined and does not vanish over Ω, it is clear that the functions

φ̃i =
w̃i

W̃
, i = 1, . . . , n, (6.3)

coincide with φi on Ω, but they have the advantage of being well-defined over
the open edges of P. We then proceed with a similar trick to extend the definition
to the vertices for p < 0. In this case, the distance r j converges to zero, so that
r p

j diverge to infinity. Therefore we introduce the products

R =
n
∏

j=1

r−p
j , Ri =

n
∏

j=1
j 6=i

r−p
j , i = 1, . . . , n,

and consider the functions

ŵi = w̃iR =Ri+1Ai −RiBiAi−1,i +Ri−1Ai−1, i = 1, . . . , n, (6.4)

and

Ŵ = W̃R =
n
∑

i=1

ŵi.

Since R is well-defined and does not vanish over Ω̄, it is clear that the functions

φ̂i =
ŵi

Ŵ
, i = 1, . . . , n,

coincide with the φ̃i on Ω̄, but have the advantage of being well-defined at the
vertices of P.

6.1 Differentiability at the vertices

Since φ̂i are C0 and linear along the edges, it implies that the directional deriva-
tive along the two adjacent edges to v i = (x i, yi) is

[v i−1, v i] =
yi − yi−1

x i − x i−1
, [v i, v i+1] =

yi − yi+1

x i − x i+1
.

To find the gradient ∇φi(v i) = (∂x ,∂y)T , we exploit the fact that the directional
derivative at a point can be represented as the gradient at this point times the
normalized direction. This leads to

∇φi(v
i) = −

∇Ai−1 +∇Ai

Ci
= −
∇Bi

Ci
.
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and similarly

∇φi(v
i−1) =

∇Ai−2

Ci−1
, ∇φi(v

i+1) =
∇Ai+1

Ci+1
, ∇φi(v

j) = 0, j 6= i − 1, i, i + 1.

However, to prove C1 continuity we first need to show that φi(v j) are totally
differentiable at the vertices and the total derivative corresponds to the edge
behaviour.

For the following proofs we recall some partial results in [Anisimov et al.,
n.d.]; for p < 1 we have

lim
v→v1

A1(v)
r1(v)

p = 0, lim
v→v1

An(v)
r1(v)

p = 0, (6.5)

0≤
A1

r1
≤

e1

2
, 0≤

An

r1
≤

en

2
, (6.6)

and for 0≤ p < 1

0≤
A1

r p
1

=
r1e1 sinτ1

2r p
1

≤
r1−p

1 e1

2
(6.7)

for any v ∈ Ω.

Lemma 1. Three-point coordinates are totally differentiable at the vertices for p < 1
and the derivatives are

∇φi(v
j) =

1
C j



















∇Ai−2, j = i − 1,

−∇Bi, j = i,

∇Ai+1, j = i + 1,

0, otherwise.

Proof. Without loss of generality, we consider only the first coordinate φ1(v j),
for which we need to show that

lim
‖v‖→0

φ1(v j + v)−φ1(v j)− 〈∇φ1(v j), v〉
‖v‖

= lim
‖v‖→0

φ1(v j + v)−φ1(v j)
‖v‖

−
〈∇φ1(v j), v〉
‖v‖

= 0.

We first observe that

lim
r1→0

B2

r1
= lim

r1→0

‖v1 − v3‖r1 sinα2

2r1
< r3 and

lim
r1→0

Bn

r1
= lim

r1→0

‖v1 − v n−1‖r1 sinαn

2r1
< rn−1,

(6.8)
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where α2 is the angle between the segments (v , v1) and (v3, v1) and similarly
for αn. Using (6.5) and (6.6), we conclude that

lim
r1→0

A1An

r p+1
1

= lim
r1→0

A1

r p
1

An

r1
= 0, (6.9)

and

lim
r1→0

B2An

r p+1
1

= lim
r1→0

B2

r1

An

r p
1

= 0,

lim
r1→0

BnA1

r p+1
1

= lim
r1→0

Bn

r1

A1

r p
1

= 0.
(6.10)

Finally we obtain

lim
r1→0

R1

�

A1An,1 + AnAn,1)

r1Ŵ
(6.7)
= lim

r1→0

R1

�

An,1e1 sinτ1 +An,1en sinτn)

2Ŵ
=

e1 sinτ1 + en sinτn

2C1
,

(6.11)
because lim‖v‖→0 Ŵ =R1C1An,1.

We first consider the case j = 1 and assume that v1 is at the origin, hence
‖v‖= r1, by noticing that φ1(v1) = 1, we rewrite

lim
‖v‖→0

φ1(v1 + v)− 1
‖v‖

= lim
r1→0
−
�

r−p
1

� n−1
∑

i=3

�

R1,i+1Ai −R1,iBiAi−1,i +R1,i−1Ai−1

�

+R1,3A2 +R1,n−1An−1

�

− r−p
1 (R1,2B2A1,2 +R1,nBnAn−1,n) +R1

�

An +A1

�

�

�

r1Ŵ
�−1

= − lim
r1→0

A1An

∑n−1
i=3 (R1,i+1A1,i,n −R1,iBiA1,i−1,i,n +R1,i−1A1,i−1,n) +R1,3A1,2,n +R1,n−1A1,n−1,n

r p+1
1 Ŵ

+ lim
r1→0

R1,2B2A1,2 +R1,nBnAn−1,n

r p+1
1 Ŵ

− lim
r1→0

R1

�

A1An,1 + AnAn,1)

‖v‖Ŵ

(6.9)
= lim

r1→0

R1,2B2A1,2 +R1,nBnAn−1,n

r p+1
1 Ŵ

− lim
r1→0

R1

�

A1An,1 + AnAn,1)

‖v‖Ŵ

(6.10)
= lim

r1→0

R1

�

A1An,1 + AnAn,1)

‖v‖Ŵ
(6.11)
=

e1 sinτ1 + en sinτn

2C1
.

If we let the point v approach the origin along the unit direction d, then
the previous equation can be seen as the sum of the projections of the vectors
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v

v1

v2

vn

den
~

e1
~

dd?

Figure 6.1. Illustration that e1 sinτ1+ en sinτn is equivalent of projecting v2− v n

on d⊥.

ẽ1 = v2 − v1 and ẽn = v n − v1 on the vector d⊥. Since the projection is a linear
operator, this is equivalent to projecting ẽ1− ẽn = v2− v n on the same direction,
see Figure 6.1. Note that the minus sign comes from the fact that ẽ1 and ẽn lie
on the opposite side of d. We remark that ∇B1 = (v n − v2)⊥/2 and compute

lim
‖v‖→0

−
〈∇B1, v〉
C1‖v‖

= −
〈∇B1,d〉

C1
= −
〈(vn − v2)⊥,d〉

2C1
=
〈v2 − vn,d⊥〉

2C1
,

which coincides with the previous result and shows total differentiability for j =
1.

For the case j = 2 (and similarly for j = n) we again assume that v2 is at the
origin, hence ‖v‖= r2. We also recall that φ1(v2) = 0 hence

φ1(v2 + v)
‖v‖

=
R2A1

‖v‖Ŵ
−

R1,2B2A1,2

r p+1
2 Ŵ

+
Rn,2An

r p+1
2 Ŵ

.

Again the last two terms converge to zero, hence

lim
‖v‖→0

φ1(v2 + v)
‖v‖

= lim
‖v‖→0

R2A1

‖v‖Ŵ
(6.7)
= lim

‖v‖→0

R2A1,2e2 sinτ1

2Ŵ
=

e2 sinτ1

2C2
,

for the same reason as before. We remark that ∇A2 = ẽ⊥2 /2 hence

lim
‖v‖→0

〈∇A2, v〉
C1‖v‖

=
〈∇A2,d〉

C1
=
〈ẽ⊥2 ,d〉

2C1
=
〈ẽ2,d⊥〉

2C1
,

which again confirms that φ1(v j) is totally differentiable for j = 2 and j = n.
For the remaining cases, that is j = 3, . . . , n− 1, we again assume that v j is

at the origin, hence

φ1(v j + v)
‖v‖

=
R2, jA1

r p+1
j Ŵ

−
R1, jB1An,1

r p+1
j Ŵ

+
Rn, jAn

r p+1
j Ŵ

,
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where all terms converge to zero because all terms contain the product A jA j−1

which counterbalances the zero denominator r p+1
j .

Despite the fact that these results coincide with the edge behaviour, it is not
enough to conclude that φi(v) is C1 for p < 1. It remains only to show that the
limit

lim
v→v j
∇φi(v)

also converges to the same results since in the interior the function does not have
poles.

Theorem 1. Three-point coordinates are C1 functions for p < 1.

Proof. We remark that for any point in the interior and the open edges, φi has
no poles, hence it is C1. It remains to establish

lim
v→v j
∇φi(v) =

1
C j



















∇Ai−2, j = i − 1,

−∇Bi, j = i,

∇Ai+1, j = i + 1,

0, otherwise,

since in Lemma 1 we show total differentiability.
Since the weights wi are not well defined at the vertices, we use

ŵi = w̃iR =Ri+1Ai −RiBiAi−1,i +Ri−1Ai−1, i = 1, . . . , n,

in the definition of φi.
Without loss of generality we focus on the case j = 1. We first note that, since

Al,k = 0 for l 6= n and l 6= 1, we have

Rk∇Al =Rk

n
∑

j=1
j 6=l

∇A jAl, j,

and we conclude that

lim
v→v1

R1∇A1 =R1∇AnAn,1,

lim
v→v1

R1∇An =R1∇A1An,1, and

lim
v→v1

Rk∇Al = 0 for l = 2, . . . , n− 1.

(6.12)
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Similarly, because of (6.8), we have

lim
v→v1

R2B2∇A1,2 = lim
v→v1

R2B2∇AnA1,2,n = 0 and

lim
v→v1

RnBn∇An−1,n = lim
v→v1

RnBn∇A1A1,n−1,n = 0.
(6.13)

We now focus on the quantity

∇RkAl =
n
∑

j=1
j 6=k

∇r−p
j R j,kAl = p

n
∑

j=1
j 6=k

s j

r p+2
j

R j,kAl ,

where for the case k = 1, since R1 does not contain r1 and Ai converges to zero,
we conclude that

lim
v→v1

∇R1Al = 0. (6.14)

For k = 2, . . . , n we split the sum in

∇RkAl = p
n
∑

j=2
j 6=k

s j

r p+2
j

R j,kAl + p
s1

r p+2
1

R1,kAl , (6.15)

where the first term can be rewritten as

p
n
∑

j=2
j 6=k

s j

r p+2
j

R j,kAl = p
n
∑

j=2
j 6=k

s j

r p+2
j

R1, j,k

¨

An,l Anr−p
1 , for l 6= n

A1,l A1r−p
1 , for l = n

from which we can deduce that

lim
v→v1

p
n
∑

j=2
j 6=k

s j

r p+2
j

R j,kAl = 0. (6.16)

For the second term in (6.15) we first remark that even if s1/r1 is not defined
at v1, its limit is bounded. Following a similar idea as in (6.7) we have

0≤
A1

r p+1
1

=
r1e1 sinτ1

2r p+1
1

≤
e1

2r p
1

and 0≤
An

r p+1
1

=
r1en sinτn

2r p+1
1

≤
en

2r p
1

which converge to zero for p < 0. These results allow us to conclude that for
p < 0 and for l 6= n (and similarly for l = n)

lim
v→v1

p
s1

r p+2
1

R1,kAl = lim
v→v1

p
s1

r1

An

r p+1
1

R1,kAn,l = 0.
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For 0< p < 1 and l = 2, . . . , n− 1 we rewrite the second term in (6.15) as

p
s1

r p+2
1

R1,kAl = p
s1

r1

An

r p
1

A1

r1
R1,kAn,1,l , (6.17)

which again converges to zero. With the previous result we conclude that for
l = 2, . . . , n− 1 we have

lim
v→v1

∇RkAl
(6.16)
= 0. (6.18)

By using the product rule on ∇ŵi we get

∇ŵi =∇Ri+1Ai+Ri+1∇Ai−∇RiBiAi−1,i−Ri∇BiAi−1,i−RiBi∇Ai−1,i+∇Ri−1Ai−1+Ri−1∇Ai−1.

For i = 2

lim
v→v1

∇ŵ2

= lim
v→v1

�

∇R3A2 +R3∇A2 −∇R2B2A1,2 −R2∇B2A1,2 −R2B2∇A1,2 +∇R1A1 +R1∇A1

�

(6.12)
= lim

v→v1

�

∇R3A2 −∇R2B2A1,2 −R2B2∇A1,2 −R2B2∇A1,2 +∇R1A1

�

+R1∇AnA1,n

(6.13)
= lim

v→v1

�

∇R3A2 −∇R2B2A1,2 −R2B2∇A1,2 +∇R1A1

�

+R1∇AnA1,n

(6.14)
= lim

v→v1

�

∇R3A2 −∇R2B2A1,2 −R2B2∇A1,2

�

+R1∇AnA1,n

(6.18)
= lim

v→v1

�

−R2∇B2A1,2

�

+R1∇AnA1,n

(6.5)
= R1∇AnA1,n

and analogously for i = 2, . . . , n, we conclude that

lim
v→v1

∇ŵi =











R1∇AnAn,1 i = 2,

0 i = 3, . . . , n− 1,

R1∇A1An,1 i = n.

(6.19)

This result and the fact that limv→v1
B1 = −C1 and ∇A1+∇An =∇B1 allow us to

establish

lim
v→v1

∇φ1 = lim
v→v1

∇ŵ1 −φ1

∑n
j=1∇ŵ j

Ŵ
= − lim

v→v1

∑n
j=2∇ŵ j

Ŵ
(6.19)
= −

∇A1 +∇An

C1
= −
∇B1

C1
.

Since limv→v1
∇ŵ1 goes to infinity, we consider

lim
v→v1

∇ŵ1ŵm
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for m 6= 1, where it remains to show that limv→v1
ŵm/r1 is bounded. We first

consider the case m = 2 (m = n is similar) and recall (6.5), (6.6), and (6.8) to
get

lim
v→v1

ŵ2

r1
= lim

v→v1

R1,3A1,2,n
A1

r p
1

An

r1
−R1,2A1,2,n

B2

r1

An

r p
1

+R1A1,n
An

r1
<R1A1,nen.

For m= 3, . . . , n− 1 by using the same arguments we obtain

lim
v→v1

ŵm

r1
= lim

v→v1

R1,m+1A1,m,n
A1

r p
1

An

r1
−R1,mBmA1,m−1,m,n

A1

r p
1

An

r1
+R1,m−1A1,m−1,n

A1

r p
1

An

r1
= 0.

We now consider the term in (6.12) multiplied by ŵm for l = 1 and k 6= 1,

lim
v→v1

Rk∇A1ŵm = lim
v→v1

R1,k∇A1
ŵm

r p
1

= lim
v→v1

R1,k∇A1r1−p
1

ŵm

r1
= 0.

because of the previous result. Finally we consider the second term in (6.15)
multiplied by ŵm for l = 1 (l = n follows) and k 6= 1

lim
v→v1

p
s1

r p+2
1

R1,kA1ŵm = lim
v→v1

p
s1

r1

An

r p
1

R1,kA1,n
ŵm

r1
= 0,

for the same reason as before.
We can now summarize the results for m 6= 1 using all previous findings

lim
v→v1

∇ŵ1φm = lim
v→v1

∇ŵ1
ŵm

Ŵ
= 0. (6.20)

This final result allows us to establish for i = 2 (and similarly i = n)

lim
v→v1

∇φ2 = lim
v→v1

∇ŵ2 −φ1

∑n
j=1∇ŵ j

Ŵ
(6.20)
= lim

v→v1

∇ŵ2

Ŵ
(6.19)
=
∇An

C1

and for i = 3, . . . , n− 1

lim
v→v1

∇φi = lim
v→v1

∇ŵi −φ1

∑n
j=1∇ŵ j

Ŵ
(6.20)
= lim

v→v1

∇ŵi

Ŵ
(6.19)
= 0.

The reasoning in the previous theorem does not extend to the case p ≥ 1, be-
cause (6.17) diverges for p ≥ 1, which is in line with the result in [Hormann and
Floater, 2006]. The following examples show that the three-point coordinates
for p ≥ 1 are not C1 continuous over Ω. Note that the polygon in the example is
chosen to keep the calculations as simple as possible, but that we observed the
same phenomena for all other polygons that we tested.
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v1

0 2¼

p < 1

0 2¼

p = 1.2

0 2¼

p = 1

0 2¼

p = 2

0 2¼

p = 1.1

0 2¼

p = 3

Figure 6.2. Directional derivatives of φ1 at v1 for different values of x . The
grey area shows the portion of the angle inside P. Note that the intersections
of the dashed lines across the different plots is at the same points, because it
corresponds to the edge directions where φ1 is linear independently from x .

Example 1. Let us examine the gradient of the three-point coordinates for p ≥ 1
over the quadrilateral P with vertices v1 = (0, 0), v2 = (0,1), v3 = (−1/4, 1),
and v4 = (−1,0), and study the convergence of the x partial derivative along the
x-axis

lim
x→1−

∂ φ1

∂ x
(0, x).

According to the behaviour on the edges and the previous results the limit should
converge to 1 independently of p. However for p = 1 it turns out that

∂ φ1

∂ x
(0, x) = 2

16x3 + 16x2
p

x2 + 1+ 8x2 + 8x
p

x2 + 1+ 21x + 11
p

x2 + 1+ 5
p

x2 + 1(3x + 2+ 5
p

x2 + 1)2
,

whose limit for x → 1− is (14+ 10
p

2)/(15+ 10
p

2) 6= 1. Similarly for p = 2

∂ φ1

∂ x
(0, x) =

8(6x2 + 20x + 11)
5(3x + 5)2

,

which converges to 37/40 for x → 1−.
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τ1

τn

v

v1

v2

vn

e1

en

v1

v i

d

sisi

αi

v i 1¡v

si 1¡σi 1¡σi 1¡

Figure 6.3. Notation for angles and edge lengths and directional derivative.

Despite the fact that the coordinates are not C1 for p ≥ 1 at the vertices, their
directional derivative shows a reasonable behaviour, see Figure 6.2. In fact, for
p = 1 the directional derivative is a shifted sine function (Section 6.2.1).

6.2 Mean value coordinate gradient behaviour

6.2.1 Directional derivative

Since mean value coordinates are not C1 [Hormann and Floater, 2006] at the
vertices, we now consider the directional derivative

µi =∇dφi(v
1) = lim

t→0

φi(v1 + d · t)−φi(v1)
t

of the coordinate φi along a direction d at v1.
By exploiting the properties (1.2a) and (1.2c), µi can be split into two cases

µi =



















lim
t→0

φ1(v1 + d · t)− 1
t

= − lim
t→0

∑n
j=2 w j(v1 + d · t)

tW
if i = 1,

lim
t→0

φi(v1 + d · t)
t

= lim
t→0

wi(v1 + d · t)
tW

if i 6= 1.

(6.21)

Without loss of generality we assume that the first edge e1 of P is aligned with
the x-axis and the first vertex lies at the origin. Let Σ =

∑n−1
i=2 σi (Figure 6.3),

then it is easy to see that Σ= τ1 +τn, too. Since τ1 = α (Figures 6.3) it follows
that

τn −τ1 = (Σ−τ1)−τ1 = Σ− 2τ1 = Σ− 2α.
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Similarly, when v approaches v1 we conclude that

lim
v→v1

αi(v) =











π−τ1 if i = 1,

π−τn if i = n,

σi if i = 2, . . . , n− 1,

lim
v→v1

ri(v) =si, i = 2, . . . , n,

(6.22)

where si = ‖v i − v1‖. For simplicity, instead of using the formula (1.8), we
use the trigonometric representation [Floater et al., 2006, Equation (30)] of the
weight functions

wi =
2
ri

� r p−1
i+1 − r p−1

i cosαi

sinαi
+

r p−1
i−1 − r p−1

i cosαi−1

sinαi−1

�

(6.23)

where the angles αi and the distances ri, i = 1, . . . , n are depicted in Figure 6.3.

Proposition 1. For all i 6= 1 the following limit holds

lim
t→0

wi(v
1 + d · t) =











2s−1
i

�

tan(σi/2) + tan(σi−1/2)
�

if i = 3 . . . n− 1,

2s−1
2

�

tan(σ2/2) + cot(τ1/2)
�

if i = 2,

2s−1
n

�

cot(τn/2) + tan(σn−1/2)
�

if i = n.

Proof. For p = 1 we rewrite (6.23) as

wi =
2
ri

�

1− cosαi

sinαi
+

1− cosαi−1

sinαi−1

�

=
2
ri
(tan(αi/2) + tan(αi−1/2)).

We recall that tan(π/2−α) = cot(α) hence by using (6.22) the result follows.

Now we study the behaviour of the denominator.

Proposition 2. The following limit holds

lim
t→0

twi(v
1 + d · t) =

¨

2
�

cot(τ1/2) + cot(τn/2)
�

if i = 1

0 if i = 2, . . . , n.

Proof. For i = 2, . . . , n it trivially follows from Proposition 1. For i = 1 we have

lim
t→0

tw1(v
1 + d · t) = 2

�1+ cosτ1

sinτ1
+

1+ cosτn

sinτn

�

= 2
�

cot(τ1/2) + cot(τn/2)
�

.
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We are now ready to summarise the result and show the behaviour of the direc-
tional derivative at the vertices.

Theorem 2. The directional derivative µi with i = 1, . . . , n of mean value coordi-
nate at the first vertex of Ω̄ is of the form

µi = a+ b sin(α+ϕ)

where a, b, and ϕ are constant.

Proof. For i = 1 we exploit the previous propositions to obtain

µ1 = − lim
t→0

∑n
j=2 w j

tW
= −

s−1
2 cot(τ1/2) + s−1

n cot(τn/2)

cot(τ1/2) + cot(τn/2)
−

∑n−1
i=2 (s

−1
i + s−1

i+1) tan(σi/2)

cot(τ1/2) + cot(τn/2)
.

By using trigonometric identities and previous results, the first term can be sim-
plified to a1 + b1 sin(∆τ/2) with

a1 =
s2 + sn

2s2sn
and b1 =

sn − s2

2s2sn sin(Σ/2)
.

For the second term we note that the numerator N is independent from the angle
α, hence the term can be simplified as a2 + b2 sin(∆τ/2) with

a2 = −N/2cot(Σ/2) and b2 =
N

2sin(Σ/2)
.

Using these two results and the formula for the linear combination of sine func-
tions we conclude that µ1 = a+ b sin(α+ϕ) with

a = −(a1 + a2), b =
q

b2
1 + b2

2, and ϕ = −(Σ/2+ arctan(b2/b1)).

For i = 2, and similarly for i = n, we have

µ2 = lim
t→0

w2

tW
=

cot(τ1/2) + tan(σ2/2)
2s2(cot(τ1/2) + cot(τn/2))

= sin(τ1/2) sin(τn/2)
cot(τ1/2) + tan(σ2/2)

2s2 sin(Σ/2)
.

Again this formula can be simplified using trigonometric identities and the rule
of linear combination of sine functions to µ2 = a+ b sin(α+ϕ), where

a =
1− cot(Σ/2) tan(σ2/2)

2s2
, b = −

1
2s2 sin(Σ/2)| cos(σ2/2)|

, and ϕ = −
Σ+σ2

2
.

For the remaining cases (i.e., i = 3, . . . , n− 1)

µi = lim
t→0

wi

tW
=

tan(σi−1/2) + tan(σi/2)
si(cot(τ1/2) + cot(τn/2))

=
(tan(σi−1/2) + tan(σi/2)) sin(τ1/2) sin(τn/2)

si sin(Σ/2)
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v1 v1 v1 v1

∂ t2

∂ x
W−1 ∂ t2

∂ y
W−1

�

φ2

r1
−
φ1

r2

�

∂ t2

∂ x
W−1
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Figure 6.4. Numerical evidence of boundedness of the two terms in the gradient
of mean value coordinates.

Using the same rules we conclude that µi = a+ b sin(α+ϕ) with

a = − cot(Σ/2)
tan(σi−1/2) + tan(σi/2)

2si
, and

ϕ = −
Σ+π

2
.

6.2.2 Gradient bound

We present preliminary unpublished results and numerical evidence that suggests
that the norm of gradient of mean value coordinates is bounded. Following the
result in (4.2) and noticing that

−
wi∇ri

riW
=
φisi

r2
i

we can rewrite

∇φi =
∑

j 6=i

�

φ j

ri

φisi

ri
−
φi

r j

φ js j

r j

�

+
∑

j 6=i−1,i

�

φ j∇t i−1

W ri
−
φi∇t j

W r j

�

+
�

φi−1

ri
−
φi

ri−1

�∇t i−1

W

+
∑

j 6=i,i+1

�

φ j∇t i

W ri
−
φi∇t j−1

W r j

�

+
�

φi+1

ri
−
φi

ri+1

�∇t i

W
,

(6.24)

where all the terms seem bounded when x converges to the vertices.
Without loss of generality we consider the case i = 1, therefore, for j 6= 1

lim
x→v1

φ j

r1
= lim

x→v1

t j−1 + t j
∑n

k=1
r j r1

rk
(tk−1 + tk)

=
t j−1 + t j

r j(tn + t1)
=

w j

tn + t1
,
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since all the terms in the sum converge to zero. In what concerns φ js j/r j, we
remark that its norm is equal to |φ j| for any j. From these two results we can
conclude that the first sum in (6.24) is bounded.

For the remaining terms we need to show that for j = 2, . . . , n− 1

lim
x→v1

∇t j

W
= lim

x→v1

∇(s j × s j+1)− t j

�

∇r j r j+1 + r j∇r j+1 +∇(s j · s j+1)
�

W (r j r j+1 + s j · s j+1)

and

lim
x→v1

�

φ2

r1
−
φ1

r2

�∇t1

W
and lim

x→v1

�

φn

r1
−
φ1

rn

�∇tn

W

are bounded, for which we have only numerical evidence, so far (Figure 6.4).
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Chapter 7

Bijective complex mappings

We exploit the complex formulation of barycentric coordinates (Section 1.2) and
barycentric mapping to create bijective mappings. Note that the results presented
in this chapter are unpublished and in an early stage.

Our idea is to use higher order polynomials to “increase the resolution” of the
complex barycentric mapping (1.12) near the regions where it is not bijective. In
practice we can modify the “speed” of the mapping along the edges by renouncing
the linear function σi(t) in (1.13).

bν,1(t) bν,2(t) bν,3(t)

bν,4(t) bν,5(t) bν,6(t)

Figure 7.1. Bernstein basis function for different degrees.
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We use the Bernstein basis [Lorentz, 1953] (Figure 7.1) of degree d

bν,d(t) =
�

d
ν

�

tν(1− t)d−ν

to express the functions σi as

σi(t) =
d
∑

ν=0

bν,d(t)c
i
ν
.

This formulation has two advantages. First, by letting c i
0 = 0 and c i

d = 1 we
ensure that σi(0) = 0 and σi(1) = 1. Second, by imposing that

0< c i
ν−1 < c i

ν
< 1 ν= 1, . . . , d − 1 (7.1)

we can enforce monotonicity of σi.
As for the real case, to ensure bijectivity we need that

min
z∈P

det(Jh(z))> 0, (7.2)

where Jh is the Jacobian of the complex mapping. To compute it we suggest to
express γi and si in the complex polar form and to calculate the partial derivatives
with respect to the radius ρ and angle ψ. For instance,

γi =
|ei|eiαi

|zi −ρ| sin(αi −ψi)

�

e−iψ j+1 − e−iψ j

�

,

where αi is the angle of the i-th edge.
This trick leads to

∇h(z) =







∂ h(z)
∂ℜ(z)
∂ h(z)
∂ ℑ(z)






=







−
∂ h(ρ,ψ)
∂ψ

ℑ(z)
ρ2
+
∂ h(ρ,ψ)
∂ ρ

ℜ(z)
ρ

∂ h(ρ,ψ)
∂ψ

ℜ(z)
ρ2
+
∂ h(ρ,ψ)
∂ ρ

ℑ(z)
ρ






,

and therefore

det(Jh(z)) =ℜ
�

∂ h(z)
∂ℜ(z)

�

ℑ
�

∂ h(z)
∂ ℑ(z)

�

−ℜ
�

∂ h(z)
∂ ℑ(z)

�

ℑ
�

∂ h(z)
∂ℜ(z)

�

.

In order to solve this problem we formulate an optimization procedure. Let
C = {c i

ν
} ∈ Rn,d−1 be the matrix of coefficients of the functions σi, i = 1, . . . , n;

we wish to find the optimal C? that minimizes (7.2) under the constrains (7.1).
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Figure 7.2. Visualization of a complex mapping before and after optimization.

Unfortunately, this problem is highly non-linear and non-smooth, therefore we
need to reformulate it.

We introduce the linear function k and sample the polygon with a dense grid
of m points z̄ j. Thus our optimization problem becomes

minimize
k

− k

subject to 0< c i
ν−1 < c i

ν
< 1 i = 1, . . . , n,ν= 1, . . . , d − 1

det(Jh(z̄ j))≥ k j = 1, . . . , m,

(7.3)

which produces a bijective map when k > 0.
The advantage of this formulation is that both the objective function and the

non-linear constraints are smooth. We initialize this optimization process with
c i
ν−1 = ν/d and k = min j=,...,m det(Jh(z̄ j)). Note that the constraints (7.1) allow

to minimize only concave functions, therefore we “invert” σi as

σi(t) = 1−
d−1
∑

ν=1

bν,d(1− t)c i
ν
+ bd,d(1− t).

Then we solve the optimization problem (7.3) for all 2n possible combinations
of “inverted” and not-inverted σi and choose the one with the largest k.

Figure 7.2 shows how this optimization procedure restores bijectivity for the
given resolution for a mapping between two quadrilaterals.
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Part II

Applications
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Chapter 8

Application to computer graphics

The definition of a map f between the interior of two polygons (or more in gen-
eral between two polyhedra) is a basic problem that arises in different fields of
computer graphics, including image warping, parametrization and finite element
simulations.

The main application in computer graphics is image warping, where a source
image is deformed into a target image by modifying an initial control polygon
Ω̄0 to obtain a target polygon Ω̄1, as shown in Figure 8.1. Image warping can
be naturally extended to three dimensions, so called shape deformation, where
an object is contained in a source polyhedron Ω̄0 called “cage”. As for the two-
dimensional application, the “cage” is deformed into a target polyhedron Ω̄1 and
the contained object is deformed accordingly. In other words, the application
consists of mapping the volume of Ω̄0 to Ω̄1, as illustrated in Figure 8.2.

In image warping, bijectivity of f prevents fold-overs, which cause undesir-
able artefacts in almost all applications, Figure 8.1 shows an example of lack of
bijectivity in image warping.

source not bijective bijective

Figure 8.1. Image warping between a source and a target polygon. If the warping
is not bijective the image contains fold-overs, visible in the close-ups in the
middle picture.
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source target

Figure 8.2. Bijective mapping between two polyhedra.

Another application consists of surface cross parameterization, where we want
to transfer quantities (e.g., textures, functions, vector fields, etc.) from a contin-
uous parametric surface patch γ0 : Ω̄0 ⊂ R2 → R3 to another patch γ1 : Ω̄1 ⊂
R2→ R3. In this case we create a smooth bijective map f between the two para-
metric domains Ω̄0 and Ω̄1 and construct the overall mapping h = γ1 ◦ f ◦ γ−1

0 .
Figure 8.3 shows an example of surface cross parameterization, where γ0 is a
paraboloid and γ1, is a surface of revolution and we transfer colour information.

f°
0

°
1

h  = °
1
 ± f ± °  

0
-1

0 1

Figure 8.3. Bijective mapping between two smooth parametric surface patches.



Chapter 9

Parametric finite elements

Computational mechanics and computational science in general combine aspects
from mathematics, physics, engineering, and computer science. Their applica-
tion consists of simulating physical phenomena. These simulations are applied
in a large variety of fields such as medicine, aeronautics, or mechanics. For in-
stance, the finite element method has been used in cardiac surgery [Hashim and
Richens, 2006], car crash test simulations [Teng et al., 2008], or flight simula-
tions [Richards and NASA Dryden Flight Research Center, 1997].

Simulating physical phenomena often requires dealing with complex geomet-
ric objects, generated, for instance, by computer aided design (CAD) software
or captured from real life objects or organisms (e.g., 3D scans, MRI, etc.). When
focusing on the finite element method (FEM), such highly complex geometric de-
scriptions need to be represented in a sufficiently accurate way. This is the case
because the accuracy of the geometric representation influences the approxima-
tion error of the discrete solution of a partial differential equation. For instance,
in a fabrication simulation the shape of the mechanical part determines the result
of the simulation.

Due to the central nature of this geometric approximation, its influence on
the approximation error has been studied for curved boundary of iso-parametric
discretizations [Ciarlet and Raviart, 1972; Scott, 1973, 1975] and for contact
problems [Kikuchi and Oden, 1988]. More recent research focuses on numerical
studies for elliptic and Maxwell problems [Xue et al., 2005], and for different
approximation spaces [Bertrand et al., 2014b,a].

Unfortunately, the ability to reproduce the exact geometry is not considered
in most state-of-the-art tools, since they are based on a one-way connection be-
tween geometric information and simulation environment. In fact, the detailed
geometric description is used only in a pre-processing phase where a mesh is
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source
mesh t = 0 t = 5 t = 10 t = 15 t = 20

Figure 9.1. Transient non-linear elasticity simulation for a warped quad-mesh
with compressible-neo-Hookean material. The elastic gear is subject to vertical
body forces (gravity) and has a fixed tooth on the top boundary. The colour
represents the von Mises stress for the solution at different time-steps t.

generated. This pre-processing phase usually consists of creating an approxi-
mate representation of the input geometry. For CAD surfaces, this consists of
meshing the smooth surface to create a polygon-mesh representation, whereas
for captured surfaces the pre-processing phase consists of mesh coarsening, be-
cause the mesh resolution influences the size of the system describing the model
problem and affects the overall computational cost.

During a simulation, the approximation of the solution might not be accurate
enough to represent large variations. This problem is usually solved by means of
adaptive refinement strategies, such as h-refinement [Bey, 1995; Bramble et al.,
2002] (e.g., adding new triangles to the mesh) and p-refinement [Melenk and
Wohlmuth, 2001] (e.g., increasing the order of the local basis functions). When
using such strategies, the original surface should be taken into consideration and
recovered while refining [Dörfler and Rumpf, 1998]. However, the geometric
information is usually discarded in the simulation environment. In other words,
the mesh is generated within a modelling software and used in the simulation
environment without considering the original surface, thus preventing a better
surface approximation. Consequently, adaptive refinement is rarely accompanied
by an increase in the accuracy of the shape.

The most famous example of parametric finite elements is isogeometric anal-
ysis [Hughes et al., 2005] (IGA). This method was born to narrow the gap be-
tween the analysis and the modelling in CAD software. Its main advantage is
that it avoids the meshing phase, since the problem is solved directly on the
CAD geometry, such as non-uniform rational B-splines (NURBS). Moreover, the
method implies using splines as basis functions for both the geometry and the
finite element space, hence the name isogeometric. This construction has many
advantages, such as the exact and efficient representation of the CAD geome-
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try, the easy h and p refinement, its use of smooth basis functions with compact
support, and its direct employment in multigrid solvers.

In fact this method uses parametric elements. Most CAD geometries are made
by patches and each patch is the image of a spline map from a parametric domain,
which usually is a (trimmed) unit square. With this set-up the basis functions
(which are also splines) are defined over the parametric domain.

One of the main drawbacks of this method is that the geometries arising from
the modelling software may be invalid, for instance they may contain holes or
self-intersections [Lian et al., 2012]. One possibility to deal with this problem is
to use T-splines [Sederberg et al., 2004; Buffa et al., 2010; da Veiga et al., 2011],
however, CAD modelling software does not implement them. A second advan-
tage of T-splines regards the refinement, which remains local. Another important
open problem of IGA regards the construction of volumetric spline parametriza-
tion from the modelled surface [Aigner et al., 2009; Martin and Cohen, 2010;
Li et al., 2013]. Moreover, IGA approximations, similarly to many mesh-free
methods, lead to complications in the imposition of essential boundary condi-
tions, which can be either imposed in a weak sense [Bazilevs et al., 2010], or
least-squares satisfied in the strong sense [Hughes et al., 2005].

Additionally, when dealing with three-dimensional shapes, CAD models usu-
ally describe only the boundary. Creating a NURBS volume parameterization is a
complex task, for which many different approaches exist. For instance, some of
them require particular shapes [Aigner et al., 2009], need special geometric in-
formation [Martin and Cohen, 2010], or do not reproduce the surface exactly [Li
et al., 2013].

An alternative to IGA is the NURBS-enhanced finite element method (NE-
FEM) [Sevilla et al., 2011] that allows exploiting CAD geometries to describe
exactly the boundary of the geometry. However, this method requires creating a
parameterization mesh and a special handling of the boundary, which according
to [Sevilla et al., 2011] is still an open problem.

The problem of dealing with exact geometries has been extensively studied
for CAD geometries by the IGA community. Unfortunately, a similar study for
surface meshes is missing. For this reason, we focus on the exact representation
provided by surface meshes, and present the construction of a bijective volume
parametrization from arbitrarily shaped domains to arbitrarily shaped meshes.

One possible solution is to exploit the bijective mappings f into the finite
elements simulation, as shown in Figure 9.1. This new discretization enables
exploiting exact geometric descriptions (e.g., splines or surface meshes) together
with strategies employed in standard finite element simulations. This discretiza-
tion has the advantage of decoupling the geometry and the approximation space



94 9.1 Parametric finite elements with bijective mappings

f

1

Figure 9.2. Overview of parametric finite elements with bijective mappings, with
colour-coded solution of the Poisson problem (9.1) on a 2D warped domain Θ,
with zero boundary conditions and constant right-hand side.

allowing for sub/iso/super-parametric elements.

9.1 Parametric finite elements with bijective mappings

Let us consider the standard Poisson problem

−∆u= g, u|∂Θ = h, (9.1)

where Θ is the computational domain, and h describes the boundary values. In
contrast with the classical construction,

Θ = f (Θ0) ⊆ Ω1

is given by the image of a sufficiently smooth bijective mapping

f : Ω0→ Ω1.

In this context we call Θ0 ⊆ Ω0 the source domain, Ω0 ⊂ Rd the parametrization
domain, and Ω1 ⊂ Rd the parametrization image. Figures 9.2 and 9.3 show an
overview of our construction and the solution of the Poisson problem (9.1).

Using the same derivations as in Section 5.1.1, we rewrite (9.1) in its weak
form, which is: find u such that

∫

Θ

∇u · ∇v =

∫

Θ

gv ∀v.

Using f , we express the previous integral with respect to the source domain
Θ0. Considering that u(x ) = u( f (x0)) and v(x ) = v( f (x0)) where x ∈ Θ and
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Ω0

Ω1
Θ0

Θ uh(T )

Figure 9.3. Overview of the parametric finite elements with bijective mappings,
with colour-coded solution of the Poisson problem (9.1) on a 3D warped do-
main Θ, with zero boundary conditions and constant right-hand side.

x0 = f −1(x ) ∈ Θ0, and applying change of variables in the integrals, we rewrite
the weak form: find u such that

∫

Θ0

J−T
f ∇u · J−T

f ∇v det (J f ) =

∫

Θ0

gv det (J f ) ∀v, (9.2)

where J f is the Jacobian matrix of the mapping f .
In order to solve this problem, we represent the computational domainΘ by a

warped mesh T = f (T0). Note that, as described in (9.2), the bijective mapping
warps the entire volume, creating warped elements. Again, as in Section 5.1.1,
we introduce the basis

B1, . . . , Bm : Θ→ R,

over T and approximate

u≈ uh =
m
∑

i=1

ciBi,

where ci are real coefficients. By choosing the test space as the function space,
we discretize (9.2) as

m
∑

i=0

ui

∫

Θ

J−T
f ∇Bi · J−T

f ∇N j det (J f ) =
m
∑

i=0

gi

∫

Θ

BiB j det (J f ) ∀ j = 1, . . . , m,

which can be represented in the classical matrix form

Lu = M f , (9.3)

with u = [u1, . . . , um]T and g = [g1, . . . , gm]T



96 9.1 Parametric finite elements with bijective mappings
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B0 B1 B2 B4 B5 B6
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1

Figure 9.4. The standard linear and quadratic shape functions Ni on the element
of the source mesh and the corresponding warped element.

As usual, we introduce the reference element Ê and the transformation G
from the reference element to the corresponding element E0 in the source do-
main. We perform the quadrature in Ê, using quadrature points x̂ k ∈ Ê, xk =
G(x̂k) with the respective quadrature weights αk ∈ R, k = 1, . . . , K . Figure 9.5
shows all the geometric transformations from the reference element Ê to the
warped element E. We denote by B̂i the basis functions on the reference element
and by JG the Jacobian of G. This allows assembling the local matrices for the
element E

LE
i, j =

K
∑

k=1

βk J−T (xk) ∇B̂i(x̂ k) · J−T (xk)∇B̂ j(x̂ k),

M E
i, j =

K
∑

k=1

βk B̂i(x̂ k) B̂ j(x̂ k),

(9.4)

Ê E0 E

G f

Ω0 Ω1

Θ0 Θ

Figure 9.5. Overview of the geometric transformations from the reference ele-
ment Ê to the source element E0 ∈ T0 and to the warped element E ∈ T .
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10−1.810−1.610−1.4
10−2.5

10−2

m= 21 m= 92752

Figure 9.6. Left: visualization of e(uh) against the mesh size h, where the straight
line shows the quadratic trend. Right: solution of the Poisson problem for dif-
ferent numbers of nodes m.

where J(xk) = J f (x k)JG(x̂ k) and βk = αk det (J(xk))|Ê|, with |Ê| the volume of
Ê. These local contributions are then gathered to compute the matrices L and
M .

Note that the weak formulation and the assembly procedures are very similar
to classical finite elements. In fact, the only difference is the usage of the geomet-
ric terms depending on the bijective mapping f , such as J f , which contributes to
J = J f JG. As in standard the FEM, the choice of the basis is independent from the
geometric description, leading to super/sub/iso-parametric approximations. In
our method the geometric description is given by the mapping f , which is usually
non-linear, so that our discretization falls into the category of super-parametric
elements.

If we assume that f (T 0) describes the exact geometry, then the geometric
error is zero. However, the error in the solution is also connected to the choice of
the approximation space and the shape of the elements. This error is influenced
by the Jacobian J f of the bijective mapping. We estimate it by means of the
condition number

κ= sup
x0∈Θ0,x∈Θ

‖J f (x0)‖‖J−1
f (x )‖ (9.5)

as in standard parametric finite elements estimates [Braess, 2007; Brenner and
Scott, 2008].

9.2 Numerical experiments

We restrict our study to super-parametric discretizations based on composite
mean value mappings (Chapter 4) with linear Lagrange elements (P1). For our
experiments the analytical solution is unknown, hence we estimate it by comput-
ing a reference solution u on a very fine mesh T f . To evaluate the quality of our
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discretization and of the standard discretization, we compute different solutions
uh for several mesh sizes h.

9.2.1 Convergence

The solution is expected to converge quadratically in L2(Ω) to the exact one
with respect to the mesh size h for classical FEM with linear elements for H2-
regular problems. Hence, we study the convergence related to our approach by
measuring the approximation error as

e(uh) = ‖P(uh)− u‖L2(T f ),

where P is the L2-projection operator [Wohlmuth, 1998; Krause and Zulian,
2015] (the assembly of P is performed in the parametrization domain). Simi-
lar to the standard FEM, our method shows a quadratic convergence behaviour
for the Poisson problem, as illustrated in the plot in Figure 9.6. Despite the fact
that the computation is always performed in the exact geometry, the approxima-
tion error is not zero because of the piecewise polynomial approximation of the
solution, which is visible for a mesh with small m and disappears for larger m.

9.2.2 Comparison

We compare our method with the standard finite element discretization for a
simple 2D problem (Figure 9.8), an extreme 2D problem (Figure 9.9), and for a
realistic 3D shape (Figure 9.10). Since for the standard finite element discretiza-
tion, the boundary of T differs from Θ, we measure

r(uh) =

�

�

�

�

‖uh‖L2(T )

‖u‖L2(T f )
− 1

�

�

�

�

to estimate the approximation error [Luo et al., 2001].

Figure 9.7. Mesh refinement without shape recovery. Even at fine resolution
(last image) we do not recover the original shape (blue polygon).
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T0

T

m= 21 m= 143 m= 183 m= 381

102 103

10−2

10−1
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Standard

r(uh) without shape
recovery.

102.5 103 103.5
10−9

10−5

10−1

102.5 103 103.5
10−2

10−1

s(T ). r(uh) with shape recovery.

Figure 9.8. Source meshes T0 with boundary Ω0 (first row), warped meshes
T used by our method (second row), and convergence plots against different
numbers of degrees of freedom m (last row).

In classical finite element simulations the original shape is usually not recov-
ered when performing mesh refinement as shown in Figure 9.7. For this reason,
r(uh) does not converge to zero for the standard solution, while our approach
converges (left plots in Figures 9.8, 9.9, and 9.10).

In order to better understand this behaviour, we measure the actual geometric
deviation with

s(T ) = ‖1‖L2(T ),

which corresponds to the volume of the mesh (note that s(T ) is equivalent to the
square root of the sum of the entries of the mass-matrix). We compute the vol-
ume by means of numerical quadrature, which might introduce errors, since our
discretization consists of warped elements. For the standard discretization, when
refining the mesh without recovering the shape, the volume trivially stays con-
stant. Hence, in order to have a fair comparison, we increase the shape accuracy
while refining the mesh to ensure that the shape of the domain also converges
to the exact one. The behaviour of s(T ) shows that our discretization has almost
zero geometrical error independently of h, while the standard discretization has
higher geometrical error (middle plots in Figures 9.8, 9.9, and 9.10).
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s(T ). r(uh) with shape recovery.

Figure 9.9. Source meshes T0 with boundary Θ0 (first row), warped meshes
T used by our method (second row), and convergence plots against different
numbers of degrees of freedom m (last row).

In order to investigate how the approximation error is influenced by the ge-
ometrical error, we measure r(uh) for our method and classical finite elements
with shape recovery. Our discretization always has a smaller approximation er-
ror compared to the standard discretization (right plots in Figures 9.8, 9.9, and
9.10). This is due to the fact that our approach allows solving the problem in the
exact geometry, even at low resolutions.

9.2.3 Conditioning

For solution methods such as iterative solvers, the condition number κ of the
stiffness matrix plays an important role for the convergence rate [Bathe and Wil-
son, 1976]. In order to understand how our discretization affects the condition
number, we compute κ for the discrete Laplace operator L with respect to differ-
ent mesh sizes h for both our discretization and the standard one. Because of the
influence of the bijective mapping b, as shown in (9.5), our discretization has a
slightly larger condition number. Figure 9.11 shows that κ(L) behaves similarly
for both discretizations which suggests that iterative solvers perform nearly as
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Ω0 Ω1 n= 42 n= 80 n= 194 n= 644 n= 1611
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r(uh) without shape recovery. s(T ). r(uh) with shape recovery.

Figure 9.10. Convergence plots against different numbers of degrees of freedom
m for a 3D experiment.

well for our discretization as for the standard one.
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Figure 9.11. Condition number of the discrete Laplace operator κ(L) against the
mesh size h for the examples in Figure 9.8 (left) and Figure 9.9 (right).
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Chapter 10

Meshing and polygonal finite
elements

To represent the physical domain, the classical approach consists of tetrahedral-
izing [Si, 2015] (or triangulating [Shewchuk, 1996]) the domain, where the
mesh size (i.e., number of tetrahedra) determines the accuracy of the domain
description. This strategy has two main advantages: first, it is easy to imple-
ment; second, simplices are easier to treat (e.g., the transformation between
two tetrahedra is affine and unique). However, linear tetrahedra elements are
known to be more prone to the so-called mesh locking effect due to their linear
behaviour [Babuška and Suri, 1992]. Besides, hexagons have better properties
for finite element analysis [D’Azevedo, 2000; Shepherd and Johnson, 2008] and
better describe tubular shapes such as body parts [Bommes et al., 2012; Panozzo,
2015]. To avoid such problems efforts are made to generate hexahedral meshes,
but pure hexahedral meshes are very difficult, if not impossible, to create [Shep-
herd and Johnson, 2008].

Additionally, for complex cases such as micro structures it is impossible to
generate pure hexahedral meshes, which makes simulations based on such struc-
tures infeasible. Another typical example consists of transient simulations, where
the geometry undergoes large deformations (e.g., large non-linear elastic defor-
mations). In these cases re-meshing is often required to restore mesh quality. In
the case of hexahedral meshes this aspect poses a critical problem, since many
meshing techniques are (partially) manual.

One possible solution to deal with this problem consists of using parametric
finite elements (Chapter 9) which allow to “move” the meshing problems into
the parametrization domain.

An alternative approach consists of using meshes composed by polyhedral
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elements, thus deviating from the standard choice of “hat” basis functions and
using barycentric coordinates (Section 1.1) as basis [Gout, 1985; Sukumar and
Tabarraei, 2004]. In this case the classical assembly of the physical operators
is not applicable since it is difficult to create a bijective map from the reference
element (a regular polyhedron with n faces) to the physical domain. Therefore,
the assembly is performed directly on the physical domain.

10.1 Polygonal finite elements

The classical formulation of the finite elements method with tetrahedral elements
and polynomial basis functions has been generalized in recent years. One direc-
tion consists of enriching the finite element basis and using the so-called extended
finite element method [Belytschko et al., 2009]. For instance, by enriching the
standard basis with jumping functions we can describe discontinuous functions
which are usually used in crack modelling.

The second direction consists of giving up the simplices and defining a ba-
sis for polyhedral elements which is no longer unique. Many approaches have
been proposed, the most famous ones being mimetic finite difference [Lipnikov
et al., 2014], its generalization the virtual element method [Beirão Da Veiga et al.,
2013], and the polygonal finite element method [Sukumar and Malsch, 2006;
Manzini et al., 2014; Chi et al., 2016; Khoei et al., 2015; Talischi et al., 2015].
The last approach uses barycentric coordinates as a basis. In particular, it pro-
poses to use Wachspress (1.5) or discrete harmonic (1.6) coordinates when all
elements in the mesh are convex or mean value coordinates (1.7) for general,
possibly concave, elements.

10.2 Meshing

As already explained, hexahedra have many advantages over tetrahedra. For
this reason the creation of hexahedral and hex-dominant meshes has become an
active field in itself. One of the earliest attempts to achieve automatic hexahe-
dral meshing is paving and sweeping [Owen and Saigal, 2000; Yamakawa and
Shimada, 2003; Staten et al., 2005; Shepherd and Johnson, 2008]. The first one
consists of inserting regular layers of cubes aligned with a boundary quad mesh.
The second one extrudes a partial quad mesh. The major problem with these at-
tempts is their extremely challenging implementation, due to the large number
of special cases. One simplification consists of considering only tubular meshes
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and using the skeleton for the sweeping phase [Livesu et al., 2016].

10.2.1 Spatial Partitioning

A more popular approach is spatial partitioning, which can be used to discretize
shapes in regular collections of cubes, which coarsely approximate the input
shape [Su et al., 2004; Zhang and Bajaj, 2006; Zhang et al., 2007], in particular
combined with octrees [Maréchal, 2009; Ito et al., 2009; Zhang et al., 2013].
The main advantage of these methods is their robustness, which makes them
standard for hex-mesh generation. However, these methods can represent only
features that are well-aligned with the principal axes and place all singularities
on the shape boundary, which is unfortunate since this is often the region of
highest interest. These disadvantages are, however, compensated by the high
robustness of these methods, making them the de facto standard for automatic
hex mesh generation.

10.2.2 Polycube Parametrization

Polycube methods [Gregson et al., 2011; Li et al., 2013; Livesu et al., 2013; Huang
et al., 2014; Fang et al., 2016; Fu et al., 2016] parametrize the interior of a closed
surface mesh into a polycube, which is trivially subdivided in a hexahedral mesh
and warped back into the input geometry. These methods produce a better dis-
tribution of the boundary singularities. However, they are not guaranteed to pro-
duce a valid hex-mesh. Similarly to spatial partitioning methods, all singularities
are located on the surface boundary. However, in contrast to spatial partition-
ing schemes, polycube methods distribute them in a superior way to account for
surface features, obtaining both higher quality elements and a lower total ele-
ment count. These methods are unfortunately not guaranteed to produce a valid
polycube and can fail on complex inputs, limiting their practical applicability.

10.2.3 Field-Aligned Methods

Field-aligned methods [Nieser et al., 2011; Huang et al., 2011; Li et al., 2012;
Jiang et al., 2014] compute a hex-mesh in three stages. These methods start
by estimating the gradients of a volumetric parametrization using a directional
field [Vaxman et al., 2016]. Then they compute a parametrization aligned with
the estimated gradients. Finally, they trace the cubes’ edges in parametric space [Ly-
on et al., 2016]. Their main disadvantage is that producing a parametrization
that induces a pure hex-mesh remains an unsolved problem, and currently used



106 10.3 Parametric finite elements approximation

heuristics tend to fail on complex inputs. For instance, the method [Sokolov
et al., 2016] is one of the few existing field-aligned parametrization methods
that targets hex-dominant meshes. It can process complex CAD models with
alignment to surface features, creating meshes composed of hexahedra, tetra-
hedra, triangle-based prisms, and quad-based pyramids. However, the meshes
produced are not conforming (i.e., there are interfaces where a hexahedron is
connected with two tetrahedra).

10.2.4 Existing Software

Due to the applicative aspect of these techniques, many of them have led to actual
software implementations. Boundary-aligned techniques exist to automatically
mesh special geometries, such as cylinders, boxes and sweepable solids [PAM-
GEN, 2016; ANSYSTurbogrid, 2016; HyperMesh, 2016; SiemensPLM, 2016]. Nu-
merous software packages exist for octree-based hexahedral meshes [Cart3D,
2016; LBIE, 2016; Harpoon, 2016; HEXPress, 2016; Bolt, 2016; Hexotic, 2016;
MeshGems, 2015; Kubrix, 2016; XBX, 2016]. Other techniques manually de-
compose the shape into simpler pieces that are then meshed while ensuring that
compatible interfaces are introduced [Sandia, National Lab, 2016; Trelis, 2016;
Apex, 2016]. Mixed meshes, containing not only hexahedra, are easier to gener-
ate. Therefore, many commercial codes have been developed for this task [Au-
todesk Simulation-Mechanical, 2016; MeshGemsHybrid, 2016; AMPS, 2016; BETA
CAE, 2016; TexMesher, 2016]. These tools are closer to our goals. Unfortunately,
it is difficult to find free or open-source implementation. Moreover, the limita-
tions of these techniques are difficult to quantify precisely, even though they are
informally understood. Finally, none of the software can produce meshes aligned
with a given volumetric orientation field.

The proposed approach will lift the global conditions that make the hexahe-
dral meshing problem hard, opening the door to simpler and more robust mesh-
ing techniques that are specifically designed to use the proposed new discretiza-
tions.

10.3 Parametric finite elements approximation

We extended our parametric finite element method (Section 9.1) for creating
polygonal or piece-wise polynomial meshes. The basic idea is to approximate the
warped mesh produced by the bijective map to create a polygonal or piecewise-
polynomial mesh. Note that, to maintain bijectivity, the approximation is per-
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Linear Quadratic Quartic

Ei f̃ 1(Ei) Ei f̃ 2(Ei) Ei f̃ 4(Ei)

Figure 10.1. Comparison of f (orange dashed line) with its polynomial approx-
imations f̃ k (black solid line) for an element Ei.

formed directly in Θ and can be done with arbitrary accuracy.
To obtain piece-wise polynomial approximations of the warped mesh, we

sample a parametrization element Ei with the necessary interpolation nodes (e.g.,
for a quadratic approximation we add to the element the edge mid-points) as
shown in Figure 10.1. We then warp with f these nodes and fit a Lagrange
polynomial to create the element-wise approximation f̃ k(Ei) of order k of the
mapping. The overall approximation is then obtained as a union of the element
approximations, see the third, fourth, and fifth rows of Figure 10.7. Unfortu-
nately, this approximation is not guaranteed to create a valid mesh as visible on
the close-ups in Figure 10.7, and bijectivity cannot be restored by refinement.

To overcome this limitation, one possibility is to approximate the mapping
with a piecewise polygonal approximation. As for the polynomial approximation,
this procedure is performed per element. We sample every side of an element Ei

with k uniformly sampled points x i, i = 1, . . . , k. Then we compute f (x i), which
gives a densely sampled polygonal approximation of f (Ei). Finally, for efficiency
reasons, we discard all approximately collinear points by checking if the angle
between two successive segments is approximately flat, thus creating polygons
with fewer vertices, Figure 10.2. This procedure produces the approximation f̃

Polygonal Piecewise-linear

Ei f̃ (Ei) Ei f̃ PW (Ei)

Figure 10.2. Comparison of f (orange dashed line) with its polygonal f̃ and
piecewise-linear approximations f̃ PW (black solid line) for an element Ei.
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Θ0 Θ0 Number of vertices Solution

Figure 10.3. Example of discretization of f for a triangular mesh. The third
image illustrates the number of vertices of each element, from white (triangles)
to red (icosagon). The last image shows the solution of the Poisson equation
using mean value coordinates as basis functions.

which is a mesh with polygonal elements which is always bijective, last row of
Figure 10.7.

Since the mapping f is rather local, this strategy naturally generates triangles
away from the boundary, as shown in Figure 10.3. This effect becomes more
visible as we refine the mesh, see Figure 10.4. Note that, to solve the physical
problem, one can employ mean value coordinates as in [Sukumar and Malsch,
2006].

Using barycentric coordinates as basis function is a non-standard technique
to solve physical problems. To avoid this discretization we suggest to triangu-
late the polygons, thus creating the piecewise approximation f̃ PW of the map-

Figure 10.4. The number of vertices per element becomes more and more lo-
calized on the boundary under refinements.
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Degenerate triangulation, yellow and green
elements have zero area in the domain.

Valid triangulation, all elements have positive
area in the domain.

Figure 10.5. Invalid and valid triangulations for constructing the mapping f̃ PW .

ping, Figure 10.2. Certain applications require to have the same mesh on the
parametrization domain. For instance, multi level methods require a hierarchy
of nested spaces for optimal convergence [Hackbusch, 1985; Briggs et al., 2000]
which can be achieved by constructing this hierarchy in the parametrization do-
main [Dickopf and Krause, 2011]. For this reason, when triangulating the polyg-
onal approximation, we forbid inserting additional points and having a triangle
which is connected to the same edge, see the yellow triangle in Figure 10.5 (left).
Figure 10.6 shows different approximations of f and the image of the inverse in
the parametrization domain.

f̃ 3 f̃ f̃ PW

Figure 10.6. Mesh hierarchies for different discretizations.
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Figure 10.7. Comparison between f and its different approximations.



Conclusion

This dissertation presents and discusses three main methods to create bijective
mappings and their application to finite elements and meshing.

Since it is difficult or even impossible (e.g., in the case of barycentric map-
pings) to create bijective mappings directly, we propose to achieve bijectivity
through composition (Chapters 4 and 5). The first method is based on the intu-
ition that if two polygons (or polyhedra) are sufficiently close then the barycen-
tric mapping (Section 2.1) is bijective. Following this intuition we propose to de-
compose the overall mapping into a finite number of intermediate steps, where
the mapping between each pair of successive polygons is bijective (Section 4.2).
An interesting remark is that if we let the number of steps converge to infinity
then the bijective mapping becomes symmetric (Section 4.3), that is, if we invert
the roles of source and target polygons we construct the inverse mapping.

The second method for creating bijective mappings (Chapter 5) is also based
on composition. The principal idea follows from the Radó–Kneser–Choquet the-
orem which states that a harmonic map to a convex target polygon is always
bijective. Therefore for creating a bijective mapping between two polygons with
n vertices we propose to create two harmonic mappings ϕ0 and ϕ1 that map
from the source and target polygons to a common regular n-gon respectively.
Then the bijective mapping can be simply created by inverting ϕ1 and compos-
ing it with ϕ0. Since the Radó–Kneser–Choquet theorem only requires the in-
termediate polygon to be convex, we illustrate how to change the shape of the
intermediate polygons to reduce the distortion of the mapping (Section 5.3).

The condition that guarantees bijectivity is linked to the norm of the gradi-
ent of barycentric coordinates (4.1). We show that a large part of the so-called
three-point family coordinates [Floater et al., 2006] are C0 through the study of
their directional derivative (Section 6.1). Moreover, we show that the directional
derivative of mean value coordinates (1.7) behaves like a shifted sine function
(Section 6.2.1) and we provide some initial results and numerical evidence on
the boundedness of their gradient (Section 6.2.2).

The composition of barycentric mappings can be applied to closed planar
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curves by means of transfinite barycentric coordinates (Section 1.3). We discuss
a method that allows to create intermediate curves (Section 3.3) based on the
interpolation of the curvature, which is an intrinsic property and produces nat-
ural results. The main challenge consists of closing the curve, which we resolve
through an optimization procedure (Section 3.3.1).

The last method for creating bijective mappings (Chapter 7) is based on com-
plex barycentric coordinates (Section 1.2). It follows the intuition acquired by
changing the boundary conditions of the harmonic mappings (Section 5.4). The
idea is to relinquish the linear behaviour of the mapping along the edges of the
polygons to achieve bijectivity. We present some initial results and an optimiza-
tion procedure that finds the coefficients of a Bernstein polynomial that describes
the “speed” of the mapping along the edges.

The first application we present regards parametric finite elements (Chap-
ter 9). We use the bijective mappings to warp a mesh from a parametrization
domain to the physical domain (Section 9.1). The main advantage is that the
parametrization domain can be arbitrarily simple (e.g., a triangle) and therefore
meshed with arbitrary resolution. The bijective mapping will then take care of
warping this domain into the physical domain, which ensures that the shape of
interest is preserved. An interesting discovery is that even if closed form coor-
dinates are fast and efficient to evaluate and easy to parallelise, with polygons
with many sides (as the one in Figure 9.7) they become a bottleneck. One possi-
bility would be to use blended coordinates [Anisimov et al., 2017], however they
are more complicated to parallelise. It would be interesting to compare highly
optimized versions of both coordinates to increase the speed of our parametric
FEM.

The second application considers meshing (Chapter 10). We propose dif-
ferent strategies (polynomial, polygonal, and piece-wise linear) to approximate
the bijective mappings (Section 10.3). These strategies allow to create differ-
ent meshes, such as polygonal or piece-wise quadratic meshes. It is interesting
to note that naively refining the mesh does not restore bijectivity. In fact, our
experiments show that there are situations in which even a large number of re-
finements does not solve the problem, indicating that bijectivity can be achieved
only in the limit.



Future work

In my short five year experience I have noticed that at the conclusion of a re-
search, there are more questions and open problems than at the start. For in-
stance, my work on composite barycentric mappings (Chapter 4) was the driving
force for studying the directional derivative of the three-point family, since the
bound (4.1) exists only if ‖∇φi‖ is bounded. Standing from there, we show that
the directional derivative of mean value coordinates is bounded, and therefore it
suggests that the gradient might be bounded too. This consideration led to the
study of the gradient of these coordinates. Unfortunately this work is incomplete,
and proof of the boundedness of the gradient is missing. Moreover, it would be
interesting to find a possibly simple tight bound that depends on the geometry
of the polygons.

Also related to composite mean value mappings, it would be interesting to
be able to estimate the number of intermediate steps necessary to guarantee the
bijectivity of the mappings. This estimate would allow to avoid to the strategy
described in Section 4.5.3. To achieve this result we need first to have the simple
bound for the gradient of the coordinates and then to combine it with some
conditions on the vertex paths. This result would have an impact for practical
applications since it would allow to compute the optimal number of steps.

Chapter 7 illustrates some initial results and possibilities to achieve bijective
mappings by means of complex coordinates. The optimization procedure is just
a preliminary study to show the feasibility. On the one hand, it would be inter-
esting to improve it (e.g., find a better strategy for selecting the concavity of the
functions on the edges) or to include distortion measures in the process. On the
other hand, a sound mathematical analysis to find the necessary conditions to
guarantee bijectivity is missing.

The parametric finite element method described in Section 9.1 requires in-
tegrating the Jacobian on the bijective mappings. One initial strategy consists
of adaptively adding as many quadrature points as needed. This strategy is not
optimal since it requires evaluating the mapping a large number of times. One
solution would be to devise special quadrature rules for this application.
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In Section 5.3 we started scratching the surface of the mapping optimiza-
tion. A thoughtful study of the influence of the vertex path and coordinates on
the composite barycentric mapping is missing. One can modify them to obtain
mappings with lower distortion, following the ideas proposed by “energy-based”
bijective mappings. Moreover, it would be interesting to design energy functions
from the perspective of finite element applications. That is, to design bijective
mappings optimized for parametric finite elements, by favouring, for instance,
well-shaped elements or “as piece-wise polynomial as possible” behaviour to fa-
cilitate numerical integration.

We show how to use bijective mappings in the context of meshing. The strat-
egy used for creating the polygons is local and creates many polygons with a
large number of sides. However, one can design a global strategy that checks
for self-intersections and produces more simplices. Moreover, it would be nice to
extend this meshing strategy to three dimensions, where the local approximation
becomes much more complicated.

Finally, most of the images and results presented in this document and in my
papers arise from a complex software implemented in collaboration with Patrick
Zulian, called MOONOLITH. We plan to clean it and extract a simple interface to
provide the possibility to replicate our results and access many utility geometrical
algorithms, such as meshing tools, eps exporters, and mesh format conversion.
On a related note, I feel that with the many hours invested into searching and
hunting for bugs in MOONOLITH, my PhD should be more in entomology than
in computer science.
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