14 research outputs found

    Comparison Data Traffic Scheduling Techniques for Classifying QoS over 5G Mobile Networks

    Get PDF
    Enhancing Quality of Service (QoS) in mobile networks is the key aim for mobile operators. Mobile networks transport several forms of data traffic for real-time applications (i.e., video monitoring). These applications need to get the advantage of QoS adaptation. Numerous scheduling techniques are utilized at the router to assure the QoS of the mobile networks. Upcoming 5G mobile networks will be launched; hence, Human-Type-Communication (HTC) and Machine-to-Machine (M2M) data traffic are expected to increase dramatically over mobile networks, which results in growing the capacity and raising high data rates. These networks are expected to face challenges in cases of Radio Access Network (RAN) overload and congestion due to the massive smart devices data traffic with various QoS requirements. This paper presents a comparison for data traffic scheduling techniques, which are Priority Queuing (PQ), First-In-First-Out (FIFO) and Weighted Fair Queuing (WFQ). We consider to select a suitable data traffic scheduling technique in terms of QoS provisioning and helping 5G network, also we propose models and algorithms for efficiently utilized the smallest unit of a RAN in a relay node by aggregating and slicing the data traffic of several M2M devices

    Data Traffic Model in Machine to Machine Communications over 5G Network Slicing

    Get PDF
    The recent advancements in cellular communication domain have resulted in the emergence of Machine-to-Machine applications, in support of the wide range and coverage provision, low costs, and high mobility. 5G network standards represent a promising technology to support the future of Machine-to-Machine data traffic. In recent years, Human-Type-Communication traffic has seen exponential growth over cellular networks, which resulted in increasing the capacity and higher data rates. These networks are expected to face challenges such as explosion of the data traffic due to the future of smart devices data traffic with various Quality of Service requirements. This paper proposes a novel data traffic aggregation model and algorithm along with a new 5G network slicing based on classification and measuring the data traffic to satisfy Quality of Service for smart systems in a smart city environment. In our proposal, 5G radio resources are efficiently utilized as the smallest unit of a physical resource block in a relay node by aggregating the data traffic of several Machine-to-Machine devices as separate slices based on Quality of Service for each application. OPNET is used to assess the performance of the proposed model. The simulated 5G data traffic classes include file transfer protocol, voice over IP, and video users

    GROUP BASED ALGORITHM TO MANAGE ACCESS TECHNIQUE IN THE VEHICULAR NETWORKING TO REDUCE PREAMBLE ID COLLISION AND IMPROVE RACH ALLOCATION IN ITS

    Get PDF
    ABSTRACT Intelligent transportation system (ITS) is an application which provides intelligence to the transportation and traffic management systems. Although the word ITS applies to all systems in the transportation but as per the European union directive it is the application of Information and communication technology in the field of transportation is defined as ITS. The communication technology has evolved greatly today from 2G/3G to long term evolution (LTE). In this paper we focus on the LTE and its application in the ITS. Since LTE offers excellent QoS, wide area coverage and high availability it is a preferred choice for vehicle to infrastructure (V2I) service. At the same time the LTE customer base is increasing day by day which results in congestion and accessing the network to send or request resources becomes difficult. In this paper we have proposed a group based node selection algorithm to reduce the preamble ID collision otherwise this uncoordinated preamble ID transmission by vehicle node (VN) will eventually clog the network and there will be a massive congestion and re-transmissions attempts by VNs to obtain the random access channel (RACH). KEYWORDS Intelligent transportation system (ITS), Long term evolution (LTE), Mobile ad hoc network (MANET), Vehicle ad hoc network (VANET), Vehicle to infrastructure (V2I), Vehicle to vehicle (V2V), Random access channel (RACH)

    Delay models for static and adaptive persistent resource allocations in wireless systems

    Get PDF
    A variety of scheduling strategies can be employed in wireless systems to satisfy different system objectives and to cater for different traffic types. Static persistent resource allocations can be employed to transfer small M2M data packets efficiently compared to dynamic packet-by-packet scheduling, even when the M2M traffic model is non-deterministic. Recently, adaptive persistent allocations have been proposed in which the volume of allocated resources can change in sympathy with the instantaneous queue size at the M2M device and without expensive signaling on control channels. This increases the efficiency of resource usage at the expense of a (typically small) increased packet delay. In this paper, we derive a statistical model for the device queue size and packet delay in static and adaptive persistent allocations which can be used for any arrival process (i.e., Poisson or otherwise). The primary motivation is to assist with dimensioning of persistent allocations given a set of QoS requirements (such as a prescribed delay budget). We validate the statistical model via comparison with queue size and delay statistics obtained from a discrete event simulation of a persistent allocation system. The validation is performed for both exponential and gamma distributed packet inter-arrivals to demonstrate the model generality

    Blocking analysis of persistent resource allocations for M2M applications in wireless systems

    Get PDF
    Wide area wireless systems conventionally employ dynamic scheduling for stochastic or bursty applications and persistent resource allocations of a given period for deterministic applications such as voice. When considering persistent resource allocations for machine-to-machine (M2M) applications from different markets, a wide range of allocation periods may be required to fully support the diversity of applications. The set of periods supported by the wireless system is a compromise between efficient use of the available resources and supporting as many M2M applications as possible. We consider two schemes: a simply periodic system which offers a limited set of periods with very efficient use of resources, and a complex periodic system which offers a wider range of periods at the cost of lower efficiency. We derive formulae for the blocking probability of these two systems by considering different resource sharing policies of the Erlang Multirate Loss Model (EMLM) and the concepts of packing (when a new persistent allocation is admitted to the system) and repacking (when an existing persistent allocation leaves the system). The theoretical models are verified using a discrete event simulation with variable offered traffic loads. The concepts discussed in this paper are generic, but may find particular application in Long Term Evolution (LTE) and Worldwide Interoperability for Microwave Access (WiMAX) networks for the purposes of system configuration (particularly in terms of the set of periods supported for persistent allocations), resource dimensioning and system performance characterisation

    A Multi-Service Adaptive Semi-Persistent LTE Uplink Scheduler for Low Power M2M Devices

    Get PDF
    The prominence of Machine-to-Machine (M2M) communications in the future wide area communication networks place various challenges to the cellular technologies such as the Long Term Evolution (LTE) standard, owing to the large number of M2M devices generating small bursts of infrequent data packets with a wide range of delay requirements. The channel structure and Quality of Service (QoS) framework of LTE networks fail to support M2M traffic with multiple burst sizes and QoS requirements while a bottleneck often arises from the limited control resources to communicate future uplink resource allocations to the M2M devices. Moreover, many of the M2M devices are battery-powered and require a low-power consuming wide area technology for wide-spread deployments. To alleviate these issues, in this article we propose an adaptive semipersistent scheduling (SPS) scheme for the LTE uplink which caters for multi-service M2M traffic classes with variable burst sizes and delay tolerances. Instead of adhering to the rigid LTE QoS framework, the proposed algorithm supports variation of uplink allocation sizes based on queued data length yet does not require control signaling to inform those allocations to the respective devices. Both the eNodeB and the M2M devices can determine the precise uplink resource allocation related parameters based on their mutual knowledge, thus omitting the burden of regular control signaling exchanges. Based on a control parameter, the algorithm can offer different capacities and levels of QoS satisfaction to different traffic classes. We also introduce a pre-emptive feature by which the algorithm can prioritize new traffic with low delay tolerance over ongoing delay-tolerant traffic. We also build a model for incorporating the Discontinuous Reception (DRX) mechanism in synchronization with the adaptive SPS transmissions so that the UE power consumption can be significantly lowered, thereby extending their battery lives. The simulation and performance analysis of the proposed scheme shows significant improvement over the traditional LTE scheduler in terms of QoS satisfaction, channel utilization and low power requirements of multi-service M2M traffic

    Зв’язок пристроїв IoT без підключення до мережі через мобільні мережі LTE

    Get PDF
    Мета роботи: У цій роботі запропоновано та проаналізовано нову техніку для забезпечення невеликого шлицевого ALOHA-подібного каналу зв'язку, вбудованого в кожному LTE eNB, забезпечуючи засоби для зв'язку без обмежень для пристроїв loT. Дослідження системи зв’язку M2M (“машина-машина”). Представлення нової методики передачі даних M2M через безпроводовий доступ LTE без дорогого обміну сигналами на мобільному ядрі. В ході виконання роботи представлено новий протокол зв'язку без з’єднання для пристроїв loT через мобільні мережі LTE, який не вимагає сигналізації площини управління на EPC.. Проведено моделювання запропонованої моделі.Goal: This paper proposes and analyzes a new technique for providing a small splined ALOHA-like communication channel embedded in each LTE eNB, providing unrestricted communication means for loT devices. Research of the M2M ("machine machine") communication system. Introduction of a new M2M data transmission technique via wireless LTE access without expensive signal exchange on the mobile core. In the course of the work, a new connectionless communication protocol for loT devices via LTE mobile networks was introduced, which does not require control plane signaling on the EPC. The proposed model is modeled

    Technique d'accès pour la communication machine-à-machine dans LTE/LTE-A

    Get PDF
    Machine type communications is seen as a form of data communication, among devices and/or from devices to a set of servers, that do not necessarily require human interaction. However, it is challenging to accommodate MTC in LTE as a result of its specific characteristics and requirements. The aim of this thesis is to propose mechanisms and optimize the access layer techniques for MTC in LTE. For uplink access, we propose two methods to improve the performance of random access in terms of latency: a packet aggregation method and a Transmission Time Interval bundling scheme. To further reduce the uplink latency and enable massive number of connected device, we propose a new contention based access method (CBA) to bypass both the redundant signaling in the random access procedure and also the latency of regular scheduling. For downlink reception, we propose two methods to analyze the performance of discontinuous reception DRX mode for MTC applications: the first with the Poisson distribution and the second with the Pareto distribution for sporadic traffic. With the proposed models, the power saving factor and wake up latency can be accurately estimated for a given choice of DRX parameters, thus allowing to select the ones presenting the optimal tradeoff.Les communications de type machine-à-machine M2M sont considérées comme des formes de communication de données qui ne requièrent pas nécessairement d'interaction humaine. Cependant, ce type de communication n'est pas efficace dans les réseaux cellulaires, en raison de leurs caractéristiques spécifiques, telles que. L'objectif de cette thèse est de proposer des mécanismes et d'optimiser les techniques de la couche d'accès radio LTE pour les communications M2M. Pour l'accès au canal de liaison montante, nous proposons deux méthodes afin d'améliorer la performance d'accès aléatoire en terme de latence et de consommation énergétique: une méthode d'agrégation de paquets et une autre de transmission multiple pendant l'intervalle de temps de transmission. Afin de réduire encore plus le temps de latence de liaison montante et permettre une connexion d'un grand nombre de machines au réseau, nous proposons une nouvelle méthode d'accès basée sur la contention CBA pour éviter d'une part la signalisation redondante pour accéder au canal et d'autre part la latence de l'ordonnanceur. Pour la réception de liaison descendante, nous proposons deux méthodes pour analyser les performances du mécanisme de réception discontinu DRX pour les applications M2M: la première se base sur une distribution de Poisson, la suivante sur une distribution Pareto pour le trafic sporadique. Avec les modèles proposés, le facteur d'économie d’énergie et la latence pour transiter du mode sommeil au mode actif peuvent être estimés avec précision pour un choix donné de paramètres DRX, permettant ainsi de sélectionner ceux permettant d'atteindre le compromis optimal
    corecore