953 research outputs found

    Project G.H.O.S.T.

    Get PDF
    Project G.H.O.S.T aimed to produce a model transmission with a control system for high performance/racing electric vehicles to utilize the full capability of the electric motor at higher speed applications. Current electric vehicles have a large amount of torque and use a fixed gear ratio that compromises between both high and low speeds with performance peaking around 65 miles per hour. A typical electric motor used in this application has approximately 1800 ft-lbs of torque up to 5,000 rpm. Past approximately 5,000 rpm, the torque rapidly drops off and so does the overall vehicle performance. Though transmissions exist that could have sufficient gear ratios, typical transmissions are not built to withstand torque figures of an electric motor. Even once implemented, transmissions have a second problem of high RPM gaps between gears due to the large gear ratios which results in a difficulty shifting quickly. The current model design used the form factor of the Liberty’s Gears 5-speed Equalizer Transmission (dual counter shaft) but with smaller, 125cc Honda dirt bike gears. The housing was designed to contain the three shafts, bearings, shifter forks and recombining gear for the model. The model motor was a DIY electric skateboard motor with over 4,000 RPM max and 1.9 N-m of torque which brought the entire model transmission and output flywheel up to max speed before shifting in under the desired 6 seconds. The transmission was controlled using the STM Nucleo L467RG microcontroller, programmed using C++ to better utilize the microcontroller’s high processor speed of 80 MHz. Finally, the system was tested based upon the ability to hit the engineering requirements and tuned for shifting speed using model gains

    Preliminary power train design for a state-of-the-art electric vehicle

    Get PDF
    Power train designs which can be implemented within the current state-of-the-art were identified by means of a review of existing electric vehicles and suitable off-the-shelf components. The affect of various motor/transmission combinations on vehicle range over the SAE J227a schedule D cycle was evaluated. The selected, state-of-the-art power train employs a dc series wound motor, SCR controller, variable speed transmission, regenerative braking, drum brakes and radial ply tires. Vehicle range over the SAE cycle can be extended by approximately 20% by the further development of separately excited, shunt wound DC motors and electrical controllers. Approaches which could improve overall power train efficiency, such as AC motor systems, are identified. However, future emphasis should remain on batteries, tires and lightweight structures if substantial range improvements are to be achieved

    ПЕРЕХІДНІ ПРОЦЕСИ В ЕЛЕКТРОМЕХАНІЧНІЙ ТРАНСМІСІЇ З ПРУЖНО-ЕЛАСТИЧНОЮ МУФТОЮ

    Get PDF

    Low cost attitude control system scanwheel development

    Get PDF
    In order to satisfy a growing demand for low cost attitude control systems for small spacecraft, development of low cost scanning horizon sensor coupled to a low cost/low power consumption Reaction Wheel Assembly was initiated. This report addresses the details of the versatile design resulting from this effort. Tradeoff analyses for each of the major components are included, as well as test data from an engineering prototype of the hardware

    NASA Tech Briefs Index, 1977, volume 2, numbers 1-4

    Get PDF
    Announcements of new technology derived from the research and development activities of NASA are presented. Abstracts, and indexes for subject, personal author, originating center, and Tech Brief number are presented for 1977

    Index to 1984 NASA Tech Briefs, volume 9, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1984 Tech B Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    AGT-102 automotive gas turbine

    Get PDF
    Development of a gas turbine powertrain with a 30% fuel economy improvement over a comparable S1 reciprocating engine, operation within 0.41 HC, 3.4 CO, and 0.40 NOx grams per mile emissions levels, and ability to use a variety of alternate fuels is summarized. The powertrain concept consists of a single-shaft engine with a ceramic inner shell for containment of hot gasses and support of twin regenerators. It uses a fixed-geometry, lean, premixed, prevaporized combustor, and a ceramic radial turbine rotor supported by an air-lubricated journal bearing. The engine is coupled to the vehicle through a widerange continuously variable transmission, which utilizes gearing and a variable-ratio metal compression belt. A response assist flywheel is used to achieve acceptable levels of engine response. The package offers a 100 lb weight advantage in a Chrysler K Car front-wheel-drive installation. Initial layout studies, preliminary transient thermal analysis, ceramic inner housing structural analysis, and detailed performance analysis were carried out for the basic engine

    The Jet Propulsion Laboratory Electric and Hybrid Vehicle System Research and Development Project, 1977-1984: A Review

    Get PDF
    The JPL Electric and Hybrid Vehicle System Research and Development Project was established in the spring of 1977. Originally administered by the Energy Research and Development Administration (ERDA) and later by the Electric and Hybrid Vehicle Division of the U.S. Department of Energy (DOE), the overall Program objective was to decrease this nation's dependence on foreign petroleum sources by developing the technologies and incentives necessary to bring electric and hybrid vehicles successfully into the marketplace. The ERDA/DOE Program structure was divided into two major elements: (1) technology research and system development and (2) field demonstration and market development. The Jet Propulsion Laboratory (JPL) has been one of several field centers supporting the former Program element. In that capacity, the specific historical areas of responsibility have been: (1) Vehicle system developments (2) System integration and test (3) Supporting subsystem development (4) System assessments (5) Simulation tool development

    Analysis of crankshaft–crankcase interaction for the prediction of the dynamic structural response and noise radiation of IC engine structures

    Get PDF
    This thesis presents research work which is concerned with the development of analytical and numerical methods for the dynamic analysis of the crankshaft-crankcase assembly. The effects of interaction of crankshaft and crankcase on the dynamic response of an IC engine block structure are studied. These methods are especially attractive for the simulation of the steady state response of rotating systems with many degrees of freedom which are forced by multiple periodic excitations. A major novelty of the methods is the ability to model the system non-linearities successfully as frequency dependent properties. [Continues.
    corecore