
3D Face Recognition Using Multiview Keypoint Matching

Michael Mayo, Edmond Zhang
Department of Computer Science, University of Waikato, New Zealand

{mmayo, ez1}@cs.waikato.ac.nz

Abstract

A novel algorithm for 3D face recognition based point
cloud rotations, multiple projections, and voted keypoint
matching is proposed and evaluated. The basic idea is
to rotate each 3D point cloud representing an individual’s
face around the x, y or z axes, iteratively projecting the 3D
points onto multiple 2.5D images at each step of the rota-
tion. Labelled keypoints are then extracted from the result-
ing collection of 2.5D images, and this much smaller set of
keypoints replaces the original face scan and its projections
in the face database. Unknown test faces are recognised
firstly by performing the same multiview keypoint extraction
technique, and secondly, the application of a new weighted
keypoint matching algorithm. In an extensive evaluation us-
ing the GavabDB 3D face recognition dataset (61 subjects,
9 scans per subject), our method achieves up to 95% recog-
nition accuracy for faces with neutral expressions only,
and over 90% accuracy for face recognition where expres-
sions (such as a smile or a strong laugh) and random face-
occluding gestures are permitted.

1. Introduction
Face recognition is the one of the most challenging pat-

tern recognition problems. It humbles the most powerful

of computers, and renders the most sophisticated of algo-

rithms intractable. Psychologists, cognitive scientists, and

computer vision scientists have invested decades of research

into solving this problem, with some tremendous advances

– yet face recognition is still largely not understood. Hu-

man beings, on the other hand, know nothing consciously

about how face recognition is performed, yet they solve this

problem adeptly and routinely every day of their lives.

In this paper, we contribute to the state-of-the-art in 3D

face recognition by proposing a novel method for recogni-

tion based on matching and voting keypoints that are ex-

tracted from multiple 2.5D views of each 3D face. Our

method is evaluated on the GavabDB database [1] of 3D

faces.

This paper essentially has three key novel contributions.

Figure 1. Examples of different 2.5D frontal face images generated

after rotating the same 3D point cloud about the x axis by (a) -10◦,

(b) 0◦, and (c) +10◦.

Firstly, rather than taking a single 2.5D projection, we

rotate the point cloud incrementally about its centre of mass,

along one or more of the x, y, and z axes. Then, rather

than taking only a single 2.5D projection, we take multiple

projections.

Figure 1 depicts examples of some 2.5D views taken by

rotating the same 3D point cloud. This, as our results show,

provides significant additional features and dramatically in-

creases face recognition accuracy.

The second main contribution is our new method for key-

point matching. Traditionally, keypoints such as the Scale

Invariant Feature Transform (SIFT) [2] are matched as fol-

lows: if a test image contains at least three (or some other

constant number of) keypoint matches with some target ob-

ject, then the test image is considered to contain, somewhere

in the image, that object.

In face recognition, however, this matching method is

not feasible because faces are all, more or less, visually very

similar. Keypoint matching between two faces yields many

more matches than it would if the two objects were clearly

distinct. The standard approach to keypoint matching there-

fore results in poor recognition performance when it comes

to faces.

We propose instead to match all keypoints in a test image

against all keypoints taken from the multiple 2.5D views

of each labelled point cloud. In other words, we first of

all rotate each training point cloud to project multiple 2.5D

views, and then we extract the keypoints from each view.

We then combine all of the keypoints from all of the views
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into one complete set of labelled keypoints. The original

point cloud and the set of 2.5D images which are now no

longer needed can be discarded.

In order to recognise a individual’s face, then, we firstly

project the face’s point cloud onto one or more 2.5D images

as we did with the training faces, extracting the keypoints.

The closest matching labeled keypoint for each unlabeled

test keypoint is then determined, before each test keypoint

“votes” in a weighted fashion on the class or identity of the

face. All test keypoints, therefore, are utilised in the match-

ing process rather than just a fixed number.

The third and final contribution is our evaluation result.

On the GavabDB database, we demonstrate over 95% ac-

curacy on recognition of faces with neutral and smiling ex-

pressions, and over 90% accuracy on average for situations

where stronger expressions (such as an accentuated laugh)

and random face-occluding gestures are permitted. This is

a new state-of-the-art result on this challenging dataset.

Additionally, we do not rely on any expensive prepro-

cessing techniques such as face detection and cropping, and

facial feature detection (eyes, ears etc) that other systems

employ. Our results therefore represent the minimum per-

formance achievable using only our proposed algorithm,

and further improvements are possible via more preprocess-

ing.

2. Background
In this section, we give brief overviews of the fields of

3D face recognition, and the idea of keypoints and keypoint

matching.

2.1. 3D Face Recognition

3D face recognition, as opposed to the more traditional

2D face recognition, uses a 3D camera such as a laser range

sensor to image a person’s face. Whereas traditional opti-

cal cameras return a 2D intensity image, laser range sensors

typically return a “point cloud” in 3D space. Often these

points are arranged in strips in (x,y) space, with the z coor-

dinate of each point indicating its depth.

Point clouds can be projected onto 2.5D images. A 2.5D

image is, simply, a mapping of the 3D point cloud to a grey

scale image in which the intensity is inversely proportional

to the depth.

Previously, researchers have investigated face recogni-

tion from a single 2.5D projection of a 3D point cloud [3].

The main problem with this approach is that 2.5D images

lose critical information about the face. That is, a point

cloud is a true three-dimensional structure, yet a 2.5D im-

age is still only a two-dimensional structure. If some facial

features are obscured by rotation before the 2.5D image is

projected, then the image consequently will lack that fea-

ture. And even if an image feature is captured in a 2.5D

Figure 2. Examples of 2.5D projections taken of three different

subjects.

projection, it may look different subject to slight variations

in the 3D pose of the point cloud.

It is beyond the scope of this paper to provide a detailed

survey of the area of 3D face recognition here, but the inter-

ested reader is directed to a recent survey paper [3].

2.2. SIFT Keypoint Matching

A good image keypoint, according to Lowe [2], must be

highly distinctive and have a low probability of mismatch.

It should be tolerant to image noise and changes in illu-

mination, and it should also be uniform in the presence of

scaling, rotation, minor changes in viewing direction, and

local distortions.

The SIFT descriptor has, for many years, been the most

well-known and popular choice of keypoint, because it best

satisfies all of these criteria. It also operates only on a grey

scale representation of an image, making it suitable there-

fore for 2.5D images, where there is no colour information

to lose.

Briefly, a SIFT descriptor for a small image patch, for

example of size 4×4, is computed from the gradient vector

histograms of the pixels in the patch. There are 8 possi-

ble gradient directions per pixel, and therefore the total size

of the SIFT descriptor is 4×4×8=128 elements. This fea-

ture vector is normalized to enhance invariance to changes

in illumination, and transformed in other ways to ensure in-

variance to scale and rotation as well.

Although many possible keypoints at different locations

in an image could be computed, only the most distinctive

and invariant ones useful for matching are actually retained.

These often fall on edges, corners, points, or other “interest-

ing” parts of the image; and they can be off many different

sizes and orientations as well.

3. Multiview Keypoint Voting Algorithm

In this section, we describe our proposed approach in

detail.

3.1. 3D Point Cloud to 2.5D Image Set Conversion

SIFT keypoints can only be extracted from 2D images.

Our approach involves converting 3D point clouds into 2D
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images, where image intensity represents depth, i.e. the im-

ages are 2.5D. Keypoints can then be extracted from these

images.

Algorithm 1 gives the basic steps employed to achieve

this for a single projection.

Algorithm 1 3D point to 2.5D image conversion.

Input: A 3D point cloud

1: Compute the extrema of the point cloud along each of

the three axes, obtaining Xmin, Xmax, Ymin, Ymax,

Zmin, Zmax

2: Create a 2D image of width Xmax−Xmin

2 and height
Ymax−Ymin

2
3: Scale the z-value of the points in the cloud to the range

1...255

4: Project points onto the 2D image pixels, setting each

pixel to the scaled z value. Pixels that do not have any

3D points projected on to them are set to zero.

Output: A 2.5D image

For each point cloud, Algorithm 1 is executed multiple

times as we rotate the point cloud incrementally about its x,

y, and z axes. We compute a new 2.5D image with each step

of the rotation, so that by the end of this process, multiple

2.5D images have been extracted.

Figure 3. Examples of different 2.5D images generated after ro-

tating the same 3D point cloud about the x (the rows) and z (the

columns) axes in increments of 10◦.

Figure 3 gives some examples of different 2.5D images

formed from the same point cloud, after rotating it about the

x and z axes in increments of 10◦.
Keypoints are then detected and extracted from this set of

2.5D images rather than from a single image. By extracting

keypoints in this way, more quality keypoints can be found,

and the same feature (for example, a nose), can be captured

by keypoints at many different viewing angles.

3.2. Multiview Keypoint Voting

Keypoints are extracted from both the labeled training

faces and the unlabeled testing faces according to the pro-

cess described in the previous section. Once the keypoints

are extracted from all of the views, the original 3D and 2.5D

data can then be discarded, and the keypoints are combined

into a single set representing one face.

In order to classify the test faces, we use a novel keypoint

voting algorithm depicted in Algorithm 2.

Algorithm 2 The keypoint voting algorithm.

Inputs: (i) A set K of labeled keypoints extracted from the

training images. Keypoints are labeled by the class of the

image they came from; (ii) A set T of unlabeled keypoints

extracted from a single test face using the keypoint extrac-

tion method.

1: for each t ∈ T do
2: Find the closest matching k ∈ K according to the

Euclidean distance function, dist(t, k)
3: Assign the label of k to t
4: Set the weight of t to 1

dist(t,k)

5: end for
6: Each t ∈ T then votes for its labeled class with its

weight.

7: The final classification of the image is the class with the

greatest total vote.

Output: A classification for the unknown test face.

Algorithm 2 does this: the set of test keypoints are

matched to the training keypoints, and the best matching

training keypoint according to Euclidean distance is deter-

mined.

The test keypoint is then given both a class, which is

the same class as its best matching training keypoint, and

a weight, defined as its inverse Euclidean distance from its

best match. A test keypoint that closely matches a training

keypoint, therefore, would have a very high weight; con-

versely, a poorly matching keypoint would have low weight.

Each test keypoint then “votes” on the final classification

of the entire point cloud. The vote is a simple summation of

the weights of the test keypoints by class. The vector of to-

tal weights is then normalised and returned as a probability

distribution.

The unknown face can then be either classified according

to the class with the highest probability, or rejected if the

highest probability is not sufficient. In our evaluations, we

always classified a test face according to its most probable

identity.
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Scan ID Description

frontal1 frontal head orientation, neutral expression

frontal2 frontal head orientation, neutral expression

frontal3 frontal head orientation, strong smiling ex-

pression

frontal4 frontal head orientation, accentuated laugh

frontal5 frontal head orientation, random gesture oc-

cluding face

up frontal but looking up (+35◦), neutral expres-

sion

down frontal but looking down (-35◦) , neutral ex-

pression

right right head profile (+90◦), neutral expression

left left head profile (-90◦), neutral expression
Table 1. Description the nine different images of each individual

in the GavabDB dataset, reproduced and enhanced from [1].

4. Evaluation
We evaluated our 3D face recognition algorithm in three

different experiments. The main question was whether our

method of rotating point clouds to project multiple 2.5D

views really works, and if so, which axes of rotation pro-

duced the best performance. We describe first of all the

dataset used for the experiments, and then experiments and

results themselves.

4.1. Dataset

The GavabDB dataset [1] is one of the available public

benchmark datasets for 3D face recognition. The problem

with most other 3D face datasets is that they contain only

limited variability. For example, some datasets contain vari-

ations in head orientation, but the variations are quite lim-

ited; conversely, others contain scans of faces with expres-

sions, but the expressions are mild.

The GavabDB dataset, in contrast, was deliberately de-

signed with the intent of introducing considerable variabil-

ity in head position, orientation, and facial expression. It is

therefore one of the most challenging 3D face recognition

datasets.

In terms of specification, the dataset consists of scans

from 61 different individuals (45 male, 16 female), with

nine different images of each individual, giving a total of

549 images. Only two of the images per individual are

frontal and expression-neutral; the remainder consist of

strong variations in pose and expression. The descriptions

of each scan are given in Table 1.

4.2. Experiment Overview

In each experiment, we used only one or two facial scans

per subject for training; the remaining seven or eight scans

were reserved for testing. This represents a low proportion

of training data (11% or 22% of the total data respectively),

but in practice it is a realistic scenario, as the cost of obtain-

ing many 3D face images for each individual is likely to be

very high.

In Experiment 1, therefore, we used for training data

only one of the frontal scans with a neutral expression,

specifically, the frontal1 scans as described in Table 1. This

gave a total of 61 training images. Testing was then carried

out on the remaining point clouds.

In Experiment 2, we increased the amount of training

data to two point clouds per subject, selecting the neutral-

expression frontal1 images along with an image with a smil-

ing expression, namely the frontal3 images (see Table 1).

This brought the total number of point clouds used for train-

ing to 122 out of the total 549 scans.

Finally, in Experiment 3, we were interested in seeing

if machine learning could further improve our recognition

rates. Our method already reduces each 3D point cloud to a

set comprising a hundred or so 128-dimensional keypoints.

We wanted to know if a machine learning algorithm could

effectively build a “model” of the keypoints, which could

then label unknown keypoints in a more efficient manner

than direct matching.

4.3. Experiment 1

In this experiment, we used a single neutral-expression

3D face per subject for training, and tested on the remaining

scans. Table 2 depicts the results.

We first of all used our keypoint matching algorithm to

perform face recognition without any rotations at all – that

is, we generate only one 2.5D image per training and testing

face, and match them using the keypoint voting algorithm.

This represents the baseline case as depicted in the second

column of the table. Experimental results are given in the

remaining columns.

The table also provides average recognition rates by scan

type. For example, after training on the frontal1 scans, the

recognition rate for frontal4 scans (an accentuated laugh)

was 57.38%. The results also give the overall average

recognition rate for frontal scans, which in the baseline case

is 66.81%. Finally, the recognition rates for the non-frontal

scans (such as subject looking up, or down, or when the

subject is in profile), as well as an overall average for all the

test cases, is also given.

Unsurprisingly, the recognition rates for side profiles

when the system is trained only on frontal face images is

low, though still above the 1
61 or 1.6% classification rate that

would be expected due to pure chance. We have included

these results for the sake of completeness.

We tested many different types of point cloud rotation

in this experiment. In each column of Table 2, the training

images were rotated in increments of 10◦ starting at -10◦
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Test Data Baseline
Training Images Rotated Training and Test Images Rotated

±10◦x ±10◦y ±10◦z ±10◦xy ±10◦xz ±10◦yz ±10◦x ±10◦y ±10◦z ±10◦xy ±10◦xz ±10◦yz

frontal2 81.97 81.97 83.61 85.25 88.52 86.89 90.16 86.89 90.16 90.16 90.16 91.80 95.08
frontal3 70.49 78.69 75.41 78.69 81.97 85.25 85.25 83.61 80.33 90.16 86.89 86.89 90.16
frontal4 57.38 68.85 63.93 73.77 80.33 81.97 75.41 81.97 80.33 81.97 88.52 90.16 93.44
frontal5 57.38 62.30 67.21 65.57 62.30 72.13 70.49 65.57 72.13 67.21 75.41 80.33 78.69

frontal average 66.81 72.95 72.54 75.82 78.28 81.47 80.25 79.51 80.74 82.38 85.25 87.30 89.34
up 16.39 21.31 19.67 21.31 27.87 24.59 19.67 24.59 29.51 22.95 39.34 39.34 27.87

down 24.59 22.95 31.15 24.59 27.87 31.15 24.59 32.79 32.79 21.31 45.90 49.18 39.34

left 6.56 3.28 3.28 3.28 8.20 9.84 3.28 3.28 8.20 13.11 13.11 11.48 14.75
right 4.92 8.20 4.92 4.92 9.84 8.20 4.92 9.84 6.56 6.56 14.75 11.48 13.11

overall average 30.96 43.44 48.57 43.65 50.00 44.67 49.18 48.36 56.76 50.00 57.58 46.72 56.56

Table 2. Experiment 1 results. The frontal1 images are used for training.

and ending at +10◦. The axes of rotation were either x, y
or z (yielding three 2.5D images per scan) or a pair of axes

(e.g. x and z), yielding nine 2.5D images – see Figure 3 for

an example.

We also tested the idea of rotating the test faces as well

as the training faces in order to obtain more unlabeled test

keypoints – and the results of these runs are given in the

second set of columns in Table 2.

The results clearly show that, by and large, rotating both

the training and test faces about the y and z axes yield the

most accurate recognition rates. For neutral face recogni-

tion, the success rate reaches 95.08% – quite an increase

over the baseline of 81.97%. The average recognition rate

for all the frontal images, where expressions and gestures

are permitted, reaches 89.34% when rotation is utilised

compared to 66.81% in the baseline case.

These results also compare very favourably to other

methods evaluated on the same dataset, for example,

Moreno et al. [5], who reported 78% accuracy on frontal

face recognition.

4.4. Experiment 2

In the second experiment, we tested the idea that “more

is better” by increasing the amount of training data per in-

dividual. The facial images in which the individuals are

smiling (the frontal3 images) were added to the nuetral-

expression frontal1 images as training data. We then re-

peated the same experiment as in the case of Experiment 1.

Table 3 gives the results.

Overall, the table shows frequent increases in recogni-

tion rates, and when the test images are not rotated as well

(the left columns of the table), there is an accuracy boost

of approximately 10% on average for frontal face recogni-

tion. However, the best result from Experiment 1 is never

significently exceeded.

Of interest is the recognition rate for the test images with

the subject laughing (the frontal4 images). The best case

recognition rate for this is 95.16% in this experiment, show-

ing that training on faces with a smiling expression is con-

ducive to also recognizing laughing faces.

4.5. Experiment 3

In Experiment 3, we extracted the keypoints in the nor-

mal way, but instead of performing direct matching for clas-

sification, we instead used machine learning.

The idea behind this was to see if a model built by a

classifier, which would in theory be much smaller in terms

of storage requirements than the keypoints set, could label

the unlabeled keypoints in the test images more effectively

than the direct matching process that we employed in Ex-

periments 1 and 2.

Test Data Baseline
MultiClass C4.5 1 vs. All C4.5

±10◦yz ±10◦yz

frontal2 59.02 83.16 80.33

frontal3 40.98 70.49 73.77
frontal4 27.87 68.85 65.57

frontal5 29.51 57.38 57.38

frontal average 39.35 70.08 69.26
up 13.11 26.23 27.87
down 13.11 34.43 31.15

left 9.84 16.39 14.75

right 9.84 13.11 14.75
overall average 25.41 46.31 45.70

Table 4. Experiment 3 results.The frontal1 images are used for

training.

The particular classifier we chose was C4.5 [4], a pow-

erful and often utilized decision tree learner.

In the first case (MultiClass), we built a single decision

tree from all of the keypoints extracted from all of the train-

ing faces. For problems with a large number of classes (61

in our case), this can result in a very large decision tree be-

ing constructed.

In the second case (1 vs. All), we built one decision tree

per subject, with the positive class being those keypoints

extracted from the subject’s face image, and the negative

class being all of the other keypoints. Unlabeled keypoints

were then predicted by averaging the predictions of each

of the individual trees. This method is more scalable to a

large number of individuals, as it produces many small trees

rather than one large tree.
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Test Data Baseline
Training Images Rotated Training and Test Images Rotated

±10◦x ±10◦y ±10◦z ±10◦xy ±10◦xz ±10◦yz ±10◦x ±10◦y ±10◦z

frontal2 85.48 87.10 90.32 87.10 93.55 93.55 90.32 90.32 91.94 93.55
frontal4 83.87 83.87 87.10 88.71 85.48 91.94 90.32 93.55 95.16 93.55

frontal5 77.42 75.81 80.65 80.65 82.26 85.48 82.26 80.65 87.10 82.26

frontal average 82.25 82.26 86.02 85.49 87.10 90.32 87.63 88.17 91.40 89.79
up 29.03 38.71 35.48 30.65 45.16 41.94 32.26 37.10 35.48 33.87

down 25.81 33.87 32.26 32.26 43.55 38.71 33.87 45.16 45.16 37.10

left 6.45 11.29 11.29 4.84 11.29 11.29 11.29 11.29 9.68 14.52
right 9.68 12.90 9.68 9.68 12.90 14.52 11.29 17.74 11.29 9.68

overall average 45.39 49.08 49.54 47.70 53.46 53.92 50.23 53.69 53.69 52.08

Table 3. Experiment 2 results. The frontal1 and frontal3 images are used for training.

The results of this experiment are given in Table 4. Al-

though there is significant improvement over the baseline

case with no rotation, there is no improvement over the re-

sults achieved in Experiments 1 and 2.

5. Conclusion
The results of all of the experiments demonstrate signif-

icant accuracy increases over the baseline scenarios in all

cases. Especially pleasing is the high recognition rate for

neutral-expression frontal 3D face recognition.

3D face recognition in many ways is a challenging pat-

tern recognition problem. One of the main reasons for this

is simply the volume of data acquired in each instance of

a facial scan. In the GavabDB dataset, for example, each

face consists of 10,000-20,000 3D points. More modern

laser range scanners such as the multi-modal 3D/2D cam-

era developed by Payne et al. [6] can sample images at the

much higher resolution of 500×500 – giving an upper limit

of 250,000 3D points!

Multiple projection-based approaches such as ours are

one means of reducing the amount of data. There are two

types of data reduction in our algrithm: firstly, the point

cloud is reduced to a set of 2.5D views; and secondly, the

views are replaced by a set of labelled keypoints. The ac-

curate recognition results show quite clearly that we are not

discarding significant features during these steps – only the

redundant information is discarded.

Future work in this area will investigate two main av-

enues of enhancement to our algorithm. Firstly, we are

interested in the spatial arrangements of keypoints. In the

present algorithm, keypoints are matched regardless of their

relative positions. Relative proximities and spatial relation-

ships between keypoints, however, must also contain useful

information. For example, two very similar but nonetheless

different faces may be distinguishable only because the dis-

tance between their eyes is slightly different relative to the

position of their nose. In the present approach that considers

only matches, these two faces could not be distinguished.

The second avenue for future research is to further re-

duce the quantity of keypoints that are extracted. Presently,

there are approximately a hundred keypoints extracted per

2.5D image. For matching purposes, however, many of

those keypoints could be discarded. The main question is:

which ones?

To conclude, we have presented and evaluated a new

approach to 3D face recognition based on voted keypoint

matching across multiple views. We are greatly encouraged

by our results and plan to continue research in this exciting

area.
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