5 research outputs found

    Development, Verification, and Future Applications of a 3-DoF Entry and Descent Simulation Tool

    Get PDF
    With any space related mission, the unknown effects are often some of the most important design considerations. These effects must be accounted for in some fashion, and often lead to mission elements being centered around gathering information on the unknown. It is the purpose of this research to develop and test a tool for simulation of entry, descent, and landing, (EDL) and to present a brief analysis of possible dispersion patterns related to autonomous radiosonde deployment on the surface of Mars. The EDL simulation tool is written in Matlab. The aerodynamic information used by the tool is obtained with the use of HEAT/TK. HEAT/TK is an aerodynamic coefficient solver written by The Boeing Company, and distributed by the US Air Force. The simulation tool is validated against data from the mission planning analysis for Mars Exploration Rovers, as well as telemetry data from the MERs. The results compare favorably with most results being within 7% of the published results. The radiosonde mission is designed to use the MER EDL system. The mission deploys six radiosondes, contained within pods, when the EDL system reaches a specified velocity. Dispersion patterns for the radiosondes follow the expected general trends established by the EDL Monte Carlo analysis

    Uncertainty modeling in higher dimensions

    Get PDF
    Moderne Design Probleme stellen Ingenieure vor mehrere elementare Aufgaben. 1) Das Design muss die angestrebten Funktionalitäten aufweisen. 2) Es muss optimal sein in Hinsicht auf eine vorgegebene Zielfunktion. 3) Schließlich muss das Design abgesichert sein gegen Unsicherheiten, die nicht zu Versagen des Designs führen dürfen. All diese Aufgaben lassen sich unter dem Begriff der robusten Design Optimierung zusammenfassen und verlangen nach computergestützten Methoden, die Unsicherheitsmodellierung und Design Optimierung in sich vereinen. Unsicherheitsmodellierung enthält einige fundamentale Herausforderungen: Der Rechenaufwand darf gewisse Grenzen nicht überschreiten; unbegründete Annahmen müssen so weit wie möglich vermieden werden. Die beiden kritischsten Probleme betreffen allerdings den Umgang mit unvollständiger stochastischer Information und mit hoher Dimensionalität. Der niedrigdimensionale Fall ist gut erforscht, und es existieren diverse Methoden, auch unvollständige Informationen zu verarbeiten. In höheren Dimensionen hingegen ist die Anzahl der Möglichkeiten derzeit sehr begrenzt. Ungenauigkeit und Unvollständigkeit von Daten kann schwerwiegende Probleme verursachen - aber die Lage ist nicht hoffnungslos. In dieser Dissertation zeigen wir, wie man den hochdimensionalen Fall mit Hilfe von "Potential Clouds" in ein eindimensionales Problem übersetzt. Dieser Ansatz führt zu einer Unsicherheitsanalyse auf Konfidenzregionen relevanter Szenarien mittels einer Potential Funktion. Die Konfidenzregionen werden als Nebenbedingungen in einem Design Optimierungsproblem formuliert. Auf diese Weise verknüpfen wir Unsicherheitsmodellierung und Design Optimierung, wobei wir außerdem eine adaptive Aktualisierung der Unsicherheitsinformationen ermöglichen. Abschließend wenden wir unsere Methode in zwei Fallstudien an, in 24, bzw. in 34 Dimensionen.Modern design problems impose multiple major tasks an engineer has to accomplish. 1) The design should account for the designated functionalities. 2) It should be optimal with respect to a given design objective. 3) Ultimately the design must be safeguarded against uncertain perturbations which should not cause failure of the design. These tasks are united in the problem of robust design optimization giving rise to the development of computational methods for uncertainty modeling and design optimization, simultaneously. Methods for uncertainty modeling face some fundamental challenges: The computational effort should not exceed certain limitations; unjustified assumptions must be avoided as far as possible. However, the most critical issues concern the handling of incomplete information and of high dimensionality. While the low dimensional case is well studied and several methods exist to handle incomplete information, in higher dimensions there are only very few techniques. Imprecision and lack of sufficient information cause severe difficulties - but the situation is not hopeless. In this dissertation, it is shown how to transfer the high-dimensional to the one-dimensional case by means of the potential clouds formalism. Using a potential function, this enables a worst-case analysis on confidence regions of relevant scenarios. The confidence regions are weaved into an optimization problem formulation for robust design as safety constraints. Thus an interaction between optimization phase and worst-case analysis is modeled which permits a posteriori adaptive information updating. Finally, we apply our approach in two case studies in 24 and 34 dimensions, respectively

    Mars Exploration Rover: Launch, Cruise, Entry, Descent, and Landing

    No full text
    This viewgraph presentation reviews the launch, cruise, entry, descent and landing of the Mars Exploration Rovers that occured in 2003

    Mars Exploration Rover: launch, cruise, entry, descent, and landing

    No full text

    Mars Exploration Rover : launch, cruise, entry, descent, and landing.

    No full text
    corecore