330 research outputs found

    Geometric uncertainty models for correspondence problems in digital image processing

    Get PDF
    Many recent advances in technology rely heavily on the correct interpretation of an enormous amount of visual information. All available sources of visual data (e.g. cameras in surveillance networks, smartphones, game consoles) must be adequately processed to retrieve the most interesting user information. Therefore, computer vision and image processing techniques gain significant interest at the moment, and will do so in the near future. Most commonly applied image processing algorithms require a reliable solution for correspondence problems. The solution involves, first, the localization of corresponding points -visualizing the same 3D point in the observed scene- in the different images of distinct sources, and second, the computation of consistent geometric transformations relating correspondences on scene objects. This PhD presents a theoretical framework for solving correspondence problems with geometric features (such as points and straight lines) representing rigid objects in image sequences of complex scenes with static and dynamic cameras. The research focuses on localization uncertainty due to errors in feature detection and measurement, and its effect on each step in the solution of a correspondence problem. Whereas most other recent methods apply statistical-based models for spatial localization uncertainty, this work considers a novel geometric approach. Localization uncertainty is modeled as a convex polygonal region in the image space. This model can be efficiently propagated throughout the correspondence finding procedure. It allows for an easy extension toward transformation uncertainty models, and to infer confidence measures to verify the reliability of the outcome in the correspondence framework. Our procedure aims at finding reliable consistent transformations in sets of few and ill-localized features, possibly containing a large fraction of false candidate correspondences. The evaluation of the proposed procedure in practical correspondence problems shows that correct consistent correspondence sets are returned in over 95% of the experiments for small sets of 10-40 features contaminated with up to 400% of false positives and 40% of false negatives. The presented techniques prove to be beneficial in typical image processing applications, such as image registration and rigid object tracking

    Image Retrieval in the Plenoptic Space

    Get PDF
    In this report we study the ways to exploit the vast amount of information inherent in the plenoptic space and constraints of the plenoptic function to improve the efficiency of image retrieval, recognition and matching techniques. The plenoptic space is formed by extending the notion of traditional two-dimensional by adding more dimensions for viewing direction, time and wavelength. Using current hand-held devices' built-in cameras, one can easily capture a large sequence of pictures from a single static scene by moving the camera in one direction, which form a three dimensional plenoptic function

    Automatic visual recognition using parallel machines

    Get PDF
    Invariant features and quick matching algorithms are two major concerns in the area of automatic visual recognition. The former reduces the size of an established model database, and the latter shortens the computation time. This dissertation, will discussed both line invariants under perspective projection and parallel implementation of a dynamic programming technique for shape recognition. The feasibility of using parallel machines can be demonstrated through the dramatically reduced time complexity. In this dissertation, our algorithms are implemented on the AP1000 MIMD parallel machines. For processing an object with a features, the time complexity of the proposed parallel algorithm is O(n), while that of a uniprocessor is O(n2). The two applications, one for shape matching and the other for chain-code extraction, are used in order to demonstrate the usefulness of our methods. Invariants from four general lines under perspective projection are also discussed in here. In contrast to the approach which uses the epipolar geometry, we investigate the invariants under isotropy subgroups. Theoretically speaking, two independent invariants can be found for four general lines in 3D space. In practice, we show how to obtain these two invariants from the projective images of four general lines without the need of camera calibration. A projective invariant recognition system based on a hypothesis-generation-testing scheme is run on the hypercube parallel architecture. Object recognition is achieved by matching the scene projective invariants to the model projective invariants, called transfer. Then a hypothesis-generation-testing scheme is implemented on the hypercube parallel architecture

    Geometric and photometric affine invariant image registration

    Get PDF
    This thesis aims to present a solution to the correspondence problem for the registration of wide-baseline images taken from uncalibrated cameras. We propose an affine invariant descriptor that combines the geometry and photometry of the scene to find correspondences between both views. The geometric affine invariant component of the descriptor is based on the affine arc-length metric, whereas the photometry is analysed by invariant colour moments. A graph structure represents the spatial distribution of the primitive features; i.e. nodes correspond to detected high-curvature points, whereas arcs represent connectivities by extracted contours. After matching, we refine the search for correspondences by using a maximum likelihood robust algorithm. We have evaluated the system over synthetic and real data. The method is endemic to propagation of errors introduced by approximations in the system.BAE SystemsSelex Sensors and Airborne System

    Study of object recognition and identification based on shape and texture analysis

    Get PDF
    The objective of object recognition is to enable computers to recognize image patterns without human intervention. According to its applications, it is mainly divided into two parts: recognition of object categories and detection/identification of objects. My thesis studied the techniques of object feature analysis and identification strategies, which solve the object recognition problem by employing effective and perceptually important object features. The shape information is of particular interest and a review of the shape representation and description is presented, as well as the latest research work on object recognition. In the second chapter of the thesis, a novel content-based approach is proposed for efficient shape classification and retrieval of 2D objects. Two object detection approaches, which are designed according to the characteristics of the shape context and SIFT descriptors, respectively, are analyzed and compared. It is found that the identification strategy constructed on a single type of object feature is only able to recognize the target object under specific conditions which the identifier is adapted to. These identifiers are usually designed to detect the target objects which are rich in the feature type captured by the identifier. In addition, this type of feature often distinguishes the target object from the complex scene. To overcome this constraint, a novel prototyped-based object identification method is presented to detect the target object in the complex scene by employing different types of descriptors to capture the heterogeneous features. All types of descriptors are modified to meet the requirement of the detection strategy’s framework. Thus this new method is able to describe and identify various kinds of objects whose dominant features are quite different. The identification system employs the cosine similarity to evaluate the resemblance between the prototype image and image windows on the complex scene. Then a ‘resemblance map’ is established with values on each patch representing the likelihood of the target object’s presence. The simulation approved that this novel object detection strategy is efficient, robust and of scale and rotation invariance

    Image-Based Localization Using the Plenoptic Function

    Get PDF
    In this report we study the ways to exploit the vast amount of information inherent in the plenoptic space and constraints of the plenoptic function to improve the efficiency of image retrieval, recognition and matching techniques. The specific application we are concerned with is image-based location recognition on mobile devices. The plenoptic space is formed by extending the notion of traditional two-dimensional by adding more dimensions for viewing direction, time and wavelength. Using current mobile devices' built-in cameras, one can easily capture a large sequence of pictures from a single static scene by moving the camera in one direction, which form a three dimensional plenoptic function

    Detection and Recognition of Soccer Ball and Players

    Get PDF
    In this work, an efficient, mere algorithm for detection and recognition of a soccer ball and players has been proposed. It actually involves two stages, detection followed by recognition. In long shot frames, existing algorithms will most likely be unable to identify the ball when it converged with the lines in the field. In this way, we present a strategy that can separate lines from the ball and section the ball capably. First, the ground (background) is disposed of from the scene and the edges of the original frame are distinguished. At that point, Hough line transform is used identify lines. After line identification, the lines are wiped out from the original frame so that just detected players and the ball remain in the scene. Now moving to recognition of player’s. In this work, approach to recognition of players is based on player jersey number. Jersey numbers are stored in database. Jersey number is the base image and the original frame will be the test image. SURF (Speeded-Up Robust Feature) Features in both the base image and test images are found. Then, Features (Feature descriptors) are extracted and match features accordingly. After features getting matched, geometric transform is estimated using Affine Transform. After estimating, the original base image has been recovered, and structural similarity has been checked to avoid false interpretation. If the structural similarity index value is above the defined limit, then the corresponding player statistics will be displayed. Higher the similarity index value, lesser will the probability for false interpretatio

    Vision-Based Building Seismic Displacement Measurement by Stratification of Projective Rectification Using Lines

    Get PDF
    We propose a new flexible technique for accurate vision-based seismic displacement measurement of building structures via a single non-stationary camera with any perspective view. No a priori information about the camera’s parameters or only partial knowledge of the internal camera parameters is required, and geometric constraints in the world coordinate system are employed for projective rectification in this research. Whereas most projective rectifications are conducted by specifying the positions of four or more fixed reference points, our method adopts a stratified approach to partially determine the projective transformation from line-based geometric relationships on the world plane. Since line features are natural and plentiful in a man-made architectural building environment, robust estimation techniques for automatic projective/affine distortion removal can be applied in a more practical way. Both simulations and real-recorded data were used to verify the effectiveness and robustness of the proposed method. We hope that the proposed method could advance the consumer-grade camera system for vision-based structural measurement one more step, from laboratory environments to real-world structural health monitoring systems
    corecore