1,066 research outputs found

    3D face recognition using multiview keypoint matching

    Get PDF
    A novel algorithm for 3D face recognition based point cloud rotations, multiple projections, and voted keypoint matching is proposed and evaluated. The basic idea is to rotate each 3D point cloud representing an individualā€™s face around the x, y or z axes, iteratively projecting the 3D points onto multiple 2.5D images at each step of the rotation. Labelled keypoints are then extracted from the resulting collection of 2.5D images, and this much smaller set of keypoints replaces the original face scan and its projections in the face database. Unknown test faces are recognised firstly by performing the same multiview keypoint extraction technique, and secondly, the application of a new weighted keypoint matching algorithm. In an extensive evaluation using the GavabDB 3D face recognition dataset (61 subjects, 9 scans per subject), our method achieves up to 95% recognition accuracy for faces with neutral expressions only, and over 90% accuracy for face recognition where expressions (such as a smile or a strong laugh) and random faceoccluding gestures are permitted

    Integrating Range and Texture Information for 3D Face Recognition

    Get PDF
    The performance of face recognition systems that use two-dimensional images depends on consistent conditions w.r.t. lighting, pose, and facial appearance. We are developing a face recognition system that utilizes three-dimensional shape information to make the system more robust to arbitrary view, lighting, and facial appearance. For each subject, a 3D face model is constructed by integrating several 2.5D face scans from different viewpoints. A 2.5D scan is composed of one range image along with a registered 2D color image. The recognition engine consists of two components, surface matching and appearance-based matching. The surface matching component is based on a modified Iterative Closest Point (ICP) algorithm. The candidate list used for appearance matching is dynamically generated based on the output of the surface matching component, which reduces the complexity of the appearance-based matching stage. The 3D model in the gallery is used to synthesize new appearance samples with pose and illumination variations that are used for discriminant subspace analysis. The weighted sum rule is applied to combine the two matching components. A hierarchical matching structure is designed to further improve the system performance in both accuracy and efficiency. Experimental results are given for matching a database of 100 3D face models with 598 2.5D independent test scans acquired in different pose and lighting conditions, and with some smiling expression. The results show the feasibility of the proposed matching scheme. 1

    3D Face Recognition using Significant Point based SULD Descriptor

    Full text link
    In this work, we present a new 3D face recognition method based on Speeded-Up Local Descriptor (SULD) of significant points extracted from the range images of faces. The proposed model consists of a method for extracting distinctive invariant features from range images of faces that can be used to perform reliable matching between different poses of range images of faces. For a given 3D face scan, range images are computed and the potential interest points are identified by searching at all scales. Based on the stability of the interest point, significant points are extracted. For each significant point we compute the SULD descriptor which consists of vector made of values from the convolved Haar wavelet responses located on concentric circles centred on the significant point, and where the amount of Gaussian smoothing is proportional to the radii of the circles. Experimental results show that the newly proposed method provides higher recognition rate compared to other existing contemporary models developed for 3D face recognition

    From 3D Point Clouds to Pose-Normalised Depth Maps

    Get PDF
    We consider the problem of generating either pairwise-aligned or pose-normalised depth maps from noisy 3D point clouds in a relatively unrestricted poses. Our system is deployed in a 3D face alignment application and consists of the following four stages: (i) data filtering, (ii) nose tip identification and sub-vertex localisation, (iii) computation of the (relative) face orientation, (iv) generation of either a pose aligned or a pose normalised depth map. We generate an implicit radial basis function (RBF) model of the facial surface and this is employed within all four stages of the process. For example, in stage (ii), construction of novel invariant features is based on sampling this RBF over a set of concentric spheres to give a spherically-sampled RBF (SSR) shape histogram. In stage (iii), a second novel descriptor, called an isoradius contour curvature signal, is defined, which allows rotational alignment to be determined using a simple process of 1D correlation. We test our system on both the University of York (UoY) 3D face dataset and the Face Recognition Grand Challenge (FRGC) 3D data. For the more challenging UoY data, our SSR descriptors significantly outperform three variants of spin images, successfully identifying nose vertices at a rate of 99.6%. Nose localisation performance on the higher quality FRGC data, which has only small pose variations, is 99.9%. Our best system successfully normalises the pose of 3D faces at rates of 99.1% (UoY data) and 99.6% (FRGC data)

    Automatic landmark annotation and dense correspondence registration for 3D human facial images

    Full text link
    Dense surface registration of three-dimensional (3D) human facial images holds great potential for studies of human trait diversity, disease genetics, and forensics. Non-rigid registration is particularly useful for establishing dense anatomical correspondences between faces. Here we describe a novel non-rigid registration method for fully automatic 3D facial image mapping. This method comprises two steps: first, seventeen facial landmarks are automatically annotated, mainly via PCA-based feature recognition following 3D-to-2D data transformation. Second, an efficient thin-plate spline (TPS) protocol is used to establish the dense anatomical correspondence between facial images, under the guidance of the predefined landmarks. We demonstrate that this method is robust and highly accurate, even for different ethnicities. The average face is calculated for individuals of Han Chinese and Uyghur origins. While fully automatic and computationally efficient, this method enables high-throughput analysis of human facial feature variation.Comment: 33 pages, 6 figures, 1 tabl

    3-D Face Analysis and Identification Based on Statistical Shape Modelling

    Get PDF
    This paper presents an effective method of statistical shape representation for automatic face analysis and identification in 3-D. The method combines statistical shape modelling techniques and the non-rigid deformation matching scheme. This work is distinguished by three key contributions. The first is the introduction of a new 3-D shape registration method using hierarchical landmark detection and multilevel B-spline warping technique, which allows accurate dense correspondence search for statistical model construction. The second is the shape representation approach, based on Laplacian Eigenmap, which provides a nonlinear submanifold that links underlying structure of facial data. The third contribution is a hybrid method for matching the statistical model and test dataset which controls the levels of the modelā€™s deformation at different matching stages and so increases chance of the successful matching. The proposed method is tested on the public database, BU-3DFE. Results indicate that it can achieve extremely high verification rates in a series of tests, thus providing real-world practicality
    • ā€¦
    corecore