6 research outputs found

    Matching Theory for Backhaul Management in Small Cell Networks with mmWave Capabilities

    Full text link
    Designing cost-effective and scalable backhaul solutions is one of the main challenges for emerging wireless small cell networks (SCNs). In this regard, millimeter wave (mmW) communication technologies have recently emerged as an attractive solution to realize the vision of a high-speed and reliable wireless small cell backhaul network (SCBN). In this paper, a novel approach is proposed for managing the spectral resources of a heterogeneous SCBN that can exploit simultaneously mmW and conventional frequency bands via carrier aggregation. In particular, a new SCBN model is proposed in which small cell base stations (SCBSs) equipped with broadband fiber backhaul allocate their frequency resources to SCBSs with wireless backhaul, by using aggregated bands. One unique feature of the studied model is that it jointly accounts for both wireless channel characteristics and economic factors during resource allocation. The problem is then formulated as a one-to-many matching game and a distributed algorithm is proposed to find a stable outcome of the game. The convergence of the algorithm is proven and the properties of the resulting matching are studied. Simulation results show that under the constraints of wireless backhauling, the proposed approach achieves substantial performance gains, reaching up to 30%30 \% compared to a conventional best-effort approach.Comment: In Proc. of the IEEE International Conference on Communications (ICC), Mobile and Wireless Networks Symposium, London, UK, June 201

    The 5G Cellular Backhaul Management Dilemma: To Cache or to Serve

    Full text link
    With the introduction of caching capabilities into small cell networks (SCNs), new backaul management mechanisms need to be developed to prevent the predicted files that are downloaded by the at the small base stations (SBSs) to be cached from jeopardizing the urgent requests that need to be served via the backhaul. Moreover, these mechanisms must account for the heterogeneity of the backhaul that will be encompassing both wireless backhaul links at various frequency bands and a wired backhaul component. In this paper, the heterogeneous backhaul management problem is formulated as a minority game in which each SBS has to define the number of predicted files to download, without affecting the required transmission rate of the current requests. For the formulated game, it is shown that a unique fair proper mixed Nash equilibrium (PMNE) exists. Self-organizing reinforcement learning algorithm is proposed and proved to converge to a unique Boltzmann-Gibbs equilibrium which approximates the desired PMNE. Simulation results show that the performance of the proposed approach can be close to that of the ideal optimal algorithm while it outperforms a centralized greedy approach in terms of the amount of data that is cached without jeopardizing the quality-of-service of current requests.Comment: Accepted for publication at Transactions on Wireless Communication
    corecore