495 research outputs found

    CAREER: Automated software understanding for retargeting embedded image processing software for data parallel execution

    Get PDF
    Issued as final reportNational Science Foundation (U.S.

    Alignment: A New Software Architecture Approach to Support Streamlining Business Processes

    Get PDF
    Traditional business structures nowadays have to change fast to keep up with customers needs, which is often not possible due to monolithic software architectures and multiple software systems that do neither respond to process requirements nor interact well. Many existing software systems, however, are too complex and too unrelated to the business to support this change accurately. New ways of software architecture are needed to respond to changing requirements and support the business processes. Information systems have to be integrated into the organization’s structures. It seems that a component-based software architecture, which supports the whole value chain, forms the basis for a business process reorganization to enable changes. In this paper we introduce a modeling approach based on Clabjects. We demonstrate how that approach can be applied to an industrial case in order to streamline and support the business processes. Further, this paper further describes the envisioned business process improvements

    Search based software engineering: Trends, techniques and applications

    Get PDF
    © ACM, 2012. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version is available from the link below.In the past five years there has been a dramatic increase in work on Search-Based Software Engineering (SBSE), an approach to Software Engineering (SE) in which Search-Based Optimization (SBO) algorithms are used to address problems in SE. SBSE has been applied to problems throughout the SE lifecycle, from requirements and project planning to maintenance and reengineering. The approach is attractive because it offers a suite of adaptive automated and semiautomated solutions in situations typified by large complex problem spaces with multiple competing and conflicting objectives. This article provides a review and classification of literature on SBSE. The work identifies research trends and relationships between the techniques applied and the applications to which they have been applied and highlights gaps in the literature and avenues for further research.EPSRC and E

    Generic access to symbolic computing services

    Get PDF
    Symbolic computation is one of the computational domains that requires large computational resources. Computer Algebra Systems (CAS), the main tools used for symbolic computations, are mainly designed to be used as software tools installed on standalone machines that do not provide the required resources for solving large symbolic computation problems. In order to support symbolic computations an infrastructure built upon massively distributed computational environments must be developed. Building an infrastructure for symbolic computations requires a thorough analysis of the most important requirements raised by the symbolic computation world and must be built based on the most suitable architectural styles and technologies. The architecture that we propose is composed of several main components: the Computer Algebra System (CAS) Server that exposes the functionality implemented by one or more supporting CASs through generic interfaces of Grid Services; the Architecture for Grid Symbolic Services Orchestration (AGSSO) Server that allows seamless composition of CAS Server capabilities; and client side libraries to assist the users in describing workflows for symbolic computations directly within the CAS environment. We have also designed and developed a framework for automatic data management of mathematical content that relies on OpenMath encoding. To support the validation and fine tuning of the system we have developed a simulation platform that mimics the environment on which the architecture is deployed

    Kollaboratives Reengineering und Modularisieren von Softwaresystemen

    Get PDF
    Software systems evolve over their lifetime. Changing requirements make it inevitable for developers to modify and extend the underlying code base. Specific requirements emerge in the context of open source software where everybody can contribute and requirements can change over time. In particular, research software is often not structured with a maintainable and extensible architecture. Furthermore, often databases are employed for retrieving, storing, and processing application data. Insufficient knowledge of the actual structure and behavior of such software systems and related databases can entail further challenges. Thus, understanding these software systems embodies a crucial task, which needs to be addressed in an appropriate way to face inevitable challenges while performing software changes. Approaches based on alternative display and interaction concepts can support this task by offering a more immersive user experience. In this thesis, we introduce three complementary approaches to support the evolution and particularly understanding of software systems in different aspects. Our main contributions are (i) an approach named CORAL for enabling collaborative reengineering and modularization of software systems, (ii) a gesture-based, collaborative, and multi-user-featuring Virtual Reality approach named ExplorViz VR for the software city metaphor, and (iii) a database behavior live-visualization approach named RACCOON for database comprehension of software systems. An extensive case study shows that our CORAL approach is capable of supporting reengineering and modularization processes. Furthermore, several lab experiments demonstrate the high usability, and efficiency and effectiveness for solving comprehension tasks when using the visualization within our multi-user VR approach ExplorViz VR. All implementations are available as open-source software on www.explorviz.net. Additionally, we provide an extensive experimental package of our latest VR evaluation to facilitate the verifiability and reproducibility of our results

    A parallel transformations framework for cluster environments.

    Get PDF
    In recent years program transformation technology has matured into a practical solution for many software reengineering and migration tasks. FermaT, an industrial strength program transformation system, has demonstrated that legacy systems can be successfully transformed into efficient and maintainable structured C or COBOL code. Its core, a transformation engine, is based on mathematically proven program transformations and ensures that transformed programs are semantically equivalent to its original state. Its engine facilitates a Wide Spectrum Language (WSL), with low-level as well as high-level constructs, to capture as much information as possible during transformation steps. FermaT’s methodology and technique lack in provision of concurrent migration and analysis. This provision is crucial if the transformation process is to be further automated. As the constraint based program migration theory has demonstrated, it is inefficient and time consuming, trying to satisfy the enormous computation of the generated transformation sequence search-space and its constraints. With the objective to solve the above problems and to extend the operating range of the FermaT transformation system, this thesis proposes a Parallel Transformations Framework which makes parallel transformations processing within the FermaT environment not only possible but also beneficial for its migration process. During a migration process, many thousands of program transformations have to be applied. For example a 1 million line of assembler to C migration takes over 21 hours to be processed on a single PC. Various approaches of search, prediction techniques and a constraint-based approach to address the presented issues already exist but they solve them unsatisfactorily. To remedy this situation, this dissertation proposes a framework to extend transformation processing systems with parallel processing capabilities. The parallel system can analyse specified parallel transformation tasks and produce appropriate parallel transformations processing outlines. To underpin an automated objective, a formal language is introduced. This language can be utilised to describe and outline parallel transformation tasks whereas parallel processing constraints underpin the parallel objective. This thesis addresses and explains how transformation processing steps can be automatically parallelised within a reengineering domain. It presents search and prediction tactics within this field. The decomposition and parallelisation of transformation sequence search-spaces is outlined. At the end, the presented work is evaluated on practical case studies, to demonstrate different parallel transformations processing techniques and conclusions are drawn

    Ernst Denert Award for Software Engineering 2020

    Get PDF
    This open access book provides an overview of the dissertations of the eleven nominees for the Ernst Denert Award for Software Engineering in 2020. The prize, kindly sponsored by the Gerlind & Ernst Denert Stiftung, is awarded for excellent work within the discipline of Software Engineering, which includes methods, tools and procedures for better and efficient development of high quality software. An essential requirement for the nominated work is its applicability and usability in industrial practice. The book contains eleven papers that describe the works by Jonathan Brachthäuser (EPFL Lausanne) entitled What You See Is What You Get: Practical Effect Handlers in Capability-Passing Style, Mojdeh Golagha’s (Fortiss, Munich) thesis How to Effectively Reduce Failure Analysis Time?, Nikolay Harutyunyan’s (FAU Erlangen-Nürnberg) work on Open Source Software Governance, Dominic Henze’s (TU Munich) research about Dynamically Scalable Fog Architectures, Anne Hess’s (Fraunhofer IESE, Kaiserslautern) work on Crossing Disciplinary Borders to Improve Requirements Communication, Istvan Koren’s (RWTH Aachen U) thesis DevOpsUse: A Community-Oriented Methodology for Societal Software Engineering, Yannic Noller’s (NU Singapore) work on Hybrid Differential Software Testing, Dominic Steinhofel’s (TU Darmstadt) thesis entitled Ever Change a Running System: Structured Software Reengineering Using Automatically Proven-Correct Transformation Rules, Peter Wägemann’s (FAU Erlangen-Nürnberg) work Static Worst-Case Analyses and Their Validation Techniques for Safety-Critical Systems, Michael von Wenckstern’s (RWTH Aachen U) research on Improving the Model-Based Systems Engineering Process, and Franz Zieris’s (FU Berlin) thesis on Understanding How Pair Programming Actually Works in Industry: Mechanisms, Patterns, and Dynamics – which actually won the award. The chapters describe key findings of the respective works, show their relevance and applicability to practice and industrial software engineering projects, and provide additional information and findings that have only been discovered afterwards, e.g. when applying the results in industry. This way, the book is not only interesting to other researchers, but also to industrial software professionals who would like to learn about the application of state-of-the-art methods in their daily work

    A Reverse Engineering Methodology for Extracting Parallelism From Design Abstractions.

    Get PDF
    Migration of code from sequential environments to the parallel processing environments is often done in an ad hoc manner. The purpose of this research is to develop a reverse engineering methodology to facilitate systematic migration of code from sequential to the parallel processing environments. The research results include the development of a three-phase methodology and the design and development of a reverse engineering toolkit (abbreviated as RETK) which serves to establish a working model for the methodology. The methodology consists of three phases: Analysis, Synthesis, and Transformation. The Analysis phase uses concepts from reverse engineering research to recover the sequential design description from programs using a new design recovery technique. The Synthesis phase is comprised of processes that compute the data and control dependences by using the design abstractions produced by the Analysis phase to construct the program dependence graph. The Transformation phase consists of processes that require knowledge-based analysis of the program and dependence information produced by the Analysis and Synthesis phases, respectively. Design recommendations for parallel environments are the key output of the Transformation phase. The main components of RETK are an Information Extractor, a Dependence Analyzer, and a Design Assistant that implement the processes of the Analysis, Synthesis, and Transformation phases, respectively. The object-oriented design and implementation of the Information Extractor and Dependence Analyzer are described. The design and implementation of the Design Assistant using C Language Interface Production System (CLIPS) are described. In addition, experimental results of applying the methodology to test programs by RETK are presented. The results include analysis of a Numerical Aerodynamic Simulation (NAS) benchmark program. By uniquely combining research in reverse engineering, dependence analysis, and knowledge-based analysis, the methodology provides a systematic approach for code migration. The benefits of using the methodology are increased comprehensibility and improved efficiency in migrating sequential systems to parallel environments

    Towards a Generic Governance Model for Service Oriented Architectures

    Get PDF
    Over the past years, Service-oriented Architecture (SOA) Systems have been recognized more and more as a serious alternative to common monolithic systems for Enterprise Architectures (EA). An SOA provides a flexible means of effectively mapping business processes to IT processes. However, large IT systems require consistent leadership – IT Governance. For SOAs, governance faces new challenges. A number of different approaches for SOA Governance Frameworks exist, which differ extensively in scope and capability, as most of them are product-driven and developed by software companies. In this paper, we outline and compare existing SOA Governance approaches and present our approach - a Generic Governance Model for SOA
    corecore