1,663 research outputs found

    Automatic Inspection of Aeronautical Mechanical Assemblies by Matching the 3D CAD Model and Real 2D Images

    Get PDF
    International audienceIn the aviation industry, automated inspection is essential for ensuring quality of production. It allows acceleration of procedures for quality control of parts or mechanical assemblies. As a result, the demand of intelligent visual inspection systems aimed at ensuring high quality in production lines is increasing. In this work, we address a very common problem in quality control. The problem is verification of presence of the correct part and verification of its position. We address the problem in two parts: first, automatic selection of informative viewpoints before the inspection process is started (offline preparation of the inspection) and, second, automatic treatment of the acquired images from said viewpoints by matching them with information in 3D CAD models is launched. We apply this inspection system for detecting defects on aeronautical mechanical assemblies with the aim of checking whether all the subparts are present and correctly mounted. The system can be used during manufacturing or maintenance operations. The accuracy of the system is evaluated on two kinds of platform. One is an autonomous navigation robot, and the other one is a handheld tablet. The experimental results show that our proposed approach is accurate and promising for industrial applications with possibility for real-time inspection

    UAV or Drones for Remote Sensing Applications in GPS/GNSS Enabled and GPS/GNSS Denied Environments

    Get PDF
    The design of novel UAV systems and the use of UAV platforms integrated with robotic sensing and imaging techniques, as well as the development of processing workflows and the capacity of ultra-high temporal and spatial resolution data, have enabled a rapid uptake of UAVs and drones across several industries and application domains.This book provides a forum for high-quality peer-reviewed papers that broaden awareness and understanding of single- and multiple-UAV developments for remote sensing applications, and associated developments in sensor technology, data processing and communications, and UAV system design and sensing capabilities in GPS-enabled and, more broadly, Global Navigation Satellite System (GNSS)-enabled and GPS/GNSS-denied environments.Contributions include:UAV-based photogrammetry, laser scanning, multispectral imaging, hyperspectral imaging, and thermal imaging;UAV sensor applications; spatial ecology; pest detection; reef; forestry; volcanology; precision agriculture wildlife species tracking; search and rescue; target tracking; atmosphere monitoring; chemical, biological, and natural disaster phenomena; fire prevention, flood prevention; volcanic monitoring; pollution monitoring; microclimates; and land use;Wildlife and target detection and recognition from UAV imagery using deep learning and machine learning techniques;UAV-based change detection

    Vision Science and Technology at NASA: Results of a Workshop

    Get PDF
    A broad review is given of vision science and technology within NASA. The subject is defined and its applications in both NASA and the nation at large are noted. A survey of current NASA efforts is given, noting strengths and weaknesses of the NASA program

    The NASA SBIR product catalog

    Get PDF
    The purpose of this catalog is to assist small business firms in making the community aware of products emerging from their efforts in the Small Business Innovation Research (SBIR) program. It contains descriptions of some products that have advanced into Phase 3 and others that are identified as prospective products. Both lists of products in this catalog are based on information supplied by NASA SBIR contractors in responding to an invitation to be represented in this document. Generally, all products suggested by the small firms were included in order to meet the goals of information exchange for SBIR results. Of the 444 SBIR contractors NASA queried, 137 provided information on 219 products. The catalog presents the product information in the technology areas listed in the table of contents. Within each area, the products are listed in alphabetical order by product name and are given identifying numbers. Also included is an alphabetical listing of the companies that have products described. This listing cross-references the product list and provides information on the business activity of each firm. In addition, there are three indexes: one a list of firms by states, one that lists the products according to NASA Centers that managed the SBIR projects, and one that lists the products by the relevant Technical Topics utilized in NASA's annual program solicitation under which each SBIR project was selected

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    Vision technology/algorithms for space robotics applications

    Get PDF
    The thrust of automation and robotics for space applications has been proposed for increased productivity, improved reliability, increased flexibility, higher safety, and for the performance of automating time-consuming tasks, increasing productivity/performance of crew-accomplished tasks, and performing tasks beyond the capability of the crew. This paper provides a review of efforts currently in progress in the area of robotic vision. Both systems and algorithms are discussed. The evolution of future vision/sensing is projected to include the fusion of multisensors ranging from microwave to optical with multimode capability to include position, attitude, recognition, and motion parameters. The key feature of the overall system design will be small size and weight, fast signal processing, robust algorithms, and accurate parameter determination. These aspects of vision/sensing are also discussed

    An Overview of AUV Algorithms Research and Testbed at the University of Michigan

    Full text link
    This paper provides a general overview of the autonomous underwater vehicle (AUV) research projects being pursued within the Perceptual Robotics Laboratory (PeRL) at the University of Michigan. Founded in 2007, PeRL's research thrust is centered around improving AUV autonomy via algorithmic advancements in sensor-driven perceptual feedback for environmentally-based real-time mapping, navigation, and control. In this paper we discuss our three major research areas of: (1) real-time visual simultaneous localization and mapping (SLAM); (2) cooperative multi-vehicle navigation; and (3) perception-driven control. Pursuant to these research objectives, PeRL has acquired and significantly modified two commercial off-the-shelf (COTS) Ocean-Server Technology, Inc. Iver2 AUV platforms to serve as a real-world engineering testbed for algorithm development and validation. Details of the design modification, and related research enabled by this integration effort, are discussed herein.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86058/1/reustice-15.pd

    SPINS: Structure Priors aided Inertial Navigation System

    Full text link
    Although Simultaneous Localization and Mapping (SLAM) has been an active research topic for decades, current state-of-the-art methods still suffer from instability or inaccuracy due to feature insufficiency or its inherent estimation drift, in many civilian environments. To resolve these issues, we propose a navigation system combing the SLAM and prior-map-based localization. Specifically, we consider additional integration of line and plane features, which are ubiquitous and more structurally salient in civilian environments, into the SLAM to ensure feature sufficiency and localization robustness. More importantly, we incorporate general prior map information into the SLAM to restrain its drift and improve the accuracy. To avoid rigorous association between prior information and local observations, we parameterize the prior knowledge as low dimensional structural priors defined as relative distances/angles between different geometric primitives. The localization is formulated as a graph-based optimization problem that contains sliding-window-based variables and factors, including IMU, heterogeneous features, and structure priors. We also derive the analytical expressions of Jacobians of different factors to avoid the automatic differentiation overhead. To further alleviate the computation burden of incorporating structural prior factors, a selection mechanism is adopted based on the so-called information gain to incorporate only the most effective structure priors in the graph optimization. Finally, the proposed framework is extensively tested on synthetic data, public datasets, and, more importantly, on the real UAV flight data obtained from a building inspection task. The results show that the proposed scheme can effectively improve the accuracy and robustness of localization for autonomous robots in civilian applications.Comment: 14 pages, 14 figure

    Vision based navigation in a dynamic environment

    Get PDF
    Cette thèse s'intéresse au problème de la navigation autonome au long cours de robots mobiles à roues dans des environnements dynamiques. Elle s'inscrit dans le cadre du projet FUI Air-Cobot. Ce projet, porté par Akka Technologies, a vu collaborer plusieurs entreprises (Akka, Airbus, 2MORROW, Sterela) ainsi que deux laboratoires de recherche, le LAAS et Mines Albi. L'objectif est de développer un robot collaboratif (ou cobot) capable de réaliser l'inspection d'un avion avant le décollage ou en hangar. Différents aspects ont donc été abordés : le contrôle non destructif, la stratégie de navigation, le développement du système robotisé et de son instrumentation, etc. Cette thèse répond au second problème évoqué, celui de la navigation. L'environnement considéré étant aéroportuaire, il est hautement structuré et répond à des normes de déplacement très strictes (zones interdites, etc.). Il peut être encombré d'obstacles statiques (attendus ou non) et dynamiques (véhicules divers, piétons, ...) qu'il conviendra d'éviter pour garantir la sécurité des biens et des personnes. Cette thèse présente deux contributions. La première porte sur la synthèse d'un asservissement visuel permettant au robot de se déplacer sur de longues distances (autour de l'avion ou en hangar) grâce à une carte topologique et au choix de cibles dédiées. De plus, cet asservissement visuel exploite les informations fournies par toutes les caméras embarquées. La seconde contribution porte sur la sécurité et l'évitement d'obstacles. Une loi de commande basée sur les spirales équiangulaires exploite seulement les données sensorielles fournies par les lasers embarqués. Elle est donc purement référencée capteur et permet de contourner tout obstacle, qu'il soit fixe ou mobile. Il s'agit donc d'une solution générale permettant de garantir la non collision. Enfin, des résultats expérimentaux, réalisés au LAAS et sur le site d'Airbus à Blagnac, montrent l'efficacité de la stratégie développée.This thesis is directed towards the autonomous long range navigation of wheeled robots in dynamic environments. It takes place within the Air-Cobot project. This project aims at designing a collaborative robot (cobot) able to perform the preflight inspection of an aircraft. The considered environment is then highly structured (airport runway and hangars) and may be cluttered with both static and dynamic unknown obstacles (luggage or refueling trucks, pedestrians, etc.). Our navigation framework relies on previous works and is based on the switching between different control laws (go to goal controller, visual servoing, obstacle avoidance) depending on the context. Our contribution is twofold. First of all, we have designed a visual servoing controller able to make the robot move over a long distance thanks to a topological map and to the choice of suitable targets. In addition, multi-camera visual servoing control laws have been built to benefit from the image data provided by the different cameras which are embedded on the Air-Cobot system. The second contribution is related to obstacle avoidance. A control law based on equiangular spirals has been designed to guarantee non collision. This control law, based on equiangular spirals, is fully sensor-based, and allows to avoid static and dynamic obstacles alike. It then provides a general solution to deal efficiently with the collision problem. Experimental results, performed both in LAAS and in Airbus hangars and runways, show the efficiency of the developed techniques

    Robot guidance using machine vision techniques in industrial environments: A comparative review

    Get PDF
    In the factory of the future, most of the operations will be done by autonomous robots that need visual feedback to move around the working space avoiding obstacles, to work collaboratively with humans, to identify and locate the working parts, to complete the information provided by other sensors to improve their positioning accuracy, etc. Different vision techniques, such as photogrammetry, stereo vision, structured light, time of flight and laser triangulation, among others, are widely used for inspection and quality control processes in the industry and now for robot guidance. Choosing which type of vision system to use is highly dependent on the parts that need to be located or measured. Thus, in this paper a comparative review of different machine vision techniques for robot guidance is presented. This work analyzes accuracy, range and weight of the sensors, safety, processing time and environmental influences. Researchers and developers can take it as a background information for their future works
    • …
    corecore