

Contents

1. Introduction 19
1.1. Overview of general robotics context : my point of view of robotics in the

21st century . 20
1.1.1. Motivations . 20
1.1.2. Ethical analysis . 21

1.2. Air-Cobot project . 25
1.3. Aims and contributions of this thesis . 27

2. Navigation Strategy 29
2.1. Definition of the navigation processes and related works 32

2.1.1. Perception . 32
2.1.2. Modeling . 33
2.1.3. Localization . 33
2.1.4. Planning . 34
2.1.5. Action . 35
2.1.6. Decision . 35

2.2. Description of navigation processes in the Air-Cobot project 36
2.2.1. Air-Cobot platform . 36
2.2.2. The Robot Operating System . 37
2.2.3. Perception “ exteroceptive” (cameras and lasers) and “propriocep-

tive” (odometer) . 39
2.2.4. Modeling: both topological and metric maps 43
2.2.5. Absolute and relative localization 45
2.2.6. Planning . 55
2.2.7. The action process . 55
2.2.8. Decision . 63

2.3. Instantiation of the navigation processes in Air-Cobot project 66
2.3.1. Autonomous approach mode . 66
2.3.2. Autonomous inspection mode . 67
2.3.3. Collaborative inspection mode . 68

2.4. General overview about the navigational mode management and modu-
larity of the framework . 68
2.4.1. Overview of the management of the navigation modes 69
2.4.2. Versatility of the navigation framework 70

2.5. Conclusion . 72

3

Contents

3. Multi Visual Servoing 75
3.1. Introduction . 76

3.1.1. State of the Art of Visual Servoing (VS) 76
3.1.2. Contributions . 78
3.1.3. Outline of the chapter . 79

3.2. Prerequisites of Visual Servoing . 79
3.2.1. Robot presentation . 79
3.2.2. Robot coordinates system . 80
3.2.3. Robot Jacobian and Velocity Twist Matrix 81

3.3. Image-Based Visual Servoing . 82
3.3.1. Method . 82
3.3.2. Simulation . 85

3.4. Position-Based Visual Servoing . 92
3.4.1. Method . 92
3.4.2. Simulation . 94

3.5. Comparison of IBVS and PBVS regarding robustness towards sensor noise
on the basis of simulations . 101
3.5.1. Simulation conditions . 101
3.5.2. The obtained results . 102

3.6. The Air-Cobot visual servoing strategy 103
3.6.1. Handling the visual signal losses 105
3.6.2. Coupling the augmented image with the visual servoing 106
3.6.3. PBVS and IBVS switching . 106

3.7. Experiments on Air-Cobot . 107
3.7.1. Test environment . 107
3.7.2. Applying ViSP in the Air-Cobot context 109
3.7.3. Experimental tests combining IBVS with PBVS 109

3.8. Conclusion . 117

4. Obstacle avoidance in dynamic environments using a reactive spiral ap-
proach 121
4.1. Introduction . 122

4.1.1. Air−Cobot navigation environment 122
4.1.2. State of the art of obstacle avoidance 123
4.1.3. Introduction to spiral obstacle avoidance 126
4.1.4. Structure of Chapter . 128

4.2. Spiral obstacle avoidance . 128
4.2.1. Spiral conventions and definition 129
4.2.2. Definition and choice of spiral parameters for the obstacle avoidance130
4.2.3. Robot control laws . 136

4.3. Simulation and experimental results . 142
4.3.1. Simulation with static obstacles 142
4.3.2. Experiments in dynamic environment 146

4.4. Conclusion . 147

4

Contents

5. Conclusion 154
5.1. Resume of contributions and project summary 155
5.2. Future work and prospects . 156

5.2.1. Addition of a graphic card . 157
5.2.2. Using the robot as a platform for autonomous drones 157
5.2.3. Rethink the robot drive system 157
5.2.4. Incorporation of a HUD on a tablet for the operator 158
5.2.5. Real Time capabilities of the platform 159

6. Abstract 162

A. Robot Transformations and Jacobian Computation 166
A.1. Transformations concerning the stereo camera systems 167

A.1.1. Transformation to the front cameras system 167
A.1.2. Transformation to the rear cameras 168
A.1.3. Additional transformations . 169

A.2. Kinematic Screw . 171
A.3. Velocity screw . 175

A.3.1. Solution ”1” of deriving the velocity screw matrix 175
A.3.2. a . 175
A.3.3. Solution ”2” of deriving the velocity screw matrix 175
A.3.4. a . 176
A.3.5. Applying solution ”2” to our problem 176

A.4. Interaction matrix . 178
A.5. Jacobian and Velocity Twist Matrix of Air-Cobot 178

A.5.1. extended . 179
A.6. Air-Cobot Jacobian and velocity twist matrix 179

A.6.1. Jacobian - eJe . 179
A.6.2. Jacobian- eJe reduced . 180
A.6.3. Velocity twist matrix- cVe . 180

A.7. Analysis of the Robots Skid Steering Drive on a flat Surface with high
Traction . 180

A.8. ROS-based software architecture in at the end of the project 182

5

List of Figures

1.1. Extract of article [Frey and Osborne, 2013]; Likelihood of computerization
of several jobs . 22

1.2. Extract of [Bernstein and Raman, 2015]; The Great Decoupling explained 24
1.3. Air-Cobot platform near the aircraft . 26

2.1. 4MOB platform and fully integrated Air-Cobot 37
2.2. Remote of the 4MOB platform and tablet operation of Air-Cobot 38
2.3. Obstacle detection step by step . 42
2.4. Example of a navigation plan around the aircraft 44
2.5. Example of a metric map. 45
2.6. Example of the absolute robot localization 46
2.7. Example of the VS environment experiments were conducted in 48
2.8. Example of the relative robot localization 49
2.9. 3d model of an Airbus A320 that was used for matching scans acquired

for pose estimation in the aircraft reference frame (red = model points /
blue = scanned points) . 51

2.10. Example of two scans that were acquired with an Airbus A320 in a hangar
environment . 52

2.11. Transformations during ORB-SLAM initialization 53
2.12. Simulator that helped in the evaluation of new, rapidly prototyped ideas

throughout the Air-Cobot project . 57
2.13. Basics of the mobile base angular velocity ω calculation. 58
2.14. Adjustment to the standard go-to-goal behavior 58
2.15. Aligning first with a target ”in front” and ”behind” the robot 59
2.16. Modification of the align first behavior to decrease tire wear. 61
2.17. Correct-Camera-Angle controller . 62
2.18. Picture of Air-Cobot in default configuration and with the pantograph-

3d-scanner unit extended for inspection 64
2.20. Schematic of the state machine which defines the decision process 64
2.19. Collection of elements that are inspected in a pre-flight check 65
2.21. A general overview of the high level state machine of Air-Cobot 69
2.22. Building costmaps with the help of the ROS navigation stack 71
2.23. Costmaps build during the experiment 72

3.1. Air-Cobot and the associated frames [Demissy et al., 2016] 80
3.2. Robot coordinate system for the front cameras [Demissy et al., 2016] . . 80
3.3. Projection in the image-plane frame . 83

7

List of Figures

3.4. Control loop of an Image-based visual servoing example 86
3.5. Target chosen for simulations . 86
3.6. Evolution of features in an IBVS simulation 89
3.7. Robot path, orientation and camera state in a IBVS simulation 90
3.8. Evolution of the visual error in a IBVS simulation 91
3.9. Evolution of velocities in a IBVS simulation 92
3.10. Block diagram for the PBVS approach 94
3.11. Evolution the point C (camera origin) in a PBVS simulation 96
3.12. Evolution of features in a PBVS simulation 97
3.13. Robot path, orientation and camera state in a PBVS simulation 97
3.14. Evolution of error in a PBVS simulation 98
3.15. Evolution of velocities in a PBVS simulation 99
3.16. Evolution the point C (camera origin) in a noisy simulation 102
3.17. Evolution of features in a noisy simulation 103
3.18. Robot path, orientation and camera state in a noisy simulation 104
3.19. Evolution of error in a noisy simulation 104
3.20. Evolution of velocities in a noisy simulation 105
3.21. Example of the lab environment where the visual servoing experiments

were conducted in . 108
3.22. Extract of video sequence showing an outside view onto the experiment . 110
3.23. Extract of video sequence showing the system handling switching between

IBVS and PBVS . 111
3.24. Position and velocity (linear and angular) plots obtained during the IBVS-

PBVS combination experiment . 112
3.25. Orientation and velocity plots obtained during the feature loss experiment 113
3.26. Extract of video sequence showing the systems capability to handle fea-

ture loss during execution of a visual servoing-based navigation mission . 115
3.27. Outline of the Gerald Bauzil room in which the experiment takes place

with expected path for the robot . 116
3.28. Extract of video sequence showing the systems capability to perform a

combination of IBVS-PBVS-Metric based navigation 118

4.1. Dealing with airport forbidden zones . 123
4.2. Moth flight path being ”redirected” by an artificial light source 127
4.3. Spiral Concept as presented in [Boyadzhiev, 1999] 128
4.4. Spiral conventions for an ideal case . 129
4.5. Three schematics of spiral obstacle avoidance patterns 130
4.6. Spiral convention in a real life situation 132
4.7. Target and Obstacle Schematics . 134
4.8. Visualization of spiral obstacle avoidance extension for moving obstacles . 135
4.9. Graph visualizing relationship between ξ̃ and αd (blue,uninterrupted line

→֒ Air−Cobot configuration) . 136
4.10. Real life robot model with application point for control inputs 137
4.11. Dependency of νOAmax

on eα . 138

8

List of Figures

4.12. λ as a function of the angular error eα 139
4.13. Visualization of the first draft for the SOM determination 140
4.14. Visualization of SOM determination . 140
4.15. Example of when to overwrite obstacle avoidance. 142
4.16. Extract of video sequence [Futterlieb et al., 2014] - static obstacles 143
4.17. Proof of Concept of an outwards spiraling obstacle avoidance 144
4.18. Avoidance Experiment for static Obstacles 145
4.19. Robot linear and angular Velocities and Camera Angle 149
4.20. Extract of video sequence - static obstacles 150
4.21. Extract of video sequence - dynamic obstacles (a) 151
4.22. Extract of video sequence - dynamic obstacles (b) 152
4.23. Robot trajectory. 152
4.24. Successive robot positions - Close up of first OA 153
4.25. Linear and angular velocities . 153
4.26. ξ̃ . 153

5.1. Sketch and cross section of the Mecanum wheel [Ilon, 1975] 158
5.2. Heads Up Display for mobile devices for Air-Cobot control designed by

2morrow . 159

A.1. Robot coordinate system for the front cameras 167
A.2. Robot coordinate system for the rear cameras 169
A.3. Robot Coordinate System . 170
A.4. Aircobot Dimensions . 178
A.5. Graph showing all nodes that run during a navigation mission 182
A.6. Extract of PTU datasheet [man, 2014] 183

9

List of Algorithms

2.1. Obstacle Detection Algorithm . 41
2.2. 3D Point Cloud Matching . 50
2.3. Modified RANSAC . 50
2.4. Modified Align First Behavior . 60

3.1. Algorithm that determines the stop of position-based visual servoing . . . 100

4.1. Checklist for OA . 137
4.2. Decision tree for choosing SOM . 141

11

List of Tables

2.1. Description of the navigation strategy during the approach phase 67
2.2. Description of the navigation strategy during the autonomous inspection

phase . 68
2.3. Description of the navigation strategy during the collaborative phase (Fol-

lower mode) . 68

3.1. Parameters of the IBVS simulation . 88
3.2. Parameters of the PBVS simulation . 96
3.3. Parameters of the IBVS/PBVS comparison 102

13

Abbreviations

AI Artificial Intelligence
CPU Central Processing Unit
d Dimensions/dimensional
DARPA Defense Advanced Research Projects Agency
DWA Dynamic Window Approach - A planner able to deal with

obstacles locally
DOF Degree of Freedom
FOV Field Of View
Gazebo Simulator general suggested for working on ROS
GPU Graphic Processing Unit
IBVS Image-based Visual Servoing
ICP Iterative Closest Point
IMU Inertial Measurement Unit
Laser Light amplification by Stimulated Emission of Radiation
LRF Laser Range Finder
NDT None-Destructive Testing
OA Obstacle Avoidance
PBVS Position-based Visual Servoing
PTU Pan-Tilt-Unit
PTZ Pan-Tilt-Zoom camera
RANSAC RANdom Sample Consensus
RANSAM RANdom Sample Matching
ROS Robot Operating System - Software allowing a simple inte-

gration of hardware and some off the shelf functionality for
robots - For more information seeking Section 2.2.2 on Page 37

15

List of Tables

RPM Revolutions Per Minute
R&R Rest and Recuperation
SimIAm MATLAB based mobile robot simulator useful for prototyp-

ing new controllers - Developed by the Georgia Robotics and
Intelligent Systems (GRITS) Lab (see [de la Croix, 2013]

SLAM Simultanious Loclaization And Mapping
SNR Signal to Noise Ratio
SVO Semi-Direct Visual Odometry - A visual odometry proposed

by members of the Robotics and Perception Group, University
of Zurich, Switzerland

TEB Timed Elastic Band - In order to avoid high level re-planning
this approach allows for local path deformation in order to
avoid obstacles

ViSP Software package loosly based on OpenCV that allows a rela-
tively simple and rapid visual servoing implementation - De-
veloped by INRIA

VS Visual Servoing

16

1. Introduction

Contents
1.1. Overview of general robotics context : my point of view of

robotics in the 21st century 20

1.1.1. Motivations . 20

1.1.2. Ethical analysis . 21

1.2. Air-Cobot project . 25

1.3. Aims and contributions of this thesis 27

1. A robot may not injure a human being or, through inaction, allow a human being
to come to harm.

2. A robot must obey the orders given it by human beings, except where such orders
would conflict with the First Law.

3. A robot must protect its own existence as long as such protection does not conflict
with the First or Second Laws.

[Asimov, 1950]

19

1.1. Overview of general robotics context : my point of

view of robotics in the 21st century

1.1.1. Motivations

In recent years, automation and the amount of robots in operation has exploded. With
the contemporary advancements in autonomous driving, surgical or surveillance robots
[Marquez-Gamez, 2012] we can safely assume that the amount of robots that will find
their way from the research labs to our everyday life is increasing, whether we are afraid
of this development or we embrace it. These robots mainly belong to the domain of
mobile robotics which encompasses a vast range of terrestrial vehicles, underwater and
aerial robots (Unmanned Aerial Vehicles, UAV’s) [Marquez-Gamez, 2012].

From time to time they still remind us of kids that need our help to understand their
surroundings but with each passing year their algorithms become more and more mature.
Just one look at the DARPA challenge for robotics shows us how far technology has
come in recent years. Thinking about the Urban Challenge [Eledath et al., 2007], [Balch
et al., 2007], [McBride, 2007] and looking at the maturity of self driving cars in 2017,
this becomes even more obvious. It is very unlikely that this trend is going to change.
If anything, the speed at which new technologies will be introduced will just increase.

As humans we are very versatile and quickly learn how even the most complex tasks
can be performed. However, it still happens that we make mistakes in particularly stress-
ful situations. These situations are encountered in aviation domain where a lot of studies
on ”human risk factors” have been conducted [Degani and Wiener, 1991], [Latorella and
Prabhu, 2000], [Maintenance,], [Drury, 2001] and [Shappell and Wiegmann, 2012]. The
risk can be reduced by designing ”fool-proof” checklists, increasing the amount of R&R
(Rest and Recuperation) of the staff or in some cases even double checking by a sep-
arate inspector [Rasmussen and Vicente, 1989], [Latorella and Prabhu, 2000]. A new
trend is to help or to assist the staff in their daily tasks by robots. Taking a look at
popular Utopian (and sometimes even Dystopia) fiction [Asimov, 1950], [Čapek, 2004],
partly even [Lem, 1973] and [Dick, 1982], humans work force is completely replaced by
machines. These developments then present a huge challenge to society and are meant
as a warning to question technological progress. It is here, where humanity’s challenge
will lie in the future. How we will deal with the ever declining amount of blue collar and
(more and more so) white collar jobs [Grey@youtube.com, 2014].

Another trade that we share as a species is that believe that technological progress
advances in a linear fashion. If asked what kind of technologies will be introduced in
the next five to ten years, we will take a look back at where we were five to ten years
ago and make a linear extrapolation of what there is to come. This perception of linear
progress however is flawed, because every new invention or discovery allows us to ad-
vance faster. Hence the technological change is exponential [Kurzweil, 2004], [Kurzweil,

1. Introduction

2005], [Kurzweil, 2016]. This fact alone shows that the future is exciting, however, we
should not follow technological advance blindly. Human history is full of examples where
an invention’s potential for bad was underestimated until it was too late. This of course
does not mean that certain progress in technology can be stopped, however, it might be
worth the time to consider (and anticipate) the consequence of our work. For instance,
the mere prospect of a world without the need for manual labor, dangerous or dull work-
ing conditions does not make it a world worth living in. We will have to shape it so that
all of human kind can profit from it, because if we continue like we have only very few
people will get the luxury of living their life in a truly Utopian world, while the rest will
struggle to survive. To go further into detail the next section will give a short ethical
analysis about this statement.

1.1.2. Ethical analysis

In the previously mentioned science fiction novels, the narrator never fails to show us
the dangers that comes with these improvements to technology. So, as we are taking
further steps on a path that was so beautifully lain down in front of us, we should always
keep in mind that we are not flawless and therefore, step ahead with care.

In this short paragraph, I would like to reflect on the ramifications and consequences
of the replacement of human workers by machines. We want to focus this ethical analysis
on the consequence of this on the employment market, since for most adults, a rather
great time is spent working.

People have always been scared of new technology that might reduce the amount of
available jobs (invention of printing, steam machine, etc.), but history has shown us
that in fact, jobs that were destroyed have been compensated for (in some cases even
exceeded) by sparking an era of growth due to the technological advance. Therefore, this
mistrust and resistance towards new technology is not a recent development. However,
in the past few years a discussion among scientists has started about how the robot
revolution is fundamentally different to all the previous changes mankind has seen so far
(Gutenberg printing press, steam machine, industrial revolution, etc.) and which in the
long run have created more jobs than were destroyed [Frey and Osborne, 2013], [Brynjolf-
sson and McAfee, 2014], [Grey@youtube.com, 2014], [Ford, 2015]. If before the concern
was mostly focused on the disappearance of low-skilled jobs and could be countered by
the creation of new areas of employment, our society will be faced with robots competing
for high-skilled jobs as well.

Figure 1.1 shows an extract form [Frey and Osborne, 2013] in which the likelihood
of automation of specific jobs in the upcoming two decades is given. More and more
scientists have come to realize that one of the hardest challenges for human kind might
not be connected to satisfying basic needs, such as shelter, hunger etc. (although we are
far from eradicating those needs at the moment), but might actually be associated with
providing proper reason and purpose to our existence.

21

1. Introduction

Figure 1.1.: Extract of article [Frey and Osborne, 2013]; Likelihood of computerization
of several jobs

A more advanced illustration of this concept “robots replace human” was shown on the
example of general practitioners and the cognitive computer system “Watson” by IBM in
the popular video “Humans Need Not Apply” of CGP Grey [Grey@youtube.com, 2014].
“Watson” can be considered as an Artificial Intelligence, AI, developed by International
Business Machines Corporation, IBM, in DeepQA project. The software is capable of
understanding and answering questions that are posed in natural language (as opposed
to a well structured data set), which is the form most information exist today. For
the purpose of demonstration “Watson” was developed to challenge human participants
in the popular quiz show Jeopardy!. By having access to four terabytes of structured
and unstructured information (including the full text of Wikipedia) Watson was able
to defeat former winners Brad Rutter and Ken Jennings in 2011 [Wikipedia, 2015]. In
recent years Watson was also tested in medical field of oncology [Malin, 2013], [Strick-
land and Guy, 2013]. Watson was able to show its potential in this field because of
its fast pattern recognition among extremely big data sets that can not be processed
by any human physician. And although the AI is still far from perfect, this example
shows that it is not only the blue colored jobs that might be replaced (or reduced) by
machines. In fact, Watson does not need to be perfect, it just needs to be better than
its human counterpart. [Ferrucci et al., 2013] is referring to reports that diagnosis error

22

1. Introduction

outnumber other medical errors by far. The main causes for those is thought to be the
fast growing amount of new medication and research that no physician can keep up with
during the working week. An AI with an advanced pattern recognition such as Watson
completes this work much quicker. Furthermore, any miss-diagnosis by the machine will
improve the next diagnosis. This might also be the case for the human counterpart,
however, here it will only be the patients of that particular physician that will profit
from his/her learning expertise. Patients of another doctor might suffer the same miss-
diagnosis [Grey@youtube.com, 2014]. Studies have shown that certain physicians would
need to read up to 627 hours [Alper et al., 2004] per month (consisting of papers and
information about the latest medication, side effects and other research results) in order
to keep up with the ever growing amount of available information about medication. It
is unlikely that this number will decrease in the future. In fact, it is far more reason-
able to assume that the amount of available medication, and therefore, the amount of
possible side effects will only increase.

This leads us to the main problem. There are certain areas (automation, pattern
recognition, etc.) in which a human will most likely not be able to beat its computer
counterpart in the upcoming decades. And if the machine actually does provide better
results, who would stop patients of seeking out its advice? And what will we do with
the millions of people that will fall into unemployment because of automation? Who
will provide for their financial security? This is not a problem that lies in the far
future. According to [Bernstein and Raman, 2015], Brynjolfsson states that since the
1980s, the median income has begun to shrink. In Figure 1.2, we can see this trend
that shows a nearly constant increase in labor productivity which had been followed
by an equivalent increase of median family income until these trends began to separate
in the 80s. Brynjolfsson fears that due to more and more automation this problem
will get worse. Even more dangerous is the fact that the private employment seems to
have stagnated in the 2000s although even though the economy has not. These two
developments are what Brynjolfsson and McAfee refer to as the ”Great Decoupling”.
He further states that a decrease of income equality has been registered throughout
developed countries world-wide in the past 30 Years.

I personally believe that there is no simple answer to this problem. Keeping Moore’s
law [Moore, 1965] in mind even a very conservative person will have to accept that we
will face more and more automation in the years to come. Of course we could try to
prevent the rapid increase of automation. However, looking at technological advances
throughout history, it will be hard (or even impossible) to find a case where this approach
ever worked.

As we have stated before, throughout history, parts of the human population have
always fought against technological advancement. Mainly, because they saw that their
jobs were threatened. In retro-spec we can see that their jobs really were eradicated,
however, due to the new technology (which they formerly had fought against), a com-
pletely new and at most times better (health risks, payment, etc.) line of work was

23

1. Introduction

Figure 1.2.: Extract of [Bernstein and Raman, 2015]; The Great Decoupling explained

created. It is a fact that this opinion was the shared consensus among scientist for many
years. Basically assuming that the problem would solve itself.

However, even in the research community more and more scientist claim that the
amount of jobs being replaced by machines and software can not match the amount
of new jobs that are being created at the same time. In fact, since one of the main
drives for innovation in human society has always been optimization and increasing
the effectiveness of processes in order to increase the profit (industrialization, green
revolution, robotics) it is actually not surprising that we are succeeding in eradicating
the need for human workforce more and more. In the end, was that not the idea in
the first place? We forgot however, that the current system we live in is not a welfare
system in which only a few people have to work. On the contrary, some of the most
industrialized, first world countries become more and more anti-social. Recent polls
show that more half of the American (USA) working population is in fact struggling to
earn a living. [Online, 2016] states that the median US American worker received less
than 30k $ net payment in the year 2014. This while many of these people are actually
working more than one job. The wealth gap is increasing and more automation might
just accelerate this trend.

If the system is not changed, those people will be the first ones without a job, without
social security, without health care and retirement money. We should be careful not to
dismiss these concerns and just hope that somehow enough paying jobs will survive the
automation revolution. There is however and upside to this. If we look around in our
communities, it is hard to get the impression that there is not enough work for everyone.

24

1. Introduction

Sure, there might not be enough paid work, but there is enough to do. Additionally, of
those people that do have a paid job, it is hard to find someone that is not forced to
work more and more. The effect of such an employment is often that the employee is
becoming unsatisfied that thinks beside work are not taken care of as much as he / she
would like. Personally, I believe that this is exactly the upside of the problem. There
is enough work, we just need to find a way to change the system we are living in to
support people in doing it.

1.2. Air-Cobot project

Air-Cobot project is not an example of extreme automation of human tasks, as the
“cobot” is expected to help the staff in hard working conditions rather than to replace
it. It takes place in the aeronautical context to improve the safety of passengers and
optimize the maintenance of aircraft.

There are nearly 100,000 commercial flights per day, which means that one thousand of
aircraft inspections per hours occur across the globe. However, 70% of the inspections are
still conducted visually by co-pilots and maintenance operators, which increase aircraft
down-time and maintenance costs. In addition, these inspections are performed whatever
the weather (rain, snow, fog, ...) and the light conditions (day, night).

The Air-Cobot is therefore a collaborative robot that automates visual inspection
procedures. It helps co-pilots and maintenance operators to perform their duties faster,
more reliably with repeatable precision. The robotic platform can provide a great and
valuable help when the inspections conditions become tricky. Our main objective in this
project is then to achieve a collaborative pre-flight inspection of an aircraft between the
co-pilot or the operator and a robot. This latter must be able to navigate alone around
the aircraft between the twenty different check points, while preserving the safety of the
workers which are around the aircraft and the cars or trucks which are on the refueling
area.

During the pre-flight inspection, the robot receives a maintenance planning from a
human operator monitoring which aircraft is ready to be inspected. With this plan,
the robot starts the navigation from its charging station towards the inspection area.
During the approach to the test side, the robot moves along dedicated roads which are
free obstacles corridors. Whenever the inspection area is reached, the aircraft can be
detected and the robot moves relatively to it with respect to the maintenance planning.
While performing the inspection task, the robot constantly sends progress reports to
the flight personal and a trained operator. This latter will then be able to help out in
case the robot encounters obstacles that block a checkpoint, malfunction in its sensors
or similar unpredictable problems. When the Air-Cobot has finished its task to the
operators satisfaction, it moves on to the next mission or navigates its way back to the
charging station. Figure 1.3 shows the robot during an inspection task conducted in the

25

1. Introduction

Figure 1.3.: Air-Cobot platform near the aircraft

early 2015 at the Airbus site Toulouse-Blagnac with an Airbus A320.

As shown in Figure 1.3, the robot is a 4MOB platform designed by STERELA. It
consists of four independent wheels which are controlled in velocity. Additionally, it
is outfitted with numerous navigation sensors : an IMU and a GPS; 2 stereo camera
systems mounted on a pan tilt unit (PTU); a pan tilt zoom camera (PTZ); a laser range
finder (LRF). More details about the robot and its sensors are provided in the upcoming
chapter (see Section 2.2 on Page 36).

The robot is then endowed with all the necessary sensors allowing to implement the
navigation modes. Indeed, three main navigation modes / phases can be highlighted :

• “ an autonomous approach phase ”, where the robot goes from the charging station
to the aircraft parking area following a dedicated shipping lane. Thus, to fulfill its
mission, the robot has to perform a large displacement along the road, as the initial
and final points might be far. The airport environment is a highly constrained
environment where the displacements obey precise rules. Thus a priori information
will have to be given to the robot in order to avoid any forbidden path. As a
conclusion, the approach phase from the charging station to the aircraft parking
area needs an absolute navigation following a previously learnt path.

26

1. Introduction

• “ an autonomous inspection phase ”, where the robot moves around the aircraft
throughout a cluttered environment. The approach needs a large displacement
with a highly efficient obstacle avoidance to respect strong security requirements.
The navigation is mainly based on a relative navigation to the aircraft while taking
into account the obstacles (aircraft, vehicles, maintenance or flight crew, etc.).

• “ a collaborative inspection phase ”, where the robot follows the co-pilot or a
maintenance operator. Here, the autonomy of the robot is reduced, as the motion
is defined by the person in charge of the pre-flight inspection.

The two first above mentioned navigation phases are at the core of my research work.

1.3. Aims and contributions of this thesis

This PhD work focuses on multi-sensors based navigation in a highly dynamic and
cluttered environment. To answer this problem, we have tackled the following issues :

• long range navigation far and close to the aircraft,

• obstacle avoidance,

• appearance and disappearance of the aircraft in the image,

• integration on a robotic platform.

To deal with the above mentioned problems, a navigation strategy needed to be de-
veloped. This strategy makes use of the sensors (GPS/vision/laser) which are the most
appropriate depending on the phase and on the situation the robot is. In order to be
able to navigate far and close to the aircraft, it is necessary that our strategy features
local and global properties. The navigation problem is analyzed first, from a general
point of view, highlighting the different processes which are at its core: perception,
modeling, planning, localization, action and decision. Our first contribution consists in
the instantiation of these processes to obtain the desired global and local properties.
Here is a brief overview of the instantiated processes before a more detailed explanation
will follow in the subsequent chapters. Perception is both based on “exteroceptive” and
“proprioceptive” sensors. Detection and tracking algorithms have also been developed
to control the robot with respect to the aircraft and to avoid static and dynamic obsta-
cles. The modeling process relies on a topological map (the sequence of checkpoints to
be reached) and two metric maps. Here the first one is centered on the robot last reset
point and the second one on the aircraft to be inspected. A data fusion technique is
also suggested for the relative localization of the robot versus the aircraft. The action
process is made of several controllers allowing to safely navigate through the airport.
The decision process allows to monitor the execution of the mission and to select the
best controller depending on the context.

27

1. Introduction

Our second contribution is related to the sensor-based control of the robot around
the aircraft. Indeed, as Air-Cobot is dedicated to inspection tasks, its positioning on
the checkpoint must be accurate. To achieve this goal, visual servoing controllers are
used in conjunction with metric based approaches. However, in order to achieve the
high accuracy demand, the visual servoing controller will always be used as the primary
means to reach the target. We will then compare different solutions to determine which
of the different visual servoing controllers is the most optimal adapted to the current
situation. In addition, we have also taken into account the problem of visual signal
losses which might occur during the mission. We then propose a combination of both
Image-based and Position-based visual servoing in a framework that: (i) reconstructs
the features if they disappear with the help of a virtual image which is updated online
with several sensors used simultaneously ; (ii) is able to find back these features ; and
(iii) even navigate using only their reconstructed values. Finally, it is important to note
that the Air-Cobot platform is equipped with five cameras, leading to a multi-visual
servoing control law.

Our third contribution is related to obstacle avoidance. It is performed with the help
of a laser based controller which is activated as soon as dangerous objects are detected.
This reactive controller allows to avoid both static and dynamic obstacles. It relies
on the definition of an avoidance spiral, which can be modified online depending on
the needs (newly detected obstacles, path free anew, mobile objects motion, etc.). We
will show that this approach (which is based on the flight path of insects) is extremely
reactive and can be well adapted to the task at hand.

Finally, all these contributions are integrated on a robotic prototype that was designed
solely for the purpose of the proof of concept which is the underlying task in the Air-
Cobot project and this thesis. A framework that can communicate with the robotic
platform, all its sensors and two different PC’s was developed during the course of this
thesis. At the heart a Linux system running a ROS-Hydro distribution will allow the
navigational supervisor module to choose the best controller for every situation the robot
can find itself in.

This manuscript is organized as follows. The next three chapters are dedicated to
the three above mentioned contributions. All the described methods are validated by
simulation and experimentation results. The experimental tests have been conducted
either in LAAS or in Airbus Industries site in Blagnac. Finally, a conclusion ends this
work and highlights the most promising prospects.

28

2. Navigation Strategy

Contents
2.1. Definition of the navigation processes and related works . . 32

2.1.1. Perception . 32

2.1.2. Modeling . 33

2.1.3. Localization . 33

2.1.4. Planning . 34

2.1.5. Action . 35

2.1.6. Decision . 35

2.2. Description of navigation processes in the Air-Cobot project 36

2.2.1. Air-Cobot platform . 36

2.2.2. The Robot Operating System 37

2.2.3. Perception “ exteroceptive” (cameras and lasers) and “propri-
oceptive” (odometer) . 39

2.2.4. Modeling: both topological and metric maps 43

2.2.5. Absolute and relative localization 45

2.2.6. Planning . 55

2.2.7. The action process . 55

2.2.8. Decision . 63

2.3. Instantiation of the navigation processes in Air-Cobot project 66

2.3.1. Autonomous approach mode 66

2.3.2. Autonomous inspection mode 67

2.3.3. Collaborative inspection mode 68

2.4. General overview about the navigational mode manage-

ment and modularity of the framework 68

2.4.1. Overview of the management of the navigation modes 69

2.4.2. Versatility of the navigation framework 70

2.5. Conclusion . 72

29

The purpose of this chapter is to present the strategy which has been chosen to make
the robot safely navigate through the airport. The main issue will be the highly dy-
namic characteristic of the considered environment with human operators and dedicated
vehicles.

Considering the task to be performed, the entire navigation strategy for the Air-Cobot
can be divided into three main modes / phases. Those three phases will be presented in
the following and will be mentioned throughout this work:

• “ an autonomous approach phase ”, in which the robotic platform moves from
charging station to aircraft parking area (inspection side) following a dedicated
lane for autonomous vehicles on the airport. Hence, to fulfill its mission, the robot
has to perform a large displacement along that lane, as the initial and final points
might be far apart from each other. In addition, the space to be crossed is rarely
cluttered with obstacles because it is dedicated for the robot alone. However, a
contingency plan has to be put in place. One thing that simplifies the task at hand
is that an airport is indeed a highly structured / constrained environment. This
results in a large amount of a priori available informations which can be merged
into metric maps or can be taken into consideration when designing topological
maps. Thus a priori information will have to be given to the robot in order to
avoid any forbidden path.

• “ an autonomous inspection phase ”, where the robot moves relative to the aircraft
throughout a cluttered environment. To perform this mission, the robot will have
to reach each checkpoint that was chosen specifically for each aircraft type robustly
and successively. During this phase, a large displacement, due to the size of the
aircraft, has to be realized. Borrowing from the concept of “ Divide and Conquer
” this large displacement is made of small partially independent motions. In addi-
tion, strong security requirements have to be considered, as the robot must avoid
any obstacle present in its surroundings (namely: the aircraft, various transport
vehicles, maintenance or flight crew, forbidden fueling zones, etc.). During this
phase the robot will remain in relative close vicinity of the aircraft since it sym-
bolizes its main means of self-localization. This particular phase also represents
the main proof of concept scenario for the Air-Cobot project.

• “ a collaborative inspection phase ”, where the robot follows the co-pilot or a
maintenance operator. Here, the autonomy of the robot is reduced, as the motion
is defined by the person in charge (called the operator from here on out) of the pre-
flight inspection. However, the full band of security functions is still needed. Even
though the operator by him / herself represents an obstacle it is necessary for the
robotic platform to still consider other objects that might cross the virtual tether.
Furthermore, a tracking is essential to prevent false object following, meaning, that
the half silhouette of the operator must be kept during this phase at all times.

The PhD thesis at hand is mainly focused on the two first modes / phases for which
a high level of autonomy is required. To achieve the considered challenge it is neces-

2. Navigation Strategy

sary to define an efficient navigation strategy able to perform long displacements while
guaranteeing non-collision, both in a large spaces as in close vicinity to the aircraft. Ad-
ditionally, the proposed strategy needs to work in very different environments, typically
on aircraft tarmac as well as in hangars. To gain further insight into the challenges, the
next paragraph will review the state of the art on this general subject.

In robotics literature, it is common practice to divide the navigation strategies into
two main groups [Choset et al., 2005, Siegwart and Nourbakhsh, 2004, Bonin-Font et al.,
2008]. A first group which bundles approaches in need of extensive a priori knowledge
is usually referred to as “global approach”. In other words, if the robot does not receive
a map about its environment prior to the mission, it cannot start 1. It then “ suffices
” to extract and follow a path connecting the initial position to the goal to perform
the task. This approach is suitable to realize large displacements because it offers a
global view of the problem. However, it suffers from well-studied drawbacks: mainly, a
lack of flexibility when dealing with unmapped obstacles, some sensitivity in the pres-
ence of errors (especially if metric data are used to build the map or to localize the
robot), etc. From this information alone the analysis for the Air-Cobot project is that
global strategies could be well adapted to perform the “ autonomous approach phase
”. Indeed, during this phase, the environment must be precisely described to the robot
to avoid forbidden paths defined on the airport. Hence, a dedicated pre-navigation
step using a SLAM technique then appears mandatory. SLAM, which is the acronym
for Simultaneous Localization And Mapping, is a well known approach to generate
metric information about the system environment while continuously performing a self
localization in the metric data. As previously mentioned, the charging station might be
far from the aircraft parking / inspection area, forcing the robotic platform to perform
a long-range displacement, thus, increasing the interest of this approach in our context.
However, let us note that it might be challenging to avoid unmapped obstacles with this
kind of approach.

The second group, called “local approach”, mostly covers reactive techniques which
do not require a large amount of a priori knowledge about the environment. The robot
then moves through the scene depending on the goal to be reached and on the sensory
data gathered during the navigation. These techniques allow to handle unexpected
events (such as non mapped obstacles for instance) much more efficiently than the group
of approaches described before. However, as no (or insufficient) global information is
available, they are not well suited to perform long displacements. Hence, this approach
seems to be more appropriate to implement the “ autonomous inspection ” during which
the robot has to move relatively about the aircraft. Indeed, during this step of the
mission, it will be necessary to avoid many unpredictable obstacles2, either static (fuel
or baggage trucks parked in the aircraft vicinity, fuel pipes, etc) or mobile (moving

1The map can be built either by the user or automatically during an exploration step.
2Remember that even though the robot is developed for the well structured environment of an airport,
a contingency plan needs to be put in place for all probable eventualities.

31

2. Navigation Strategy

vehicles, operators or flight crew, etc.).

It is obvious that these obstacles cannot be mapped before the mission, limiting the
use of a global approach for this navigation. On the other hand, accounting for the
aircraft size, it appears that a long-range displacement might be necessary to perform
the preflight inspection. This is one of the main challenges to overcome while designing
our strategy. Therefore, it is clear that the desired navigation strategy must integrate
both local and global aspects to benefit from their respective advantages. For the mission
at hand both approaches are complementary and the strategy must be built to take this
characteristic into account. To do so, we propose an initial analysis of the problem
at a lower level and we split the navigation system into the six following processes:
perception, modeling, planning, localization, action and decision. All involved processes
can be instantiated depending on the needs of each navigation mode. The current
chapter aims to answer the following question: “How can the processes be instantiated
accordingly to the embedded sensors and the navigation modes? ”

To propose a suitable response to this question, a general review of the navigation
processes is first presented before showing how they have been instantiated to fulfill the
requirements of the Air-Cobot project.

2.1. Definition of the navigation processes and related

works

The following section is devoted to the description of the processes involved in the naviga-
tion. As mentioned earlier, a total of six processes are generally highlighted: perception,
modeling, planning, localization, action and decision. A wide range of techniques are
available in the literature for each of them. As these processes cooperate within a frame-
work to perform the navigation, they cannot be designed independently and an overview
of the problem is required to select the most suitable among different available methods.
We present here-below such an overview.

2.1.1. Perception

In order to acquire the data needed by the navigation module, a robot can be equipped
with both “ proprioceptive ” and “ exteroceptive ” sensors. While the first group of
sensors (odometers, gyroscopes, . . .) provide data relative to the robot internal state,
sensors of the second group (camera, laser telemeters, bumpers, . . .) give information
about its environment. The sensory data may be used by four processes: environment
modeling, localization, decision and robot control.

32

2. Navigation Strategy

2.1.2. Modeling

A navigation process generally requires an environment model. This model is initially
built using a priori data. It cannot always be complete, and might evolve with time. In
this case, the model is updated with the help to data acquired during the navigation.
There exists two kinds of models, namely the metric and/or topologic maps [Siegwart
and Nourbakhsh, 2004].

The metric map is a continuous or discrete representation of the free and occupied
spaces. A global frame is defined and robot with respect to obstacles poses are known
with more or less precision in this frame. The data must then be expressed in this frame
to update the model [Choset et al., 2005].

The topologic map on the other hand is a discrete representation of the environment
based on graphs [Choset et al., 2005]. Each node represents a continuous area of the
scene defined by a characteristic property. All areas are naturally connected and can be
limited to a unique scene point. Characteristic properties, chosen by the user, may be
the feature visibility or its belonging to a same physical space. Moreover, if a couple of
nodes verifies an adjacency condition, then they are connected. The adjacency condition
is chosen prior to the mission execution by the user and may correspond for example
to the existence of a path allowing to connect two sets, each of them represented by a
node. A main advantage of topologic map is their reduced sensitivity to scene evolution:
a topologic map has to be updated solely if there are modifications concerning the area
represented by the nodes or the adjacency between two nodes. This is extremely helpful
for the project at hand since the aircraft will not always be parked exactly at the same
spot, its features however will rest unmoved relative to the aircraft frame.

Metric and topologic maps can be enhanced by adding sensory data, actions or control
inputs to them. This information may be required to localize or control the robot. It
is worth to mention here that hybrid representations of the environment exist based on
both metric and topologic maps [Segvic et al., 2009], [Royer et al., 2007], [Victorino and
Rives, 2004].

2.1.3. Localization

For navigation, two kinds of localizations are identified: the metric one and the topologic
one [Siegwart and Nourbakhsh, 2004]. As mentioned a metric localization consists in
calculating the robot pose with respect to a global or a local frame. To do so, a first
solution can be to solely utilize proprioceptive data. However, such a solution can
lead to significant errors [Cobzas and Zhang, 2001], [Wolf et al., 2002] for at the least
three reasons. A first problem is due to the pose computation process which consists in
successively integrating the acquired data. Put plainly, this process is likely to drift. The
second issue is inherent to the model which is used to determine the pose: an error which
occurs during the modeling step is automatically transferred to the pose computation.

33

2. Navigation Strategy

Finally, the last one is related to phenomenons such as sliding (the Air-Cobot platform
uses a skid steering drive control) which are not taken into account and due to its
physical nature might never be. It is then necessary to consider additional exteroceptive
information to be able to localize the robot properly. Visual odometry [Nister et al.,
2004], [Comport et al., 2010], [Cheng et al., 2006] is an example of such a fusion.

Topological localization [Segvic et al., 2009], [Sim and Dudek, 1999], [Paletta et al.,
2001], [Krösea et al., 2001] consists in relating the data provided by the sensors with the
ones associated to the graph nodes which model the environment. Instead of determining
a situation with respect to a frame, the goal is to evaluate the robot’s bearings according
to a graph [Siegwart and Nourbakhsh, 2004]. Topological localization is not as highly
sensitive to measurement errors compared to its metric alter-ego. Its precision only
depends on the accuracy with which the environment has been described and, naturally,
the noise of the perceiving sensor.

2.1.4. Planning

The planning step consists in computing (taking a preliminary environment model into
account) an itinerary allowing the robot to reach its final pose. For all purposes the
itinerary may be a path, a trajectory, a set of poses to reach successively, . . . There
exists a large variety of planning methods depending on the environment modeling. An
overview is presented hereafter.

One of the most straight forward approaches consists in computing the path or the
trajectory using a metric map. To do so, it is recommended to transpose the geometric
space into the configuration space. The configuration corresponds to a parametrization
of the static robot state. The advantage is obvious. A robot with a complex geometry
in the workspace configuration space [Siegwart and Nourbakhsh, 2004]. Especially for
obstacle avoidance techniques this transformation reduces the computational cost of
testing whether the robotic platform is in collision with objects in its world. After that,
planning consists in finding a path or a trajectory in the configuration space allowing to
reach the final configuration from the initial one [Choset et al., 2005]. Examples of this
process for continuous representations of the environment, can be gained by applying
methods such as visibility graphs or Voronoi diagrams [Okabe et al., 2000]. With a
discrete scene model on the other hand, planning is performed thanks to methods from
graph theory such as A∗ or Dijkstra algorithms [Hart et al., 1968] [Dijkstra, 1971].
For the two kinds of maps, planning may be time consuming. A solution consists in
using probabilistic planning techniques such as probabilistic road-maps [Kavraki et al.,
1996] [Geraerts and Overmars, 2002] or rapidly exploring random trees [LaValle, 1998].

For situations in which the environment model is incomplete at the beginning of the
navigation, unexpected obstacles may lie on the robot itinerary. A first solution to
overcome this problem consists in adding the obstacles to the model and then to plan
a new path or a new trajectory [Choset et al., 2005]. In [Khatib et al., 1997a, Lami-

34

2. Navigation Strategy

raux et al., 2004a], authors propose to consider the trajectory as an elastic band which
can be deformed if necessary. More examples of the same idea where further explored
in [Rösmann et al., 2012], [Rosmann et al., 2013] with the Timed Elastic B (TEB) meth-
ods and in [Fox et al., 1997] [Gerkey and Konolige, 2008] with the Dynamic Window
Approach. A global re-planning step can then be required for a major environment
modification.

Using a topological map without any metric data leads to generate by an itinerary
generally composed of a set of poses to reach successively. These poses can be expressed
in a frame associated to the scene or to a sensor. The overlying itinerary is computed
using general methods from the graph theory which have been mentioned in the prior
paragraph. Depending on the precision degree used to describe the environment, it is
conceivable to generate an itinerary which does not take into account all the obstacles.
This issue then has to be considered during the motion realization.

2.1.5. Action

For the Air-Cobot to reach its designated inspection pose the mission has to be executed
as planned. In order to execute the tasks required by the navigation, two kinds of
controllers can be imagined: state feedback or output feedback [Levine, 1996]. For the
first case, the task is generally defined by an error between the current robot state3 and
the desired one. To reduce this error over time, a state feedback is designed. Accordingly,
the control law implementation requires to know the current state value and therefore a
metric localization is needed.

The second proposed option (output / measurement feedback) consists in making an
error between the current measure and the desired one vanish. This measure depends
on the relative pose with respect to an element of the environment, called feature or
landmark. Using vision as a means of generating a relevant analysis of the situation, the
measures correspond to image data (points, lines, moments, etc. [Chaumette, 2004]).
Proximity sensors on the other hand can provide distances to the closest obstacles or
other objects of interest in the environment through sensors such as: ultrasound [Folio
and Cadenat, 2005] and laser range finder [Victorino and Rives, 2004], [Thrun et al.,
2000] telemeters. The measures are directly used in the control law computation, which
means that no metric localization is required. For this approach to work the landmark
must be perceptible during the entire navigation to compute the control inputs.

2.1.6. Decision

To perform a navigation, it may be necessary to take decisions at different process states.
Especially projects with aspirations such as Air-Cobot - designing a robot to be able to

3Here the state may correspond to the robot pose with respect to a global frame or to a given land-
mark [Hutchinson et al., 1996a], [Bellot and Danes, 2001].

35

2. Navigation Strategy

operate organically in a normal day to day airport environment - it is obvious that in
such complex environments decision have to be taken from time to time. It is worth
to mention here that for this thesis, only the deterministic decision making process will
be explained. Machine learning approaches have found there way into the project, but
mainly through image processing and not in the decision modules.

Decisions may concern high level, e.g. a re-planning step [Lamiraux et al., 2004a], or
low level, e.g. the applied control law [Folio and Cadenat, 2005]. They are usually taken
by supervision algorithms based on exteroceptive data.

2.2. Description of navigation processes in the

Air-Cobot project

In this part, we briefly review the methods which have to be implemented for the naviga-
tion strategy to work efficiently. Furthermore, a presentation of the robot the software
the main part of the software that was needed to achieve our contributions will be
presented.

2.2.1. Air-Cobot platform

The following section will give a brief introduction of the hardware of the Air-Cobot
robotic platform. All electronic equipment (sensors, computing units, communication
hardware, etc.) is carried by the 4MOB platform provided by Sterela, an engineering
constructor which usually works for the military sector. Figure 2.1 presents this 230
kg platform and the current state of sensor integration. The name of the platform is
given by its four-wheel skid steering drive. With a maximum speed of 5 m/s4, the
platform can run for about 8 hours thanks to its lithium-ion batteries. With all the
sensory however, this autonomy is reduced to 5 hours of operation. For safety reasons
(the platform weights about 230 kg) the platform itself is equipped with two bumpers
that are located in front and in the rear of the robot. If for some reason one of them
is compressed the platform will stop all electric motors and engage its brakes until the
”emergency stop” state is canceled manually by the operator.
Further sensors that where added for the Air-Cobot mission are:

• four Point Grey cameras;

• two Hokuyo laser range finders;

• one Global Positioning System (GPS)

• a single Initial Measurement Unit (IMU)

• one Pan-Tilt-Zoom (PTZ) camera

4However, to increase torque the Air-Cobot platform has a reduced speed of 2 m/s.

36

2. Navigation Strategy

(a) Robot platform, 4MOB, designed by
Sterela

(b) Robot platform fully equipped during an
experimental test run next to an A320

Figure 2.1.: 4MOB platform and fully integrated Air-Cobot

• a highly precise Eva 3D scanner manufactured by Artec

The sensor interfacing framework that is used throughout the project is the Robot
Operating System, ROS (Hydro), on a Linux (12.04) machine. A second industrial
computer that runs Microsoft Windows is mainly used for the interface with all the
None-Destructive Testing algortihms while the Linux machine hosts all supervisor and
navigation functionalities.
Figure 2.2 shows the remote for the 4MOB Sterela platform and the possible tablet

interaction with Air-Cobot. Currently this interaction is still quite basic (Go to, Switch
to). However, in the future, the pilot is supposed to monitor the status of the pre-flight
inspection through such an interface.

2.2.2. The Robot Operating System

The following paragraph will give a brief overview about the Robot Operating System
(or short ROS), the middleware that was used in the Air-Cobot project. One can
basically refer to this software as the foundation of the Air-Cobot projects framework.
This middleware allowed for fast integration of new features. Of course a new controller
is much faster developed (’rapid prototyping’) in MATLAB / MATLAB Simulink, which
is why a MATLAB based simulation environment was used for exactly this reason. In
Sections 2.2.7 starting on Page 56 our main prototyping environment will be presented.

Since testing these controllers and features on the robot is essential to achieve the

37

2. Navigation Strategy

(a) Remote used by operator when close to the
platform

(b) Tablet usage

Figure 2.2.: Remote of the 4MOB platform and tablet operation of Air-Cobot

goal of providing a prototype robot for autonomous aircraft inspection from scratch in
the period of three years, the middleware had to be chose very early on during the
project. Due to its widely accepted use in the scientific community, its portability and
the amount of already available, open source software features, the team decided to
utilize the Robot Operating System. Several comprehensive introductions to ROS are
already available [Quigley et al., 2009], [Martinez and Fernández, 2013] and [O’Kane,
2014]. Furthermore, in [Crick et al., 2011] researchers try to make the framework avail-
able to a broader audience by introducing Rosbridge. It is considered to be the most
popular middleware in the community which does not mean that is the simplest, most
robust, most generic, real time capable, etc., but it does mean that the support from
the community is beyond example.

For this work and the Air-Cobot project ROS was chosen for the broad availability of
already working hardware drivers (for cameras, robot CAN compatibility, interfaces for
navigation modules) and reusable software stacks. Part of the navigation stack [Marder-
Eppstein et al., 2010] of ROS was ”recycled” to provide tracking of the robots pose in
the environment with dead reckoning, IMU inputs, occasionally visual odometry and
occasionally highly precise localization information that was taken as ground truth.
All of this implemented in a extended Kalman filter to provide sufficiently accurate pose
tracking even throughout lengthy time periods. The navigation stack is just one example
why ROS can be extremely helpful.

A major downside of ROS however is that providing real time computation can be
difficult. Since the software is running on top of a Linux desktop system it naturally
inherits all of its short comings. These are surely minor for our prototype, since sampling
control inputs for the robot can still be ensured around frequencies up to 30 Hz. Even if
we consider dynamic obstacles at higher speeds the robot is able to break early enough,
because equipped laser range finders can sense up to 50 meters ahead of the robot.
Still, especially in areas where this ’viewing distance’ is artificially shortened (corners

38

2. Navigation Strategy

that keep obstacles in the sensor shadow, etc.) the robots speed needs to be adjusted
accordingly.

2.2.3. Perception “ exteroceptive” (cameras and lasers) and
“proprioceptive” (odometer)

As mentioned in the previous subsection, different sensors have been mounted on the
Air-Cobot platform. We review them briefly, showing how the data have been treated
to be useful for the other processes. We first consider the exteroceptive sensors (vision
and laser range finder) before treating the proprioceptive ones.

Detection and Tracking Features of interest by vision

Several cameras have been embedded on our robot. They are positioned on top of stereo
camera systems (stereo basis of 0.3 meter) at the front and at the rear of the robot.
Furthermore, a Pan-Tilt-Zoom camera system which usually is used for surveillance has
been integrated on the platform. We first detail their specifications before explaining
the image features processing implemented on the robot.

Specifications of cameras The four cameras that are used on the stereo camera sys-
tems (front and rear) are provided by PointGrey (now FLIR). All of them are of the type
FL3−FW − 14S3C −C with 1.4 mega pixels, a global shutter, a maximum resolution
of 1384 by 1032 5. and a 4.65 µm pixel size. Furthermore, the focal length is 6 mm and
with four cameras the maximum refresh rate that the platform can handle is 25 Hz 6.
These cameras are all connected via 1394b firewire.

The second vision sensor in use is a PTZ camera by the producer Axis. Mainly used
for the None-destructive testing part of the mission this camera does not have a global
shutter. A global shutter is very important for the robustness of navigation algorithms.
This camera is equipped with a photo sensor that features a much higher resolution 1920
by 1080. Furthermore, the camera system itself is able to rotate about completely about
its vertical axis and 180 degrees about its horizontal one.

Target detection and tracking algorithm An algorithm “Track Feature Behavior” al-
lows for tracking features while the robot remains fixed. We simply compute the center
of all available features currently tracked and keep this point in the center of the image
plane. This algorithm is mostly used for moving the cameras into a more favorable
position (e.g., for visual servoing reinitialization) during the execution of missions. In
addition, the robot does not need to be kept stationary while executing this algorithm,
if the module is provided with localization information from odometry, GPS or visual

5The maximum resolution used in the project is 800 by 600 to allow for faster refresh rates
6Here the platform is the bottleneck since the theoretical limit for the cameras at 640x480 would be
75 Hz

39

2. Navigation Strategy

odometry (see the following sections). During the later presented experiments the pre-
sented technique is used for turns with high angular to linear velocity (sharp turns).
Due to the shaking that these turns can cause, a robust feature tracking algorithm is
necessary.

Detection and tracking Obstacles by laser range finders

Now we consider the second exteroceptive type of sensor mounted on our robot, the
laser range finder (or short LRF). As previously mentioned, two laser range finders
have been installed: one in the front and the other one in the rear. We first detail the
specifications of the chosen sensor before focusing on the algorithm developed to detect
static and moving obstacles.

Specifications of the Hokuyo laser range finder The obstacle detection is performed
with the help of two Hokuyo UTM−30LX laser range finders (operating at wavelength
of 870nm). One Hokuyo LRF is located in the front of the robot while the other one is
located at the rear. These laser range finders each have a range of 270◦ with a resolution
of 0.25◦ meaning that there are 1080 measurements sampled on the full range of the laser.
The two LRFs are mounted on pan tilt units, therefore, enabling a 3D range acquisition
of data. If the aspect is not very important for obstacle detection, it appears to be very
valuable for the relative localization of the robot towards the aircraft as discussed in
Section 2.2.5 (Page 45). Additionally, in the future the robot will equipped with a sonar
belt, thus, eradicating blind spots due to laser placement and robot geometry. Contrary
to current sensor sets for semi-autonomous vehicles such as the Tesla Model S, recent
models of the Mercedes-Benz S-Class, etc, the blind spot on the Air-Cobot is extremely
small.

Currently however, the two laser range finder solely provide the raw obstacle detection.
The raw data is sent at a much higher interval (50Hz) than it is actually processed
(20Hz). Processing this data is done in several steps. First, a cleaning operation allows
to remove outliers. Then, a dedicated method provides additional informations about
the obstacles such as an estimate about geometry and center of gravity or furthermore
linear and angular speeds. The following section will give a more detailed insight into
this process.

Obstacles detection and tracking Algorithm The following section details how ob-
stacles are detected and tracked. Figure 2.3 and pseudo algorithm 2.1 show a brief
overview about the data acquisition and the successive processing which are applied.
First, the raw LRF measurements are read and filtered to remove outliers. Then, the
remaining points are clustered into separate sets. Finally, a RANSAC method allows to
classify the obstacles between circles and lines. Each step helps the system to refine /
reduce the amount of raw data coming from the Hokuyo LRF. Finally it is possible to
achieve a tracking of the most relevant objects in the scene which in turn allows object
movement prediction, even if its only valid for a very short time period. This feature

40

2. Navigation Strategy

can be extremely helpful to perform a smooth and robust obstacle avoidance, especially
in case of dynamic obstacles occlusions or when the object lies in a robot blind spot.

Algorithm 2.1 Obstacle Detection Algorithm

1: Receive Hokuyo raw laser measurements
2: procedure LRF data processing ⊲ Callback function of laser
3: Clean the raw data by removing isolated points or accumulations of points that are

below a predefined threshold
4: Cluster the remaining points into separate obstacles
5: Perform a RANSAC on these separate obstacles to determine whether any of these

obstacles are either lines or circles
6: end procedure
7: Distribute information to the supervisor and obstacle avoidance

41

2. Navigation Strategy

Figure 2.3.: Obstacle detection step by step

Figure 2.3 gives a step by step visualization of the concept explained in the pseudo
algorithm 2.1. Each step helps the system to refine / reduce the amount of raw data
coming from the Hokuyo laser range finder. Finally it is possible to achieve a tracking of
the most relevant objects in the scene which in turn allows object movement prediction
even if its only valid for a very short time period.

Odometry

The following section will review the different platform odometry systems. The basic
odometry at hand has been progressively improved by adding more and more advanced
techniques whose results have been fused (see the localization process for more details).

42

2. Navigation Strategy

Wheel Odometry Now, we focus on the first proprioceptive sensor: the wheel odome-
try. It has the advantage to be very simple and fast. The Air-Cobot platform is equipped
with wheel tick sensors. Through simple geometric relationships (wheel diameter, axle
distance, etc.), the wheel movements can be translated into a full body motion of the
robot in the world-coordinate-system.

The platform linear and angular velocities νrobot and ωrobot can be easily deduced from
the four left and right wheels velocities, as shown by equations (2.1) and (2.2):

νrobot =
vlinr

+ vlinl

2
(2.1)

ωrobot =
vlinr
− vlinl

2× dtrack−width

(2.2)

where vlinr
represents the average between front right and rear right wheels and vlinl

accordingly for the left side. These velocities (νrobot and ωrobot) are expressed in the
points defined by an imaginary axle exactly in the middle of front and rear driving axle.

Inertial Measurement Unit (IMU) Odometry Our robot is also equipped with an
Inertial Measurement Unit (IMU). It consists of three accelerometers that register the
linear acceleration around x, y, z and three gyroscopes which measure the angular veloc-
ities around these last axes. This sensor can help out in areas where the wheel odometry
fails (see section 2.2.5).

2.2.4. Modeling: both topological and metric maps

Now, we present the modeling process. As previously mentioned, three maps are avail-
able, a topological one and two metric ones. The two metric maps differ in their coor-
dinate origin. The first one is centered in the robot last reset point and the second in
the aircraft to be inspected. Let us first consider the topological map:

Topological map

As explained earlier, the topological map is made of the sequence of checkpoints to be
reached. This list is known before the navigation begins and is derived from an existent
checking schedule for airport staff or aircraft crew. The map has been optimized and
the number of checkpoints reduced, as the robot is enhanced with sensors which allow to
inspect several items at a time7. Figure 2.4 shows an example of such a map. As stated
in the introduction, the main advantage of the topological map that it is in general more
robust than a metric map, when it comes to localization.

The checkpoints are expressed both in terms of visual features and of relative positions
with respect to the aircraft plane. This is possible because a 3D model of the aircraft is

7This is possible if the checkpoint is carefully chosen.

43

2. Navigation Strategy

also available. This ”double” description of the checkpoints in a visual or a metric man-
ner is very useful to increase the overall robustness of the navigation strategy. Indeed, it
allows to deal with the problem of temporary visual features losses whenever they occur
due to an occlusion or an image processing failure.

�

✁

✂ ✄

☎

✆

✝

✞

✟ ✠

✄✄

✄☎

✄✂

✄✝

✄✆

✄✁

✄�

Figure 2.4.: Example of a navigation plan around the aircraft

Metric map

As mentioned earlier, in addition to the topological map, two metric maps are available.
The first one is centered on the robot last reset point and the second one on the aircraft
to be inspected. They are generated from the data provided by the laser range finder
located at the front and at the rear of the robot (e.g.: SLAM). Through knowledge
about the detected objects position, it is possible to fuse the incoming data onto a map.
Map building is performed with a software from the ROS-Nav-Stack. Figure 2.5 shows
an example of such a map (top view). It has been generated by the embedded Hokuyo
LRF. In the map center, one can see the robot represented with a simplified geometric
form. The squares in this example have the size of 1m2 and all dots are instances in
which the laser rays have been reflected by the environment. Each color provides an
indication of the materials emission coefficient. This map can help the user to put the
data into perspective.

44

2. Navigation Strategy

Figure 2.5.: Example of a metric map.

Figure 2.5 shows an example of what a metric map generated by the Hokuyo laser
ranger finder can look like. In the center of the map a simplified outline of the robot’s
geometry (top down view) is given. This can help the user to put the data into per-
spective. The squares in this example have the size of 1m2 and all dots are instances
in which the laser rays have been reflected by the environment. Each color provides an
indication of the materials emission coefficient.

Costmaps A costmap is a special group of metric maps. Usually, a sensor is used to
build an occupancy grid around the robot. This grid determines where in the vicinity
of the robot an area can be classified as ’free-space’ and where an area is ’occupied’ by
obstacles. the costmap takes this approach one step further by assigning cost values to
each atomic part of this grid. During later navigation planning steps it is now possible
to assign a total cost to a proposed path for the robot. The main advantage of this
technique is that an evaluation of a huge amount of path choices is extremely fast, since
it is only necessary to sort them by their respective total cost and then choose the
’cheapest’ solution.

2.2.5. Absolute and relative localization

Similarly to the modeling section (see Pages 43 and following), the localization of the
Air-Cobot platform is performed first in an absolute frame and secondly in the coordinate
frames chosen in relation to the task. These relative frames are either entangled directly
with the last checkpoint visited by the robot or attached to the aircraft that needs to
be inspected. In the following section, we present these different localization coordinate

45

2. Navigation Strategy

systems.

Absolute localization

The absolute coordinate frame is chosen by the Air-Cobot navigational base module.
Our implementation of ROS navigation stack provides a localization of the chosen origin
at each initialization. In its future field of application, this point will most likely be
defined by the robot charging station, should the robot be kept indoors where the GPS
reception is quite poor. Figure 2.6 shows such a situation. The robot started just at the
origin of the coordinate system which is now taken as the absolute reference frame.

Figure 2.6.: Example of the absolute robot localization

Furthermore, the absolute localization can be performed by a GPS sensor which has
been integrated on the platform towards the end of the project. Whenever a signal is
available the absolute reference frame will be provided by the GPS signal. The scenario
that is the basis of Figure 2.6 will be provided, in full, in the result section of Chap-
ter 4 (see Page 143. Here, the robotic platform was not equipped with a GPS receiver,
therefore, the localization is provided through a module that fuses a simulated IMU and
wheel tick sensors.
Thus Figure 2.6, although suggesting a simulation in the outside environment, shows

an example of a proper indoor experiment(e.g.: hangar), or a situation in which the
GPS signal reception is not sufficient for other reasons..

A sensor, such as the GPS signal receiver installed on the Air-Cobot platform towards
the end of the project, allows for subsequent updates on the robot absolute pose in a
global frame. These positions will be used to guide the robot during the autonomous
approach phase. In the aircraft neighborhood, relative localizations techniques will be
preferred because of bad signal receptions close and under the plane. The GPS infor-
mations allow to enhance the previously mentioned metric map to take into account

46

2. Navigation Strategy

forbidden airport areas (ground hatches for cables, parking areas for other ramps or
vehicles, hazardous and dangerous zones such as fueling areas, etc.). Indeed, thanks to
this data, it is possible to map these areas as obstacles. This approach is known as
geo-fencing.
Figure 2.7 displays the integration / testing of the geo-fencing module during early

2016 on the airfield of Airbus close to Blagnac, Toulouse, France. To evaluate this
module, the robot is guided manually into a restricted zone that was previously marked
out visually for the operator, but also provided to the module as GPS coordinates. As a
security feature, this module runs outside of the Air-Cobot navigational module and is
therefore able to overwrite all its control commands. The test was a success: whenever
the robot entered the forbidden zones, it was stopped immediately.

Relative localization

As explained above, relative localization techniques have also been implemented and are
always available in addition to the absolute pose provided by the GPS (Figure 2.8). The
figure shows an image taken from the video stream of the robot (Point Grey camera
sensor) that has been augmented with additional information about the pose of the
detected feature relative to the position of the robot. In the figure, several numbers
are presented next to features that were detected and recognized by the robot. Each
number represents a distance estimation of that feature towards the robot center of
gravity. Should the feature be lost, due occlusions or sensor failure, the robot is still able
to keep the sensor pointed in the correct orientation due to the self (relative) localization
with the help of other features. Indeed, this localization appears to be extremely useful,
especially in the second phase of the mission where the robot is expected to move around
the aircraft. It allows to deal with sudden losses of the visual features and on top of
that, provides a reliable back up technique whenever GPS is not available. The GPS
signal will deteriorate fast the closer we get to the aircraft and of course, as soon as the
robot enters a hangar.

However more importantly, it also allows to take into account the fact that the aircraft
can never been parked at the exact same spot. There is indeed an uncertainty that must
be taken into account. In this context, a more flexible localization, relative to the aircraft
nose cone, the aircraft wings, etc. is recommended.

For the Air-Cobot project, two reference frames are set for the relative localization.
The first one, which is also the most important, has been fixed on the aircraft front
nose cone. This frame is orientated so that its x-axis is moving straight to its tail and
that the z-axis is aimed at the ground. All checkpoints are expressed in this coordinate
frame. The secondary coordinate system is only a back-up localization aid whenever
absolute and relative (to aircraft) localization is unavailable. Its origin is always set into
the latest checkpoint that was visited by the robot. This way the platform is able to
move back and restart from a point that is already known with a great accuracy.

47

2. Navigation Strategy

(a) Geo-fencing software interface provided by
2MORO

(b) Overlay of the robots trajectory in a map

(c) Picture taking during the acquisition

Figure 2.7.: Example of the VS environment experiments were conducted in

48

2. Navigation Strategy

Figure 2.8.: Example of the relative robot localization

To perform this relative localization, in addition to the classical odometry solutions
detailed in the perception process, several complementary methods have been imple-
mented.

Point-Cloud-Matching During the mission, it is possible that Air-Cobot runs into
situations where an on-line localization appears to be difficult. Whenever the confidence
for the current localization goes below a certain threshold, a cloud matching technique
is invoked. The confidence can drop due to various reasons: a loss of visual features, an
increasing drift in the odometry, or a software problem, etc.

When the cloud-matching technique is active, it will force the robot into a stop. In this
perspective the point-clod-matching behavior is much like the emergency stop behavior,
except that the PTU of the front laser range finder is used to get a 3D point cloud of the
surroundings. This cloud is obtained by first registering the distances recorded by the
planar laser range finder. A second step uses the position and orientation of the PTU
to transform these distances into 3D points. This process is detailed in Algorithm 2.2.
Once the cloud is available, it is necessary to classify the points, because only some of
them really belong to the aircraft. To do so, two major matching algorithms (Iterative
Closest Point, ICP [Chen and Medioni, 1991], [Besl and McKay, 1992], [Zhang, 1994] ;
and RANdom Sample Consensus, RANSAC [Fischler and Bolles, 1981]) are used. The
way this latter method has been applied on our robot is described in algorithm 2.3. The
later used ICP algorithm is much more effective if the preliminary solution is already
close to the best solution possible.

49

2. Navigation Strategy

Algorithm 2.2 3D Point Cloud Matching

1: procedure Acquire pose estimation using Hokuyo nad 3d model of the

aircraft ⊲ Called by Supervisor
2: Stop robot
3: Start moving the pan tilt unit of the laser range finder form lowest to highest pan

angle while simultaneously saving the acquired data to build an unfiltered 3d point
cloud of the environment

4: Clean the acquired 3D point cloud (sampling, clustering, cylindrical segmentation)
5: Perform a modified RANSAC algorithm until either the global matching error is

below a certain threshold or a time limit is reached
6: Perform an ICP matching
7: Send result to supervisor
8: end procedure
9: Supervisor updates current robot pose in aircraft frame and continues with the given

pre-flight check

Algorithm 2.3 Modified RANSAC

1: procedure Modified RANSAC ⊲ Called by 3d point matching
2: Calculate characteristic of each point in laser range finder scan of the scene and the

3d model of the aircraft
3: Take three points of the model and compare these characteristics and geometry
4: Apply transformation of the most likely point set onto the 3d point cloud
5: Calculate the global error
6: end procedure

50

2. Navigation Strategy

(a) 3d scan acquired with Hokuyo during experimentation on Airbus 320 - robot pose behind
the wing

(b) 3d scan acquired with Hokuyo during experimentation on Airbus 320 - robot position
under right wing

Figure 2.10.: Example of two scans that were acquired with an Airbus A320 in a hangar
environment

52

2. Navigation Strategy

no reliable informations can be deduced by this approach. We handle this problem by
recording the movement with the IMU and odometry sensors. Later we use the resulting
pose estimate as an offset whenever the SLAM is finally initialized.

�✁✂✄☎✆✝✁✞✁✟

✝✁✞✆✠✡☛

✝✁✞✆✠✡☛

�✁✂✄☎✆☞✝✌✍✎✍✟

☞✝✌

Figure 2.11.: Transformations during ORB-SLAM initialization

Let us consider Figure 2.11. The different frames used in our project are displayed: the
world frame Fw, the robot frame Fm, the camera frame Fc. The figure also presents the
homogeneous transformations which are involved in order to add the initialization move-
ment offset (HTWorld−ORBinit

). This motion was tracked using the odometry and IMU
data to find the current position of the robot (HTWorld−Robot). Experiments have shown
that the transformation during the initialization (HTWorld−ORBinit

) is much smaller than
the actual pose estimation later calculated by the ORB-SLAM (HTORB).

HTWorld−Robot = HTWorld−ORBinit
×HTRobot−Cam ×HTORB ×HTCam−Robot (2.3)

At this step, we have several relative localization techniques at hand. The following
section provides some more details on how these techniques were fused to generate one
conclusive input for the navigation module.

Fusion principle In order to integrate all available robot self localization inputs, a
fusion for all the raw data is necessary. The ROS navigation stack (robot pose ekf) pro-
vides a first solution to this problem: an extended Kalman filter dedicated to localization
data fusion. By default the concerning package provides three interfaces for localization
inputs:

• the first one is fed by the fusion of odometric data concerning wheel displacement.
The method is explained here below.

53

2. Navigation Strategy

• the second one is filled by the output of the IMU (Inertial Measurement Unit)
that is located in the center of gravity of the robot.

• the last one is either provided by an SVO or an ORB-SLAM [Mur-Artal et al.,
2015] implementation. For the moment, a simple switch between these techniques
is realized. However, should the computational performance allow running both,
an additional fusion will be built.

We address here below the principle of the fusion between wheel and IMU odometry.
These data are combined to reduce a major downside of wheel odometry: its sensitivity
to drift. The further the robot has traveled, the less reliable the information recorded
through wheel encoders gets. However, this unwanted behavior gets even worse on a skid
steering robot such as Air-Cobot. Since it does not have a steering axle, it is impossible
to change its orientation without skidding on the ground. Hence, a localization based on
solely on wheel odometry will fail over time. While driving in a straight line still allows an
acceptable movement tracking precision, the confidence in the measure accuracy drops
very fast as soon as tight curves need to be taken during a inspection mission.

It is then necessary to overcome this problem and try to cancel out the drift. Skidding
or slippage of the wheels for example is not registered and therefore does not enter as
false movement if a filtering process is used to combine IMU and wheel odometry.

Therefore, the straight forward solution commonly applied in the robotic community
is to fuse wheel odometry and IMU to improve localization precision. A first solution is
of course to use the navigation stack as explained before, but this would mean using two
inputs out of three, only for odometry. In addition, the IMU must be calibrated after
each system restart. Finally, on a robot the size and weight of Air-Cobot (it is possible
that the system starts bouncing when turning in place) it can be tedious to find the
right parameters for the fusion and a changing friction coefficient can have very negative
results on the localization.

Therefore, we have made further improvements to guarantee that the wheel odometry
will be relevant. The idea is to use visual data to cancel out the drift. To do so,
the robot is allowed to constantly scan its environment for familiar landmarks with
respect to which it will be possible to move in the sequel. This constant scan appears
to be a quite challenging task in our airfield environment for several reasons. First, in
such an environment, landmarks are scarce. Second, as it is dynamic, all the detected
objects are not necessarily relevant. For example, transportation vehicles like buses or
baggage trucks might not be mapped before hand and aircraft types and positions might
change throughout the airfield. Thus, during the approach phase, the robot is constantly
searching for interest landmarks, but can only act on them when the confidence level
exceeds a high threshold. During the autonomous inspection phase and especially once
it gets in close proximity to the checkpoints, visual landmarks are well mapped and
more simple to detect and track. It is then possible to use vision-based pose estimation
methods to generate a drift free estimated pose of the robot towards the aircraft (let us

54

2. Navigation Strategy

recall that each checkpoint is defined in the aircraft main frame). In this way, we use
the last localization that we trust the most.

2.2.6. Planning

The following section gives more insight towards the situations during which planning
is needed in the Air-Cobot Project. During the autonomous inspection phase, no real
planning is needed, as the robot is expected to reach all the checkpoints given in the
topological map. As previously explained, some points have been removed from the map
because the robot is able to verify several items simultaneously. Hence the check-list
(see Figure 2.4 on Page 44) of the human operator has been modified to play to the
advantages of Air-Cobot.

However, during the approach phase, some planning is needed. Whether it is the
execution of a trajectory re-play, or the simple path planning towards the operation
starting point from the charging station. The first of these options can be executed
either on GPS coordinates that have been recorded in an earlier instance or with the
way points taken from the robot localization module.

2.2.7. The action process

This subsection gives a broad overview of the controllers which are available in the action
process. The list is shown below:

1. Multi Visual Servoing (MVS) (see Chapter 3).

2. Obstacle Avoidance (OA) (see Chapter 4).

3. Go to Goal

4. Emergency Stop

5. Correct Camera Angle

6. None-Destructive-Testing

7. Laser servoing

8. Follow Operator

9. Wait Time

We now give a short description of the main controllers.

55

2. Navigation Strategy

Multi Visual Servoing (MVS)

This controller is used in the second navigation mode where the inspection is per-
formed. It allows to reach each checkpoint around the aircraft if the corresponding
visual features are available. Different visual servoing techniques have been imple-
mented: Image based Visual Servoing (IBVS), Position-based Visual Servoing (PBVS)
and a mix of both. In this way, it is possible to benefit from their corresponding ad-
vantages [Chaumette and Hutchinson, 2006],[Kermorgant and Chaumette, 2011]. More
detailed information is given in Chapter 3 on Page 75.

Obstacle Avoidance

The obstacle avoidance controller can be invoked during navigation modes (approach,
autonomous and collaborative inspection). It is able to handle both static and dynamic
obstacles thanks to the definition of a suitable avoidance spiral. Several approaches have
been developed and will be discussed in Chapter 4 on Page 121.

Go to Goal Controller

This controller is mainly used in the first phase of the mission. It will be denoted in the
sequel by the acronym GTG.

SimIam robot simulator The controller proposed in this work relies on the control
law that can be found in the SimIAM robot simulator8 [de la Croix, 2013]. As stated in
Section 2.2.2, the software was used for rapid prototyping of new features and control
ideas. Figure 2.12 shows the same instance taken as a screen-shot for one of the maps
implemented for the project. The simulator gives a 2d (bird view) of the scene and
in Figure 2.12(a) the outline of the aircraft is clearly visible. Furthermore, we have
provided a close up view in Figure 2.12(b) that allows to present the visualization of the
robot. The blue and red triangles that originate from the robot represent the simple
visualization the physical sensor range (here red means that an object has been detected
and blue determines the opposite). Throughout the project, this simulator was used to
check new ideas, improve existing controllers and tune parameters of the control law.
Finally, it is worth while to mention that during our work with the controller, we have
improved the simulator software with a feature that: allows to safe several environments
and choose them at the start of the simulation; the possibility to include moving obstacles
(which can move in straight lines, circles, etc.); added a new sensor type; etc..

Controller In the following section we will present the metric based controller that
needed to be used if the visual navigation was sending inconclusive steering commands
or was re-initializing due to some feature detection problem. Its objective is to make a
robot reach a given position in an absolute frame (here, the airport frame). The idea is

8This simulator, which is based around a free MATLAB environment, has been used at the beginning
of the project to rapidly prototype, design and test our solutions.

56

2. Navigation Strategy

(a) General overview of the simulator execution in-
terface

(b) Close up of the visualization of the robot

Figure 2.12.: Simulator that helped in the evaluation of new, rapidly prototyped ideas
throughout the Air-Cobot project

first to align the direction of the robot with the one of the goal and then to move towards
it. This ”align first” behavior is desirable when navigating through a hangar environment
or on the tarmac where the motions are reasonably constrained. In this case, turning the
robot before moving and thus generating trajectories very close to straight lines is much
safer. Note nonetheless that, if the environment is very highly cluttered, such a behavior
is less interesting. This is the reason why the operator can choose at the beginning of
the mission if the linear and angular motion are done successively or not. To do so, the
idea is to reduce the angular error ∆θ = θd − θc where θd and θc are respectively the
target angular position and the current robot heading expressed in the airport frame
(see figure 2.13).
Assuming that a sufficiently accurate localization (see Section 2.2.5) of the robot is

provided, ω can be computed as shown below:

ω = atan2(dy, dx)

dx = cos∆θ

dy = sin∆θ

∆θ = θd − θc

(2.4)

Note that we have decided to use the atan2 function to keep the robot control angular
values within the interval [−π, π]. The controller then allows to align the direction of
the robot to the one of the target. This is done as shown on Figure 2.14.
A target heading too far off the current robot heading (red part of the angle) will reduce

the speed of the robot until complete halt and start turning it towards the target until
the difference has been reduced down to an acceptable angle (green part of the angle).
This acceptable angle is dependent on the distance towards the target. The closer the

57

2. Navigation Strategy

�✁✂✄

�✁✂✄

Figure 2.13.: Basics of the mobile base angular velocity ω calculation.

☎✆✝✞✟✆✝

✠✟✟✆✡☛✠☞✌✆

✠✍✎✌✆

Figure 2.14.: Adjustment to the standard go-to-goal behavior

target, the more narrow that range is set. Furthermore, once the controller is aligning
the angle, the acceptable range is decreased (see second sub-figure in Figure 2.14) much
like in a hysteresis to ensure a smoother motion of the robot when it will start moving
towards the target. To do so, an easy solution is to impose a trapeze profile to define
the linear velocity.

We have then also taken into account two characteristics of the Air-Cobot platform.
First, its form demonstrates some symmetry and, in addition, the same sensors are
mounted at its front and its rear. Thus, moving in reverse is not a problem and can even
save valuable time, especially when the target is located behind the robot, that is when
target heading θd is greater than Π

2
or below to −Π

2
. In such cases, the actual heading

of Air-Cobot will be changed as shown in Figure 2.15 and in Equation 2.5:

θ ← (−1)× (Π− θ) (2.5)

The above control is well adapted to unicycle robots such as Khepera, Turtlebot or

58

2. Navigation Strategy

Figure 2.15.: Aligning first with a target ”in front” and ”behind” the robot

IRobot platforms. However, it appears to be limited with a skid-steering system such as
Air-Cobot because of tire wear. Indeed, our platform has a lot of troubles when turning
in place (shaky, wobbly behavior the higher the demanded angular velocity). We have
then come up with an approach that always allows for a minimal linear velocity while
still ensuring a minimal turning area. The idea is taken from maneuvering automobiles
on narrow roads. When trying to achieve a u-turn in a small street, we have to perform
maneuvers, moving the vehicle forward and backward. This can be done with the robot
as well. It presents the advantage to increase its “ in place ”-turning speed, while
reducing tire wear substantially and keeping unwanted shaking of the platform and its
sensors to a minimum. Figure 2.16 visualizes the idea.
The red ”X” marks the goal which was set for the robot. A zone is created (green

area) in which the movement is still considered to be ”turn in place”. Air-Cobot will
now try to keep its reference point (robot center of gravity) in this area. Since the
angle between the current robot and target headings is bigger than 90◦, the robot will
start its aligning first behavior by moving backward while trying to minimize the angle
difference. Once the reference point is close to the boundary, the linear movement will
be reversed. Depending on the angle difference, this can take up to three steps (see
Figure 2.16 (a) to (d)). If by then Air-Cobot has not been able to reduce the angle to
a neglectable amount, the old align first behavior will be triggered. As we demonstrate
in Algorithm 2.4 we keep the robot in a certain motion as long as it does not leave the
zone we envisioned for the turning.

Correct Camera Angle Controller

This controller allows to correct the camera orientation when it is not suitable for the
inspection task. It appears to be necessary when the visual servoing has led to a high
pan angle for one of the stereo cameras systems. To fix the problem, this controller
checks the difference between heading of the robot (θrobot) and current angle of the
active PTU camera systems. It then regulates this error to zero using the task function
approach [Samson et al., 1991]. No linear velocity (ν) is applied. Only angular velocities
ω are sent to the robot. Figure 2.17 shows how the controller is used when the front

59

2. Navigation Strategy

Algorithm 2.4 Modified Align First Behavior

1: procedure Determine necessity of align first ⊲ Called during go too goal
execution

2: Estimate angle to target γ
3: if |γ| ≥ threshold then
4: flagalign ← TRUE

5: if |γ| ≤ 90◦ then
6: repeat
7: turn in direction of target (shortest angle difference)

8: move forward

9: until boundary (Figure 2.16) reached OR (|γ| ≤ threshold− safety)
10: else
11: repeat
12: turn in direction of target (shortest angle difference)

13: move backward

14: until boundary (Figure 2.16) reached OR (|γ| ≤ threshold− safety)
15: end if
16: else
17: flagalign ← FALSE State execute: default go to goal controller

18: end if
19: Send ω and υ to CAN-BUS
20: end procedure

60

2. Navigation Strategy

object prevents the robot from reaching the checkpoint and no avoidance motion can be
found, etc. This controller will then be usually invoked after the emergency-stop one.

In our case, it is an elegant way to overcome blocking situations which require a
human intervention. Here, a message is sent to the operator asking him / her to help
the robot. This way, this latter has enough time to position himself in front of the robot
and manually enables the follower-controller. Such a procedure is necessary to ensure
that the vehicle is not following the wrong staff member or even a mobile obstacle.

To determine the object to follow, the proposed method is based on the laser range
information. A search through the planar informations determines the closest, most
circular object available. This object will then be tracked while the robot tries to keep a
constant distance towards its center point. The controller has been designed by AKKA
Technologies, the partner in charge of the integration in the project. It relies on the
existing control proposed in the ROS Nav-Stack [Marder-Eppstein et al., 2010], [O’Kane,
2014]. Once the problem has been overcome, the supervision algorithm invokes the next
controller depending on the mission needs. This is possible since the localization module
is running in the background throughout every phase. Hence, the navigation module
can be re-engaged at any time.

None-Destructive-Testing (NDT) controller

This controller is intended to perform the None-Destructive-Testing whenever the Air-
Cobot has reached a checkpoint. In these poses, the robot base remains fixed and will
therefore, be sent the same control inputs as in the controller Emergency-Stop. The
payload however, with all its sensors (cameras, laser range finders, 3D scanner, etc.)
will be controlled according to the demands of the robot second PC which is dedicated
to the inspection tasks alone. Hence, the two stereo camera systems, the two laser
PTU, the PTZ camera and the 3D scanner mounted on the pantograph will be the only
moving parts of the robot. Figure 2.18 displays the two different configurations of the
robot (navigation/inspection).
Furthermore, figures 2.19(c), 2.19(b), 2.19(e) represent a view of the items that are

visually inspected during each mission.

2.2.8. Decision

A supervision in form of a finite state machine defines the way the proposed strategy
is executed. Figure 2.20 visualizes the different states and the majority of the guarding
conditions schematically.

63

2. Navigation Strategy

(a) Robot in navigation configuration (b) Robot in NDT configuration

Figure 2.18.: Picture of Air-Cobot in default configuration and with the pantograph-3d-
scanner unit extended for inspection

Visual Servoing

Spiral OA

ROS-Nav-Stack

GTG - Move/Turn

rc<rOA-trigger

rc<rOA-trigger

trapped

visual features

lost

visual features
recovered

2c< c> 2
3

U

Figure 2.20.: Schematic of the state machine which defines the decision process

Here, a schematic is provided that explains how the supervisor is using guard condi-
tions to evaluate which controller is to be chosen. The ellipses in this figure represent
these different controllers and the arrows visualize the possible switching directions. So
far we have only talked about the OA controller. However, to induce a motion towards
a specific target, several controllers can be chosen.

Visual servoing (whenever visual cues can be detected), a simple move/turn - con-
troller (if VS is not available) and finally the map-/trajectory-based controller presented
in [Marder-Eppstein et al., 2010] which is implemented in the Navigation Stack of the
Robot Operating System (ROS). The last mentioned controller is used as a backup
solution for cases when the reactive controllers are stuck in a local minima.

Guarding conditions, or simply guards, are methods which tell the supervisor to switch
behavior. They can be found along the arrows in Figure 2.20. Our guard for switching to
OA is very basic. Whenever the LRF detects points (rc) which are closer than the trigger
distance,rOA−trigger, the supervisor will switch to OA behavior. rOA−trigger is chosen so

64

2. Navigation Strategy

(a) landing gear (b) static port

(c) pitot probe/ tube (d) duct

(e) duct (f) engine

Figure 2.19.: Collection of elements that are inspected in a pre-flight check

that a maneuver around the obstacle is always possible. For the experiments presented in
Section 4.3, this condition is sufficient since no obstacle exceeds the robot maneuvering
capabilities In an airport-scenario, a secondary condition (velocity of obstacle below
threshold) must be met, otherwise an approach close to [Fiorini and Shiller, 1998] is used
for OA. To disengage OA a technique is used that constantly monitors βc and releases
the robot whenever its value goes either below π

2
or above 3

2
π. By using an approach

that helps to dynamically choose the center reference point for the obstacle avoidance
this technique has proven to be very robust and safe. A more detailed explanation on
this approach will be given in Chapter 4 starting from Page 121. Figure 2.20 also shows
that during regular missions the visual servoing controller is the preferred controller and
is only abandoned when all visual cues are lost. Towards finalization of the navigation

65

2. Navigation Strategy

upon a checkpoint the NDT (None-Destructive Testing) will be invoked if the camera
pan angle is below a reasonable set threshold. Otherwise the robots orientation will be
changed to allow lower panning angles. Finally, we should point out that each state
can be exited onto the ”Emergency Stop” state whenever the lowest current distance
towards an obstacle (rc) drops below the emergency stop trigger distance (rES). This
distance is lower as the trigger distance of obstacle avoidance (rOA−trigger). If for what
ever conceivable reason an object would enter this security zone of the robot, all actions
will be halted until either the operator provides a manually overwrite permission or the
object is leaving the zone.

2.3. Instantiation of the navigation processes in

Air-Cobot project

As previously mentioned, three navigation modes / phases have been defined for the
Air-Cobot platform:

• The “ autonomous approach”,

• The “ autonomous inspection ”,

• The “ collaborative inspection ”.

As explained before, the first phase has a dominant global feature but some local skills
have to be provided to guarantee a collision-free passage. On the other hand, the en-
visioned second phase is characterized by an important local aspect but the global in-
formation must not be forgotten for the mission success. As a consequence, the process
instantiation will depend on the selected navigation phase. We now consider this prob-
lem.

2.3.1. Autonomous approach mode

Let us remind ourselves that first navigation phase relies on global localization data
and on the airport metric map. When this mode is activated, a trajectory allowing
to bring the robot from its initial position (generally, the charge station) to a close
neighborhood of the aircraft is defined with respect to the airport frame. The previously
mentioned ”close neighborhood” is defined (always in the airport frame) by a particular
point P which is chosen so that the initial checkpoint can be easily reached, making
easier the transition between the two navigation modes. Then this trajectory is split
into a sequence of several positions which can be successively reached by applying the
go to goal (GTG) controller. If one or several obstacles are detected by the laser sensor,
a dedicated controller is applied in order to guarantee non-collision and safety. A very
detailed explanation of this controller is given in Chapter 4 starting from Page 121. This
decision is taken by a supervision algorithm which is implemented as a state machine.
To implement this reasoning, the processes have been instantiated as follows:

66

2. Navigation Strategy

Processes Autonomous approach mode.
Perception laser range finder

Wheel Odometry
GPS
IMU

Modeling Absolute metric map
Localization Absolute localization using GPS and IMU
Planning Trajectory given in terms of successive absolute positions to be reached
Action Obstacle avoidance

Go to goal (GTG) controller
Decision Supervision algorithm (state machine)

Table 2.1.: Description of the navigation strategy during the approach phase

2.3.2. Autonomous inspection mode

In this section let us consider the second navigation phase. This mode is activated
once the robot reaches the final point P of the previously mentioned trajectory. From
that time, only relative localization data are used 9. This means that we will focus
on information provided by vision, laser range finder and relative positions expressed
with respect to the aircraft. The latter are given by the above mentioned relative
localization techniques. The modeling process provides the topological map, that is the
graph containing a checkpoints list. This list must be built prior to the mission execution
and will differ for each aircraft type that is inspected. From this, the robot is controlled
using multi-camera visual servoing controller to reach each checkpoint. This allows to
obtain a high accuracy and practically no drift can be retained. Once a checkpoint is
reached, an inspection process is launched and, when it is completed, the robot continues
to the next one. If, during the motion, the visual features happens to be lost, then a
procedure allowing to deal with the visual signal loss is launched, allowing to avoid the
mission failure. A more detailed description of this process will be given in the Chapter 3
starting from Page 75. As mentioned, if one (or several) obstacle(s) is (are) detected,
the avoidance controller is activated to guarantee collision-free robot guidance. Once
the last checkpoint is reached, the robot will return to point P and then to the charging
station thanks to the go to goal controller.

These decisions are taken by another dedicated supervision algorithm. To implement
this reasoning, the processes have been instantiated as follows:

9The aircraft to be inspected is not always positioned exactly at the same place. As the automated
inspection requires a high positioning accuracy, the mobile base motion cannot be performed using
absolute data given by the GPS for instance. Even with high precise GPS and an aircraft parked
correctly it is doubtful that a navigation on these absolute values should be consider at all. Especially
close and under the aircraft such a system will fail. Relative localization information is mandatory
for the task to be successful.

67

2. Navigation Strategy

Processes Autonomous inspection phase.
Perception Odometry

Vision
Laser range finder

Modeling Topological map
Localization Relative localization with odometry, matching cloud and

the localization part from ORB-SLAM algorithm.
Planning No method is necessary (the path is directly given by the topological map)
Action Multi-camera visual servoing

Obstacle avoidance
Decision Supervision algorithm(state machine)

Table 2.2.: Description of the navigation strategy during the autonomous inspection
phase

2.3.3. Collaborative inspection mode

The third navigation mode corresponds to the collaborative inspection. In this case,
the robot is expected to follow a human operator using the laser data. The idea is
that he/she remains in a dedicated position in front of the robot before launching this
mode. This way the robot is able to locate and evaluate the operator geometric shape
(planar 2D shape) and start the tracking process. Obviously, in this case, the autonomy
is reduced, leaving the processes uninstantiated, except the perception and the action
ones.

Processes collaborative inspection phase
Perception laser range finder
Modeling -
Localization -
Planning -
Action Follower controller

Obstacle avoidance
Decision -

Table 2.3.: Description of the navigation strategy during the collaborative phase (Fol-
lower mode)

2.4. General overview about the navigational mode

management and modularity of the framework

In the following section we will describe the concept on how our framework decides how
to switch among the different phases. Additionally we will present the incorporation of

68

2. Navigation Strategy

a metric-map-based exploration, map-building, navigation approach that will provide a
suitable example for the versatility of our framework. The foundation of this approach
was introduced in Section 2.2.4 on Page 45.

2.4.1. Overview of the management of the navigation modes

The decision module switches between the different navigation modes / phases. In the
following section we will explain this high level state machine. An abstracted overview
is presented in Figure 2.21. Mored in−depth information about each sub state was
presented in this chapter. For the autonomous inspection phase an flow chart was given
in Figure 2.20 on Page 64

Collaborative Inspection Mode

Autonomous Inspection ModeApproach Mode

Localization module con�rms

robot has reached checkpoint P

State machine of 'Autonomous

Inspection Mode' determined

that all checkpoints have been

inspected

Operator overwrite Operator overwrite

Operator surrenders

robot control - Point

P can not be found

Operator surrenders

robot control - Point

P detected in close

vicinity

Figure 2.21.: A general overview of the high level state machine of Air-Cobot

Figure 2.21 highlights the three main navigational states of the robot that were in-
troduced at the beginning of this chapter. Furthermore, transitions (among them) and
their most basic and simple guarding conditions are shown. As one can see, the human
operator can impose a switch towards the third navigation mode at any time for security
reasons.

Allowing smooth transition among these controllers is not necessary. The reason
being that these three states can be considered extremely high level (concerning their
respective abstraction to machine language) Even if we implement a hard switch among
these phases a lower level control module will apply jerk and acceleration limitation.
This will not only prevent abrupt motion of the robot which might be bad for any
module tracking visual cues in the camera image, but it will also extend overall lifespan
of the tires and the electric motors.

Whenever the operator wants to take over control the robot should react instanta-
neous. The same reasoning applies for the switch between approach and inspection
phase. Whenever the robot is entering the inspection zone a hard switch to the corre-
sponding controller is much better than a merge of both outputs. It might make sense to

69

2. Navigation Strategy

envision a “ return control zone ” before which all sensors are either booted or turned off.
For this project we have gone the way of keeping all sensors constantly. Furthermore,
the all software modules concerned with feature detection and tracking are constantly
running as well. This return control zone might be a way to optimize the robots battery
usage, which will be a concern in future developments for industrial usage. However,
by keeping the sensors constantly searching for cues the switch between approach and
inspection phase might can happen much earlier. If a sufficient amount of cues is found
before the GPS sensor determines that the inspection zone is reached, the supervisor is
able to engage all modules for the inception phase which will lead to a smooth transition
and also increases the robustness of the system.

Our experiments on the airport have shown that it is possible that the control with
GPS might not be accurate enough to allow the robot to find all visual targets once the
supervisor switches from approach to inspection mode. If however, we allow the robot
to detect and track features during the approach phase, the chances of success increase
dramatically.

2.4.2. Versatility of the navigation framework

During the course of the Air-Cobot project we have realized that there are constantly new
ideas and techniques concerning the field of autonomous navigation. The latest release
of ORB-SLAM is now able to deal with the scaling issue while still being constrained to
just one camera. In order to prepare the framework to be operational in the future, it
needed to be envisioned extremely modular and generic. Apart from techniques such as
velocity maps, which help the robot deal with more than just one moving obstacle we
have implemented approaches that help to build a metric costmap of the environment.
These costmaps can then later be used for self localization or optimization of the mission
path.

Incorporation and testing of a metric-based navigation approach to build a map of
the environment During the experiments at the lab we investigated and perfected the
versatility of our framework by making the software as modular and generic as possible.
With the help of the ROS navigation stack, we started to incorporate techniques to build
costmaps of the surrounding environment. A costmap is a metric representation of the
environment which assigns costs to each of its atomic sections. These costs can then be
used in finding a ’lowest price’ for the navigation mission at hand.

70

2. Navigation Strategy

(a) About 1 second into the experiment (b) About 20 seconds into the experiment

(c) About 50 seconds into the experiment (d) About 100 seconds into the experiment

(e) About 210 seconds into the experiment (f) About 270 seconds into the experiment

(g) About 310 seconds into the experiment

Figure 2.22.: Building costmaps with the help of the ROS navigation stack

In Figure 2.22, we display the outside vie of the experiment. The robot was set-up to
only use the laser scanner as means of orientation. Furthermore, we used our framework

71

2. Navigation Strategy

(a) Costmap of a prior experiment (b) Costmap build during the experiment of
Figure 2.22

Figure 2.23.: Costmaps build during the experiment

in order to provide the robot with some checkpoints. Figure 2.22 shows the costmap
build during the experiment and another costmap that was acquired during a previous
experiment in the same locations. As we can see in both maps, the planar Hokuyo laser
has problems with clearly recognizing the ramp (multiple edges detected).
The raster (light gray squares) have the size of 1 square meter and the light blue

area around the otherwise thin corners shows what the laser scanner is identifying at
the moment of the shop. Another light blueish line shows the history of the path the
robot has taken. The costmap classifies static objects such as walls, etc. as such. These
objects make it into the metric map. Objects that move will also be recognized, but
will not be saved onto the map. For the airport environment with its aircraft hangars
and tarmac, having a metric map build and updated throughout the inspection missions
executed by Air-Cobot can seriously improve its success rate.

2.5. Conclusion

The work presented in this chapter was mainly focused on the two first navigation modes
(approach and inspection) that were presented in the first section of this chapter. More
precisely, the chapter’s main purpose was to provide an overview of how the navigational
framework was designed in order to handle / support the strategies that will be presented
in Chapter 3 and 4. Furthermore we have highlighted the robots capabilities and given
an explanation for the favoritism of reactive as oppose to planning−based approaches.
The modular approach for our framework allows a versatile basis for integration of new
controllers. During our experiments we have also tested the introduction of a controller
that allows for elliptic obstacle avoidance, a controller that combines the go to goal
controller with velocity obstacles and so on.

Additionally we were able to show the versatility of framework by showing the incor-
poration of the ROS navigation stack to build a metric map of the environment. This
technique will be the first step of creating meaningful costmaps which than later can

72

2. Navigation Strategy

be used for obstacle avoidance in Chapter 4. Furthermore, it will allow the naviga-
tional framework to anticipate obstacle occlusions and thus avoid them or modify the
topological map completely which will in turn then optimize the visual navigation.

Lastly it should be noted that the localization strategies will be the bases for the
following chapters. Having a precise estimate of where the robot is located is fundamental
to build a robust visual navigation system that can handle features loss, as well as
allowing the obstacle avoidance to perform safely.

73

3. Multi Visual Servoing

Contents
3.1. Introduction . 76

3.1.1. State of the Art of Visual Servoing (VS) 76

3.1.2. Contributions . 78

3.1.3. Outline of the chapter . 79

3.2. Prerequisites of Visual Servoing 79

3.2.1. Robot presentation . 79

3.2.2. Robot coordinates system . 80

3.2.3. Robot Jacobian and Velocity Twist Matrix 81

3.3. Image-Based Visual Servoing 82

3.3.1. Method . 82

3.3.2. Simulation . 85

3.4. Position-Based Visual Servoing 92

3.4.1. Method . 92

3.4.2. Simulation . 94

3.5. Comparison of IBVS and PBVS regarding robustness to-

wards sensor noise on the basis of simulations 101

3.5.1. Simulation conditions . 101

3.5.2. The obtained results . 102

3.6. The Air-Cobot visual servoing strategy 103

3.6.1. Handling the visual signal losses 105

3.6.2. Coupling the augmented image with the visual servoing . . . 106

3.6.3. PBVS and IBVS switching 106

3.7. Experiments on Air-Cobot . 107

3.7.1. Test environment . 107

3.7.2. Applying ViSP in the Air-Cobot context 109

3.7.3. Experimental tests combining IBVS with PBVS 109

3.8. Conclusion . 117

75

3.1. Introduction

As mentioned earlier, the navigation strategy is composed of six subprocesses which
are: perception, modeling, planning, localization, action and decision. In the following
chapter, we will take a closer look towards the action process. As previously mentioned, it
relies on several controllers allowing to reach a goal (using metric or visual information),
avoid obstacles, re-orient the platform when needed, etc. In this chapter, we mainly focus
on the first group of processes which allow the platform to reach a goal. Throughout the
more than the three year duration of this project we have discovered that specifically
during the second phase of our mission (autonomous inspection phase) visual sensory is
what makes the difference between an acceptable and an exceptional localization. Thus,
we can not stress enough how fundamental important visual sensory is for a successful
mission. Indeed, it is used both to localize the robot relatively to the aircraft and to
perform the Non-Destructive Testing (NDT) tasks. These latter rely on visual cues
characterizing the specific aircraft items to be inspected. It is then only logical to also
use these informations to control the platform with respect to the aircraft. This is the
main reason why visual servoing controllers have been chosen to control the robot during
the inspection phase. In addition, they allow to directly connect the processes of action
and perception, especially in the case of the so-called 2D visual servoing where the
visual features are used in the feedback without any processing step. It is worthwhile to
mention that this last controller allows to reach a desired position with a high accuracy
(a detailed explanation will follow), which will be of great interest to perform the NDT
tasks. The visual servoing controllers are then at the core of this chapter.

We first propose a brief state of the art of this area, before stating our problem and
focusing on our contributions. The closing section of this chapter will contain a summary
of our presentation as well as a collection of future tasks.

3.1.1. State of the Art of Visual Servoing (VS)

The term visual servoing covers several techniques which aim to guide a robot solely on
visual information provided by a camera sensor. The approach was first developed by
Shirai and Inoue in 1973 [Shirai and Inoue, 1973] and, since then, many improvements
were made [Malis et al., 1999], [Chaumette and Hutchinson, 2006], [Chaumette and
Hutchinson, 2007]. Visual servoing has since become a mature technique which is widely
used on many kinds of robots (manipulator arms, wheeled robots, UAVs, humanoids,
etc.). Its field of application is extremely vast. For example there have been successful
efforts to establish VS in the medical domain (automated surgery [Mebarki et al., 2010],
micro-robotics [Tamadazte et al., 2012], etc.). As explained before, the key-idea of the
approach is to directly connect vision to control. The control inputs of the robot are
computed using visual features detected in the image, avoiding the metric localization
step in a global map of the environment (in the navigation context).

Visual servoing techniques can be split into three sub-groups that are used by the

3. Multi Visual Servoing

majority of the community. They are: Image-based (or 2D) visual servoing (IBVS),
position-based (or 3D) visual servoing (PBVS) and a slightly more recent hybrid
approach, 2.5d visual servoing [Chaumette and Hutchinson, 2006], [Chaumette and
Hutchinson, 2007], [Malis et al., 1999]. PBVS was the first developed control scheme. It
relies on a set of 3D parameters characterizing the camera pose which must be estimated
from the extracted image features [Chaumette and Hutchinson, 2006]. It is then neces-
sary to know the intrinsic camera parameters and the 3D model of the observed object.
In [Kermorgant and Chaumette, 2011], the authors have proven that this approach is
to be globally asymptotically stable if the pose is assumed to be perfectly estimated. It
allows smooth control of the 3D trajectory performed by the camera [Kermorgant and
Chaumette, 2011]. However, it suffers from several drawbacks. First, as there is no real
control in the image, the observed object may leave the camera field of view during the
displacement. In addition, if the pose is not correctly estimated, the task can only be
performed with reduced accuracy.

On the contrary, IBVS relies on the direct use of the visual features in the control
loop. The camera pose is no more necessary, which allows to increase the precision of
the task realization. However, its main drawback is that the induced 3D trajectory is
not predictable and may be unsatisfactory or sometimes fairly non intuitive for a human
observer. In addition, Jacobian singularities or local minima may exist [Chaumette,
1998]. To overcome these problems and try to benefit from both approaches respective
advantages, an hybrid solution was developed, known as 2.5D visual servoing [Malis
et al., 1999]. In this case, both 2D and 3D information are considered in the control
law. Theoretically, this allows to derive an analytical proof of convergence and study the
sensibility to calibration errors. Practically, it guarantees that the object reference point
(usually the majority of its visual cues) are kept in the image, but the object may par-
tially leave the camera field of view [Malis et al., 1999], [Kermorgant and Chaumette,
2011]. However, to deal with the visibility issue, other approaches have been devel-
oped in the literature. Some of them rely on a switch between different control laws
depending on the risk of the visual features loss [Chesi et al., 2004], [Corke and Hutchin-
son, 2001], [Gans and Hutchinson, 2007], [Hafez and Jawahar, 2007], [Kermorgant and
Chaumette, 2011]. Other solutions using optimal [Danès et al., 2010], or predictive [Al-
libert et al., 2010] control are also available. Finally, it is also possible to benefit from
planning techniques which provide a path free of occlusions by using a metric model of
the environment [Sharma and Sutanto, 1997], [Mezouar and Chaumette, 2002], [Kazemi
et al., 2010].

However all these approaches aim to preserve the visibility of the necessary visual
features at all costs. But, this strategy might not always lead to the best performances.
Indeed, several phenomenons can lead to the lack of visual features: temporary camera
breakdowns and sensor failures, image processing errors, landmark occlusions due to
persons or vehicles moving through the camera field of view, large distance between
the object and the sensor, unavailability of paths allowing to simultaneously reach the
goal and preserve the visibility, etc. Thus, to guarantee the success of a visual servoing

77

3. Multi Visual Servoing

task, it is necessary to develop a method managing the total loss of the visual signal.
A first idea is to use tracking techniques such as [Jackson et al., 2004], [Comport et al.,
2004], [Lepetit and Fua, 2006] and [Breitenstein et al., 2009]. In this case, the problem
of the total occlusion of the interest landmark is treated by using measures extracted
from the current image stream. This means that some information must be available to
recover the missing informations. Thus, none of the above mentioned methods allow to
deal with all the phenomenons leading to the visual features loss and especially when
the image is no longer available. To be able to deal with the most general cases, it is
mandatory to develop a technique which can be used without any current image. At
LAAS − CNRS, such dedicated approaches have been developed both in mobile robotics
[Folio, 2007, Petiteville, 2012, Petiteville et al., 2013] and in the dual arm manipulation
context [Fleurmond, 2015]. They all share a common reasoning. The idea is a two-step
algorithm where :

• while images are available, the method allows to estimate the depth of the visual
features or more generally the 3D structure of the object of interest

• once the visual signal is lost, the visual features are reconstructed using the above
3D information.

The visual servoing control law is then computed using either the real or the estimated
image cues depending on the context. The work proposed in this thesis is in the sequel
of these approaches but has been adapted to the specificities of the Air-Cobot project.

3.1.2. Contributions

Before detailing our contribution, it is necessary to highlight some particularities of
the Air-Cobot project. First of all, the platform must be precisely positioned at each
checkpoint, which requires that a control law is designed which is capable to fulfill this
requirement. In this context, following our previous analysis, IBVS appears to be an
interesting solution. Second, most of the inspections will be performed in an outdoor
environment. This means that a robust extraction of the visual features, although
mandatory, may nonetheless be difficult to guarantee for several reasons: high variations
in lighting conditions (luminosity issues), aircraft size, reflections on the fuselage, etc.
In addition, the presence of the staff around the plane will increase the risks of occlusion
and, as the environment is highly constrained, it is difficult to find a solution allowing
to perform the task while preserving the visibility and the non collision. It then appears
that a total visual features loss must be tolerated and not simply avoided. Finally,
it is worthwhile to recall that a precise robot relative localization is provided by 3D
matching of the robot environment, a CAD model of the aircraft and of the items to be
inspected, and the constantly updated wheel odometry. This means that the necessary
3D information data to the visual features estimation are already available.

On the base of all previous remarks and analysis of visual servoing techniques, we
propose the following approach. Since the main problem originates from the possibility

78

3. Multi Visual Servoing

of total visual signal losses which may occur at any time during the mission we propose:
The key-idea to tackle this issue is to define an augmented (or virtual) image which will
be built by adding measured 2D visual cues together with estimated ones.

In this way, an “ image ” is always available, whether the features are visible or not.
Hence, it is then always possible to control the robot using vision.

3.1.3. Outline of the chapter

In the upcoming sections, we will present the two control techniques at the core of this
chapter, namely IBVS and PBVS. We will highlight the advantages and drawbacks of
each method, demonstrating the interest of their coupling. Furthermore, we will show the
interest of using the augmented image. Throughout this section, simulations conducted
in MATLAB and experiments on Air-Cobot will help to highlight and validate several
conclusions of our research.

3.2. Prerequisites of Visual Servoing

In the following section we will introduce all necessary information that is essential to
clearly highlight our contribution. We will introduce the robot and all the sensory that is
needed to perform a visual servoing task. Additionally information about the available
coordinate systems will be shared. In order to provide a better understanding of the
strategy behind our approach we will deduce the robot Jacobian before introducing
combination and interaction matrices.

3.2.1. Robot presentation

Before we will go into further details about the visual servoing algorithms, a short
description of the robot and its coordinate frames will be given. Therefore, we will focus
mainly on geometry and frames that are necessary in order to move the camera and the
robot body in the correct way while applying the visual servoing technique. The inputs
of visual servoing to control the robot are the following :

q̇ =

νrobot
ωrobot

ωcampan

ωcamtilt

 (3.1)

where v represents the linear velocity of the robot and ω its angular velocity. ωcampan

(respectively ωcamtilt) is the pan (respectively tilt) angular velocity from the Pan − Tilt
− Unit (PTU).
The following section will explain in more details the frames which have been intro-

duced.

79

3. Multi Visual Servoing

3.2.2. Robot coordinates system

Figure 3.1 displays the four frames used on the robot for the implementation of visual
servoing and Figure 3.2 present the conventions of each frames These conventions are
taken from the Lagadic open source software ’VISP’1 [web,].

Figure 3.1.: Air-Cobot and the associated frames [Demissy et al., 2016]

�

✁

Figure 3.2.: Robot coordinate system for the front cameras [Demissy et al., 2016]

The first frame is the world frame (in black) which is static and used as a reference.
Its origin point is noted W . The second coordinate frame, denoted Rm, is the robot
frame (in blue). Its origin point is M . It turns around the z axis with an angle θ. The

1ViSP referring to the Visual Servoing Platform is a modular cross platform library that allows proto-
typing and developing applications using visual tracking and visual servoing techniques at the heart
of the researches done by Inria Lagadic team.

80

3. Multi Visual Servoing

third coordinate frame, denoted Rp, is the Pan-Tilt-Unit frame (in red). Its origin point
is noted P and represents the center of the PTU. Therefore the distance between M
and P is a fixed constant. After rotation with an angle of π around the axis x, the blue
frame results in the red frame (given the translation between M and P). Physically, this
third frame in our presentation (red) is able to rotate around its z axis with a θcampan

angle (equivalent to yaw rotation) and can rotate around its y axis with a θcamtilt angle
(equivalent to pitch rotation). The fourth frame, denoted Re, is the end effector frame
(in green). This frame was solely used to decompose the rotation between the PTU and
camera. Its origin point is noted E. The distance between P and E is fixed. A second

difference between the end-effector frame and the PTU frame is a
π

2
rotation around the

x axis. The fifth frame, denoted Rc, is the camera frame (in purple). Its origin point is
noted C and corresponds to the center of the camera and the distance between E and C

is fixed. Another difference between the green frame and the purple one is a
π

2
rotation

around the y axis.

These frames are presented in much more detail in the appendix starting on Page 166.

3.2.3. Robot Jacobian and Velocity Twist Matrix

The Robot Jacobian J provides the relationship between the kinematic screw of the cam-
era TRC

C/RW
and the control vector q̇. A complete derivation of this equation can be found

in the appendix in Section A.2 on Page 171 and its application to Air-Cobot on Page 179.
The result of the derivation for the front cameras is displayed in Equation (3.2).

TRC

C/RW
=

−sp yP sp − xP cp − (xE + xC) ct + (zE + yC) st xE + xC 0
−cp st yP cp st + xP sp st + (zC − yE) st 0 xE + xC

cp ct −yP cp ct − xP sp ct − (zC − yE) ct −yE + zC −zE − yC
0 0 0 −1
0 −ct 1 0
0 −st 0 0

× q̇

= J × q̇
(3.2)

where J is the robot Jacobian which expresses the relationship of the robot control
inputs and the camera motion. It is interesting enough to mention that by removing
columns from that matrix we can simply deny certain degrees of freedom of the system.
For example, if the robot shall not move (neither in a linear or angular notion) the first
two columns can be removed. Of course the same has to be done for q̇ which is formerly
a 4 by 1 matrix.

81

3. Multi Visual Servoing

3.3. Image-Based Visual Servoing

Image based Visual Servoing will be the first technique we will describe in detail in
this chapter. It has the undeniable advantage of being able to use information (about
each features position on the camera plane) that is taken directly from the sensor. No
geometrical interpretation of the image is needed. However, the features need to be
detected and / or tracked during the mission. A more detailed explanation on this
process will be given in one of the subsequent sections of this chapter.

3.3.1. Method

In order to properly describe the basis of the IBVS method we will explain the control
law and how to built the interaction matrix.

Control law

Figure 3.4 provides some insight towards the underlying control system analysis back-
ground of the method. The start is given by a desired representation of the features in
the image (s∗). This can be done by either providing the vector explicitly, or by defining
a desired robot pose and projecting the target in the camera image, or by learning s∗

when the robot is manually put in the desired position. s∗ is then compared with the
current feature vector (s) and the control loop error (eI) is formed. Once the control
loop error has been determined, it can be used to generate the control inputs using the
controller. With the resulting q̇, the robot can be controlled so that eI progressively
diminishes and the desired image is reached. Equation (3.10) is presenting these rela-
tionships. Here we can see that the controller is working in the feature space, whereas
position based visual servoing is expressed in the Cartesian space [Hutchinson et al.,
1996b].

eI = s− s∗ (3.3)

where s∗ contains the n desired visual features.

To make the error eI decrease exponentially, we impose:

ėI = −λI × eI (3.4)

with λI ∈ R
+∗ (3.5)

An exponential decrease must lead (with t → ∞) to an eI of zero and in an ideal case
one should be able to observe a solely negative gradient throughout the experiment if no
physical constraints (velocity, acceleration limits etc.) are set for the robotic platform.
Knowing that:

ėI = ṡ− ṡ∗ (3.6)

and recalling that ṡ∗ is constant, we get:

82

3. Multi Visual Servoing

Xi = f
xi

zi

Yi = f
yi
zi

(3.11)

where f is the focal length of the camera.

LI links the camera kinematic screw and the derivative of s according to Equa-
tion (3.8). With the derivation of (Xi, Yi), we find:

Ẋi = f
ẋizi − żixi

zi2

Ẏi = f
ẏizi − żiyi

zi2

(3.12)

From this, it follows that:

(
Ẋi

Ẏi

)
=

(
f
zi

0 −Xi

zi

0 f
zi

−Yi

zi

)
×

ẋi

ẏi
żi

= L1 × V RC

P/RC

(3.13)

Moreover :
V RC

Pi/RW
= V RC

C/RW
+ ΩRC/RW

∧ CPi
RC + V RC

Pi/RC
(3.14)

Since the transformation between Pi and W is rigid, V RC

Pi/RW
= 0.

V RC

Pi/RC
= −V RC

C/RW
− ΩRC/RW

∧ CPi
RC

= −V RC

C/RW
+ ˆCPi

RC
ΩRC/RW

=
(
−I3 ˆCPi

RC

)
× TRC

C/RW

= L2 × TRC

C/RW

(3.15)

where ˆCPi
RC

is the skew-symmetric matrix associated to vector CPRC

i . Finally we have
:

ṡi =

(
Ẋi

Ẏi

)
= L1 L2 T

RC

C/RW

= LPi
TRC

C/RW

(3.16)

Where

LPi
=

−f

zi
0

Xi

zi

XiYi

f
−(f +

X2
i

f
) Yi

0
−f

zi

Yi

zi
f +

Y 2
i

f

−XiYi

f
−Xi

 (3.17)

84

3. Multi Visual Servoing

Finally, for n feature points, the interaction matrix LI is :

LI =

LP1

LP2

LP3

...
LPn

(3.18)

Conclusion

Image-based visual servoing is a control method which allows to create a direct link
between image processing and robot control. Once the target is identified (and can be
tracked), IBVS will calculate the correct commands to move the sensor to minimize eI .
However, IBVS will not make sure that the target is kept in the camera Field Of View
(FOV). On the other hand, IBVS can lead to unfavorable or unexpected motions of the
robot (advance retreat problem, singularities, local minima) [G. Palmieri and Callegari,
2012] [Chaumette, 1998], [Chaumette and Hutchinson, 2006] and [Cai et al., 2014].

3.3.2. Simulation

The following section will provide some results obtained in MATLAB simulations.

Modeling

The IBVS method is modeled as a block diagram in Figure 3.4 for simulation purposes.
We will present our target definition, how the feature vector is calculated and we will
explain how we have calculated reactions of our robotic platform. For obvious reasons,
certain simplifications were made in order to reduce the complexity of the simulations.
However, this does not change the validity of the later comparison of both visual servoing
techniques.

85

3. Multi Visual Servoing

�

�
�

Figure 3.4.: Control loop of an Image-based visual servoing example

The simulation approach involves the definition of the target, the calculation of the
image features vector s given by the camera and the robot equations implementation.

Target definition For the following simulations, the target has been chosen as a set
of four features points for the sake of robustness (see Figure 3.5). These four points
define a ten centimeter square. The position of its center of gravity in the world frame
is (1000, 0, 715) [mm] where 715 stands for the height of the camera in standard position
(θcampan and θcamtilt are equal to zero).

Figure 3.5.: Target chosen for simulations

86

3. Multi Visual Servoing

Calculation of the image features s by the camera The feature detection algortihm
provides us with (Xi, Yi), the coordinates of point Pi which is the projection on the
focal plane of the point pi(x, y, z) following Equations (3.11) and knowing zi value. As
stated beforehand, knowing the camera intrinsic and extrinsic parameters is essential to
complete the visual servoing mission.

Reaction of the robotic platform The following equations will simulate the response
of the physical system. As we have hinted on from the beginning, the basic approach
can be understood as a speed control technique. Since our calculations take place in the
digital domain, all signals and calculations cannot be continuous. From a mathematical
point of view, it is defined by a discrete integral calculation on the input control vector
q = (x, y, θ, θcampan , θcamtilt)T) where x, y are the coordinates of the robot position, θ
is the robot orientation and θp, θt are the angles of the PTU.
For this purpose, Euler’s method is used between k and k + 1 sample as follows :

rrobotk = νrobot
k × Te (3.19)

θrobotk+1 = θrobotk + Te × ωk (3.20)

xrobot
k+1 = xrobot

k + rk × cos(θ(k + 1)) (3.21)

yrobotk+1 = yrobotk + rk × sin(θ(k + 1)) (3.22)

θ
campan

k+1 = θ
campan

k + Te × ω
campan

k (3.23)

θcamtilt

k+1 = θcamtilt

k + Te × ωcamtilt

k (3.24)

where Te is the sampling period, r is the distance traveled by the robot, ω
campan

k is the
pan angular velocity, ωcamtilt

k is tilt angular velocity.

Controller equations The controller block computes the interaction matrix LI for each
feature point in the image plane following Equation (3.18). As we recall, a total of four
points are considered and since every feature has two coordinates in the image-plane,
the interaction matrix LI will be a matrix of size 8× 6 (2n× 6; n being the number of
features and six corresponds to the degrees of freedom of the whole system).

The Jacobian matrix, J , is calculated for the current configuration of the robot with
the aid of Equation (3.2). It is a 6 × 4 matrix, where four corresponds to the number
of control inputs, q̇. If you recall, the system is able to drive linearly, turn around its z
axis, pan and tilt the camera.

Once LI and J are determined, the Moore-Penrose pseudo inverse matrix of (LI J) is
evaluated. This evaluation will return the control vector q̇ according to Equation (3.10).

Simulation results

Simulation conditions For all simulations, the underlying geometry will be the one of
the Air-Cobot platform with all its degrees of freedom (DOF) for the cameras and all
constraints. This is necessary to relate all of our findings onto the robotic platform.

87

3. Multi Visual Servoing

Something we will simplify in order to avoid too complex simulations are physical
constraints of the electric motors such as speed, acceleration and jerk limits. These
physical quantities will be neglected. This is important to remember since on the real
life robotic platform these limits need to be kept.

The simulation conditions are as follows :

• The desired pose is the simplest one, all the angles from the camera degrees of
freedom (θcampan , θcamtilt) and also θ are equal to zero.

• The position of the camera (point C) should be in the center of the world frame
so the point M (see Figure 3.2) is at (0, 150, zM)RW

, because MP × yW = −150
mm.

• The initial pose is the same as the desired one, except that the robot is 3 meters
back on the x axis.

• The simulation has been executed with a visual servoing gain, λI , of 1 (static
gain) and the sampling period Te = 1e−3 s (i.e sampling rate of 1000 Hz). Note
that this sampling rate has been chosen sufficiently small to be able to use the
Euler’s scheme to estimate properly the robot motion. It is possible here as the
camera function is modeled using only the pinhole model. On the real Air-Cobot
platform, a sampling rate of ∼ 25 Hz has been proven to be sufficient and the
maximal control input for the CAN-BUS of the robot is limited to 50 Hz.

Table 3.1 gathers the general conditions :

XM [mm] YM [mm] θ[rad] θp[rad] θt[rad]
Desired pose 0 150 0 0 0
Initial pose -3000 150 0 π

4
π
6

Final pose 0.24 154.8 -0.0082 -0.006 ∼ 0

Table 3.1.: Parameters of the IBVS simulation

The two first lines of Table 3.1 provides the robot initial and desired poses values.

The obtained results Table 3.1 shows that during the first simulation the desired pose
was reached precisely enough (less than 5 mm in y, far less than 1 mm in x and less than
1◦ for θ, θp and θt camera pan and tilt).
Figure 3.6 shows how the features evolve during the execution of the simulation. A

continuous movement from the initial position of the features in the camera frame to the
final one can be observed. This matches the results shown in the last row of Table 3.1.

88

3. Multi Visual Servoing

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

x in image plane

y
in

 im
ag

e
pl

an
e

Evolution of features in image plane

Target points desired
Target points initialization

Figure 3.6.: Evolution of features in an IBVS simulation

Figure 3.7 displays the robot state vector (q = (x, y, θ, θcampan , θcamtilt)T) throughout
the simulation. Due to the initial pan angle, the system compensates (and therefore
slightly drifts) on the y-axis. This explains the low error at its final position of ≪ 10
mm.

89

3. Multi Visual Servoing

−3000 −2000 −1000 0 1000
150

151

152

153

154

155
Position of robot in W(x,y)

y m
 [m

m
]

x
m

 [mm]
0 2000 4000 6000 8000

−0.05

0

0.05

0.1

0.15

0.2
Theta

an
gl

e
[r

ad
]

iterations | time [s/1000]

0 2000 4000 6000 8000
−0.5

0

0.5

1
Theta PAN

an
gl

e
[r

ad
]

iterations | time [s/1000]
0 2000 4000 6000 8000

0

0.2

0.4

0.6

0.8
Theta TILT

an
gl

e
[r

ad
]

iterations | time [s/1000]

Figure 3.7.: Robot path, orientation and camera state in a IBVS simulation

Figure 3.8 highlights the error, eI , in the simulation. As one can see, it progressively
decreases and vanishes after approximately five seconds. This evolution may help to
determine the convergence of the algorithm and to define a convenient threshold to
stop the simulation. Such a threshold is necessary since the gain is static during these
simulations. Due to the exponential decrease of the error, the control inputs to the
robotic platform will become ’weaker’ towards the end of the simulation. In order to
find an optimal point to stop and start the post-processing of our results, a threshold
for the error is chosen.

90

3. Multi Visual Servoing

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.2

0.4

0.6

0.8

1

1.2

1.4
maximum error element

iterations | time [s/1000]

er
ro

r
[]

Figure 3.8.: Evolution of the visual error in a IBVS simulation

The last figure, Figure 3.9, shows the evolution of the control inputs, q̇. As mentioned
before, no velocity or acceleration limits will be respected in order to achieve an ideal
experiment. Later, on the Air-Cobot platform however, maximum velocities such as
∼ 10000mm

s
or∼ 10m

s
can surely not be reached and must therefore be avoided. However,

these velocities can easily be controlled by choosing a lower λI and are not that far of
from the reality (Air-Cobot can reach up to 5 m

s
).

91

3. Multi Visual Servoing

0 2000 4000 6000 8000
−5000

0

5000

10000

15000
linear velocity of the robot V

iterations | time [s/1000]

ve
lo

ci
ty

 [m
m

/s
]

0 2000 4000 6000 8000
−0.2

0

0.2

0.4

0.6

0.8
angular velocity of the robot W

iterations | time [s/1000]

ve
lo

ci
ty

 [r
ad

/s
]

0 2000 4000 6000 8000
−0.4

−0.2

0

0.2

0.4

0.6
camera pan velocity

iterations | time [s/1000]

ve
lo

ci
ty

 [r
ad

/s
]

0 2000 4000 6000 8000
−0.8

−0.6

−0.4

−0.2

0
camera tilt velocity

iterations | time [s/1000]

ve
lo

ci
ty

 [r
ad

/s
]

Figure 3.9.: Evolution of velocities in a IBVS simulation

3.4. Position-Based Visual Servoing

Contrary to IBVS, Position Based Visual Servoing does require a geometrical interpre-
tation of the taken image before an effective control law can be computed. Therefore, a
relative pose estimation between camera and target is crucial. One of the interests of this
approach lies in the chance of defining tasks in a standard Cartesian frame [G. Palmieri
and Callegari, 2012], which allows to obtain nice robot trajectories. A major downside to
this is that the control law now depends on the camera pose, which makes the approach
sensitive to errors (calibration, etc.).

3.4.1. Method

Control law

In PBVS, our servoed variable χ is now defined in the following 3D terms :

• The 3D coordinates of the object centroid O expressed in the camera frame ;

• The camera orientation with respect to a frame linked to the object and centered
in O. This orientation is expressed thanks to the angle/axis (α r) representation.
In this representation, the axis r stands for the vector around which one must
turn with an angle α in order to go from the current camera frame to the object
frame. Beforehand, the desired camera frame has the same orientation as the
object frame.

92

3. Multi Visual Servoing

Thus the PBVS error, eP , is defined as below :

eP = χ− χ∗

=

(
CtO

RC

α r

)
−

(
C∗

tO
RC∗

0

)
(3.25)

where CtO
RC is the translation from C (origin of camera frame) to O expressed in the

camera frame. As well as IBVS, our control vector q̇ is designed so that the error
decreases exponentially, i.e. :

ėP = −λP eP (3.26)

From this, we get:
˙eP = χ̇− χ̇∗

= χ̇

= LPBV S T
RC

C/RW

(3.27)

Moreover :
TRC

C/RW
= J q̇ (3.28)

The control law is unchanged :

q̇ = −λP (LPBV SJ)
+ eP (3.29)

As J only depends on the robot, it is not modified. On the contrary, LPBV S depends on
the servoed variable.

Interaction matrix LPBV S

LPBV S links the camera kinematic screw and the derivative of χ. Let us express the
derivation of (CtO

RC , α r).

dCO

dt

RC

/RW

=
dCW

dt

RC

/RW

+
dWO

dt

RC

/RW

= −
dWC

dt

RC

/RW

(3.30)

Recalling that the transformation between O and W is rigid, we get:

dCO

dt

RC

/RW

=
dCO

dt

RC

/RC

+ CORC ∧ ΩRC

RW /RC

=
dCO

dt

RC

/RC

− ĈO
RC

ΩRC

RC/RW

(3.31)

where ĈO
RC

is the skew-symmetric matrix associated to vector CORC . Finally we have:

dCO

dt

RC

/RC

= −V RC

C/RW
+ ĈO

RC
ΩRC

RC/RW

=
(
−I3 ĈO

RC

)
× TRC

C/RW

(3.32)

93

3. Multi Visual Servoing

As for the angle/axis parameters, according to Ezio Malis’ thesis [Malis, 2008]:

d(α r)

dt
=

dα

dt
r + α

dr

dt
= Lα r × ΩRC

RC/RW

(3.33)

Where :

Lα r = I3 −
α

2
r̂ + (1−

sincα

sinc2
α

2

) r̂2 (3.34)

Finally :

LPBV S =

(
−I3 ĈO

RC

0 Lα r

)
(3.35)

Conclusion

The PBVS method works in the same way as IBVS method. Indeed the controller, robot
and camera are built similarly to IBVS (see subsection 3.3). The main differences are
the centroid determination and the pose calculation explained in the following section.

3.4.2. Simulation

We now explain how the position-based visual servoing method has been simulated.

Modeling

As for the IBVS, the PBVS method was modeled as a block diagram displayed in Fig-
ure 3.10.

Figure 3.10.: Block diagram for the PBVS approach

As pointed out earlier, the main differences with IBVS concerns the definition of the
servoed variable and therefore its computation.

94

3. Multi Visual Servoing

The centroid calculation O From the previous results, we compute the centroid O
of the target points whose coordinates (xi, yi, zi) are given in the target frame. The
coordinates of O are first expressed in the target frame before being converted into the
camera frame. To do so, a pose calculation is made. It consists in projecting of the
coordinates of one point in the camera frame from the coordinates of this point in the
image plane thanks to Equation (3.11). Apart from knowing the distance between this
point and the camera information about the intrinsic parameters of the camera (mainly
the focal length of the camera) is essential.

The computation of the servoed variable The servoed variable is computed within
the quaternion function. We calculate :

• The distance between the camera and the object centroid which has been obtained
at the previous step;

• The quaternions which represents the orientation of the camera frame with re-
spect to the object frame, that is the coordinates of the rotation axis r and the
corresponding angle of rotation α.

Unit quaternions provide a convenient mathematical notation for representing orien-
tations and rotations of objects in three dimensions. Compared to Euler angles they
are simpler to compose and avoid the problem of gimbal lock. Unlike rotation matrices,
they are numerically stable and allow much to perform computations much more efficient.
Quaternions have found their way into applications in computer graphics, computer vi-
sion, robotics, navigation, molecular dynamics, flight dynamics, orbital mechanics of
satellites and crystallographic texture analysis. Unfortunately, by using quaternions the
operator looses the high intuitivity that is provided by Euler angels and homogeneous
matrices. When used to represent a rotation, unit quaternions are also called rotation
quaternions. In the context of orientation (rotation relative to a reference coordinate
system), they are called orientation quaternions or attitude quaternions.
For their computation, formulas of article [Kelly, 2013] were used.

Simulation results

Simulation conditions: For the PBVS simulation, four features points were chosen.
Having four individual features is not necessary, but increases the robustness and even
thought this might not be necessary for a simulated test, it is much closer to the set-up
that will be used on the real robot. From them, as shown above, we compute the center
of gravity for all points. We will show later that this is particularly helpful when dealing
with noise during the feature acquisition. The visual servoing gain λ has been fixed to
1, the same value which has been used in the image-based visual servoing experiment.
It will ease the comparison. The two first lines of Table 3.2 provide the initial and the
final poses of the robot.

95

3. Multi Visual Servoing

XM [mm] YM [mm] θ[rad] θp[rad] θt[rad]
Desired pose −300 350 0 −π

4
π
6

Initial pose -8000 300 π
2

π
4

π
10

Final pose (∼ 22k iterations) −288.2664 370.6035 -0.0097 − π
4.2

π
6.1

Table 3.2.: Parameters of the PBVS simulation

Obtained results Compared to the experiments for IBVS in Section 3.3.2 it stands out
that the distance the robot needs to travel has been increased. Thus, resulting in an
absolute distantial error towards the desired position that is higher than in the previous
simulation. This can be assumed comparing the desired and the initial positions given
in Table 3.2. However considering the distance traveled (∼ 7702 mm) the error (∼ 24
mm) is comparably small (∼ 0.3%). And can be further decreased by more iterations
(longer simulation time) or increasing λ.

−10000

−5000

0

5000

−200
0

200
400

600
800
620

640

660

680

700

720

740

760

780

X
R

W

Path of C in RW

Y
R

W

Z R
W

point C
xCamera
yCamera
zCamera

Figure 3.11.: Evolution the point C (camera origin) in a PBVS simulation

As before, the three following figures highlight the movement of the robot (Fig-
ure 3.12), the evolution of the targeted features in the camera frame (Figure 3.12) and
of the error (Figure 3.14). Looking at the feature evolution and at the error, one can
notice that the desired objective is almost perfectly reached. If the simulation would
have been continued for another ten seconds (10k iterations) or λP would have been
increased towards the end, Figure 3.12 would have shown all four feature lines (blue)
connected to their respective positions in the image frame (red crosses). Figure 3.12

96

3. Multi Visual Servoing

show that the robot reaches the desired pose indicated in Table 3.2. All these figures
are then consistent.

0 0.5 1 1.5 2 2.5 3 3.5
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

x in image plane

y
in

 im
ag

e
pl

an
e

Evolution of features in image plane

Target points desired
Target points initialization

Figure 3.12.: Evolution of features in a PBVS simulation

−10000−8000 −6000 −4000 −2000 0
280

300

320

340

360

380
Position of robot in W(x,y)

y m
 [m

m
]

x
m

 [mm]
0 0.5 1 1.5 2 2.5

x 104

0

0.5

1

1.5

2
Theta

an
gl

e
[r

ad
]

iterations | time [s/1000]

0 0.5 1 1.5 2 2.5

x 104

−1

−0.5

0

0.5

1
Theta PAN

an
gl

e
[r

ad
]

iterations | time [s/1000]
0 0.5 1 1.5 2 2.5

x 104

0.1

0.2

0.3

0.4

0.5

0.6
Theta TILT

an
gl

e
[r

ad
]

iterations | time [s/1000]

Figure 3.13.: Robot path, orientation and camera state in a PBVS simulation

97

3. Multi Visual Servoing

0 0.5 1 1.5 2

x 104

0

1000

2000

3000

4000

5000

6000
maximum error element

iterations | time [s/1000]

er
ro

r
[]

Figure 3.14.: Evolution of error in a PBVS simulation

We have also plotted the velocities applied to the robot in Figure 3.15. High velocities
are produced at the beginning of the task because of the corresponding high values of
the error. A smaller gain λP would allow to limit the problem, but it would have also
reduced the convergence rate of the error. The choice of the gain might then be difficult
when the robot starts far from the desired goal and that the corresponding error is large.
An adaptive gain can then be of interest. The same remark holds for IBVS.

98

3. Multi Visual Servoing

0 0.5 1 1.5 2

x 104

0

500

1000

1500

2000
linear velocity of the robot V

iterations | time [s/1000]

ve
lo

ci
ty

 [m
m

/s
]

0 0.5 1 1.5 2

x 104

−6

−5

−4

−3

−2

−1

0

1
angular velocity of the robot W

iterations | time [s/1000]

ve
lo

ci
ty

 [r
ad

/s
]

0 0.5 1 1.5 2

x 104

−6

−5

−4

−3

−2

−1

0

1
camera pan velocity

iterations | time [s/1000]

ve
lo

ci
ty

 [r
ad

/s
]

0 0.5 1 1.5 2

x 104

−6

−5

−4

−3

−2

−1

0

1
camera tilt velocity

iterations | time [s/1000]
ve

lo
ci

ty
 [r

ad
/s

]

Figure 3.15.: Evolution of velocities in a PBVS simulation

Finally, it should be mentioned that having a consistent threshold to stop the visual
servoing experiment is much harder to find than for IBVS which is due to the partly
quaternion nature of the error, eP . Figure 3.14 hints towards this issue. Therefore, other
means of determining a good stopping point for PBVS have been implemented in this
simulation. The one that was finally used can be seen in Algorithm 3.1 and can be used
either to stop PBVS or increase the value λ to achieve an adaptive gain depending on
the convergence (assuming that lower velocities are the result of convergence in a task
based on exponential decrease).

99

3. Multi Visual Servoing

Algorithm 3.1 Algorithm that determines the stop of position-based visual servoing

1: Calculate the velocities to robot (linear and angular) and camera velocities (angular
pan and tilt) depending on the currently detected features

2: procedure Determine whether PBVS can be terminated ⊲ Called during
PBVS execution

3: if #iterations ≥ threshold then
4: flagν ← FALSE

5: flagω ← FALSE

6: flagωcampan ← FALSE

7: flagωcamtilt ← FALSE

8: flagterminate PBVS ← FALSE

9: if |ν| ≤ threshold then
10: flagν ← TRUE

11: end if
12: if |ω| ≤ threshold then
13: flagω ← TRUE

14: end if
15: if |ωcampan | ≤ threshold then
16: flagωcampan ← TRUE

17: end if
18: if |ωcamtilt | ≤ threshold then
19: flagωcamtilt ← TRUE

20: end if
21: if flagν = TRUE && flagω = TRUE && flagωcampan =

TRUE && flagωcamtilt = TRUE then
22: flagterminate PBVS ← TRUE

23: end if
24: else
25: flagterminate PBVS ← FALSE

26: end if
27: end procedure
28: if terminate PBVS = TRUE then
29: Either terminate PBVS or increase λ
30: else
31: Continue PBVS

32: end if

100

3. Multi Visual Servoing

3.5. Comparison of IBVS and PBVS regarding

robustness towards sensor noise on the basis of

simulations

The following section will highlight the capabilities of both, IBVS and PBVS in dealing
with sensor noise. For reasons of repeatability and simplicity the comparison will be
conducted in simulation. As for the robotic platform, Air-Cobot, both techniques are
used depending on which is the more effective one. Through empirical studies we have
found the optimal techniques for each visual servoing target. However as a rule of thumb,
so to say, IBVS tends to be much faster and better if the target can be well identified and
tracked. PBVS on the other hand tends to work better with more challenging targets
since it allows to track them even in difficult conditions since the pose estimated can be
continued with odometry or other means of localization whenever the target is occluded.

In order to allow a thorough analysis we have decided to use simulations to compare
both techniques. This decision enables us to control the amount and distribution of
noise. Although the lab environment is already much more controllable than tests in an
aircraft hangar or experiments on the airport tarmac, it is still possible that the initial
conditions will not be the same for every experiment. During our tests in the Gérard
Bauzil at LAAS-CNRS room we have found that experimental results differ depending
on the time of day and even the season of the year. Since the room is equipped with
very large windows the luminosity is not constant.

The following sections will explain the simulation conditions that were chosen for the
comparison.

3.5.1. Simulation conditions

A white Gaussian noise is added on the image plane coordinates with a 2 % magnitude,
for each point in the camera image Pi = (Xi, Yi)

T , a noisy one P̂i = (X̂i, Ŷi)
T where :

X̂ = X (0.99 + 2 rand(0.01))

with

= X ± 1

(3.36)

To add noise to the simulation we make use of the MATLAB AWGN function. This
function includes an ”Additive white Gaussian noise” to the simulated camera signal,
thus altering the position at which the feature detection would suspect the target. Op-
pose to general probability terminology the SNR (Signal to Noise Ratio) factor deter-
mines the amount and therefore the amplitude of the applied noise. Adding noise is
important to determine the quality and robustness of our results. Since a simulation
can provide the controlled environment we are looking for adding Gaussian white noise
allows us to capture some of the properties of real life experiments.

101

3. Multi Visual Servoing

−4000

−2000

0

2000

−1500

−1000

−500

0

500
600

650

700

750

800

X
R

W

Path of C in RW

Y
R

W

Z R
W

point C
xCamera
yCamera
zCamera

(a) IBVS: signal to noise ratio = 45

−4000

−2000

0

2000

−1500

−1000

−500

0

500
600

650

700

750

800

X
R

W

Path of C in RW

Y
R

W

Z R
W

point C
xCamera
yCamera
zCamera

(b) PBVS: signal to noise ratio = 10

Figure 3.16.: Evolution the point C (camera origin) in a noisy simulation

3.5.2. The obtained results

Table 3.3 gives the initial and the desired pose of the robot. As can be seen the camera
sensor is placed about 3 meters from its desired goal. In our experiments we determine
the desired feature vector, s∗, by virtually placing the sensor at the desired position and
taking a snapshot. The displacement on the y − axis simply allows to eliminate the
possibility of sign errors in the robot Jacobian.

XM [mm] YM [mm] θ[rad] θp[rad] θt[rad]
Desired pose −500 −900 0.0 0.0 0.0
Initial pose −3500 −900 − π

180
π
180

0.0
Final pose (IBVS) −451.67 −905.31 −0.1127 −0.1672 ∼ 0
Final pose (PBVS) −478.54 −905.52 −0.3240 −0.3239 −0.0022

Table 3.3.: Parameters of the IBVS/PBVS comparison

Figure 3.16 displays the movement of the camera in the world frame. During the ∼ 2
meter displacement in this mission there is hardly a difference to recognize which is to
be expected since the targeted configuration can be reached almost with a straight line.
The second figure relevant in this discussion shows the evolution of the features in

the image plane. It basically displays an image that was build from the position of the
four features for each cycle of the simulation. Figure 3.17 highlights the difference in
the signal to noise ration used for IBVS and PBVS. In Figure 3.17(a) we can observe
that the evolution to each feature resembles almost a straight line (blue), where else
the features for PBVS (SNR = 10) are much more spread throughout the image plane.
Therefore, it is remarkable that PBVS still manages to converge. The most likely reason
for that is that the methods input is not any of these features, but however an average

102

3. Multi Visual Servoing

−1.2 −1.1 −1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

x in image plane

y
in

 im
ag

e
pl

an
e

Evolution of features in image plane

Target points desired (noise)
Target points initialization (noise)
Target points desired (gt)
Target points initialization (gt)

(a) IBVS: signal to noise ratio = 45

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5
−0.1

−0.05

0

0.05

0.1

0.15

x in image plane

y
in

 im
ag

e
pl

an
e

Evolution of features in image plane

Target points desired (noise)
Target points initialization (noise)
Target points desired (gt)
Target points initialization (gt)

(b) PBVS: signal to noise ratio = 10

Figure 3.17.: Evolution of features in a noisy simulation

of all four. Hence, the Gaussian distributed noise is reduced.
A third figure monitoring the successive position and orientation of the robot and

the camera angles furthermore underlines that there is a difference to IBVS and PBVS.
However, keeping the scale of the diagrams in mind, Figure 3.18 shows that this difference
is rather small and can also attributed to the different noise ratio for a small part.
To complete the survey two last figures are presented. Figure 3.19 gives insight to

the system’s error and Figure 3.20 to provide a view of the robot velocity differences.
It is obvious that for IBVS in Figure 3.19(a) the noise ration never becomes a major
factor. Only towards the end of the simulation the error actually seems to spike. For
PBVS (Figure 3.19(b)) however, the noise determines the rate of convergence quite
early (iteration ∼ 2000). As to be expected, the velocities shown in Figure 3.20 are
quite similar.
The outcome of these experiments show that PBVS can be more robust if the neces-

sary computational power can be provided and the target consists of many redundant
features. IBVS on the other hand is a fairly straight forward approach that does not
need a pose estimation (depth estimation), but can profit of it. As stated before, on the
Air-Cobot platform both techniques are used, depending on which features are currently
recognized (the rest of the aircraft features are estimated with the help of an 3d model
of the A320). The following section will provide these real life experiments.

3.6. The Air-Cobot visual servoing strategy

To define our strategy, it is first necessary to detail how the visual signal losses will be
treated throughout the execution of the mission. Then we will focus on the definition
of the switching instants and of the coupling between the virtual image and the above
mentioned controllers.

103

3. Multi Visual Servoing

−4000 −3000 −2000 −1000 0
−900.5

−900

−899.5

−899

−898.5
Position of robot in W(x,y)

y m
 [m

m
]

x
m

 [mm]
0 2000 4000 6000

−0.04

−0.02

0

0.02

0.04

0.06

0.08
Theta

an
gl

e
[r

ad
]

iterations | time [s/1000]

0 2000 4000 6000
−0.02

0

0.02

0.04

0.06

0.08

0.1
Theta PAN

an
gl

e
[r

ad
]

iterations | time [s/1000]
0 2000 4000 6000

0

0.5

1

1.5
x 10−4 Theta TILT

an
gl

e
[r

ad
]

iterations | time [s/1000]

(a) IBVS: signal to noise ratio = 45

−4000 −3000 −2000 −1000 0
−906

−905

−904

−903

−902

−901

−900
Position of robot in W(x,y)

y m
 [m

m
]

x
m

 [mm]
0 2000 4000 6000 8000

−0.4

−0.3

−0.2

−0.1

0
Theta

an
gl

e
[r

ad
]

iterations | time [s/1000]

0 2000 4000 6000 8000
−0.4

−0.3

−0.2

−0.1

0

0.1
Theta PAN

an
gl

e
[r

ad
]

iterations | time [s/1000]
0 2000 4000 6000 8000

−2.5

−2

−1.5

−1

−0.5

0
x 10−3 Theta TILT

an
gl

e
[r

ad
]

iterations | time [s/1000]

(b) PBVS: signal to noise ratio = 10

Figure 3.18.: Robot path, orientation and camera state in a noisy simulation

0 1000 2000 3000 4000 5000 6000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
maximum error element

iterations | time [s/1000]

er
ro

r
[]

(a) IBVS: signal to noise ratio = 45

0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

4000

5000

6000
maximum error element

iterations | time [s/1000]

er
ro

r
[]

(b) PBVS: signal to noise ratio = 10

Figure 3.19.: Evolution of error in a noisy simulation

104

3. Multi Visual Servoing

0 2000 4000 6000
−5000

0

5000

10000

15000
linear velocity of the robot V

iterations | time [s/1000]

ve
lo

ci
ty

 [m
m

/s
]

0 2000 4000 6000
−15

−10

−5

0

5

10

15
angular velocity of the robot W

iterations | time [s/1000]

ve
lo

ci
ty

 [r
ad

/s
]

0 2000 4000 6000
−20

−10

0

10

20
camera pan velocity

iterations | time [s/1000]

ve
lo

ci
ty

 [r
ad

/s
]

0 2000 4000 6000
−1

−0.5

0

0.5

1
x 10−3 camera tilt velocity

iterations | time [s/1000]

ve
lo

ci
ty

 [r
ad

/s
]

(a) IBVS: signal to noise ratio = 45

0 2000 4000 6000
0

500

1000

1500

2000
linear velocity of the robot V

iterations | time [s/1000]

ve
lo

ci
ty

 [m
m

/s
]

0 2000 4000 6000
−6

−5

−4

−3

−2

−1

0

1
angular velocity of the robot W

iterations | time [s/1000]

ve
lo

ci
ty

 [r
ad

/s
]

0 2000 4000 6000
−6

−5

−4

−3

−2

−1

0

1
camera pan velocity

iterations | time [s/1000]

ve
lo

ci
ty

 [r
ad

/s
]

0 2000 4000 6000
−6

−5

−4

−3

−2

−1

0

1
camera tilt velocity

iterations | time [s/1000]

ve
lo

ci
ty

 [r
ad

/s
]

(b) PBVS: signal to noise ratio = 10

Figure 3.20.: Evolution of velocities in a noisy simulation

3.6.1. Handling the visual signal losses

The Air-cobot system is expected to mainly operate in outdoor environments. In such
cases, the image processing has to deal with various issues such as the illumination
variations (e.g., clouds passing over the sun, ...), the weather conditions(cloudy, rainy,
sunny, ...), etc. In addition, even with optimal conditions, because of the distance and
of the size of the aircraft, all the necessary visual features cannot be always visible.
Furthermore, it may also happen that a temporary breakdown occurs at a hardware
or a software level (e.g., ROS nodes crash, etc). Finally, the presence of staff or crew
members around the aircraft will increase the risks of occlusion and, as the environment
is highly constrained, it is difficult to find a solution allowing to perform the task while
preserving the visibility and the non collision. For all these reasons, it is necessary to be
able to tolerate total visual signal losses of any origin. A more simple solution allowing
to avoid them is not sufficient.

Therefore, instead of performing visual servoing on the raw image in which the fea-
tures can disappear at any moment due to ambient occlusions, obstacles or airport staff
walking in front of the robot or poor lighting conditions, we have developed the concept
of virtual (or augmented) image. We take benefit from all the available information. In
our particular working context, information can come from :

• the localization given by odometry, IMU and other visual localization methods,
that are mentioned in Section 2.2.5 (see Page 45). As explained before, this local-
ization is quite accurate.

• the CAD model of the aircraft that is provided prior to the navigation task and
which is kept as a library.

The idea is then to project the missing landmarks (of which we have the precise pose

105

3. Multi Visual Servoing

according to the CAD model of the aircraft) in the image using any localization in-
formation available (SLAM, odometry even GPS). This way, even in cases where the
visual cues are occluded or can not be identified, it is still possible to find their expected
2D positions in the image. The camera field of view is then extended beyond what is
physically possible, increasing the detection robustness in the visual stream. Naturally,
this approach works while the localization informations are sufficiently accurate. This
means that this solution is adapted for temporary visual cues losses. More precisely, the
augmented image is built by adding:

• the real 2D visual cues provided by both available cameras (see the robot descrip-
tion)

• the reconstructed 2D visual cues obtained thanks to the CAD aircraft model and
the relative localization2

In this way, an “ image ” is always available, whether the landmarks of interest are
visible or not. However, it should be pointed out that the virtual image now depends on
the robustness and accuracy of the localization. Hence, the quality of the virtual image
deteriorates the same way and in some cases worse than the localization. This can be
an issue if the localization is solely based on odometry, which can be the case if IMU,
SLAM or GPS are not available (badly lit hangar environment).

3.6.2. Coupling the augmented image with the visual servoing

As previously explained, the augmented image is intended to provide the necessary
visual information (either measured or reconstructed) for the control. Consequently, it
is always possible to build our visual features vector s from it. However, to control our
robot, a reference value of this vector denoted by s∗ must be available. This value is
generally chosen before launching the visual servoing controller and allows to define the
goal to be reached. One of the proposed approaches has the advantage that, once the
reference visual features has been fixed, its value can be kept during the whole execution
of the task, whether the visual features are available or not. This is possible because
the type of the considered cues is never modified during the task. Knowing s and s∗,
the visual servoing controller can always be computed and applied to the robot. The
mission can then be performed, even if no visual feature is available temporarily.

3.6.3. PBVS and IBVS switching

Following the previous section, we have chosen to combine both image-based and
position-based visual servoing to benefit from their respective advantages while limiting
their drawbacks. More precisely, our key-idea is to switch between PBVS and IBVS. It
is then necessary to define the switching instant between them. As previously explained,
PBVS will be used far from the aircraft (that is when the features are not visible yet)

2This relative localization is updated using the detectable visual features.

106

3. Multi Visual Servoing

and IBVS close to it to improve the positioning accuracy. Thus, the switching instant
is defined by the instant when the item to be inspected becomes fully (robustly) visible
in the real image. During our experiments we have found that we can get acceptable
results with PBVS even with the window line on the aircraft. This set of features is
fairly easy to detect even when the robotic platform is far from the aircraft. The same
goes for the aircraft wheels. Static port and duct on the contrary are features that can
only be reliably detected whenever the robot is sufficiently close to them. If they are
detected the visual servoing node switches from PBVS to IBVS.

3.7. Experiments on Air-Cobot

The following section provides visual servoing experiments conducted on the robot. First
off, the test environment (that was necessary whenever an aircraft or the airport itself
was unavailable) is introduced. After that a brief introduction to the library used as
baseline for visual servoing algorithms is presented and explained. Then, different test
scenarii are displayed and finally a conclusion about the experiments closes the chapter.

3.7.1. Test environment

Since the time for experiments on the airport, tarmac and hangars was limited we
have created a test environment. Its main purpose, was mainly to allow performing
interesting experiments in an environment that was constantly available. In this way, test
cases could always be presented to project partners. Furthermore, this solution had the
advantage that these tests could be made repeatably with little change in the surrounding
conditions. The following section gives a short description of these circumstances and
general framework built in the lab. Due to the lack of having an aircraft available in
the lab the testing of feature detection, tracking and robustness of our visual servoing
module had to be conducted in the following improvised environment.

Figure 3.21 presents the main outline of how we have re-created an aircraft. The
visual cues mounted on the fence seen in Figure 3.21(c) are mounted in roughly the
same relative position as they would appear on the aircraft.

Please recall Figure 2.4 on Page 44 and also remember that we were talking about
re-imagining the pre-flight inspection with respect to the capabilities of the robotic
platform. The reader will then realize that the upcoming test will replay a situation
during an approach of check-point 1 and 2 of the aircraft. During this approach a
person (airport staff) will then walk past the camera, occluding all features for a brief
moment of time.

The second experiment that will be shown will be closer to the expected missions of
the robot. Air-Cobot will start at the initial point of the envisioned pre-flight inspection
(namely point 0) and will make its way towards point 1 and 2. Both of these points

107

3. Multi Visual Servoing

(a) Duct and static port (b) Duct close up

(c) construction site fence with visual cues

Figure 3.21.: Example of the lab environment where the visual servoing experiments
were conducted in

will be reached using PBVS and the closer the robot gets to the designated check points
the higher the likelihood that IBVS is used. After a short use of a metric map based
guidance technique, IBVS is used in order to reach point 3. Due to the lack of space in
the lab, tests of reaching successive points were only conducted on the tarmac and will
be presented in the video.
Furthermore, an inflatable air mattress tire was used to mimic the aircraft jet engine.

Its size and shape was a sufficiently close abstraction of a real jet engine so that the
feature recognition could be trained on it. Finally, a real piece of aircraft skin was
available during the beginning of the project which we modified with prints of the static
port. Unfortunately, towards the end of the thesis, this piece was needed for experiments
unrelated to the Air-Cobot project. This environment allows to remove or temporary
occlude features in order to test the robustness of the navigation system towards changes

108

3. Multi Visual Servoing

in the environment (bad lighting can lead to some visual cues not being detected).

3.7.2. Applying ViSP in the Air-Cobot context

As ROS, the middleware chosen for the Air-Cobot project (see Section 2.2.2 on Page 37),
ViSP is an open source software designed to minimize the time spent on integration of
functionalities. ROS provides middleware specific functionalities such as drivers for
sensors, communication interfaces and so on. ViSP on the other hand contributes by
allowing for fast prototyping of visual servoing approaches (all necessary basic functions
like IBVS and PBVS can be directly implemented, modified or even combined to the
users needs). Furthermore, the Lagadic team (the research group that created and
currently maintains the code), provides a version of ViSP that runs directly as a module
in ROS, as the navigation stack, or OpenCV for example. Additionally, the user can
choose from several procedures to estimate depth or complete 3D poses which is essential
for PBVS (if no other option of evaluating the sensor to object frame can be estimated).
It is also helpful to improve robustness for IBVS (depth in interaction matrix). Lastly,
it should be mentioned that for all matrix computations (homogeneous matrices, etc.)
the ViSP library was used instead of the also common EIGEN implementations. This
is solely due to the fact that this way the Air-Cobot team could circumvent installing
additional packages.

3.7.3. Experimental tests combining IBVS with PBVS

The upcoming section will provide some ”real world” experiments of the previously
discussed approaches on the Air-Cobot platform. Three different test cases will be
shown. The first two experiments will simply combine an IBVS with a PBVS approach
with very limited parts during which the movement of the robot is generated by the
go-to-goal controlled presented in Chapter 2. During both of the first examples we will
furthermore show that the system can deal with feature loss. A final experiment will
show how the proposed system can be used as the main means of navigation during a
pre-flight inspection mission. Therefore, some of the movements will be fully controlled
using metric-map-based algorithms while others are executed with the help of either
IBVS, PBVS or both techniques.

IBVS & PBVS combination

Our first experiment will present a combination of IBVS with PBVS. Desired poses
provide the necessary s∗ and is generated by keeping track of the robot pose with the
help of odometry and visual pose estimation (of the sensor towards the landmarks).

Figure 3.22 provides a view of the laboratory environment were the experiments were
conducted in. It also shows the robot in operation and how the robustness to partial
and full occlusions was tested (person walking in front of the artificial targets).

109

3. Multi Visual Servoing

(a) t= 110 (b) t= 116

Figure 3.22.: Extract of video sequence showing an outside view onto the experiment

The conducted experiment can be seen in more details from the perspective of the
robot in Figure 3.23. Here the actual time stamp of the frame is given as label of the
figure.
Figure 3.24 displays how the robot center of gravity has moved during the experiment.
Since the angular difference between the approach and the backward movement is al-

most zero we can see that the robot moved forward and backward on almost the identical
path. Investigating the velocities, we can see that the linear velocity was implemented
without a rate limiter (red line). And that the adjustments to the stereo-camera system
are extremely low. The reason for this is easily found. Although the Field of View
(FOV) of the stereo cameras is fairly low, the lab environment with the scaled aircraft
model and its features does not allow for extensive lateral movement. Therefore the fea-
tures needed to be placed almost directly in front of the robot, eliminating any reason
for large lateral displacements (see blue curve to see the platforms angular velocity) and
while doing so, also reducing the angular movement of the camera sensor to a minimum
(see pan movement in the third image). One of the most striking challenges during
the experiments on real aircraft was certainly the vertical position of landmarks and
features. Due to the size of the aircraft and the travel distances an angular tilt change
of more than 45 degrees was very common.

Experiment highlighting the capability of handling Feature loss

As we have shown, our system can handle partial feature loss. With the following
experiment we want to take a step further. Here, the person walking in front of Air-
Cobot will be much closer to the robotic platform and therefore its sensors. The effect of
this experimental set-up will be that all features will be lost at one point in time. With
the help of the virtual images it will not be necessary to directly switch to a metric-
map-based guidance solutions, which is however, available should the need arise. In this
experiment, the virtual image will be used in order to continue sending valid movement
requests to the platform.

It is of utmost importance that the robot receives valid steering commands for the

110

3. Multi Visual Servoing

(a) t= 25 (b) t= 27

(c) t= 52 (d) t= 80

(e) t= 106 (f) t= 132

(g) t= 133 (h) t= 133.3

Figure 3.23.: Extract of video sequence showing the system handling switching between
IBVS and PBVS

111

3. Multi Visual Servoing

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

x in [m]

y
in

 [m
]

(a) Robot location as a set of successive posi-
tions during the experiment

0 20 40 60 80 100 120
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time in [s]

v
in

 [m
/s

] |
| w

 in
 [r

ad
/s

]

v

lin
v

ang

(b) Linear and angular velocities of the plat-
form

0 20 40 60 80 100 120
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Time in [s]

th
et

a
in

 [r
ad

] |
| P

an
 in

 [r
ad

] |
| T

ilt
 in

 [r
ad

]

theta
theta

pan

theta
tilt

(c) Orientation of the platform and the front
PTU camera unit

Figure 3.24.: Position and velocity (linear and angular) plots obtained during the IBVS-
PBVS combination experiment

112

3. Multi Visual Servoing

(a) Orientation of the robot(world-frame)
and camera PTU (robot-frame)

0 5 10 15 20 25 30 35 40

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

Time in [s]

w
rob

ot
 /

w
pan

 /
w

tilt
 in

 [r
ad

/s
]

w

robot

w
pan

w
tilt

(b) Derived angular velocities

Figure 3.25.: Orientation and velocity plots obtained during the feature loss experiment

platform and the camera PTU at all time. Since it is impossible to guarantee an envi-
ronment without obstacles, the robot needs to be equipped with algorithms to handle
feature-losses and collisions. As it has been explained throughout this chapter, the aug-
mented image by visual localization has been introduced in order to avoid failure states
whenever such situations arise. In the following experiment, we will present such a case
and the reaction of the system.

A moving obstacle will pass through the view of the camera sensor during a visual
servoing mission. The robot is constrained to bring the center of gravity of the set of
multi features towards the center of the image. This is a scenario that has proven to be
extremely useful for small features and long detection distances (e.g.: robot approach
from a distance of +30 meters towards the aircraft while using the passenger windows
for guidance). During the experiment a person will walk right through the image making
it impossible for our blob detection and tracking algorithm to relocate the former chosen
window. Since the person is moving, the feature will not be hidden for long. Additionally,
the set of features (windows and duct) are known by the system, so it is able to estimate
the pose of lost features if a minimum of two features remain detectable.
Figure 3.25 in conjunction with Figure 3.26 show that feature loss is managed by the

virtual image. The detectable landmarks then help to estimate the pose of the occluded
ones. Figure 3.26 shows screen-shots of a video recorded of the Air-Cobot desktop during
the experiment. Features that are detected have a border and appear in the color green.
While the obstacle is moving through the scene some features are occluded while others
remain visible for the sensor. Occluded features that the system can still estimate (due
to remaining features) are marked by a red border. Figure 3.25 highlights that during
the time of feature occlusion (t≈ 30− 31 s) the camera is continuously moving towards
the local minima. The overshoot and minor oscillations in the PTU velocities can be
explained by the lack of an appropriate threshold that would allow the sensor to stop
moving whenever the solution is between two incremental positions of the PTU.

113

3. Multi Visual Servoing

For this experiment the time of occlusion is not important. As long as movements
relative to the target are small our studies have shown that re-detection is possible.
However, changing light conditions during the occlusion can lead to problems. This
needs to be taken into account for further improvements of the algorithm.

Experiment using IBVS and PBVS in conjunction with metric-map-based
navigation

Additionally, we want to present an experiment in which we have combined the use
of IBVS and PBVS depending on the visual cues and the situation. The improvised
aircraft that was used in the last experiment will be extended with the rubber ring that
was introduced before. This ring will be positioned approximately at the location where
usually the aircraft engine would be. The underlying challenge of this experiment is
firstly, to utilize different visual servoing techniques depending on their success rate that
was empirically determined during our tests and secondly, to improve the detection of
all visual cues by incorporating self localization and prior knowledge of the aircraft.

During the experiment, the robot will receive an inspection plan in form of one .xml file
for the navigation and one that helps the robot to figure out the proper choice of visual
cues and inspection method. Both files were written specially for the fake aircraft in our
laboratory. It is this .xml file that represents the only difference during the experiments
in the hangar, the laboratory or on the tarmac. For this particular experiment, the
robot will first leave its designated charging area in the Gerald Bauzil laboratory room.
Since no consistent targets for guiding where available this part is achieved with the
controller that handles robot displacements with the help of self localization in the metric
environment. Figure 3.27 provides a very simple outline of the experiment environment.
Furthermore, the path on which the robot will move is given. Along the lines of the path
we have given the controller which will be dominant during this phase of the experiment.
Any feature loss will be compensated by the odometry helping to preserve the virtual
image.
Having left its designated charging area, the robot will approach the targets on the

yellow construction site fence using mainly the line of black dots that represent the
windows of the aircraft. For this particular target we have found that PBVS has the
highest success rate since it can profit of the metric relative localization between the
target and the robot the most. During this approach the robot will however switch to
another target once it can sufficiently detect said visual cue. The main idea here is
that during our experiments on the real aircraft, we have found that although most of
the aircrafts inspection points have some visual markings (red circular or rectangular
shape around them), but these markings can only be detected by our cameras, once the
sensor (and so the robot) is sufficiently close to it. The reason for this is that these lines
are usually extremely thin and due to the lucid surface of the aircraft can reflect the
environment quite strongly. Hence, for the first part of the approach the line of windows
are a robust visual cue that can be tracked while the robot is moving. Even if the ground
is not smooth these features will not be lost. Once the robot is closer, we will switch to

114

3. Multi Visual Servoing

(a) t= 28 (b) t= 29

(c) t= 29.5 (d) t= 30

(e) t= 31 (f) t= 32

Figure 3.26.: Extract of video sequence showing the systems capability to handle feature
loss during execution of a visual servoing-based navigation mission

115

3. Multi Visual Servoing

�✁✂✄�☎✆✄✁✝

✞✟�✠

✡�✁✡

Figure 3.27.: Outline of the Gerald Bauzil room in which the experiment takes place
with expected path for the robot

targets such as the static port or the duct (see Figure 3.21(a) on Page 108). One of the
main reasons for this is that it will become much harder to track the line of windows of
the aircraft the closer the gets to it and since the the main interest belongs to items such
as the static port, duct, etc. and these become more and more visible we will switch
the main visual cue. Of course, keeping in mind our virtual image, the location of each
window is still known.

Following these two separate approach steps the robot will use the knowledge of its
position relative to the aircraft to orient its sensors so that they are able to detect the
jet engine (in our experiment the jet engine is represented by the rubber tube mentioned
before). During our extensive experiments we have found that having the sensors point-
ing at the target is not sufficient for a precise visual servoing. This is due to the steering
technique of the robot and will be explained later (see Section 5.2.3 on Page 157). A
short explanation is that the steering technique of the robot is not well suited for urban
environment. It is much better for cross country deployment. We have found that it is
better to avoid high steering angles combined with linear velocity in order to reduce the
shaking of the platform. Since the jet engine is located at almost an 90 degree angle to
the static port, the robot will first turn in place these 90 degrees and keep the cameras
static until the maneuver is completed. After this movement (which is quite shaky) the
detection modules will be re-engaged. As we can see from the screen-shots of the video,
the robot will then move towards the fake jet engine for inspection. This is also done in
two steps. The first step is a short approach using the metric go to goal controller that
was explained in the last chapter. Once this maneuver is completed the robot uses the
PTZ camera and IBVS in order to position itself to perform the next inspection.

116

3. Multi Visual Servoing

Once the inspection is completed (in the experiment at the laboratory the inspection
is skipped for obvious reasons), the robot will switch to the finished state and wait for
new instructions from the operator. Due to the confined space of the Gerald Bauzil
room, it was necessary to reduce the obstacle avoidance controller’s capabilities while
still preserving its emergency safety functionalities. Hence, for the presented scenario we
had to artificially limit the features of the controller to only react if an object would get
into the robots final security area (an area about 0.1m around the robot that is usually
used to completely stop the robot, should an object ever get that close to it). For
experiments on the tarmac or in the hangar environments this step was not necessary.

3.8. Conclusion

This chapter has focused on the visual servoing strategy which was developed in the
Air-Cobot project. While our first goal was to recall IBVS and PBVS principles and
propose a comparative analysis, our second intention was to highlight the interest of
defining a virtual (or augmented) image to deal with partial as well as total visual
signal losses which are very likely to occur during a inspection / maintenance mission.
This virtual image is fed with both measured and reconstructed visual features of the
landmarks of interest. The reconstruction is obtained by using both the aircraft CAD
model and the data provided by the localization process. We have also shown the interest
of switching between PBVS and IBVS depending on the distance separating the robot
and the aircraft, the type of visual feature and availability of secondary localization
functions (odometry, SLAM, etc.). Simulation and experimental tests have also been
provided.

For future works, it is still necessary to improve the robustness of the image processing
algorithms to changing luminosity conditions. Indeed, despite the construction of the
virtual image, the experiments have highlighted issues with the robustness of the system.
As we have described in this chapter, the change of luminosity during tests that span
over a full day can even influence the results of tests conducted in a semi controllable en-
vironment such as the Gerald Bauzil room at LAAS-CNRS. This issue is magnified when
the tests were conducted outside on airport-tarmac environment or Hangars with large
light translucent roofs. Additionally, whenever the luminosity to changing extremely
rapidly (Air-Cobot navigates from the airport Hangar into an artificially lid hangar) the
obtained results still show much room for improvement. For these cases, the metric lo-
calization was of great help. Another interesting lead concerns the building of the visual
servoing control. Indeed, as previously mentioned, our robotic system is endowed with
several cameras: the stereo-camera-system in the front, the one in the back and a PTZ
that is mainly focused towards the front. As pointed out during this chapter the PTZ
camera has the disadvantage of being less agile than the stereo camera system and also
it is not equipped with a global, but a rolling shutter. Compensation for these issues
were presented.

117

3. Multi Visual Servoing

(a) t= 04 (b) t= 25

(c) t= 33 (d) t= 50

(e) t= 69 (f) t= 84

(g) t= 96 (h) t= 122

Figure 3.28.: Extract of video sequence showing the systems capability to perform a
combination of IBVS-PBVS-Metric based navigation

118

3. Multi Visual Servoing

In this work, three visual servoing nodes are running in our ROS architecture. It is
then worthwhile to consider how to define the visual servoing control law sent to the
robot. For this project, we have simply chosen to operate Air-Cobot using solely the
node providing the highest reliability factor. This factor is evaluated on the accuracy of
the feature detection and resulting pose estimation. All remaining nodes will be used to
operate the pan-tilt positions of each camera system, thus keeping the camera on target
and ensuring that a switch back to a different vs node is always possible. Additionally
these nodes provide a reasonable option to fall back on should the primary node crash,
camera sensors experience failure or occlusions happen. In the future, it would be then
very interesting to analyze more deeply this aspect to find an efficient way to combine
the different visual servoing when it is pertinent to do it. Indeed, it must be mentioned
that, due to the positioning of the different cameras on the robot, it is unlikely that
all the visual servoing instances will send similar reliability information. Hence, finding
additional factors that evaluate reliability would be advisable.

119

4. Obstacle avoidance in dynamic
environments using a reactive spiral
approach

Contents
4.1. Introduction . 122

4.1.1. Air−Cobot navigation environment 122

4.1.2. State of the art of obstacle avoidance 123

4.1.3. Introduction to spiral obstacle avoidance 126

4.1.4. Structure of Chapter . 128

4.2. Spiral obstacle avoidance . 128

4.2.1. Spiral conventions and definition 129

4.2.2. Definition and choice of spiral parameters for the obstacle
avoidance . 130

4.2.3. Robot control laws . 136

4.3. Simulation and experimental results 142

4.3.1. Simulation with static obstacles 142

4.3.2. Experiments in dynamic environment 146

4.4. Conclusion . 147

When something is important enough, you do it even if the odds are not in your favor.
Elon Musk in an interview about him creating SpaceX [mus,]

121

4.1. Introduction

The following chapter explains what kind of measures were taking to design a robotic
platform that can be considered safe for its purpose. Looking into other areas like
autonomous vehicles for example, the word safety does convey a much more precise
meaning. For the purpose of this project however, safety will be used in its colloquial
sense. Instead of making a full analysis like it is usually mandatory in software develop-
ment (right side of the V−model [Forsberg and Mooz, 1991]) a simple investigation of
the robot’s limitation will suffice. The real time capability based on the robot’s maxi-
mum velocity will be taken to evaluate all functions. Air−Cobot is still a prototype and
has to be evaluate exactly as such. This means its operator still needs to be trained to
understand the robot’s limitations. The platform is equipped with several emergency
stop buttons, it will engage the brakes once it looses connection with its remote control
or the front / rear bumper is pressed. However, the robot is expected to handle some
perceivable situations automatically. With human force in its vicinity, the Air−Cobot is
equipped Obstacle Avoidance techniques (OA). The objective of the chapter is then to
present the Obstacle Avoidance strategy implemented on Air−Cobot. First, we present
the Air−Cobot environment.

4.1.1. Air−Cobot navigation environment

When designing a mobile robot for the purpose of autonomous navigation through en-
vironments that include static and moving obstacles, objects that are known a priori as
well as objects that are dynamically appearing, it is essential to equip this platform with
some kind of obstacle avoidance algorithm. This becomes further relevant the more this
platform is supposed to interact, integrate itself smoothly into its environment (aban-
doning the use of security cages as they are quite common in the industrial automated
production). Although the airport is a highly structured and controlled environment,
obstacles handling (especially for moving objects like airport carts, buses and airport
staff) is an important feature in a navigational framework, just like robot localization,
controllers, etc...

Additionally, the robot must be able to deal with forbidden zones which can range
from loading area and parking spots for aircraft specific vehicles, to fueling stations
and other hazardous areas (see Figure 4.1). To prevent the vehicle from entering them,
the obstacle avoidance method treats them as virtual obstacles included in the obstacle
detection algorithm. As shown in Figure 4.1, the algorithm will be augmented with
values of the forbidden zones to simulate obstacles in the robot vicinity whenever it is
getting too close to them. The locations of these areas are provided to the platform
using a GPS sensor and a priori generated forbidden zones map. Depending on the area
(green and red) it is located in during the approach, a wall will be simulated. The robot
will then avoid the forbidden zones as it would be a real obstacle. For safety reason,
the GPS box has a direct access to the CAN-Bus and can stop the robot directly if it is
about to enter one of these zones. In such a case, only a human operator can make the

4. Obstacle avoidance in dynamic environments using a reactive spiral approach

Reactive approaches

Artificial potential fields One of the furthest developed and widely accepted
reactive methods for obstacle avoidance, initially meant for manipulator collision
avoidance [Zhang et al., 2012] is artificial potential fields [Khatib, 1985]. Virtual
potential fields produce attracting (goal) and repulsive (obstacles) forces that ”steer”
the mobile robot through the environment [Khatib, 1985], [Koren and Borenstein,
1991]. An obvious advantage of this technique is its reactiveness. Provided a sufficiently
accurate robot, obstacle and target localization, an artificial potential field can be
generated and modified on-line. Its modification can be necessary if obstacles move,
change shape or are newly discovered. As it has been pointed out, a general drawback
of the original method has been its sensitivity to local minima [Zhang et al., 2012].
These local minima can lead to situations in which the robot appears to be stuck. This
problem can be overcome by either introducing unstable states dynamics [Mabrouk
and McInnes, 2008a] or by allowing the robot to switch to a different behavior such as
for example wall following [Mabrouk and McInnes, 2008b]. It is also possible to use
potential field techniques at the control level. For example, in [Cadenat, 1999], potential
field have been defined to perform a visual servoing task while avoiding fixed obstacles.
In [Folio, 2007], the same approach has been used to guarantee both non collision in
a static environment and non occlusion of the target. In those cases, the problem of
local minima has been significantly reduced by insuring the robot is given a nonzero
linear velocity at any time during the mission. However, despite these improvements,
it is not always easy to find an efficient potential function that allows to satisfy all the
constraints (goal reaching, non collision, non occlusion, etc.). This problem has been
pointed out in [Mantegh et al., 2010].

Finally, it should be mentioned here that more advanced methods that introduce fuzzy
logic or even hydrodynamics exist which address these flaws of the artificial potential
field approach [Pérez-D’Arpino et al., 2008], [Zhang et al., 2012].

Vector Field Histograms (VFH) Another technique falls into the domain of local
approaches is Vector Field Histograms VFH [Borenstein and Koren, 1991] and its ad-
vancements VFH+ [Ulrich and Borenstein, 1998] and VFH* [Ulrich and Borenstein,
2000]. The main idea behind this real time motion planning method is to make use of
a histogram grid built from sensor information. Robot dynamics and geometry can also
be taken into account. However, as the artificial potential field method before, VFH
struggles with global path optimality.

Velocity Maps Velocity maps [Owen and Montano, 2005], velocity obstacle [Fiorini
and Shiller, 1998] or forbidden velocity map [Damas and Santos-Victor, 2009] all refer
to an approach that allows control of the robot linear velocity safely through an environ-
ment filled with moving obstacles. The assumption is that all obstacles that can become
a danger to the robot are known and that their velocity, orientation and current position

124

4. Obstacle avoidance in dynamic environments using a reactive spiral approach

can be estimated fairly accurately. Furthermore, it assumes that they move at constant
speed in a linear motion during the relatively short time increment that the technique is
applied. By knowing the environment and its obstacles, a map can be created containing
potentially dangerous velocities. When maneuvering the robot at speeds that are not
inherent in the velocity map, this approach can guarantee a collision free movement.
The big advantage of such an approach is that the computational effort necessary to
find a suitable velocity for the robotic platform is quite low. However, the velocities of
the robot’s surrounding objects need to be measured very accurately.

Re-planning or modifying a planned path

Previously presented approaches belong to the group of reactive techniques. This means
that the path or the motion of the robot is defined using sensory data only. Approaches
from another group are more tightly connected to a global planner. For example,
works [van den Berg and Overmars, 2005] and [Koenig and Likhachev, 2005] proposes
to re-plan a new path to take into account non mapped obstacles. It is also possible to
modify a pre-planned path as in [Khatib et al., 1997b] or [Lamiraux et al., 2004b]. This
last idea was always at the core of two widely used methods known as DWA (Dynamic
Window Approach) and TEB (Timed Elastic Bands). We briefly focus on them be-
cause they have been implemented through ROS and are utilized by a large community
of researchers.

DWA The Dynamic Window Approach, or simply DWA, is an alternative for the
NAV stacks local planner (base local planner) - an open source, of the shelf software
accumulation designed to allow roboticist to test new approaches. DWA allows to lo-
cally deform any globally planned trajectory when it is necessary with the help of a
costmap (or weighted occupancy grid) [Fox et al., 1997] [Gerkey and Konolige, 2008].
This costmap is built using the sensory data which characterize the robot immediate
environment. It is always anchored in the center of the robot (2d) so that it moves with
the robot. Thus, appearing to be a dynamic window and hence the name. Other articles
such as [Kelly, 1994] follows a similar idea.

TEB As DWA, TEB,Timed ElasticBands, is a local planner capable to deform a given
global trajectory (bias) so that obstacles can be avoided. See for example [Rösmann
et al., 2012] and [Rosmann et al., 2013]. Basic idea and concept of the approach are
somewhat different. The method takes temporal aspects such as robot dynamics and
maximum velocities into account to deal with static and dynamic obstacles alike.

Discussion and positioning of the suggested approach

Our goal is to develop a method able to deal with the particular specifications of the
airport environment (forbidden zones, static and dynamic obstacles, pedestrians, etc.).
Furthermore, we need to take into account the way the different navigational processes
have been instantiated. As explained before, both a metric and topological map is

125

4. Obstacle avoidance in dynamic environments using a reactive spiral approach

available. These maps then contain all the information about known obstacles, typically
the forbidden zones, the buildings, and so on. Hence, the planned path allowing to reach
the inspection zone or providing the sequence of checkpoints will most likely not contain
obstacles. Even though the airport belongs to one of the most regulated areas we can
imagine, the risk of having dynamically appearing objects in the robot’s lane is not zero.
Thus it will be the main task of the approach we will propose in this chapter to deal with
them. Several remarks have to be given before continuing with its description. Firstly,
the motion of the robot is defined by a sequence of different controllers (go-to-goal,
visual servoing, . . .), showing that the action part in our navigation strategy is mainly
in the local domain. Secondly, solutions consisting of re-planning a path or modifying it
on-line are often more time-consuming and introduce some rigidity opposed to reactive,
sensor based methods.

Taking these elements into account leads us to choose an obstacle avoidance method
belonging to reactive approaches. An analysis of the above mentioned techniques has
pointed out their main drawbacks : local minima for potential fields and VFH, the very
constrained hypotheses for velocity maps. In addition, the latter are often used in a plan-
ning context, whereas our work is at the control level. Finally, most presented techniques
can handle moving obstacles up to a certain velocity. For example one can imagine that
if the obstacle velocity is sufficiently lower than the robot velocity [Khatib, 1985], [Ko-
ren and Borenstein, 1991] and [Borenstein and Koren, 1991] will allow the platform to
perform safe obstacle avoidance. But what will occur if the velocities are greater? To
deal with dynamic ones and keeping the constraint of using vision-based navigation for
the go-to-goal behavior of the robot, [Cherubini et al., 2013] and [Cherubini et al., 2014]
propose an approach which explicitly takes into account obstacle velocities, estimated
by a Kalman filter. These velocities are then used to predict the obstacle positions and
choose the best tentacle that provides the optimal path in order to guarantee collision-
free navigation. However, the avoidance robustness then depends on the estimation
quality and these methods do not remain only sensor-based. For all these reasons, we
have chosen to develop a new approach explained in the following subsection.

4.1.3. Introduction to spiral obstacle avoidance

We propose an approach tightly connected to spirals to fulfill the demands posed by the
Air−Cobot project. This suggested approach belongs to the reactive domain of obstacle
avoidance techniques for obvious reasons. It is inspired from articles explaining the
somewhat odd behavior moths and other bugs seem to exhibit around artificial (man-
made) light sources during the night time [Himmelman, 2002] and [Boyadzhiev, 1999].
Indeed, it has been observed that they perform a spiral, the center of which is the bright
light source (see figure 4.2). In the literature, its designation ranges from logarithmic
spiral and equiangular (René Descartes) spiral to simply ”growth” spiral and ”Spira
mirabilis” (Latin for miraculous spiral) by Jacob Bernoulli.
The reason for this seemingly odd behavior of bugs around artificial light sources is

their way of navigation. For millennia they were able to use the sun and (by night) the

126

4. Obstacle avoidance in dynamic environments using a reactive spiral approach

Figure 4.2.: Moth flight path being ”redirected” by an artificial light source

moon to navigate their environment. While keeping always the same angle towards this
natural light they ensured a quasi straight line (since moon and sun are never reached).
Figure 4.2 exemplifies this navigation approach that is possible because of the enormous
distance and size of these light sources compared to the almost insignificant distance
traveled by the bugs. However, artificial light sources (especially during night time) can
be, at least locally, of much higher intensity and thus be ”mistaken” as e.g.: the moon.
When trying to keep the same angle towards an artificial light source with a center
point that is now many times closer than was ever used before, disturbances in keeping
an exact angle towards the light source which were insignificant noise before result in
clearly visible spirals that ultimately lead the bug into the artificial light source. A
visualization of this description is available in Figure 4.3. It is worth to mention that
the approach flight path of a hawk towards its prey also resembles a logarithmic spiral
as was demonstrated in [Chin, 2000].
Several articles ([Mcfadyen et al., 2012a], [Mcfadyen et al., 2012b], [Teimoori and

Savkin, 2008] and [Futterlieb et al., 2014]) have shown that it is possible to apply this
navigational strategy to obstacle avoidance. In articles [Mcfadyen et al., 2012a] and
[Mcfadyen et al., 2012b], the authors enable a UAV (Unmanned Aerial Vehicle) to
avoid collision during visual servoing. [Teimoori and Savkin, 2008] are using spirals not
only to avoid obstacles, but also to follow a moving target.

Inspired by all these realizations, we have shown that spiral obstacle avoidance is a
valid option for mobile ground robots as well, whenever a static environment is consid-
ered [Futterlieb et al., 2014]. With the help of our control strategy, the robot follows
a spiral during the overall avoidance phase, which allows to guarantee that it is always
provided a nonzero linear velocity. This in turn allows to reduce the risk of local minima
as shown in [Cadenat, 1999] . It will then be possible to bypass static obstacles by defin-

127

4. Obstacle avoidance in dynamic environments using a reactive spiral approach

Figure 4.3.: Spiral Concept as presented in [Boyadzhiev, 1999]

ing an adequate spiral. To take into account dynamic ones, our idea is to modify on-line
the shape of the spiral depending on the sensory data. In this way, the same control law
will always be applied, only the path to be followed will be modified. We then obtain a
general method, which can be easily adapted to both static and dynamic environments.
After a brief description of this chapters outline, we will present the approach in more
detail.

4.1.4. Structure of Chapter

The structure of the chapter is as follows. First, we present the developed avoidance
method. We highlight our main contribution, namely the choice and the definition of
the spiral, together with the design of suitable control laws. Primary focus will be the
incorporation of moving obstacles into the approach. Then we present the results which
have been obtained, both in simulation and on our experimental tested. Finally there
will be a conclusion that outlines summarizes the presented work and gives a short
outline of what is still to come.

4.2. Spiral obstacle avoidance

This section presents our avoidance technique. We first introduce the necessary defini-
tions and the conventions which will be used throughout this chapter. Then, we detail
how to determine the different parameters allowing to choose a suitable spiral. We will
highlight different solutions depending on whether the environment is static or not. Fi-
nally, we design the control laws allowing to make the robot follow the spiral. We end

128

4. Obstacle avoidance in dynamic environments using a reactive spiral approach

• if αd = π
2
(case (b) of Figure 4.5: a circle is obtained and the robot maintains at

a constant distance to the SCP.

• if αd <
π
2
(case (c) of Figure 4.5: an inward spiral is realized and the robot closes

the distance towards the SCP;

This analysis is very helpful to build our avoidance strategy, if we imagine that our
SCP lies on the obstacle (the chosen point will be defined later) as shown on figure 4.5.
In such a case, we understand that the first and third cases offer very attractive motion
behaviors. However, the second one should not be neglected because it may also be
interesting if several obstacles lie in the robot vicinity (e.g. a cluttered environment)
or if a mobile obstacle is expected to cross the vehicle path. In such cases, temporarily
approaching the obstacles might help to find a safe navigation path towards the goal.
This is even more clear when considering that the spiral will normally not be execute
for more than 180◦.

��

�

✁

✂✄☎
✆

✝
✂✄✞

✆

✝

✂✄✟
✆

✝

Figure 4.5.: Three schematics of spiral obstacle avoidance patterns

The equiangular spiral is then defined by four parameters r0, αd, βc and β0. Our
objective in the sequel will then be to instantiate them the best way to obtain an
efficient avoidance strategy.

4.2.2. Definition and choice of spiral parameters for the obstacle
avoidance

Once an obstacle is detected, a dedicated algorithm based on LRF data allows to track
it and evaluate its level of danger towards the robot (e.g.: obstacles that are in the path
of the robot will get a higher level).

From this, our objective is now to instantiate the four parameters highlighted before:
r0, αd, βc and β0. The first step to define them is to choose frame FE, that is to impose
the SCP and the orientations of the different axes.

130

4. Obstacle avoidance in dynamic environments using a reactive spiral approach

Choosing the orientation of the frame FE axes

In this work, ~xE has been chosen to point towards the current target to be reached. It
then always provides the direction to the goal, as this process is done on-line during
the mission. Its computation requires to find the value of rtarget, the distance between
the spiral center point and the considered target. To determine it, we take into account
that all targets (that is the successive checkpoints) are static and we use the available
localization information. From this, we can deduce the following homogeneous matrices:

• cMt, the transformation from camera coordinate system to the coordinate system
of the target provided by the pose estimation of VISP or our localization algorithm

• lMo, the transformation from laser coordinate system to the coordinate system of
the obstacle provided by the Hokuyo

• rMc, the transformation from camera coordinate system to the coordinate system
of the robot

• rMc, the transformation from laser coordinate system to the coordinate system of
the robot

Now, the homogeneous matrix oMt can be expressed as follows:

oMt = inv(lMo)× inv(rMl)× rMc× cMt (4.2)

This relation expresses the transformation between the frames respectively linked to
the obstacle and the target. We can then extract the missing parameter rtarget from it.
If all conventions are correctly applied, the y-parameter in oMt will be close to zero and
rtarget can be assumed to be equal to the x value.

Now, it remains to choose ~zE and ~yE. We have chosen to orientate the first one
skyward, while the second one is set by staying conform to a right hand coordinate
system. Figure 4.4 displays this concept.

Remark: The so-determined value of rtarget can be used in another manner. Indeed, in the
case where the environment is sparse, it can be interesting to define the avoidance spiral
so that its end-point lies on the checkpoint to be reached. It allows avoiding a switch
back towards the go-to-goal controller, which in turn allows to reduce the problems of
local minima. Of course, this option is not very relevant when too many obstacles lie in
the scene or when the robot is too far from the goal. (see section 4.2.2).

Now that the axes orientations have been chosen, we have to focus on the two other
issues: finding the SCP from LRF data and deducing the four above mentioned param-
eters.

131

4. Obstacle avoidance in dynamic environments using a reactive spiral approach

Choosing αd

As previously mentioned, parameter αd allows to tune the shape of the spiral (see fig-
ure 4.5). The way it is defined will depend on the dynamics of the environment.

For static sparse environments, a constant αd is legitimate as there is no need to
deform the followed spiral to guarantee non collision. In this case, we have chosen to
perform a circle around the obstacle and we define:

αd = αdstatic (4.3)

Two cases can be considered for the value of αdstatic :

• a fixed value αdstatic =
π
2
(see subsection 4.2.1).

• αd as a function of the checkpoint position. As mentioned earlier, the case where
the environment is sparse (few obstacles) and where the robot is close to the
checkpoint to be reached, it appears to be interesting to define αd as a function of
the current goal position. The idea is to define the avoidance spiral so that its end-
point lies on the target. It allows avoiding a switch back towards the go-to-goal
controller, which in turn allows to reduce the problems of local minima.

Let us recall the equiangular spiral equation (see)relation 4.1 from Page 129):

rd = r0 × expcot(αd)×(β0−βc)

Now, we assume that the current checkpoint is close to the robot (this can be easily
deduced from the informations provided by the localization process). To make the spiral
end-point coincide with the goal position, we replace rd with rtarget, the distance of spiral
center point to target position, and βc by βtarget the angle at which the target is located
in the frame of the obstacle. We get the following equation:

rtarget = r0 × expcot(αd)×(β0−βtarget) (4.4)

From this, we can calculate the corresponding value of αd:

rd
r0

= exp(cot(αd)×(β0−βtarget))

⇔ cot(αd) = ln
rtarget
r0
×

1

(β0 − βtarget)

⇔ αd = cot−1(ln
rtarget
r0
×

1

(β0 − βtarget)
)

αd = tan−1(
1

ln rtarget
r0
× 1

(β0−βtarget)

) (4.5)

Equation 4.5 allows us to calculate the αd that will finally direct the robot towards
the target, while avoiding the obstacle.

133

4. Obstacle avoidance in dynamic environments using a reactive spiral approach

relative velocity towards the robot. We use the term indirect, because ξ does not measure
the evolution of the distance towards the obstacle, but the evolution of er which implies
the positional error of the robot. Assuming that, for static obstacles, the OA controller
is keeping this error close to zero, high changes in the derivative of er must come from
the obstacle, thus implying that the obstacle is indeed moving. We deduce ξ̃ from ξ in
Equation 4.8. As a first step, ξ̃ is normalized so that it varies between −1 and 1 . This
procedure allows to insure that later computations are more generic and can be applied
to other robotic platforms. Parameters ξmax and ξmin are set as follows: ξmin is fixed
to the speed at which obstacles are considered to be static (about 10% of the average
human walking speed) and ξmax is dependent on how agile the robotic platform is (we
have chosen 300% of the human walking speed). The second step is to use the Arc Tan

function to define ξ̃. This function was chosen for its handy property of ranging from
−π

2
to π

2
. This way αd (Equation 4.6) is limited to zero and π (see Figure 4.9).

Figure 4.9.: Graph visualizing relationship between ξ̃ and αd (blue,uninterrupted line →֒
Air−Cobot configuration)

Figure 4.9 displays the chosen evolution of αd with respect to ξ̃. An ξ̃ below zero will
lead to an increase of αd from the default of 90◦ up to a maximum of 180◦. Obviously,
it is up to the set-up of the robotic platform how far this angle can actually be applied.
The Air−Cobot is equipped with a 270◦ Hokuyo LRF in the front and in the back which
enables it to have a 360◦ Field of View (FOV), thus supporting the full range of αd.
In the case where the FOV is lesser, the evolution of ∆αd in Equation 4.6 has to be
limited accordingly. This can either be done by limiting how much of the computed αd

is applied on the control law or by carefully choosing the parameters a and b so that
the maximal bounds on ∆αd are not reached. By choosing a = 4 and b = 3 the ArcTan
function is modified in such a way that at the extrema of ξ̃ (−1 and 1) the extrema of
αd are reached (0 and π). Finally, a sign function was added to take into account the
sense of the obstacle movement towards the robot. The whole procedure is summarized
on algorithm 4.1.

4.2.3. Robot control laws

In the following section, the control laws allowing the robot follow the chosen spiral are
presented. We consider the model of the robotic system which has been presented in

136

4. Obstacle avoidance in dynamic environments using a reactive spiral approach

Algorithm 4.1 Checklist for OA

1: procedure Determine optimal αd ⊲ Called by OA
2: Calculate ξ̃ with the help of the derivative of er
3: Compute ∆αd following Equation 4.7
4: If necessary, adjust ∆αd according to your robot’s limitations
5: end procedure
6: The new αd is used to compute a desired distance from the obstacle rd as shown in

Equation 4.1
7: A PID controller is now assisting the minimization of eα and er (Equa-

tions 4.14, 4.15, 4.16)

the previous chapter and recalled on figure 4.10.

�✁✂

�✁✂

✄☎✆

✄☎✆

✝✞
✟

Figure 4.10.: Real life robot model with application point for control inputs

The robot is controlled using two control inputs: its linear velocity νOA and its
angular velocity ωOA. We present their design hereafter.
The goal is to make the robot follow the chosen spiral. To do so, it is necessary to

guarantee that the two errors, distance and angular errors, defined here-below vanish:

eα = αc − αd (4.10)

er = rc − rd (4.11)

To do so, we have chosen to impose a suitable velocity profile for νOA . This solution
guarantees that the robot will always be provided a nonzero linear speed during the
avoidance phase. In this way, problems of local minima will be significantly reduced.
The angular velocity will be designed to regulate eα and er to zero.

The linear velocity profile - νOA

We denote by νOA the linear velocity applied to the robot during the avoidance phase.
In the publication [Futterlieb et al., 2014], we have imposed a constant (non-zero) value.
However, this solution has proven to be limited when tight bypassing motions were to

137

4. Obstacle avoidance in dynamic environments using a reactive spiral approach

be performed. To improve the control law efficiency, we have defined νOA as a function
of eα as shown on figure
4.11:

νOA =
1

exp|eα|
× νOAmax

(4.12)

(4.13)

where νOAmax
is the maximum value allowed for the linear speed for obstacle avoidance.

It has to be fixed by the user prior to the navigation.

Figure 4.11.: Dependency of νOAmax
on eα

In this way, we enable the robot to decrease its linear velocity when eα becomes too
high, making sharp turns easier. On the contrary, if this error is small or around zero,
the vehicle can move more rapidly (see figure 4.11).
Remark: We could also have tried to integrate er into Equation 4.12 together with eα.
Considering the two errors to be regulated to zero in the linear velocity profile is not
interesting because it significantly increases the risks of local minima when they are
about to vanish. Another important point is that eα appears to be the most relevant
parameter to define νOA because one of the goal is to ease the execution of tight turns,
which requires to limit the linear velocity value.

Control of the angular velocity - ωOA

Now, let us design ωOA so that er and eα vanish. We propose the following PID control:

ωOA = sign (SOM)× (Ψeα + (Υer × λ)) (4.14)

Ψeα = Kp × eα +Ki ×

∫ tc

t0

eα dt+Kd ×
deα
dt

(4.15)

Υer = Kp × er +Ki ×

∫ tc

t0

er dt+Kd ×
der
dt

(4.16)

138

4. Obstacle avoidance in dynamic environments using a reactive spiral approach

where SOM stands for ”Sense Of Motion”. For ccw (counter-clockwise) movements,
this parameter will be +1 and −1 for cw (clockwise) motions. More precise information
about its choice will be given in the next paragraph. tc and t0 are respectively the
current time and the instant at which the OA has been triggered. Parameter λ is a
strictly positive scalar allowing to control the weighting between the first and second
tasks. Different solutions have been tested. At first, we have chosen to give a greater
priority to the angular error regulation (λ < 1). However, a constant value for this
gain rapidly appears to be limited because it follows that the priority cannot ever been
changed. To allow these necessary changes, we propose the following evolution for λ1:

Figure 4.12.: λ as a function of the angular error eα

In this way, the smaller eα becomes the more λ will increase which will in turn lead
to a rise of the weighting of er in Equation 4.14.

Choosing the sense of motion (SOM) and switching back to a Go to Goal
behavior

Although these aspects belong to the supervisor and the decision process, we have chosen
to present them in this chapter, as it is directly related to the chosen obstacle avoidance
technique. We first present the choice of the SOM before giving some information about
the guarding conditions.

The SOM: The first developed solution has consisted in making the SOM dependent
on the position of the target towards the robot and the obstacle [Futterlieb et al., 2014].
In this way, it allows to reduce the tight turns at the start of the avoidance movement.
Figure 4.13 displays how the SOM was chosen in a first draft of the approach: counter-
clockwise if PtargetA is the checkpoint; clockwise if PtargetB is the checkpoint.

1We nonetheless guarantee that λ remains always positive.

139

4. Obstacle avoidance in dynamic environments using a reactive spiral approach

of the obstacle is close to the robot y-axis (the obstacle passes from the left to the right).
On the contrary, if β̇c > 0, the obstacle is moving from the right to the left.
Therefore, we propose to choose the sense of motion in the following manner:

Algorithm 4.2 Decision tree for choosing SOM

1: procedure Determine SOM ⊲ Called by Obstacle Detection

2: if
∣∣∣β̇c

∣∣∣ < threshold then choose SOM according to the method proposed in [Fut-

terlieb et al., 2014]
3: else
4: if β̇c > 0 then optimal SOM is ccw
5: else optimal SOM is cw
6: end if
7: end if
8: end procedure

Switching between avoidance and goal controllers Now, we focus on the guarding
conditions allowing to switch between the avoidance and goal controllers (go-to-goal or
visual servoing). These conditions are essential to reduce local minima problems. Two
cases are possible:

• Transition from go to target controllers to avoidance one: We consider the case
where the obstacle is located on the robot trajectory and is considered to be a
danger for it. At first, we have chosen to engage the bypassing motion when the
distance falls below a predefined threshold denoted by rOA−trigger. But, as shown
below, it will be necessary to improve it.

• Transition from avoidance to goal controllers: We consider the case where it is
necessary to stop bypassing to go towards the goal. This happens when the level
of danger of the obstacle decreases. Thanks to the chosen orientation of frame
FE, a reliable guarding condition is given by the angle βc = (~xE, ~N). As xE is
orientated towards the target, it provides the direction of the goal. From this,
we can deduce that a safe spot is reached when βc becomes greater than 3

4
π (ccw

motion) or gets below π
2
(cw).

However, there still remains some situations where local minima can occur. Figure 4.15
gives such an example2. The bypassing procedure has been engaged and the condition
to stop it (βc >

3
2
or βc <

Π
2
) is fulfilled for robots A and B. However, if nothing is done,

the guarding condition to switch to obstacle avoidance will be triggered again, because
the vehicles are too close to the object. To prevent this from happening, we propose
to check, not only the distance to the obstacle but also the distance to the target. In

2For demonstrative reasons, we consider the case of an outward spiral. But the same reasoning could
be done with a circle.

141

4. Obstacle avoidance in dynamic environments using a reactive spiral approach

Figure 4.16.: Extract of video sequence [Futterlieb et al., 2014] - static obstacles

143

4. Obstacle avoidance in dynamic environments using a reactive spiral approach

robot model, because its dimensions (although a bit smaller) and general features (four
wheel skid steering drive) are very similar the once of our platform. Now we focus on
the scenario which have been considered to validate our approach.

Chosen scenarii and their respective results

We have evaluated our avoidance method in two separate steps. At first, we have chosen
a basic avoidance case where the goal is to make the robot bypass a sole obstacle using
an adequate spiral. Then, we have considered a more complex scenario corresponding
to the so-called approach phase. We now focus on these two cases.

Avoidance of one single obstacle In this case, the environment is cluttered with
only one obstacle. No goal has been defined. Our robot is solely expected to avoid the
object by following a predefined spiral which angle αd has been taken greater than π/2 to
guarantee non collision. Air−Cobot is initially at the position (0, 0) and it starts moving
towards the obstacle due to a positive linear velocity. The avoidance phase starts when
it enters a dangerous zone around the obstacle (at about 2 meters from it). At this
time, controllers given by Equations 4.14 and 4.1 are applied to the robot. Figure 4.17
displays successive poses of a robot (blue rectangles) going from left to right (blue path)
and also the static obstacle (red rectangle). As we can see, the obstacle is successfully
avoided by the robot executing an outward spiral motion around it, as expected.

0 5 10 15 20 25

−10

−5

0

5

10

Position X in [m]

P
o

s
it
io

n
Y

in
[m

]

Figure 4.17.: Proof of Concept of an outwards spiraling obstacle avoidance

Long range navigation with static obstacles Our goal is to test our approach in the
case of a long range navigation in an environment cluttered with static obstacles. More
precisely, we consider the autonomous approach phase where the robot is expected to
reach a close neighborhood of the aircraft, starting from its charging station. Figure 4.18

144

4. Obstacle avoidance in dynamic environments using a reactive spiral approach

shows this scenario (the Airbus A320 is materialized by the gray area on the far right
side of the figure). All of the obstacles (see red rectangular polygons in Figure 4.18) are
static and non-occluding objects.

−15 −10 −5 0 5 10 15 20 25 30
−15

−10

−5

0

5

10

15

Position X in [m]

P
o

s
it
io

n
Y

in
[m

]

Figure 4.18.: Avoidance Experiment for static Obstacles

In this simulation, the robot is expected to reach target T.5 starting from its initial
position. To do so, we have used the navigation strategy explained in the previous
chapters. This means that we have first defined a topological map (very basic in this
case as it only contains the successive targets to be reached, namely T.1, T.2, . . . , T.5).
We also need to choose a controller allowing to reach each target and we have selected an
IBVS (we could of course have performed the same simulation using a GTG controller).
The avoidance motion is performed due to our previous methods based on spirals. The
obtained results are displayed in Figure 4.18.

First, we can observe that the navigation task is correctly performed: T.5 is reached
and no collision has occurred. This means that the robot has been able to reach the
aircraft nose which is considered to be the initial position to start the aircraft pre-flight
inspection) as well as the first check point (front side of the A320 right jet engine). Now,
let us take a closer look to the robot trajectory. We can see the controller sequencing.
IBVS is applied from Start to A, shortly from B to C, from D to E and finally from F
through F.2 to the final position. In a similar way, when an obstacle is detected, the
Spiral Obstacle Avoidance (SOA) controller is triggered at a distance rOA−trigger = 2.5
meters. The supervisor then stops this controller when a safe passage towards the
current landmark is possible. In this simulation, the SOA is used from A to B (counter-
clockwise), from C to D (clockwise) and from E to F (counter-clockwise) with an αd of
π
2
.

The second obstacle is particularly interesting as it offers the robot a ’convenient trap’.
To overcome it, the spiral center point has been recomputed twice during the avoidance

145

4. Obstacle avoidance in dynamic environments using a reactive spiral approach

(C.2 and C.3). For the other two obstacles, the bypassing motion is easier and a re-
computation of the SCP is not necessary. As we have stated in the introduction, this
validates that our approach can handle wall like obstacles if needed. These results show
that our approach is meaningful. To go further in our validation, we have also displayed
the control inputs sent to the robot.

The linear and angular velocities computed with equations 4.12 and 4.14 are plotted
in Figure 4.19.
As for the pan-platform, a sole positioning control was available through ROS. The

corresponding position of the pan tilt unit is shown on Figure 4.19.
The time intervals in which the robot is using the visual servoing controller (≃1.8

m/s) and the obstacle avoidance controller (≃0.4 m/s) clearly appear, showing that
they are correctly sequenced depending on the environment. We believe that the varia-
tions observed in the evolution of the different variables could be reduced with a better
prediction of the obstacles shape, thus, smoothing the robot trajectory.

4.3.2. Experiments in dynamic environment

We have also experimented the avoidance method and the overall navigation strategy
on the Air−Cobot platform. We first present the environment before focusing on the
scenario and on the obtained results.

The environment

As shown in Figure 4.20, we have chosen the an outdoor environment for our tests. All
the experiments have been performed on the CNRS-LAAS parking lot. In order to show
the potential of our approach none of the obstacles are not a priori known. Same applies
for their number. Most of them are static (mainly parked cars). The dynamic ones are
trolleys which are pushed by a person, as it is illustrated in the figures 4.21 and 4.21.

Scenario and results

The goal of the mission is to reach a position located at 40 meters along the x-axis
(red dot), starting from the initial position (0, 0) while bypassing the obstacles (see
Figure 4.23). In this part, we then focus on the avoidance motion. The first two
obstacles are static (a and b) and convex. Note that their geometries are different,
which will demonstrate the ability of our solution to cope with various objects shape.
Following these two impediments, are two dynamic obstacles (c and d). Their avoidance
will highlight the efficiency of the SOM choice technique and the interest of making αd

vary.
Figure 4.23 visualizes the path the robot is taking through the unknown environment.
In this case, a Go To Goal (GTG) controller is used to reach the desired position.

Again, the avoidance motion is performed due to our previous methods based on spirals.

146

4. Obstacle avoidance in dynamic environments using a reactive spiral approach

As previously, when an obstacle is detected, the Spiral Obstacle Avoidance (SOA) con-
troller is triggered at a distance of rOA−trigger of 2.5 meters and the robot stops the SOA
controller when a safe passage towards the current landmark is possible. The obtained
results are shown on figure 4.18.

In order to give a more in-depth view of the avoidance strategy, Figure 4.24 displays a
close-up of the SOA about obstacle a containing the most important parameters. This
figure shows the controller sequencing and the efficiency of the guarding conditions.
When the risk of collision increases steadily (the distance falls below rOA−trigger), the
SOA controller is engaged. The robot starts the bypassing motion and converges towards
the chosen spiral. Once βc >

3
2
π, the supervisor switches back to the GTG, leading to a

natural trajectory for the platform.
Figure 4.25 presents the linear and angular velocities sent to the robot. As one can

see, the different controllers are correctly sequenced by the supervisor. We can note that,
when the avoidance phase starts, the linear velocity drops from 0.6m/s to nearly zero.
At the same time the angular velocity increases to make the robot turn to guarantee
non collision. The SOM is defined as shown previously and allows to obtain a smooth
trajectory. This behavior is consistent with the designed controllers. At the end of the its
mission the go-to-angle controller (GTA) is selected and corrects the robot’s orientation
(see video) at the final position. This explains the final spike of ω around the 110 second
mark.
We have also deeply analyzed the evolution of αd. As explained before, its variation is

governed by parameter ξ̃ (see equation 4.7). Its plot is given in Figure 4.26. This latter

shows how often ξ̃ has a non-zero value. For static obstacles (a and b), we expect to
see this phenomenon occur very rarely. And this is exactly what is observed, as, during
the two static objects avoidance, it happens three times which can be explained with
sensor noise. However, when bypassing the two dynamic obstacles (c and d), none-zero

values for ξ̃ are much more frequent. Six changes are recorded for object c and for d this
number goes up even further (10+). This shows that the avoidance motion was very
complicated. Indeed, our video shows that the obstacle d was not a cooperative one.
The person pushing the obstacle kart was actively trying to ”collide” with the robot,
thus generating a much stronger reaction. Some negative values have been also observed
when the objects are going far from the robot (see Video).
Even though the presented experiment might not seem to be likely (airport staff might

not ever try to collide with the robot), it presents a general example of what a stress test
should look like. The fact that Air−Cobot did not collide with any of the obstacles can
be taken as a successful carried out experiment of what was theorized at the beginning
of this chapter.

4.4. Conclusion

In this chapter, we have presented a new reactive obstacle avoidance approach. This
work has been inspired from articles explaining the peculiar behavior of moths and

147

4. Obstacle avoidance in dynamic environments using a reactive spiral approach

other bugs around natural and artificial light sources during the night [Himmelman,
2002] and [Boyadzhiev, 1999]. These insects use the angle towards the source as means
of navigation and they perform a spiral whose center is the considered light source.
Following this idea, we have proposed to guarantee non collision by following a suitable
equiangular spiral centered on the obstacle. Our main contribution has been the choice
of the different parameters allowing to define the spiral, namely its center and its angle
αd. We have more particularly analyzed the role of this angle, showing that a constant
value can be sufficient in a static environment. Then, we have extended this method by
proposing a suitable variation for αd in order to take into account dynamic obstacles.
This variation relies on a rough estimation of the relative velocity of the object with
respect to the robot. We have finally proposed a control law allowing to make the robot
follow the chosen spiral. We have tested this approach first on a simulated system and
then on the real one. The obtained results are satisfying and validates the method. In
the future, we plan to extend this method following different axes and even geometric
shapes. First of all, we will reduce the high variations observed in the velocities. For
a first start, the introduction of rate limiters on the acceleration seems to be a sensible
approach. Second, we will improve the guarding conditions and the transitions between
controllers for a better obstacle anticipation and a smoother robot trajectory. Finally,
other non-linear control laws will have to be developed to improve the robot behavior.

148

4. Obstacle avoidance in dynamic environments using a reactive spiral approach

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

V
e
lo

c
it
y

in
[m

/s
]

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

V
e
lo

c
it
y

in
[r

a
d
/s

]

0 1000 2000 3000 4000 5000 6000 7000

−3

−2

−1

0

1

2

3

Time in [s/100]

P
o
s
it
io

n
in

[r
a
d
]

Figure 4.19.: Robot linear and angular Velocities and Camera Angle

149

4. Obstacle avoidance in dynamic environments using a reactive spiral approach

Figure 4.20.: Extract of video sequence - static obstacles

150

4. Obstacle avoidance in dynamic environments using a reactive spiral approach

Figure 4.21.: Extract of video sequence - dynamic obstacles (a)

151

4. Obstacle avoidance in dynamic environments using a reactive spiral approach

Figure 4.22.: Extract of video sequence - dynamic obstacles (b)

0 5 10 15 20 25 30 35 40
−8

−6

−4

−2

0

2

4

6

8

x in [m]

y
in

[m
]

Figure 4.23.: Robot trajectory.

152

4. Obstacle avoidance in dynamic environments using a reactive spiral approach

✸ ✹ ✺ ✻ ✼ ✽ ✾
�✸

�✷

�✶

✵

✶

✷

✸

① ✁✂ ✄☎✆

②
✝✞
✟✠
✡

OA GTG

rOA-trigger

r 0

c

2c=

2c=
3

<0 >0

xE

yE

Figure 4.24.: Successive robot positions - Close up of first OA

0 20 40 60 80 100 120
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time in [s]

v
in

[m
/s

]
||

w
in

[r
a
d
/s

]

v

w

Figure 4.25.: Linear and angular velocities

0 20 40 60 80 100 120

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time in [s]

ξ
in

[%
/1

0
0

]

☛

Figure 4.26.: ξ̃

153

5. Conclusion

Contents
5.1. Resume of contributions and project summary 155

5.2. Future work and prospects . 156

5.2.1. Addition of a graphic card . 157

5.2.2. Using the robot as a platform for autonomous drones 157

5.2.3. Rethink the robot drive system 157

5.2.4. Incorporation of a HUD on a tablet for the operator 158

5.2.5. Real Time capabilities of the platform 159

155

The following chapter provides closure for this thesis. First, a resume of the main
results is given separately for each topic of this work. These topics were: the strategy of
long range navigation, the accurate sensor based control of the robot around the aircraft
and an adaptive obstacles avoidance. Furthermore, we focus on current challenges faced
by these topics (and how they can be overcome).

5.1. Resume of contributions and project summary

In this manuscript, we have presented a framework that enables a mobile platform to
perform pre-flight checks on commercial aircrafts. As mentioned in the introduction, the
navigation process can be divided into six sub-processes (perception, modeling, planning,
localization, action and decision) and this thesis presents a framework that can handle
each one of them. Diving into further details, we have provided a platform that is
able to perceive its environment with the aid of its many sensors. We have described
cameras that help to perceive the robot’s surroundings passively, laser range finders that
basically fulfill the same purpose in an active fashion. Additionally, we have mentioned
secondary sensors like GPS, wheel tick sensors and contact bumpers. Modeling was
achieved with the help of a topological and two metric maps. The first one was built
from targets on the aircraft and its immediate surroundings, while the two other ones
were constructed with the aid of laser range finders and odometry while executing the
mission. In addition to that, obstacles have also been modeled with the data provided
from the perception sub-process. Planning enables the state machine to give the order
in which the mission is executed. So far, it still has to be given prior to the mission by
the operator in the form of a list of successive targets. However, the current framework
is also able to receive this planning on-line through ROS topics and in the future this
will be the general case. As for the sub-process localization, it has been instantiated
with several methods, allowing to obtain either an absolute or a relative pose of the
robot. These methods are listed below:

• Absolute localization with help of a Global Positioning System sensor;

• Relative localization towards the aircraft with the help of both basic wheel and vi-
sual odometry (SVO), IMU data, ORB-SLAM techniques, Point Cloud Matching.

The odometry drift was reduced in a first attempt with the help of the IMU sensor.
Later we have shown that by using ORB SLAM and different secondary localization
informations fused within an extended Kalman filter provided by ROS, allowed us to
improve the accuracy when reaching certain key positions. The Action sub-process is
made of several behavior-based controllers allowing to safely navigate throughout the
airport. These controllers can be either aiding the robotic platform to reach a goal or
avoid hazardous areas, obstacles. The decision process is instantiated by a supervisor
which allows to choose the right controller among all the available ones and to monitor
the execution. Furthermore, this finite-state-machine will also have a sub module which
monitors the execution of said controllers. In order to decentralize part of the decision

5. Conclusion

process the majority of available controllers are able to take minor decisions (current
speed limits, distance to obstacles, etc.) without consulting the supervision module.

During the course of this manuscript two additional contributions were highlighted.
The first one is related to the multi-visual servoing control which has been designed
to precisely position the robot on each checkpoint. We have discussed two popular
approaches in the domain of visual navigation and have presented a framework for se-
lecting the most appropriate technique for each situation. In addition, we have proposed
a combination of both Image-based and Position-based visual servoing in a framework
that: (i) reconstructs the features if they disappear thanks to a virtual image which is
updated with several sensors used simultaneously, (ii) is able to find back these features
and (iii) even navigate using only the reconstructed values. The second above mentioned
contribution and “the most important one” is related to obstacle avoidance and to the
supervisor. Here, we have provided a novel approach towards reactive obstacle avoidance
in dynamic environments and new ideas for robust guard conditions. The approach is
generic in the way that obstacles, whether they are dynamic, static, known, unknown,
can be handled through the same method and within a procedure that allows a safe
navigation.

The whole strategy has been validated through simulations and experimental testing.
Although the experimental results presented in this work were obtained at LAAS-CNRS,
all of the shown tests have also been performed at the Airbus industrial site at Toulouse
Blagnac in order to finalize the proof of concept. Due to the confidential nature of these
tests, this part of the work will be presented only during the denfense. The obtained
results have shown that the proposed framework can be used to guide a platform on the
airports tarmac and in hangars, in the presence of static and moving obstacles. Finally
ideas were provided to improve the robot behavior towards smoother trajectories and
handling of forbidden zones.

In the following section we want to explore further improvements and prospects for the
project. The section will be more hardware related since software related improvements
have already been discussed in their respective chapter.

5.2. Future work and prospects

This work has been realized in the context of a highly technological project. Our main
prospects are then related to hardware and software aspects in order to improve the
overall platform. From a scientific point of view, some aspects could be improved.
For example, it would also have been interesting to evaluate the 2.5D visual servoing
approach, in addition to position-based and image-based control laws which have been
compared. The avoidance control laws relies on simple PID control laws. It could be
interesting to design more advanced approaches and to propose a complete analysis
of the closed-loop system. Now, from a more technological point of view, we present

157

5. Conclusion

hereafter some expected improvements of the Air-Cobot platform.

5.2.1. Addition of a graphic card

So far, the navigational computer of the robot is not equipped with a
Graphic Processing Unit (GPU). This means that all calculations have to be done
on the sole CPU which is not optimal, especially if some functions have to be paral-
lelized. SLAM is one of these modules that would largely profit of parallelization. Same
goes for feature tracking and other computer vision related functions. Thus it appears
very interesting to add a GPU to the robot to relieve computational load from the CPU.
This seems like a simple change that could be carried out right away. However, several
of the algorithms will have to be modified to support this new system.

The current version of the computer system integrated on the Air-Cobot platform
has been optimized to the point that finding physical space on the computer for extra
hardware components is a challenging task. As for now, the Air-Cobot platform is
equipped with two PCs. One respectively dedicated to navigation and the other for
inspection. A possible option would be to add a GPU on the inspection computer, as
non destructive testing functions require computer vision algorithms. Computational
expensive calculations could then be sent onto this GPU, since it is not used during
navigation (obstacle classification, target tracking, etc).

5.2.2. Using the robot as a platform for autonomous drones

During the project we have realized that having all the inspection equipment on the
robot is not always helpful, because not every inspection point can be easily reached
from the ground. Furthermore, having independent drones might even allow to inspect
previously unreachable spots. Lastly, if the robot still keeps part of its sensory some of
the inspection checks could even be carried out in parallel. The result would be a much
faster overall inspection time. It is highly likely that projects based on Air-Cobot will
have this kind of feature.

5.2.3. Rethink the robot drive system

The 4MOB platform used as the Air-Cobot base was primarily designed for outdoor
use in challenging terrains (mud, hard to traverse terrains such as forests, etc.) and
not for the use in structured, paved environments. Hence, the airport does not allow
to completely benefit from the strength and the capabilities of the 4MOB (high torque,
ability to climb small obstacles, resistance to difficult weather conditions). The most
important drawback of this robotic system comes from its drive system. Indeed, it
uses skid-steering-drive on four large and separately controllable wheels, meaning that
turning is achieved by applying different velocities on them. Therefore, with a weight
(without any load) of 140kg [Sterela and Desfosses,], the 4MOB presents a highly shaky
behavior during in-place rotations on a ground, with a high friction coefficient of its

158

5. Conclusion

Figure 5.1.: Sketch and cross section of the Mecanum wheel [Ilon, 1975]

wheels. This leads to a challenging localization of the robot with odometry and for
feature tracking (shaking sensors IMU noise and tracking errors). This issue was one of
the main difficulties we had to overcome during the project.

An obvious fix to this problem is to replace the drive system by another one. A first
solution is to allow for omni-directional movements by using for example a Mecanum
wheel [Ilon, 1975] [Indiveri, 2009] (commonly known as Swedish wheels). It would sig-
nificantly improve the robot turning behavior. However, its performance off-road would
severely be restricted since such a system does require excellent grip. Figure 5.1 pro-
vides technical sketches of this wheel concept. A downside of these wheels for the project
might be the maximum velocity limit. However, at the moment, this should not be an
issue for the near future, because the robot is still not operating at speeds higher than
2m/s.

5.2.4. Incorporation of a HUD on a tablet for the operator

So far, the robot mission is still launched with either a direct physical link (Ethernet
cable) or a wireless connection. In the future, it is planned to replace this connection
by a more user friendly application on a tablet or other mobile device. This application
will show the operator (see Figure 5.2):

• how many aircrafts need inspection and the robot scheduling ;

• the current and previous inspection logs and the robot decision whether to clear
or ground the aircraft ;

• alert messages if Air-Cobot cannot complete a given mission (obstacle like airport
staff or vehicles in one of checkpoints, algorithmic problems, low battery charge,

159

5. Conclusion

etc.)

This improvement towards a more intuitive and friendly interface is mandatory in the
context of the factory of the future.

Figure 5.2.: Heads Up Display for mobile devices for Air-Cobot control designed by
2morrow

These different improvements to the existing system will allow to obtain a complete
efficient prototype for automating the aircrafts inspection, thus enhancing the mainte-
nance on airports and the flights safety.

5.2.5. Real Time capabilities of the platform

”A system is said to be real-time if the total correctness of an operation depends not
only upon its logical correctness, but also upon the time in which it is performed.” [Li,
2009]

One of the major issues of providing a product that can be commercialized is that
certain requirements towards its safety need to be provided. To be able to ensure a
defined level of safety, it is necessary to implement once algorithms on a system with
real time capability. This does always mean that the system is extremely fast. On the
contrary, even relatively slow systems can provide real time capability. The definition
of a real time system is that in a prior defined time step certain function have to be
executed and completed. In the case of mobile robotics and on Air-Cobot the aspiration
towards real time capability is mostly defined on the robot’s maximum velocity. Thus,
wanting to ensure the robot’s capability to perform emergency breaking before hitting an

160

5. Conclusion

object. Therefore, the time between detecting, evaluating and responding to an obstacle
defines the time step towards a deadline.

There exist three different classifications of real time systems:

1. Hard - Any time the system misses a deadline (even a single time) will be considered
a system failure.

2. Firm - Missing deadlines infrequently is tolerated even though systems quality is
degraded. Any acquired result after exceeding of a deadline is consider to be not
useful

3. Soft - These class of systems are rated by their usefulness, which is in turn depen-
dent on the acquisition of results after the deadline (systems usefulness degrades
with advancing time after deadline was exceeded)

[Shin and Ramanathan, 1994]
Air-Cobot cannot be considered to be in the first category of real time systems since the

underlying operation system alone can already not ensure real time process execution.
However, it can be put in the group of firm real time systems, since missing a deadline
is extremely rare.

161

6. Abstract

Navigation référencée vision dans un environnement
dynamique

Résumé: Cette thèse s’intéresse au problème de la navigation autonome au long cours
de robots mobiles à roues dans des environnements dynamiques. Elle s’inscrit dans le
cadre du projet FUI Air-Cobot. Ce projet, porté par Akka Technologies, a vu collaborer
plusieurs entreprises (Akka, Airbus, 2MORROW, Sterela) ainsi que deux laboratoires
de recherche, le LAAS et Mines Albi. L’objectif est de développer un robot collaboratif
(ou cobot) capable de réaliser l’inspection d’un avion avant le décollage ou en hangar.
Différents aspects ont donc été abordés : le contrôle non destructif, la stratégie de navi-
gation, le développement du système robotisé et de son instrumentation, etc. Cette thèse
répond au second problème évoqué, celui de la navigation. L’environnement considéré
étant aéroportuaire, il est hautement structuré et répond à des normes de déplacement
très strictes (zones interdites, etc.). Il peut être encombré d’obstacles statiques (atten-
dus ou non) et dynamiques (véhicules divers, piétons, ...) qu’il conviendra d’éviter pour
garantir la sécurité des biens et des personnes. Cette thèse présente deux contributions.
La première porte sur la synthèse d’un asservissement visuel permettant au robot de
se déplacer sur de longues distances (autour de l’avion ou en hangar) grâce à une carte
topologique et au choix de cibles dédiées. De plus, cet asservissement visuel exploite
les informations fournies par toutes les caméras embarquées. La seconde contribution
porte sur la sécurité et l’évitement d’obstacles. Une loi de commande basée sur les
spirales équiangulaires exploite seulement les données sensorielles fournies par les lasers
embarqués. Elle est donc purement référencée capteur et permet de contourner tout
obstacle, qu’il soit fixe ou mobile. Il s’agit donc d’une solution générale permettant de
garantir la non collision. Enfin, des résultats expérimentaux, réalisés au LAAS et sur le
site d’Airbus à Blagnac, montrent l’efficacité de la stratégie développée.
Mots clés : Asservissement visuel, évitement d’obstacles,

Vision based navigation in a dynamic environment

Abstract: This thesis is directed towards the autonomous long range navigation of
wheeled robots in dynamic environments. It takes place within the Air-Cobot project.
This project aims at designing a collaborative robot (cobot) able to perform the preflight

163

6. Abstract

inspection of an aircraft. The considered environment is then highly structured (airport
runway and hangars) and may be cluttered with both static and dynamic unknown
obstacles (luggage or refueling trucks, pedestrians, etc.). Our navigation framework
relies on previous works and is based on the switching between different control laws
(go to goal controller, visual servoing, obstacle avoidance) depending on the context.
Our contribution is twofold. First of all, we have designed a visual servoing controller
able to make the robot move over a long distance thanks to a topological map and to
the choice of suitable targets. In addition, multi-camera visual servoing control laws
have been built to benefit from the image data provided by the different cameras which
are embedded on the Air-Cobot system. The second contribution is related to obstacle
avoidance. A control law based on equiangular spirals has been designed to guarantee
non collision. This control law, based on equiangular spirals, is fully sensor-based, and
allows to avoid static and dynamic obstacles alike. It then provides a general solution
to deal efficiently with the collision problem. Experimental results, performed both
in LAAS and in Airbus hangars and runways, show the efficiency of the developed
techniques.

Keywords: Visual Servoing, obstacle avoidance...

164

A. Robot Transformations and
Jacobian Computation

Contents
A.1. Transformations concerning the stereo camera systems . . 167

A.1.1. Transformation to the front cameras system 167

A.1.2. Transformation to the rear cameras 168

A.1.3. Additional transformations 169

A.2. Kinematic Screw . 171

A.3. Velocity screw . 175

A.3.1. Solution ”1” of deriving the velocity screw matrix 175

A.3.2. a . 175

A.3.3. Solution ”2” of deriving the velocity screw matrix 175

A.3.4. a . 176

A.3.5. Applying solution ”2” to our problem 176

A.4. Interaction matrix . 178

A.5. Jacobian and Velocity Twist Matrix of Air-Cobot 178

A.5.1. extended . 179

A.6. Air-Cobot Jacobian and velocity twist matrix 179

A.6.1. Jacobian - eJe . 179

A.6.2. Jacobian- eJe reduced . 180

A.6.3. Velocity twist matrix- cVe . 180

A.7. Analysis of the Robots Skid Steering Drive on a flat Surface

with high Traction . 180

A.8. ROS-based software architecture in at the end of the project182

167

A.1. Transformations concerning the stereo camera

systems

The following sections will deal with the detailed translations and rotations towards
both the front and the rear camera system. These are vital matrices which will find
great usefulness in the later generation of velocity twist matrix and the robot Jacobian.

A.1.1. Transformation to the front cameras system

As we have explained in Section 2.2.1, the Air-Cobot system is equipped with several
visual sensors. The following paragraph will provide transformations, the Jacobian and
further useful information of the front camera system.

�

✁

Figure A.1.: Robot coordinate system for the front cameras

As has been explained in this thesis, we make use of the ViSP library for our research.
Therefore, this document some of the writing conventions differ. For example wMm =
MRW /RM

. Let Ri(µ) be the rotation matrix of angle µ around axis i and let Tv be the
translation matrix of vector v. Furthermore, θp will refer to the pan angle, while θt will
designate the tilt angle of the stereo camera system from here on out. Depending of the
section, the camera we are referring to is either in the front or in the back. Since we
making use of a stereo camera system these matrices can refer to either the left or the
right camera (determined by zE).

MRW /RM
=

cos(θrobot) − sin(θrobot) 0 xM

sin(θrobot) cos(θrobot) 0 yM
0 0 1 zM
0 0 0 1

 (A.1)

A. Robot Transformations and Jacobian Computation

[Rx(π)/T(xP ,yP ,zP)] =

1 0 0 xP

0 −1 0 yP
0 0 −1 zP
0 0 0 1

 (A.2)

[Rz(θ
cam
pan)] =

cos(θcampan) − sin(θcampan) 0 0
sin(θcampan) cos(θcampan) 0 0

0 0 1 0
0 0 0 1

 (A.3)

[Ry(−θ
cam
tilt)] =

cos(θcamtilt) 0 − sin(θcamtilt) 0
0 1 0 0

sin(θcamtilt) 0 cos(θcamtilt) 0
0 0 0 1

 (A.4)

MRM/RP
= [Rx(π)/T(xP ,yP ,zP)]× [Rz(θ

cam
pan)]× [Ry(−θ

cam
tilt)]

=

cos(θcampan) cos(θ
cam
tilt) − sin(θcampan) − cos(θcampan) sin(θ

cam
tilt) xP

− sin(θcampan) cos(θ
cam
tilt) − cos(θcampan) sin(θcampan) sin(θ

cam
tilt) yP

− sin(θcamtilt) 0 − cos(θcamtilt) zP
0 0 0 1

(A.5)

MRP /RE
= [Rx

(π
2

)
] =

1 0 0 xE

0 0 −1 yE
0 1 0 zE
0 0 0 1

 (A.6)

MRE/RC
= [Ry

(π
2

)
] =

0 0 1 xC

0 1 0 yC
−1 0 0 zC
0 0 0 1

 (A.7)

A.1.2. Transformation to the rear cameras

[Ry(π)/T(xP ,yP ,zP)] =

−1 0 0 xP

0 1 0 yP
0 0 −1 zP
0 0 0 1

 (A.8)

MRM/RP
= [Ry(π)/T(xP ,yP ,zP)]× [Rz(θ

cam
pan)]× [Ry(−θ

cam
tilt)]

=

− cos(θcampan) cos(θ
cam
tilt) sin(θcampan) cos(θcampan) sin(θ

cam
tilt) xP

sin(θcampan) cos(θ
cam
tilt) cos(θcampan) − sin(θcampan) sin(θ

cam
tilt) yP

− sin(θcamtilt) 0 − cos(θcamtilt) zP
0 0 0 1

(A.9)

169

A. Robot Transformations and Jacobian Computation

��

�

✁

✂

✁

✂

Figure A.2.: Robot coordinate system for the rear cameras

A.1.3. Additional transformations

This section presents the remaining coordinate systems. Although necessary for the
robot operation, those coordinate systems are not essential for the Visual Servoing.
Figure A.3 provides an extension of the robots coordinate systems, the remaining ho-
mogeneous transformations are defined in the following equations.

Transformation to the IMU

MRM/RIMU
=

1 0 0 xIMU

0 1 0 yIMU

0 0 1 zIMU

0 0 0 1

 (A.10)

Transformation to the Pan-Tilt-Unit of the LASER

[Rz(φ
laser
pan)] =

cos(φlaser
pan) − sin(φlaser

pan) 0 0
sin(φlaser

pan) cos(φlaser
pan) 0 0

0 0 1 0
0 0 0 1

 (A.11)

[Ry(φ
laser
tilt)] =

cos(φlaser
tilt) 0 sin(φlaser

tilt) 0
0 1 0 0

− sin(φlaser
tilt) 0 cos(φlaser

tilt) 0
0 0 0 1

 (A.12)

[Rz(φ
laser
pan)]×[Ry(φ

laser
tilt)] =

cos(φlaser
pan) cos(φlaser

tilt) − sin(φlaser
pan) cos(φlaser

pan) sin(φlaser
tilt) 0

sin(φlaser
pan) cos(φlaser

tilt) cos(φlaser
pan) sin(φlaser

pan) sin(φlaser
tilt) 0

− sin(φlaser
tilt) 0 cos(φlaser

tilt) 0
0 0 0 1

(A.13)

170

A. Robot Transformations and Jacobian Computation

�✁

✂✄☎✆✝

✂✄☎✆✝

✂✄☎✆✝

Figure A.3.: Robot Coordinate System

MRM/RPTLASER
=

cos(φlaser
pan) cos(φlaser

tilt) − sin(φlaser
pan) cos(φlaser

pan) sin(φlaser
tilt) xPTLASER

sin(φlaser
pan) cos(φlaser

tilt) cos(φlaser
pan) sin(φlaser

pan) sin(φlaser
tilt) yPTLASER

− sin(φlaser
tilt) 0 cos(φlaser

tilt) zPTLASER

0 0 0 1

(A.14)

Transformation from the LASER PTU to the LASER

MRPTLASER
/RLASER

=

1 0 0 xLASER

0 1 0 yLASER

0 0 1 zLASER

0 0 0 1

 (A.15)

171

A. Robot Transformations and Jacobian Computation

Transformation to the PTZ camera

This transformation does not contain the pan and tilt agnles of the PTZ camera.

MRM/RPTZ
=

0 0 1 xPTZ

0 1 0 yPTZ

−1 0 0 zPTZ

0 0 0 1

 (A.16)

Transformation to the Aircraft frame

The homogeneous transformation between robot and aircraft will finally be provided by
the localization (RT-SLAM).

MRM/RAircraft
=

1 0 0 xAircraft

0 1 0 yAircraft

0 0 1 zAircraft

0 0 0 1

 (A.17)

A.2. Kinematic Screw

In the upcoming section we will derive the robot kinematic screw and the velocity twist
matrix. This section will follow the reasoning of [Cadenat, 1999], hence all bold, brack-
eted written section numbers (e.g.: [11.1]) will refer to equations in this document.

Keep in mind that T
Rj

A/Ri
is the kinematic screw at the point A relative to the frame Ri,

but expressed in the frame Rj. This should explain the general notation convention that
was taken for the upcoming derivation of the kinematic screw:
[11.1]:

TRE

E/RW
=

(
V RE

E/RM
+ V RE

M/RW
+ ΩRE

RM/RW
∧MERE

ΩRE

RE/RM
+ ΩRE

RM/RW

)
(A.18)

In order to simplify part of the calculation, the robot frame RM is chosen for now:

TRM

E/RW
=

(
V RM

E/RM
+ V RM

M/RW
+ ΩRM

RM/RW
∧MERM

ΩRM

RE/RM
+ ΩRM

RM/RW

)
(A.19)

[11.2]:

ẋ = v cos(θrobot)

ẏ = v sin(θrobot)

θ̇ = ω

(A.20)

[11.3]: {
V RW

M/RW
= (v cos(θrobot), v sin(θrobot), 0)

T

ΩRW

RM/RW
= (0, 0, ω)T

(A.21)

172

A. Robot Transformations and Jacobian Computation

[11.4]:

V RM

M/W = (v, 0, 0)

ΩRM

RM/W =
(
ΩRW

RM/RW

) (A.22)

[11.5]:

TRM

E/RM
=

(
V RM

E/RM

ΩRM

RE/RM

)
=

(
V RM

E/RP
+ V RM

P/RM
+ ΩRM

RP /RM
∧ PERM

ΩRM

RE/RP
+ ΩRM

RP /RM

)
(A.23)

because VE/RP
= dPE/dt and VP/RM

= dMP/dt = 0 because there the transformation
between P and E is rigid. Furthermore, since RE is fixed to RP , ΩRE/RP

will also be
zero.
[11.6]:

TE/RM
=

(
ΩRP /RM

∧ PE
ΩRP /RM

)
(A.24)

PE is given by (xE, yE, zE)

To simplify the notations, let cp, sp, ct and st be respectively cos(θcampan), sin(θ
cam
pan),

cos(θcamtilt) and sin(θcamtilt).
[11.7]:

RRM/RP
=

cp ct −sp −cp st
−sp ct −cp sp st
−st 0 −ct

 (A.25)

[11.8]:
tRM

P/E = RRM/RP
× tRP

P/E (A.26)

to [11.8]

tRM

P/E =

xE cp ct − yE sp − zE cp st
−xE sp ct − yE cp + zE sp st
−xE st − zE ct

 (A.27)

ΩRP /RM
∧ tRM

P/E

=

0

θ̇t
−θ̇p

 ∧

xE cp ct − yE sp − zE cp st
−xE sp ct − yE cp + zE sp st
−xE st − zE ct

=

−xE sp ct − yE cp + zE sp st
−xE cp ct + yE sp + zE cp st

0

× θ̇p +

−xE st − zE ct
0

−xE cp ct + yE sp + zE cp st

× θ̇t

(A.28)

negative θp because in the frame RM .

173

A. Robot Transformations and Jacobian Computation

[11.9]:

TRM

E/RM
=

(
V RM

E/RM

ΩRM

RE/RM

)
=

−xE sp ct − yE cp + zE sp st
−xE cp ct + yE sp + zE cp st

0
0
0
−1

× θ̇p (A.29)

[11.9]:

TRM

E/RM
=

(
V RM

E/RM

ΩRM

RE/RM

)
=

−xE sp ct − yE cp + zE sp st
−xE cp ct + yE sp + zE cp st

0
0
0
−1

×θ̇p+

−xE st − zE ct
0

−xE cp ct + yE sp + zE cp st
0
1
0

×θ̇t

(A.30)
tM/E = tM/P + tP/E

[11.10]:

tRM
M/E =

xp + xE cp ct − yE sp − zE cp st
yp − xE sp ct − yE cp + zE sp st
zp − xE st − zE ct

 (A.31)

for [11.11]:

q̇ =

v

θ̇

θ̇p
θ̇t

 (A.32)

for [11.11]:

ΩRM

RE/W =

0
0

θ̇

+

0

θ̇t
−θ̇p

 (A.33)

for [11.11]: concerning θ̇

velocity = rotation ∧ position(center of rotation) (A.34)

θ̇partofthescrew =

0
0

θ̇

 ∧ tRM

M/E =

−yp + xE sp ct + yE cp − zE sp st
xp + xE cp ct − yE sp − zE cp st

0

× θ̇ (A.35)

[11.11]:
TRM

E/W =
(
[J1] [J2] [J3] [J4]

)
× q̇ (A.36)

174

A. Robot Transformations and Jacobian Computation

[J1][J2] =

1 −yP + xE sp ct + yE cp − zE sp st
0 xP + xE cp ct − yE sp − zE cp st
0 0
0 0
0 0
0 1

(A.37)

[J3][J4] =

−xE sp ct − yE cp + zE sp st −xE st − zE ct
−xE cp ct + yE sp + zE cp st 0

0 −xE cp ct + yE sp + zE cp st
0 0
0 1
−1 0

(A.38)

[11.12]:
RRM/RE

= RRM/RP
×RRP /RE

(A.39)

[11.13]:

RRP /RE
=

1 0 0
0 0 −1
0 1 0

 (A.40)

to [11.14]:

RRM/RE
= RRM/RP

×RRP /RE
=

cp ct −sp −cp st
−sp ct −cp sp st
−st 0 −ct

1 0 0
0 0 −1
0 1 0

 =

cp ct −cp st sp
−sp ct sp st cp
−st −ct 0

(A.41)
to [11.14]:

RT
RM/RE

=

cp ct −sp ct −st
−cp st sp st −ct
sp cp 0

 (A.42)

[11.14]:

TRE

E/W =

(
RT

RM/RE
0

0 RT
RM/RE

)
× TRM

E/W (A.43)

[11.15]:

TRE

E/W =

cp ct −yP cp ct − xP sp ct + yE ct −yE ct −yE sp st − zE cp
−cp st yP cp st + xP sp st − yE st −yE st xE cp − yE sp ct
sp −yP sp + xP cp + xE ct − zEst −xE ct + zE st −xE st sp − zE ct sp
0 −st st −sp ct
0 −ct ct sp st
0 0 0 cp

×q̇

(A.44)

175

A. Robot Transformations and Jacobian Computation

For the back cameras, the equations are slightly different.

TRE

E/W =

−cp ct yP cp ct + xP sp ct + yE ct −yE ct yE sp st + zE cp
cp st −yP cp st − xP sp st − yE st −yE st −xE cp + yE sp ct
−sp yP sp − xP cp + xE ct − zEst −xE ct + zE st xE st sp + zE ct sp
0 −st st sp ct
0 −ct ct −sp st
0 0 0 −cp

× q̇

(A.45)

A.3. Velocity screw

The following section will present the derivation of the velocity twist matrix. Velocity
twist matrix is a regular term in the ViSP framework and describes a matrix that allows
the transformation of the velocity screw between the camera frame,C, and the end-
effector frame, E,. During our derivation we have found that there are 2 possible ways
of deriving that matrix. Both solutions will be presented in the upcoming section.

A.3.1. Solution ”1” of deriving the velocity screw matrix

For this approach we will change the application point before changing the base.

A.3.2. a

~VC/W = ~VE/W + t̂C/E ∧ ΩRE/RW
(A.46)

~V RE

C/W = ~V RE

E/W + tRE

C/E ∧ ΩRE

RE/RW
=
(
I t̂RE

C/E

)
× TRE

E/W (A.47)

TRE

C/W =

(
I t̂RE

C/E

0 I

)
× TRE

E/W (A.48)

b

TRC

C/W =

(
RRC/RE

0
0 RRC/RE

)
×

(
I t̂RE

C/E

0 I

)
× TRE

E/W

=

(
RRC/RE

RRC/RE
× t̂RE

C/E

0 RRC/RE

)
× TRE

E/W

(A.49)

A.3.3. Solution ”2” of deriving the velocity screw matrix

Contrary to the first solution, we will now change the base before we deal with the point
of application.

176

A. Robot Transformations and Jacobian Computation

A.3.4. a

TRC

E/RW
=

(
RRC/RE

0
0 RRC/RE

)
TRE

E/W (A.50)

b

~V RC

C/W = ~V RC

E/W + tRC

C/E ∧ ΩRC

RE/RW
(A.51)

TRC

C/W =

(
I t̂RC

C/E

0 I

)
TRC

E/RW

=

(
I t̂RC

C/E

0 I

)(
RRC/RE

0
0 RRC/RE

)
TRE

E/RW

=

(
RRC/RE

t̂RC

C/E ×RRC/RE

0 RRC/RE

)
TRE

E/RW

(A.52)

~V RC

C/W = RRC/RE
× ~V RE

E/RW
+ t̂RC

C/E ×RRC/RE
× ΩRE

RE/RW
(A.53)

and
RRC/RE

× ΩRE

RE/RW
= ΩRC

RE/RW
(A.54)

A.3.5. Applying solution ”2” to our problem

In order to change the kinematic screw in such a way that it can be utilized for the
Air-Cobot visual navigation modules one of our solution needs to be applied to the
kinematic screw.

cve =

(
RRC/RE

t̂RC

C/E ×RRC/RE

03 RRC/RE

)
(A.55)

MRE/RC
=

0 0 1 xC

0 1 0 yC
−1 0 0 zC
0 0 0 1

 (A.56)

but we need either only the rotation or translation:

RRE/RC
=

0 0 1
0 1 0
−1 0 0

 (A.57)

tRE

E/C =

xC

yC
zC

 (A.58)

In order to be able to use this the inverse needs to be found:

177

A. Robot Transformations and Jacobian Computation

RRC/RE
=
(
RRE/RC

)−1
= (RRE/RC

)T =

0 0 −1
0 1 0
1 0 0

 (A.59)

the translation matrix is expressed in the frame of the end effector

tRE

C/E =

−xC

−yC
−zC

 (A.60)

tRC

RC/RE
= RRC/RE

× tRE

C/E =

0 0 −1
0 1 0
1 0 0

−xC

−yC
−zC

 =

zC
−yC
−xC

 (A.61)

t̂RC

C/E =

0 −a3 a2
a3 0 −a1
−a2 a1 0

 =

0 xC −yC
−xC 0 −zC
yC zC 0

 (A.62)

t̂RC

C/E ×RRC/RE
=

0 xC −yC
−xC 0 −zC
yC zC 0

0 0 −1
0 1 0
1 0 0

 =

−yC xC 0
−zC 0 xC

0 zC −yC

 (A.63)

so now we can put together the velocity twist matrix

cve =

0 0 −1 −yC xC 0
0 1 0 −zC 0 xC

1 0 0 0 zC −yC
0 0 0 0 0 −1
0 0 0 0 1 0
0 0 0 1 0 0

(A.64)

Which will allow us to build TRC

C/RW
which is the Jacobian as we need it:

TRC

C/RW
=c ve × TRE

E/RW
(A.65)

TRC

C/RW
=

−sp yP sp − xP cp − (xE + xC) ct + (zE + yC) st xE + xC 0
−cp st yP cp st + xP sp st + (zC − yE) st 0 xE + xC

cp ct −yP cp ct − xP sp ct − (zC − yE) ct −yE + zC −zE − yC
0 0 0 −1
0 −ct 1 0
0 −st 0 0

× q̇

= J × q̇
(A.66)

178

A. Robot Transformations and Jacobian Computation

A.4. Interaction matrix

The interaction matrix used is a 8× 6 matrix. Below an example for one feature point
(i) (in total there are four) is provided:

Li =

−1

zi
0

Xi

zi
XiYi −(1 +X2

i) Yi

0
−1

zi

Yi

zi
1 + Y 2

i −XiYi −Xi

 (A.67)

Lired =

−1

zi

Xi

zi
−(1 +X2

i)

0
Yi

zi
−XiYi

 (A.68)

L =

L1red

L2red

L3red

L4red

 (A.69)

the big letters resemble to points in the image plane and small letters describe 3d
points

A.5. Jacobian and Velocity Twist Matrix of Air-Cobot

Figure A.4.: Aircobot Dimensions

Basically we will have to provide values for all points, starting form M(xM , yM , zM)
until C(xC , yC , zC).

179

A. Robot Transformations and Jacobian Computation

xM → provided by robot localization method

yM → provided by robot localization method

zM = 640

(A.70)

xP = 505

yP = 0

zP = 50

(A.71)

xE = 0

yE = ±150.00(depending on right(+)/left(-) camera)

zE = 0

(A.72)

xC = 0

yC = −25

zC = 0

(A.73)

A.5.1. extended

(xIMU , yIMU , zIMU) = (0, 0, 870) (A.74)

(xPTZ , yPTZ , zPTZ) = (594, 0, 340) (A.75)

(xPTLASER
, yPTLASER

, zPTLASER
) = (623, 0, −225) (A.76)

(xLASER, yLASER, zLASER) = (0, 0, 110) (A.77)

A.6. Air-Cobot Jacobian and velocity twist matrix

A.6.1. Jacobian - eJe

TRE

E/W =

cos(θcampan) yE − 505 sin(θcampan) −yE
0 0 0

sin(θcampan) 505 cos(θcampan) 0
0 0 0
0 −1 1
0 0 0

× q̇ (A.78)

180

A. Robot Transformations and Jacobian Computation

A.6.2. Jacobian- eJe reduced

TRE

E/W =

cos(θcampan) yE − 505 sin(θcampan) −yE
sin(θcampan) 505 cos(θcampan) 0

0 −1 1

× q̇ (A.79)

When looking at the camera coordinate system it becomes obvious that linear ve-
locities are only possible along the x and z direction. Furthermore, the only possible
rotational velocity can be found around the y axis. Thus, reducing the Jacobian as done
above is valid.

A.6.3. Velocity twist matrix- cVe

cve =

0 0 −1 25 0 0
0 1 0 0 0 0
1 0 0 0 0 25
0 0 0 0 0 −1
0 0 0 0 1 0
0 0 0 1 0 0

(A.80)

A.7. Analysis of the Robots Skid Steering Drive on a

flat Surface with high Traction

In this short section the control type of the robot will be discussed. On Air-Cobot and
in the Gazebo simulations a skid steering drive controller is used to move the robot.
As it has already been pointed out, this can have some advantages (simple command
input, easy to test and no moving axis), but especially for the robot localization this
can be extremely disadvantageous. Previously, the localization with wheel odometry has
already been discussed. Thus, in this section the focus will be more on the other sensors
(cameras for SLAM, visual odometry and Visual Servoing and LASERS). What all these
methods have in common is that they rely on tracking previously detected/ identified key
features. Tracking can be a very delicate and sensible task. The smaller the features get
the more likely the tracker will loose them during an unexpected movement. To achieve
a better baseline for discussion the following paragraph will contain an experiment in
which the robot is:

1. Moved back and fourth with the standard PID gains provided by the manufacturer
(fast response (P))

2. Moved back and fourth with the integral heavy PID gains (smoother behavior)

3. Turning in place with the standard PID gains provided by the manufacturer (fast
response (P))

4. Turning in place with the integral heavy PID gains (smoother behavior)

181

During the experiments the robot speed will be recorded directly from the CAN as
well as the accelerations and velocities in the approximate center of gravity of the robot
provided by the IMU.

A. Robot Transformations and Jacobian Computation

(a) PTU (b) Cross section of the PTU

Figure A.6.: Extract of PTU datasheet [man, 2014]

184

Bibliography

[web,] Irisa webiste - lagadic - visp - tutorials. http://www.irisa.fr/lagadic/visp/
documentation/visp-2.10.0/tutorial-boost-vs.html#adaptive_gain. Ac-
cessed: 2015-10-31.

[mus,] U.s., china, russia, elon musk: Entrepreneur’s ”in-
sane” vision becomes reality. http://www.cbsnews.com/news/

us-china-russia-elon-musk-entrepreneurs-insane-vision-becomes-reality/.
Accessed: 2017-03-4.

[man, 2014] (2014). Ptu-d46.

[Allibert et al., 2010] Allibert, G., Courtial, E., and Chaumette, F. (2010). Predictive
control for constrained image-based visual servoing. IEEE Transactions on Robotics,
26(5):933–939.

[Alper et al., 2004] Alper, B. S., Hand, J. A., Elliott, S. G., Kinkade, S., Hauan, M. J.,
Onion, D. K., and Sklar, B. M. (2004). How much effort is needed to keep up with
the literature relevant for primary care? Journal of the Medical Library association,
92(4):429.

[Asimov, 1950] Asimov, I. (1950). I, Robot.

[Balch et al., 2007] Balch, T., Christensen, H., Camp, V., Logston, D., Collins, T., Pow-
ers, M., Egerstedt, M., Schafrik, R., Hoffman, M., Witter, J., et al. (2007). Darpa
urban challenge.

[Bellot and Danes, 2001] Bellot, D. and Danes, P. (2001). Towards an lmi approach to
multiobjective visual servoing. In European Control Conference 2001, Porto (Portu-
gal).

[Bernstein and Raman, 2015] Bernstein, A. and Raman, A. (2015). The great decou-
pling: An interview with erik brynjolfsson and andrew mcafee. Harvard Business
Review, 93:66–74.

[Besl and McKay, 1992] Besl, P. and McKay, N. D. (1992). A method for registration
of 3-d shapes. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
14(2):239–256.

[Bonin-Font et al., 2008] Bonin-Font, F., Ortiz, F., and Oliver, G. (2008). Visual naviga-
tion for mobile robots : a survey. Journal of intelligent and robotic systems, 53(3):263.

187

Bibliography

[Borenstein and Koren, 1991] Borenstein, J. and Koren, Y. (1991). The vector field
histogram-fast obstacle avoidance for mobile robots. Robotics and Automation, IEEE
Transactions on, 7(3):278–288.

[Boyadzhiev, 1999] Boyadzhiev, K. N. (1999). Spirals and conchospirals in the flight of
insects. The College Mathematics Journal, 30(1):pp. 23–31.

[Breitenstein et al., 2009] Breitenstein, M. D., Reichlin, F., Leibe, B., Koller-Meier, E.,
and Van Gool, L. (2009). Markovian tracking-by-detection from a single, uncalibrated
camera.

[Brynjolfsson and McAfee, 2014] Brynjolfsson, E. and McAfee, A. (2014). The Second
Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies.
W. W. Norton.

[Cadenat, 1999] Cadenat, V. (1999). Commande référencée multi-capteurs pour la nav-
igation d’un robot mobile. Theses, Université Paul Sabatier - Toulouse III.

[Cai et al., 2014] Cai, C., Dean-León, E., Somani, N., and Knoll, A. (2014). 6d image-
based visual servoing for robot manipulators with uncalibrated stereo cameras. In
Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Confer-
ence on, pages 736–742. IEEE.

[Čapek, 2004] Čapek, K. (2004). RUR (Rossum’s universal robots). Penguin.

[Chaumette, 1998] Chaumette, F. (1998). Potential problems of stability and conver-
gence in image-based and position-based visual servoing. In The confluence of vision
and control, pages 66–78. Springer.

[Chaumette, 2004] Chaumette, F. (2004). Image moments: a general and useful set of
features for visual servoing. Robotics, IEEE Transactions on, 20(4):713 – 723.

[Chaumette and Hutchinson, 2006] Chaumette, F. and Hutchinson, S. (2006). Visual
servo control. i. basic approaches. Robotics & Automation Magazine, IEEE, 13(4):82–
90.

[Chaumette and Hutchinson, 2007] Chaumette, F. and Hutchinson, S. (2007). Visual
servo control. ii. advanced approaches [tutorial]. Robotics Automation Magazine,
IEEE, 14(1):109–118.

[Chen and Medioni, 1991] Chen, Y. and Medioni, G. (1991). Object modeling by reg-
istration of multiple range images. In Robotics and Automation, 1991. Proceedings.,
1991 IEEE International Conference on, pages 2724–2729 vol.3.

[Cheng et al., 2006] Cheng, Y., Maimone, M., and Matthies, L. (2006). Visual odometry
on the mars exploration rovers - a tool to ensure accurate driving and science imaging.
Robotics Automation Magazine, IEEE, 13(2):54 –62.

188

Bibliography

[Cherubini et al., 2013] Cherubini, A., Grechanichenko, B., Spindler, F., and
Chaumette, F. (2013). Avoiding moving obstacles during visual navigation. In
Robotics and Automation (ICRA), 2013 IEEE International Conference on, pages
3069–3074.

[Cherubini et al., 2014] Cherubini, A., Spindler, F., and Chaumette, F. (2014). Au-
tonomous visual navigation and laser-based moving obstacle avoidance. Intelligent
Transportation Systems, IEEE Transactions on, 15(5):2101–2110.

[Chesi et al., 2004] Chesi, G., Hashimoto, K., Prattichizzo, D., and Vicino, A. (2004).
Keeping features in the field of view in eye-in-hand visual servoing: a switching ap-
proach. IEEE Transactions on Robotics, 20(5):908–914.

[Chin, 2000] Chin, G. J. (2000). Flying along a logarithmic spiral. Science,
290(5498):1857.

[Choset et al., 2005] Choset, H., Lynch, K., Hutchinson, S., Kantor, G., Burgard, W.,
Kavraki, L., and Thrun, S. (2005). Principles of Robot Motion. MIT Press, Boston.

[Cobzas and Zhang, 2001] Cobzas, D. and Zhang, H. (2001). Mobile robot localization
using planar patches and a stereo panoramic model. In Vision Interface, pages 04–99,
Ottawa, Canada.

[Comport et al., 2010] Comport, A., Malis, E., and Rives, P. (2010). Real-time quadri-
focal visual odometry. International Journal of Robotics Research, Special issue on
Robot Vision, 29.

[Comport et al., 2004] Comport, A. I., Marchand, E., and Chaumette, F. (2004). Ro-
bust model-based tracking for robot vision. In 2004 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), vol-
ume 1, pages 692–697 vol.1.

[Corke and Hutchinson, 2001] Corke, P. I. and Hutchinson, S. A. (2001). A new parti-
tioned approach to image-based visual servo control. IEEE Transactions on Robotics
and Automation, 17(4):507–515.

[Crick et al., 2011] Crick, C., Jay, G., Osentoski, S., Pitzer, B., and Jenkins, O. C.
(2011). Rosbridge: Ros for non-ros users. In Proceedings of the 15th International
Symposium on Robotics Research.

[Damas and Santos-Victor, 2009] Damas, B. and Santos-Victor, J. (2009). Avoiding
moving obstacles: the forbidden velocity map. In Intelligent Robots and Systems,
2009. IROS 2009. IEEE/RSJ International Conference on, pages 4393–4398.

[Danès et al., 2010] Danès, P., Coutinho, D. F., and Durola, S. (2010). Multicriteria
Analysis of Visual Servos through Rational Systems, Biquadratic Lyapunov Functions,
and LMIs, pages 169–188. Springer London, London.

189

Bibliography

[de la Croix, 2013] de la Croix, J.-P. (2013). Describtion of the Sim I Am robotics sim-
ulator.

[Degani and Wiener, 1991] Degani, A. and Wiener, E. L. (1991). Human factors of
flight-deck checklists: the normal checklist.

[Demissy et al., 2016] Demissy, T., Dujols, L., Lafforgue, G., and Terrier, Y. (2016).
Projet long report - visual servoing.

[Dick, 1982] Dick, P. K. (1982). Blade runner (do androids dream of electric sheep).
1968. NewYork: Del Rey-Ballantine.

[Dijkstra, 1971] Dijkstra, E. W. (1971). A short introduction to the art of programming.

[Drury, 2001] Drury, C. G. (2001). Human factors in aircraft maintenance. Technical
report, DTIC Document.

[Eledath et al., 2007] Eledath, J., Bansal, M., Kreutzer, G., Das, A., Naroditsky, O.,
and English, W. (2007). Darpa urban challenge.

[Ferrucci et al., 2013] Ferrucci, D. A., Levas, A., Bagchi, S., Gondek, D., and Mueller,
E. T. (2013). Watson: beyond jeopardy! Artif. Intell., 199:93–105.

[Fiorini and Shiller, 1998] Fiorini, P. and Shiller, Z. (1998). Motion planning in dynamic
environments using velocity obstacles. The International Journal of Robotics Research,
17(7):760–772.

[Fischler and Bolles, 1981] Fischler, M. A. and Bolles, R. C. (1981). Random sample
consensus: A paradigm for model fitting with applications to image analysis and
automated cartography. Commun. ACM, 24(6):381–395.

[Fleurmond, 2015] Fleurmond, R. (2015). Asservissement visuel coordonné de deux bras
manipulateurs. PhD thesis, University of Toulouse, France.

[Folio, 2007] Folio, D. (2007). Stratégies de commande référencées multi-capteurs et
gestion de la perte du signal visuel pour la navigation d’un robot mobile. PhD thesis,
University of Toulouse, France.

[Folio and Cadenat, 2005] Folio, D. and Cadenat, V. (2005). A controller to avoid both
occlusions and obstacles during a vision-based navigation task in a cluttered environ-
ment. In European Control Conference, pages 3898–3903, Seville, Espagne.

[Ford, 2015] Ford, M. (2015). Rise of the Robots: Technology and the Threat of a Jobless
Future. Basic Books.

[Forsberg and Mooz, 1991] Forsberg, K. and Mooz, H. (1991). The relationship of sys-
tem engineering to the project cycle. In INCOSE International Symposium, volume 1,
pages 57–65. Wiley Online Library.

190

Bibliography

[Forster et al., 2014] Forster, C., Pizzoli, M., and Scaramuzza, D. (2014). Svo: Fast
semi-direct monocular visual odometry. In Robotics and Automation (ICRA), 2014
IEEE International Conference on, pages 15–22. IEEE.

[Fox et al., 1997] Fox, D., Burgard, W., and Thrun, S. (1997). The dynamic window
approach to collision avoidance. IEEE Robotics & Automation Magazine, 4(1):23–33.

[Frey and Osborne, 2013] Frey, C. B. and Osborne, M. A. (2013). The future of em-
ployment: how susceptible are jobs to computerisation. Retrieved September, 7:2013.

[Futterlieb et al., 2014] Futterlieb, M., Cadenat, V., and Sentenac, T. (2014). A naviga-
tional framework combining visual servoing and spiral obstacle avoidance techniques.
In Informatics in Control, Automation and Robotics (ICINCO), 2014 11th Interna-
tional Conference on, volume 02, pages 57–64.

[G. Palmieri and Callegari, 2012] G. Palmieri, M. Palpacelli, M. B. and Callegari, M.
(2012). A comparison between position-based and image-based dynamic visual servo-
ings in the control of a translating parallel manipulator.

[Gans and Hutchinson, 2007] Gans, N. R. and Hutchinson, S. A. (2007). Stable visual
servoing through hybrid switched-system control. IEEE Transactions on Robotics,
23(3):530–540.

[Geraerts and Overmars, 2002] Geraerts, R. and Overmars, M. H. (2002). A compara-
tive study of probabilistic roadmap planners. In Proc. Workshop on the Algorithmic
Foundations of Robotics (WAFR’02), pages 43–57, Nice, France.

[Gerkey and Konolige, 2008] Gerkey, B. P. and Konolige, K. (2008). Planning and con-
trol in unstructured terrain. In ICRA Workshop on Path Planning on Costmaps.

[Grey@youtube.com, 2014] Grey@youtube.com, C. (2014). Humans need not apply.

[Hafez and Jawahar, 2007] Hafez, A. H. A. and Jawahar, C. V. (2007). Visual servoing
by optimization of a 2d/3d hybrid objective function. In Proceedings 2007 IEEE
International Conference on Robotics and Automation, pages 1691–1696.

[Hart et al., 1968] Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A formal basis for
the heuristic determination od minimum cost paths. Systems Science and Cybernetics,
IEEE Transactions on, 4(2):100–107.

[Himmelman, 2002] Himmelman, J. (2002). Discovering Moths: Nightime Jewels in
Your Own Backyard. Down East Books.

[Hutchinson et al., 1996a] Hutchinson, S., Hager, G., and Corke, P. (1996a). A tutorial
on visual servo control. IEEE Trans. on Rob. and Automation, 12(5):651–670.

[Hutchinson et al., 1996b] Hutchinson, S., Hager, G., and Corke, P. (1996b). A tutorial
on visual servo control. Robotics and Automation, IEEE Transactions on, 12(5):651–
670.

191

Bibliography

[Ilon, 1975] Ilon, B. (1975). Wheels for a course stable selfpropelling vehicle movable in
any desired direction on the ground or some other base. US Patent 3,876,255.

[Indiveri, 2009] Indiveri, G. (2009). Swedish wheeled omnidirectional mobile robots:
Kinematics analysis and control. Trans. Rob., 25(1):164–171.

[Jackson et al., 2004] Jackson, J. D., Yezzi, A. J., and Soatto, S. (2004). Tracking
deformable moving objects under severe occlusions. In 2004 43rd IEEE Conference
on Decision and Control (CDC) (IEEE Cat. No.04CH37601), volume 3, pages 2990–
2995 Vol.3.

[Kavraki et al., 1996] Kavraki, L., Svestka, P., Latombe, J.-C., and Overmars, M.
(1996). Probabilistic roadmaps for path planning in high-dimensional configuration
spaces. Robotics and Automation, IEEE Transactions on, 12(4):566 –580.

[Kazemi et al., 2010] Kazemi, M., Gupta, K., and Mehrandezh, M. (2010). Path-
Planning for Visual Servoing: A Review and Issues, pages 189–207. Springer London,
London.

[Kelly, 1994] Kelly, A. (1994). An intelligent predictive controller for autonomous vehi-
cles. Technical report, DTIC Document.

[Kelly, 2013] Kelly, A. (2013). Mobile Robotics: Mathematics, Models, and Methods.
Cambridge University Press.

[Kermorgant and Chaumette, 2011] Kermorgant, O. and Chaumette, F. (2011). Com-
bining ibvs and pbvs to ensure the visibility constraint. In 2011 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pages 2849–2854.

[Khatib et al., 1997a] Khatib, Jaouni, Chatila, and Laumond (1997a). Dynamic path
modification for car-like nonholonomoic mobile robots. In IEEE Int. Conf. on Robotics
and Automation, pages 490–496.

[Khatib et al., 1997b] Khatib, M., Jaouni, H., Chatila, R., and Laumond, J. P. (1997b).
Dynamic path modification for car-like nonholonomic mobile robots. In Proceedings
of International Conference on Robotics and Automation, volume 4, pages 2920–2925
vol.4.

[Khatib, 1985] Khatib, O. (1985). Real-time obstacle avoidance for manipulators and
mobile robots. In Robotics and Automation. Proceedings. 1985 IEEE International
Conference on, volume 2, pages 500–505.

[Koenig and Likhachev, 2005] Koenig, S. and Likhachev, M. (2005). Fast replanning for
navigation in unknown terrain. Robotics, IEEE Transactions on, 21(3):354–363.

[Koren and Borenstein, 1991] Koren, Y. and Borenstein, J. (1991). Potential field meth-
ods and their inherent limitations for mobile robot navigation. In Robotics and Au-
tomation, 1991. Proceedings., 1991 IEEE International Conference on, pages 1398–
1404 vol.2.

192

Bibliography

[Krösea et al., 2001] Krösea, B., Vlassisa, N., Bunschotena, R., and Motomura, Y.
(2001). A probabilistic model for appearance-based robot localization. Image and
Vision Computing, 19:381–391.

[Kurzweil, 2004] Kurzweil, R. (2004). The law of accelerating returns. In Alan Turing:
Life and Legacy of a Great Thinker, pages 381–416. Springer.

[Kurzweil, 2005] Kurzweil, R. (2005). The singularity is near: When humans transcend
biology. Penguin.

[Kurzweil, 2016] Kurzweil, R. (2016). The singularity is near1. Ethics and Emerging
Technologies, page 393.

[Lamiraux et al., 2004a] Lamiraux, F., Bonnafous, D., and Lefebvre, O. (2004a). Reac-
tive path deformation for nonholonomic mobile robots. Robotics, IEEE Transactions
on, 20(6):967 – 977.

[Lamiraux et al., 2004b] Lamiraux, F., Bonnafous, D., and Lefebvre, O. (2004b). Re-
active path deformation for nonholonomic mobile robots. IEEE Transactions on
Robotics, 20(6):967–977.

[Latorella and Prabhu, 2000] Latorella, K. A. and Prabhu, P. V. (2000). A review of hu-
man error in aviation maintenance and inspection. International Journal of Industrial
Ergonomics, 26(2):133–161.

[LaValle, 1998] LaValle, S. M. (1998). Rapidly-exploring random trees: A new tool for
path planning. In, TR 98-11(98-11):98–11.

[Lem, 1973] Lem, S. (1973). The Invincible: science fiction. Sidgwick & Jackson.

[Lepetit and Fua, 2006] Lepetit, V. and Fua, P. (2006). Monocular based-model 3d
tracking of rigid objects. found. Trends. Comput. Graph. Vis, 1.

[Levine, 1996] Levine, W. S. (1996). The Control Handbook. CRC Press Handbook.

[Li, 2009] Li, K.-C. (2009). Handbook of Research on Scalable Computing Technologies,
volume 1. IGI Global.

[Mabrouk and McInnes, 2008a] Mabrouk, M. and McInnes, C. (2008a). Solving the
potential field local minimum problem using internal agent states. Robotics and Au-
tonomous Systems, 56(12):1050–1060.

[Mabrouk and McInnes, 2008b] Mabrouk, M. H. and McInnes, C. R. (2008b). An emer-
gent wall following behaviour to escape local minima for swarms of agents. Interna-
tional Journal of Computer, 35(4):463–476.

[Maintenance,] Maintenance, A. Meeting 11: Human error in aviation maintenance
(1997).

193

Bibliography

[Malin, 2013] Malin, J. L. (2013). Envisioning watson as a rapid-learning system for
oncology. Journal of Oncology Practice, 9(3):155–157.

[Malis, 2008] Malis, E. (2008). Méthodologies d’estimation et de commandea partir d’un
systeme de vision. Habilitation. Nice-Sophia Antipolis.

[Malis et al., 1999] Malis, E., Chaumette, F., and Boudet, S. (1999). 21/2d visual ser-
voing. Robotics and Automation, IEEE Transactions on, 15(2):238–250.

[Mantegh et al., 2010] Mantegh, I., Jenkin, M. R., and Goldenberg, A. A. (2010). Path
planning for autonomous mobile robots using the boundary integral equation method.
Journal of Intelligent & Robotic Systems, 59(2):191–220.

[Marder-Eppstein et al., 2010] Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B.,
and Konolige, K. (2010). The office marathon: Robust navigation in an indoor office
environment. In International Conference on Robotics and Automation.

[Marquez-Gamez, 2012] Marquez-Gamez, D. (2012). Towards visual navigation in dy-
namic and unknown environment: trajectory learning and following, with detection
and tracking of moving objects. PhD thesis, Toulouse University.

[Martinez and Fernández, 2013] Martinez, A. and Fernández, E. (2013). Learning ROS
for robotics programming. Packt Publishing Ltd.

[McBride, 2007] McBride, J. (2007). Darpa urban challenge.

[Mcfadyen et al., 2012a] Mcfadyen, A., Corke, P., and Mejias, L. (2012a). Rotorcraft
collision avoidance using spherical image-based visual servoing and single point fea-
tures. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Con-
ference on, pages 1199–1205.

[Mcfadyen et al., 2012b] Mcfadyen, A., Mejias, L., and Corke, P. (2012b). Visual servo-
ing approach to collision avoidance for aircraft. In 28th Congress of the International
Council of the Aeronautical Sciences 2012, Brisbane Convention & Exhibition Centre,
Brisbane, QLD.

[Mebarki et al., 2010] Mebarki, R., Krupa, A., and Chaumette, F. (2010). 2-d ultra-
sound probe complete guidance by visual servoing using image moments. IEEE Trans-
actions on Robotics, 26(2):296–306.

[Mezouar and Chaumette, 2002] Mezouar, Y. and Chaumette, F. (2002). Avoiding self-
occlusions and preserving visibility by path planning in the image. Robotics and
Autonomous Systems, 41(2–3):77 – 87. Ninth International Symposium on Intelligent
Robotic Systems.

[Moore, 1965] Moore, G. E. (1965). Cramming more components onto integrated cir-
cuits, electronics, volume 38, number 8, april 19, 1965. Also available online from
ftp://download. intel. com/research/silicon/moorespaper. pdf.

194

Bibliography

[Mur-Artal et al., 2015] Mur-Artal, R., Montiel, J. M. M., and Tardós, J. D.
(2015). ORB-SLAM: a versatile and accurate monocular SLAM system. CoRR,
abs/1502.00956.

[Nister et al., 2004] Nister, D., Naroditsky, O., and Bergen, J. (2004). Visual odometry.
In Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the
2004 IEEE Computer Society Conference on, volume 1, pages I–652 – I–659 Vol.1.

[Okabe et al., 2000] Okabe, A., Boots, B., Sugihara, K., and Chiu, S. N. (2000). Spatial
Tessellations - Concepts and Applications of Voronoi Diagrams. John Wiley.

[O’Kane, 2014] O’Kane, J. M. (2014). A gentle introduction to ros.

[Online, 2016] Online, S. S. (2016). Wage statistics for 2014.

[Owen and Montano, 2005] Owen, E. and Montano, L. (2005). Motion planning in dy-
namic environments using the velocity space. In Intelligent Robots and Systems, 2005.
(IROS 2005). 2005 IEEE/RSJ International Conference on, pages 2833–2838.

[Paletta et al., 2001] Paletta, L., Frintrop, S., and Hertzberg, J. (2001). Robust local-
ization using context in omnidirectional imaging. In Robotics and Automation, 2001.
Proceedings 2001 ICRA. IEEE International Conference on, volume 2, pages 2072 –
2077 vol.2.

[Pérez-D’Arpino et al., 2008] Pérez-D’Arpino, C., Medina-Meléndez, W., Fermı́n, L.,
Guzmán, J., Fernández-López, G., and Grieco, J. C. (2008). Dynamic velocity field
angle generation for obstacle avoidance in mobile robots using hydrodynamics. In
Advances in Artificial Intelligence–IBERAMIA 2008, pages 372–381. Springer.

[Petiteville, 2012] Petiteville, A. D. (2012). Navigation référencée multi-capteurs d’un
robot mobile en environnement encombré. PhD thesis, University of Toulouse, France.

[Petiteville et al., 2013] Petiteville, A. D., Durola, S., Cadenat, V., and Courdesses, M.
(2013). Management of visual signal loss during image based visual servoing. Zurich,
Switzerland.

[Quigley et al., 2009] Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs,
J., Wheeler, R., and Ng, A. Y. (2009). Ros: an open-source robot operating system.
In ICRA workshop on open source software, volume 3, page 5.

[Rasmussen and Vicente, 1989] Rasmussen, J. and Vicente, K. J. (1989). Coping with
human errors through system design: implications for ecological interface design. In-
ternational Journal of Man-Machine Studies, 31(5):517–534.

[Rösmann et al., 2012] Rösmann, C., Feiten, W., Wösch, T., Hoffmann, F., and
Bertram, T. (2012). Trajectory modification considering dynamic constraints of au-
tonomous robots. In Robotics; Proceedings of ROBOTIK 2012; 7th German Confer-
ence on, pages 1–6. VDE.

195

Bibliography

[Rosmann et al., 2013] Rosmann, C., Feiten, W., Wosch, T., Hoffmann, F., and
Bertram, T. (2013). Efficient trajectory optimization using a sparse model. In Mobile
Robots (ECMR), 2013 European Conference on, pages 138–143. IEEE.

[Royer et al., 2007] Royer, E., Lhuillier, M., Dhome, M., and Lavest, J.-M. (2007).
Monocular vision for mobile robot localization and autonomous navigation. Inter-
national Journal of Computer Vision, 74(3):237–260.

[Samson et al., 1991] Samson, C., Espiau, B., and Borgne, M. L. (1991). Robot control:
the task function approach. Oxford University Press.

[Segvic et al., 2009] Segvic, S., Remazeilles, A., Diosi, A., and Chaumette, F. (2009). A
mapping and localization framework for scalable appearance-based navigation. Com-
puter Vision and Image Understanding, 113(2):172–187.

[Shappell and Wiegmann, 2012] Shappell, S. A. and Wiegmann, D. A. (2012). A hu-
man error approach to aviation accident analysis: The human factors analysis and
classification system. Ashgate Publishing, Ltd.

[Sharma and Sutanto, 1997] Sharma, R. and Sutanto, H. (1997). A framework for robot
motion planning with sensor constraints. IEEE Transactions on Robotics and Automa-
tion, 13(1):61–73.

[Shin and Ramanathan, 1994] Shin, K. G. and Ramanathan, P. (1994). Real-time com-
puting: A new discipline of computer science and engineering. Proceedings of the
IEEE, 82(1):6–24.

[Shirai and Inoue, 1973] Shirai, Y. and Inoue, H. (1973). Guiding a robot by visual
feedback in assembling tasks. Pattern recognition, 5(2):99IN3107–106108.

[Siegwart and Nourbakhsh, 2004] Siegwart, R. and Nourbakhsh, I. (2004). Introduction
to autonomous mobile robots. A bradford book, Intelligent robotics and autonomous
agents series. The MIT Press.

[Sim and Dudek, 1999] Sim, R. and Dudek, G. (1999). Learning visual landmarks for
pose estimation. In Robotics and Automation, 1999. Proceedings. 1999 IEEE Inter-
national Conference on, volume 3, pages 1972 –1978 vol.3.

[Sterela and Desfosses,] Sterela and Desfosses, A. Sterela.

[Strickland and Guy, 2013] Strickland, E. and Guy, E. (2013). Watson goes to med
school [2013 tech to watch]. Spectrum, IEEE, 50(1):42–45.

[Tamadazte et al., 2012] Tamadazte, B., Piat, N. L. F., and Marchand, E. (2012). A di-
rect visual servoing scheme for automatic nanopositioning. IEEE/ASME Transactions
on Mechatronics, 17(4):728–736.

196

Bibliography

[Teimoori and Savkin, 2008] Teimoori, H. and Savkin, A. (2008). A method for collision-
free navigation of a wheeled mobile robot using the range-only information. In Amer-
ican Control Conference, 2008, pages 1418–1423.

[Thrun et al., 2000] Thrun, S., Burgard, W., and Fox, D. (2000). A real time algorithm
for mobile robot mapping with applications to multi-robot and 3d mapping. In IEEE
International Conference on Robotics and Automation, San Francisco, CA, USA.

[Ulrich and Borenstein, 1998] Ulrich, I. and Borenstein, J. (1998). Vfh+: Reliable obsta-
cle avoidance for fast mobile robots. In Robotics and Automation, 1998. Proceedings.
1998 IEEE International Conference on, volume 2, pages 1572–1577. IEEE.

[Ulrich and Borenstein, 2000] Ulrich, I. and Borenstein, J. (2000). Vfh*: local obstacle
avoidance with look-ahead verification. In Robotics and Automation, 2000. Proceed-
ings. ICRA ’00. IEEE International Conference on, volume 3, pages 2505–2511 vol.3.

[van den Berg and Overmars, 2005] van den Berg, J. P. and Overmars, M. H. (2005).
Roadmap-based motion planning in dynamic environments. IEEE Transactions on
Robotics, 21(5):885–897.

[Victorino and Rives, 2004] Victorino, A. and Rives, P. (2004). An hybrid representa-
tion well-adapted to the exploration of large scale indoors environments. In IEEE
International Conference on Robotics and Automation, pages 2930–2935, New Or-
leans, USA.

[Wikipedia, 2015] Wikipedia (2015). Watson (computer) — wikipedia, the free encyclo-
pedia. [Online; accessed 24-October-2015].

[Wolf et al., 2002] Wolf, J., Burgard, W., and Burkhardt, H. (2002). Robust vision-
based localization for mobile robots using an image retrieval system based on in-
variant features. In Robotics and Automation, 2002. Proceedings. ICRA ’02. IEEE
International Conference on, volume 1, pages 359 – 365 vol.1.

[Zhang, 1994] Zhang, Z. (1994). Iterative point matching for registration of free-form
curves and surfaces. Int. J. Comput. Vision, 13(2):119–152.

[Zhang et al., 2012] Zhang, Z.-h., Xiong, Y.-s., Fan, P., Liu, Y., and Cheng, M. (2012).
Real-time navigation of nonholonomic mobile robots under velocity vector control.
International Journal of Advanced Robotic Systems, 9.

197

Bibliography

198

	Contents
	List of Figures
	List of Algorithms
	List of Tables
	Abbreviations
	1. Introduction
	1.1. Overview of general robotics context : my point ofview of robotics in the 21st century
	1.1.1. Motivations
	1.1.2. Ethical analysis

	1.2. Air-Cobot project
	1.3. Aims and contributions of this thesis

	2. Navigation Strategy
	2.1. Definition of the navigation processes and related works
	2.1.1. Perception
	2.1.2. Modeling
	2.1.3. Localization
	2.1.4. Planning
	2.1.5. Action
	2.1.6. Decision

	2.2. Description of navigation processes in the Air-Cobot project
	2.2.1. Air-Cobot platform
	2.2.2. The Robot Operating System
	2.2.3. Perception “ exteroceptive” (cameras and lasers) and“proprioceptive” (odometer)
	2.2.4. Modeling: both topological and metric maps
	2.2.5. Absolute and relative localization
	2.2.6. Planning
	2.2.7. The action process
	2.2.8. Decision

	2.3. Instantiation of the navigation processes in Air-Cobot project
	2.3.1. Autonomous approach mode
	2.3.2. Autonomous inspection mode
	2.3.3. Collaborative inspection mode

	2.4. General overview about the navigational mode management and modularity of the framework
	2.4.1. Overview of the management of the navigation modes
	2.4.2. Versatility of the navigation framework

	2.5. Conclusion

	3. Multi Visual Servoing
	3.1. Introduction
	3.1.1. State of the Art of Visual Servoing (VS)
	3.1.2. Contributions
	3.1.3. Outline of the chapter

	3.2. Prerequisites of Visual Servoing
	3.2.1. Robot presentation
	3.2.2. Robot coordinates system
	3.2.3. Robot Jacobian and Velocity Twist Matrix

	3.3. Image-Based Visual Servoing
	3.3.1. Method
	3.3.2. Simulation

	3.4. Position-Based Visual Servoing
	3.4.1. Method
	3.4.2. Simulation

	3.5. Comparison of IBVS and PBVS regarding robustness towards sensor noise on the basis of simulations
	3.5.1. Simulation conditions
	3.5.2. The obtained results

	3.6. The Air-Cobot visual servoing strategy
	3.6.1. Handling the visual signal losses
	3.6.2. Coupling the augmented image with the visual servoing
	3.6.3. PBVS and IBVS switching

	3.7. Experiments on Air-Cobot
	3.7.1. Test environment
	3.7.2. Applying ViSP in the Air-Cobot context
	3.7.3. Experimental tests combining IBVS with PBVS

	3.8. Conclusion

	4. Obstacle avoidance in dynamic environments using a reactive spiral approach
	4.1. Introduction
	4.1.1. Air−Cobot navigation environment
	4.1.2 State of the art of obstacle avoidance
	4.1.3. Introduction to spiral obstacle avoidance
	4.1.4. Structure of Chapter

	4.2. Spiral obstacle avoidance
	4.2.1 Spiral conventions and definition
	4.2.2. Definition and choice of spiral parameters for the obstacle avoidance
	4.2.3. Robot control laws

	4.3 Simulation and experimental results
	4.3.1 Simulation with static obstacles
	4.3.2. Experiments in dynamic environment

	4.4. Conclusion

	5. Conclusion
	5.1. Resume of contributions and project summary
	5.2. Future work and prospects
	5.2.1. Addition of a graphic card
	5.2.2. Using the robot as a platform for autonomous drones
	5.2.3. Rethink the robot drive system
	5.2.4. Incorporation of a HUD on a tablet for the operator
	5.2.5. Real Time capabilities of the platform

	6. Abstract
	Résumé
	Abstract

	A. Robot Transformations and Jacobian Computation
	A.1. Transformations concerning the stereo camera systems
	A.1.1. Transformation to the front cameras system
	A.1.2. Transformation to the rear cameras
	A.1.3. Additional transformations

	A.2. Kinematic Screw
	A.3. Velocity screw
	A.3.1. Solution ”1” of deriving the velocity screw matrix
	A.3.2. a
	A.3.3. Solution ”2” of deriving the velocity screw matrix
	A.3.4. a
	A.3.5. Applying solution ”2” to our problem

	A.4. Interaction matrix
	A.5. Jacobian and Velocity Twist Matrix of Air-Cobot
	A.5.1. extended

	A.6. Air-Cobot Jacobian and velocity twist matrix
	A.6.1. Jacobian - eJe
	A.6.2. Jacobian- eJe reduced
	A.6.3. Velocity twist matrix- cVe

	A.7. Analysis of the Robots Skid Steering Drive on a flat Surface with high Traction
	A.8 ROS-based software architecture in at the end of the project

	Bibliography

