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Uncertainty modeling in higher
dimensions: Towards robust design

optimization

Abstract

Modern design problems impose multiple major tasks an engineer has to ac-
complish.

• The design should account for the designated functionalities.

• It should be optimal with respect to a given design objective.

• Ultimately the design must be safeguarded against uncertain perturba-
tions which should not cause failure of the design.

These tasks are united in the problem of robust design optimization giving rise
to the development of computational methods for uncertainty modeling and
design optimization, simultaneously.

Methods for uncertainty modeling face some fundamental challenges: The
computational effort should not exceed certain limitations; unjustified assump-
tions must be avoided as far as possible. However, the most critical issues
concern the handling of incomplete information and of high dimensionality.
While the low dimensional case is well studied and several methods exist to
handle incomplete information, in higher dimensions there are only very few
techniques. Imprecision and lack of sufficient information cause severe diffi-
culties – but the situation is not hopeless.

In this dissertation, it is shown how to transfer the high-dimensional to
the one-dimensional case by means of the potential clouds formalism. Using
a potential function, this enables a worst-case analysis on confidence regions
of relevant scenarios. The confidence regions are weaved into an optimization
problem formulation for robust design as safety constraints. Thus an inter-
action between optimization phase and worst-case analysis is modeled which
permits a posteriori adaptive information updating. Finally, we apply our
approach in two case studies in 24 and 34 dimensions, respectively.
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Chapter 1

Background

Modern technologies increasingly employ computational mathematics as a fun-
damental part of engineering activities. For example, the construction of a
vehicle or a building requires the design to satisfy constraints on the func-

tionality and reliability of the designed object. In other words, the object
should serve the purpose planned by the engineer and should continue to do
so also under uncertain, adverse conditions that may show up during utiliza-
tion. Hence the engineer faces the task to qualify his creation as robust, i.e.,
to be safeguarded against worst-case scenarios. To this end the engineer takes
into account uncertain perturbations in his calculations by way of specialized
engineering computing methods.

Where do uncertainties originate from? Uncertainty can be imposed by
measurements, especially cutting edge measurements. Here the calibration of
the measurement device is the critical issue. Uncertainty is involved when
estimating or predicting loads and stress on a construction. These are time
variant uncertainties emerging as a structure faces several modifications dur-
ing its lifetime. Changes in its usage, maintenance, material change due to
chemical reactions all affect the structure to an unknown extend.

Whenever humans are involved in the production or employment of the
designed object human errors can occur and give rise to uncertain scenarios.
Misuse by non-expert users, or manufacturing errors in some components of
the object may cause partial or complete failure of the design. Manufactur-

1



Chapter 1. Background

ing errors can also be uncontrollable due to variability in the performance of
production devices.

Uncertainty can arise from a lack of statistical data, e.g., if only very few
or no measurements at all exist, as may happen in early design phases. Uncer-
tainties can be provided together with stochastic information, such as distri-
bution functions with parameters which are not precisely known, or moments
of random variables. Expert knowledge sometimes is affected by uncertainties,
in particular in case that no formal description can be given. Unformalized
statements show up, e.g., when an expert cannot specify correlations exactly,
but can formulate qualitative statements, like ’If the quantity a has a large
value then quantity b cannot have a low value’. Thus he is able to exclude
irrelevant scenarios, although he is unable to give a formal description of his
knowledge.

Another source of uncertainty is model uncertainty. Engineers often use
computational input-output models for subsystems of their design. These
models may comprise idealizations, assumptions or simplifications. This leads
to imprecision and uncertainty in the model output which must be taken into
account for a reliable usage of the computational model.

In real-life design problems engineers have to deal with many of these uncer-
tainties. One distinguishes two generic types of uncertainty. If the uncertainty
is irreducible, i.e., if the randomness of uncertain scenarios is system inher-
ent and physically uncontrollable (we mentioned variability of performance of
production devices as an example), one speaks of aleatory uncertainty. If the
uncertainty is reducible, i.e., if it arises from incomplete information or expert
knowledge, one classifies the uncertainty as epistemic.

1.1 Uncertainty handling

Computational methods to handle the uncertainties should enable one to per-
form worst-case analysis on the basis of the available information. The ad-

missible failure probability, i.e., the probability that a worst-case event
causes a design failure, is supposed to be chosen with respect to failure costs.
A rational decision about the design includes a reasonable estimation of failure
costs consistent with the value system of the decision maker, not necessarily
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1.1. Uncertainty handling

linearly associated with money. Admissible failure probabilities in case of a
nuclear power plant, for example, should be significantly lower than for an
ink-jet printer in some office. Modern technology frequently requires very low
failure probabilities. Having fixed an admissible failure probability one seeks
to determine computationally whether a given design fails at most with the
allowed failure probability. If not the design is rejected.

The advantage of computational mathematics is that a method (e.g., to
determine failure probabilities) formulated on a mathematical basis is applica-
ble to a whole class of design problems and is developed to provide consistent
results, i.e., equivalent problems lead to the same worst-case analysis. Am-
biguity of the results, however, may be caused by unformalized, subjective
or incomplete information, and may compromise consistency to a certain de-
gree. Depending on the input information available for a design problem one
identifies the problem class and applies a suitable method for that class. It
is just like choosing the appropriate tool from a toolbox. This point of view
can be described as a toolbox philosophy, cf. Nguyen [120]. This strategy
to solve a problem is defined by the problem itself and the characteristics of
the uncertainties involved. Thus different approaches to uncertainty modeling
do not contradict each other, but rather constitute a mutually complementing
framework.

There are some important questions which define a problem class and
should be considered for each method of uncertainty handling: Which as-
sumptions have been made? Are the assumptions justified?

For example, one may assume stationarity for random processes, or the
Markov property. One may assume existence of a measure, say, in form of a
given distribution function. One may assume independence. One may assume
a uniform distribution for a random variable which is known to lie in a given
interval, or a normal distribution for random variables where the distribution
is actually unknown and only mean and variance are available.

In real-life applications many assumptions are difficult to justify rationally,
with possibly drastic consequences. It can be shown that the normal distri-
bution assumption can lead to critical underestimation of failure probabilities
which can be bounded rigorously from a generalized Chebyshev inequality, cf.
Section 2.1.3.
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Chapter 1. Background

This leads to the next important question: the reliability and assessment of
the results from real applications of the methods. The results can be rigorous,
i.e., verified on the basis of a mathematical proof. They can be approximate,
i.e., non-rigorous, but known to be close enough to the correct result. They
can be heuristic, i.e., no guarantee for correct results and no rigorous error
estimation can be given.

Another criterion for methods of uncertainty modeling is the computational
effort. Sometimes computations are so expensive that they exceed any limit
on time an engineer can afford to wait for a result. Hence the related methods
are not applicable to any real-life problems or only to a very small class of
problems.

A further question related to uncertainty methods is the information type
that can be handled with the method. Information can be provided, e.g., as
statistical data, distribution functions, expert knowledge etc.. Some methods
reduce the information given, marginal distribution functions are simplified
to intervals. This entails a loss of valuable information which would actually
be available, but is not at all involved in the uncertainty model. On the
contrary some methods estimate joint distributions from scarce statistical data,
thus suggesting more information than actually exists. Closely related is the
ultimate question about the methods, namely, how they treat imprecise or
incomplete information. How does the quality of the method respond to a
lack of information and to the dimensionality of the problem to solve?
The dimension of a problem is determined by the number of uncertain variables
involved. In some real-life design problems the dimension is low (say, smaller
than about 5). In many problems, however, the dimension is significantly
higher.

The low dimensional case is well studied. Reliable methods exist, originat-
ing from traditional modeling of uncertainty with classical probability theory.
Issues with computational effort are almost absent and caused only by the
complexity of the underlying system model of a specific problem rather than
by the uncertainty model. Many methods start from the well known concept
of only one-dimensional probability distributions or densities. This enables the
straightforward computation of safety factors, cf. Section 2.1.5, or more elab-
orate approaches like reliability methods [31], [134]. Unfortunately in methods
using classical probability theory the precise knowledge of distribution function
is essential, so they turn out to be very sensitive to a lack of information.
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1.1. Uncertainty handling

Lack of information causes problems in probabilistic computations for some
simple reasons. For instance, suppose we are given two uncertain quantities a
and b. The available information comes from an expert who tells us that a is
uniformly distributed in the interval [1, 2] and that b is a standard normally
distributed random variable. Even in this very simple situation we cannot de-
termine the distribution of c := a+ b as we do not know the joint distribution
of a and b, but only their marginal distributions. Finding bounds on the dis-
tribution of functions of random variables, or bounds on failure probabilities,
given imprecise or incomplete information supplemented by expert statements
is a current research field, also in low dimensions. In this field the possibly
most prominent methods are p-boxes, cf. Berleant & Cheng [10], Ferson

[45], Dempster-Shafer theory, cf. Dempster [28], Shafer [144], and fuzzy
sets, cf. Dubois & Prade [34], Zadeh [169]. Powerful statistical tools, like
Kolmogorov-Smirnov bounds on empirical distributions [82], are available to
develop advanced methodologies in low dimensions.

The high-dimensional case – appearing frequently in real-life applications
– comprises severe difficulties. High-dimensionality can cause computations
to become very expensive, with an effort growing exponentially with the di-
mension in many cases. This phenomenon is famous as the curse of dimen-

sionality, cf., e.g., Koch et al. [80]. Even given the full knowledge about
a joint distribution the numerical computation of error probabilities may be
very time consuming, if not impossible. Moreover, rigorous computation or
(preferably tight) bounding of failure probabilities can only be done in very
few cases because the space of possible scenarios is too large. In higher dimen-
sions full probabilistic models need to estimate high-dimensional distributions
for which rarely sufficient data are available. Frequently it is just the other
way around. Especially in early design phases data are scarce and the lack of
information cannot be handled as reliable as in the low dimensional case (e.g.,
with Kolmogorov-Smirnov bounds on empirical distributions). Collecting a
sufficient amount of statistical data for a formal description of uncertainty for
high-dimensional problems (e.g., joint distributions or correlation information)
is very difficult and rarely possible in practice. Sometimes some information
can be obtained for 1D or 2D projections of the higher dimensional probability
space. For example, information can be available in form of safety margins, i.e.,
intervals on single uncertain variables chosen without any formal knowledge,
merely based on experience of experts. Or marginal distributions are given
without correlations, but maybe with some vague dependency constraints.
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Chapter 1. Background

Only few approaches exist that tackle the dimensionality issue and prob-
lems with incomplete information at the same time. These techniques can
be based on sensitivity analysis methods towards a dimension reduction, cf.
Oberguggenberger et al. [125], or on optimization over level sets of mem-
bership functions of fuzzy sets, cf. Möller et al. [105], or more generally on
optimization over convex uncertainty regions, cf. Ben-Haim & Elishakoff

[8]. More popular, but less reliable techniques are based on standard simula-
tion methods which apply even in very high dimensions, as the computational
effort they require is independent of the dimension. Unfortunately simula-
tion techniques like Monte Carlo require a large amount of data (actually,
complete knowledge of the probability distribution) and/or runtime to be reli-
able. Otherwise, unjustified assumptions on the uncertainties have to be made.
The number of simulation runs required to safeguard against very small fail-
ure probabilities is known but high, cf. ter Marten et al. [155], in case of
high-dimensionality. Lack of information endangers standard simulation based
methods to critically underestimate the effects of the uncertain tails of prob-
ability distributions and hence failure probabilities, cf. Ferson [44]. Thus
these techniques may fail to protect the design from failures of low probabil-
ity. In many real-life applications the lack of data simply leads to a complete
disregard of any rigorous methods. Often it is argued that the optimal de-
sign does not change whether one uses sophisticated uncertainty methods, or
whether one uses subjective assumptions about safety margins by experts, cf.
Sexsmith [143]. This may be a good argument for many examples. But of
course, in consequence, no understanding and awareness of the sensitivity of
the optimal design to the uncertainties can be developed by the specialists
– and the danger of drastically underestimating worst-cases is always
imminent.

We see on the one hand that the research field of uncertainty modeling in
high dimensions given incomplete information has not yet matured very much
– a lot of research still has to be dedicated to that field. On the other hand,
however, the same situation in one dimension is already well-understood. We
will follow the intuitive idea to transfer the higher dimensional case to the uni-
variate case via the concept of potential clouds [59], [60], [116]. According
to the toolbox philosophy mentioned previously we endeavor to develop a tool
that can be applied to high-dimensional problems lacking sufficient stochastic
information towards robustness in design optimization. We want to proceed in
a computationally attractive fashion, reducing calculations to tractable global
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1.2. Design optimization

optimization and constraint satisfaction problems. We should be able to in-
corporate the information which is typically available in real-life applications.
As we remarked, this includes safety margins, marginal distributions, sample
data, and knowledge of experts who can provide formal and non-formal state-
ments, and iterative information updates from assessing interim results. Many
uncertainty models can only handle a certain type of information, but we will
try to integrate in our methods as much of the available information as pos-
sible. Finally we wish to present a reliable and tractable worst-case analysis
for the given high-dimensional information. The clouds formalism will give us
means to determine a nested collection of confidence regions parameterized by
the confidence level α. Thus we provide an instrument to support an engineer
in the validation of a design, when he has to qualify the design as robust at
the chosen confidence level.

1.2 Design optimization

In many design processes, robustness and design optimization are two separate
steps. First, an optimal design is elaborated, e.g., fixing uncertain variables
at their nominal values and optimizing given design objectives like minimal
cost or minimal mass subject to given design constraints. Second, the design
point is investigated for robustness by worst-case analysis with some suitable
uncertainty model. The first step requires an algorithm that finds an opti-
mal design point autonomously, i.e., merely computationally without human
intervention.

For example, let us consider the case of spacecraft design. The design of
a spacecraft is a demanding challenge. Several different engineering fields are
addressed. This fact is summarized in the term multidisciplinarity. The
multidisciplinarity and general complexity of spacecraft design make it diffi-
cult to obtain a complete survey and a deep understanding of the whole design
process. An interaction between the involved disciplines is necessary. The re-
sulting overall optimization is known as multidisciplinary design optimization
(MDO), cf. Alexandrov & Hussaini [1]. MDO benefits particularly from
optimization methods that computationally bridge the gap between different
technical backgrounds.

7



Chapter 1. Background

Design optimization imposes optimization problem formulations of most
complex nature, like mixed integer nonlinear programming (MINLP)
with strong nonlinearities and even discontinuities. Additionally, since the
people who implement the underlying model for the design are often working
independently from the optimization phase, we have to cope with black box
optimization. In view of all these difficulties standard optimization techniques
do not apply. There exist no alternatives to heuristic methods yet. Some
make use of a surrogate model, e.g., [37], [72], i.e., simplification to a similar
problem which is easier to optimize. Some make use of enhanced search space
sampling strategies, like genetic algorithms [65]. These methods will not be
discussed in detail in this study.

Robust design optimization is able to perform both the worst-case
analysis and the optimization phase in a single wrap. The combination of
both leads to a bilevel formulation ’finding the best worst-case’. Sometimes
the inner level, i.e., the worst-case search, is also called anti-optimization

by Elishakoff [38].

For instance, remember MDO. In early design phases (very little informa-
tion available) there exists a straightforward approach to integrate robustness
directly into the optimization phase by concurrent engineering. Experts first
assign safety margins, and then decide iteratively to refine or coarsen the mar-
gins on the basis of their judgment while converging to an optimal design.
A certain value in between the safety margins which is deemed most worst-
case relevant is fixed for each variable. These values are propagated within
the whole optimization process. Thus the design arising from this process is
supposed to include robustness intrinsically. Note that the assessment of ro-
bustness is exclusively based on expert knowledge of the engineers who define
and refine the safety margins. The anti-optimization is done simply by as-
signing a fixed value to the uncertain variables. There is no quantification of
reliability, no formal worst-case analysis involved.

Robust design optimization can also be done in different, less subjective
ways. Reliability based design optimization (RBDO) incorporates the uncer-
tainty model of probabilistic reliability methods into the optimization problem,
cf. [78], [108]. Furthermore, design optimization can be based on possibility
theory (PBDO) [109], evidence theory (EBDO) [110], or convex modeling [38].
Sometimes these methodologies allow for updating of information, or they at-
tempt to capture the reasoning of the system experts, thus imitating design

8



1.3. Thesis structure

specialists’ working habits. Essentially, these frameworks are weaving some
uncertainty method into an optimization problem formulation.

Our approach follows the same idea. We will employ the cloud-based un-
certainty modeling to formulate an optimization problem, and we will develop
some methods to solve the optimization problem. Previously we already men-
tioned the difficulties of design optimization. Apart from them, we now face
additionally a bilevel structure imposed by the uncertainties. One of the many
problems coming with a bilevel formulation is the evaluation of the objec-
tive function of the outer level. The outer level objective function is actually
the solution of the inner level problem, hence an optimization problem itself.
Therefore the objective function evaluation can be very expensive.

In view of all the difficulties involved in robust design optimization we will
be limited to the development of heuristic optimization methods. The ba-

sic concept of our approach can be summarized in three fundamental steps
within an iterative framework. First, an expert provides the underlying sys-
tem model, given as a black box model, and all initially available uncertainty
information on the input variables of the model. Second, the information
is processed to generate a potential cloud. For a given confidence level, the
clouds provide confidence regions of relevant scenarios affecting the worst-case
of a design. The confidence regions can be formulated as safety constraints
for the optimization. Third, optimization methods minimize a certain objec-
tive function (e.g., cost, mass) subject to the functional constraints which are
represented by the system model, and subject to the safety constraints from
the cloud. To this end we develop appropriate heuristic optimization tech-
niques. The results of the optimization are returned to the expert, who will
be given an interactive possibility to provide iteratively additional information
triggered by the analysis of the results, and to rerun the procedure, on this
way adaptively improving the uncertainty model.

1.3 Thesis structure

The content of this dissertation is organized as follows. We start in the next
chapter with an overview of different concepts from the field of uncertainty
modeling, ranging from the basic fundamentals of probability theory to state-
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Chapter 1. Background

of-the-art methodologies for handling incomplete information. Afterwards in
Chapter 3 we will go into the details of our preferred uncertainty model which
is based on the clouds formalism. We will figure out how they can be used
to cope with a lack of information, and how the concept of potential function
based clouds helps in higher dimensional cases. Chapter 4 formulates a gen-
eral design optimization problem. The related difficulties will be pointed out,
and we will present a solution approach to overcome these difficulties. Since
the focus of our studies is not on the mere design optimization problem we
will formulate and work towards a solution of the associated robust design
optimization problem in Chapter 5.

Chapter 2, Chapter 3 and Chapter 4 are self-contained and readable inde-
pendently of the other chapters. Chapter 5 weaves the methodology developed
in Chapter 3 into the solution approach given in Chapter 4.

Chapter 6 presents the functionality of our software implementation of the
developed methods. In Chapter 7 we investigate some case studies in which
we apply our new methods to real-life robust design optimization problems.
The less relevant specification details of the case studies are given in Appendix
A and Appendix B.

Finally, the reader will find a summary of all relevant notations, symbols,
and abbreviations at the end of the dissertation.

The major parts of the dissertation have been published. The concept of
potential clouds is presented in Fuchs & Neumaier [60]. Robust design opti-
mization by means of clouds is studied in Fuchs & Neumaier [59]. The case
studies stated in Chapter 7 can be found in Fuchs et al. [58] and Neumaier

et al. [118].
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Chapter 2

An introductory survey of

uncertainty modeling

This chapter presents a survey of conventional and modern approaches to un-
certainty handling. For each method, the notation, the type of input informa-
tion, and the basic concepts will be introduced. We will discuss the necessary
assumptions, the rigor of results, and the sensitivity of the results to a lack
of information. Typically, the more general a method is, the more expensive
it becomes computationally, so we will also comment on computational effort,
especially in higher dimensions. Eventually, we will highlight relationships
between the presented methods and applications in design optimization.

We start with a section on the fundamentals of probability theory and
basic principles used in uncertainty handling. Then we present the several
different approaches to uncertainty handling: reliability methods, p-boxes,
Bayesian methods, Dempster-Shafer theory, fuzzy sets, convex methods, po-
tential clouds, imprecise probabilities, and a list of other methods.

2.1 Basic principles

Throughout this study we assume familiarity with the basic principles of prob-
ability theory. In this section we introduce the notation and fundamental con-
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Chapter 2. An introductory survey of uncertainty modeling

cepts which are the basis for classical methods of uncertainty modeling and of
many modern methods as well.

2.1.1 Probability spaces

The traditional approach to define a probability measure, pioneered by
Kolmogorov [81], is based on a sample space Ω, a σ-algebra A ⊆ 2Ω on Ω,
and a probability measure µ with µ(Ω) = 1 defining the associated probability
space (Ω,A, µ).

A random vector of size n (for n = 1, a random variable) is defined
as a measurable function ε : Ω → Rn, where Rn is equipped with the Borel
σ-algebra B. Any ε(ω) ∈ Rn, ω ∈ Ω, is called a realization of ε. If not
stated otherwise we denote random variables by X and random vectors by
ε = (ε1, . . . , εn)T . Let f : ε(Ω) → Rn be a function such that the composition
f ◦ ε is measurable, then f ◦ ε is a random vector which we will write as f(ε).
The expectation of a random vector ε is given by

〈ε〉 :=

∫
εdµ, (2.1)

if ε is integrable (and undefined otherwise). For random vectors ε, εℓ,

〈aε〉 = a〈ε〉 for a ∈ R, (2.2)

〈ε1 + ε2〉 = 〈ε1〉 + 〈ε2〉, (2.3)

〈1〉 = 1, (2.4)

〈ε〉 ≥ 0 if ε ≥ 0, (2.5)

〈εT ε〉 = 0 ⇒ ε = 0, (2.6)

〈εn〉 → 〈ε〉, if εn → ε monotonically. (2.7)

Using these properties axiomatically, the measure theoretic context can be
completely hidden. In Whittle [165] it is shown that the probability mea-
sure and its relation to expectation via (2.1) can be reconstructed from this
axiomatic basis.

A statement is a mapping st : Ω → {true, false} such that the character-
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istic function 1st with

1st(ω) :=

{
1, if st(ω) = true,

0, if st(ω) = false
(2.8)

is a random variable. If ε is an n-dimensional random vector and A ⊆ Rn we
write loosely ε ∈ A for the statement st with st(ω) = ”ε(ω) ∈ A”.

We denote the probability of the statement st by

Pr(st) := 〈1st〉. (2.9)

Moreover, we denote the probability of the statement ε ∈ A, A ⊆ Rn, by

Pr(A) := Pr(ε ∈ A) = 〈1ε∈A〉 = 〈1A(ε)〉, (2.10)

where 1A is the conventional characteristic function of the set A,

1A(ε) :=

{
1, if ε ∈ A,

0, otherwise.
(2.11)

Note that

Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A ∩ B) (2.12)

for two sets A,B ⊆ Rn.

The probability measure of a random variable X is the measure µX on R
with

∫
f(x)dµX(x) = 〈f(X)〉 (2.13)

for all bounded measurable f : X(Ω) → R. A random variable X is called
discrete if it takes discrete values in R. In this case

∫
f(x)dµX(x) =

∑

xi∈X(Ω)

pif(xi), (2.14)

where pi = Pr(X = xi). The random variable X is called continuous if it has
a probability density function (PDF), a continuous function ρ : R → R+

13



Chapter 2. An introductory survey of uncertainty modeling

such that dµX = ρdx, where dx is the Lebesgue measure on R.

Table 2.1: Some important probability distributions

Notation Description PDF

U(a, b) uniform distribution in [a, b] ρ(x) =

{
1

b−a
if a ≤ x ≤ b,

0 otherwise

N(µ, σ) normal distribution with
mean µ and variance σ2

ρ(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2

N(µ,C) multivariate normal distribu-
tion with mean µ ∈ Rn and
covariance matrix C ∈ Rn×n

ρ(x) =
1√

(2π)n · |C|
e−

1
2 (x−µ)T C−1(x−µ)

L(µ, σ) lognormal distribution, distri-
bution parameters µ and σ
(mean and standard deviation
of the associated normal dis-
tribution)

ρ(x) =
1

σ
√

2π

e−
(ln(x)−µ)2

2σ2

z
for x > 0

Exp(µ) exponential distribution with
mean µ and variance µ2

ρ(x) =

{
1
µ
e−

x
µ if x ≥ 0,

0 if x < 0

Γ(α, β) gamma distribution with
mean αβ and variance αβ2

ρ(x) =
1

βαΓ(α)
xα−1e−

x
β for x > 0

χ2(n) chi2 distribution with n de-
grees of freedom

corresponds to a Γ(
n

2
, 2) distribution

Cauchy(m,Θ) Cauchy distribution with me-
dian m and parameter Θ > 0

ρ(x) =
Θ

π(Θ2 + (x−m)2)

A cumulative distribution function (CDF) of a random variable X is
a monotone function F : R → [0, 1] with

F (t) = Pr(X ≤ t), (2.15)

lim
t→∞

F (t) = 1, (2.16)

lim
t→−∞

F (t) = 0. (2.17)

Table 2.1 shows some examples of continuous CDFs. The relation between the

14
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PDF ρ and the CDF F of a random variable X is given by

F (t) =

∫ t

−∞
ρ(x)dx. (2.18)

Note that F (X) as a random variable is U(0, 1) distributed.

We denote, e.g., FU(0,1) as the CDF of a U(0, 1) distributed random vari-
able, or more generally Fdistribution the CDF of a random variable with the
indexed distribution.

The use of CDFs and PDFs extends to higher dimensions pointwise via

F (t1, . . . , tn) = Pr(X1 ≤ t1, . . . , Xn ≤ tn), (2.19)

F : Rn → [0, 1], and

F (t) =

∫ t1

−∞

∫ t2

−∞
. . .

∫ tn

−∞
ρ(x1, x2, . . . , xn)dxn . . . dx1, (2.20)

ρ : Rn → [0, 1]. F is called the joint CDF, ρ is called joint PDF.

2.1.2 Reliability and failure

To employ probability theory in design safety problems, we need to define
failure probabilities pf and reliability R. The failure probability of a fixed
design is the probability that the random vector ε lies in a set F of scenarios
which lead to design failure. The reliability is the probability that the design
will perform satisfactorily, i.e.,

R := Pr(ε 6∈ F) = 1 − Pr(ε ∈ F) = 1 − pf , (2.21)

so determining R and pf are equivalent problems. A third important notion
is that of a confidence region for ε. A set Cα is a confidence region for the
confidence level α if

Pr(ε ∈ Cα) = α. (2.22)
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The relation between confidence regions and failure probabilities can be seen
as follows. Assume that we have determined a confidence region Cα for the
random vector ε, and Cα does not contain a scenario which leads to design
failure, i.e., Cα ∩ F = ∅. Then Pr(Cα ∪ F) = Pr(Cα) + Pr(F) ≤ 1. Hence
pf = Pr(F) ≤ 1−Pr(Cα) = 1−α, the failure probability is at most 1−α. For
the reliability R = 1 − pf we get R ≥ α.

2.1.3 Incomplete Information

To make use of probabilistic concepts one often assumes that for the random
vector ε involved the joint distribution F is precisely known, provided by an
objective source of information. In many design problems, the sources of in-
formation are merely subjective, provided by expert knowledge. Additionally,
in higher dimensions joint distributions are rarely available, and the typically
available distribution information consists of certain marginal distributions.
A 1-dimensional marginal distribution of the component εi of the random
vector ε is given by

Fi(t) := F (c1, . . . , cn), where ck = ∞ for k 6= i and ck = t for k = i. (2.23)

Often one simply fixes the CDF as normally distributed, arguing with the
central limit theorem: a sufficiently large amount of statistical sample data
justifies the normal distribution assumption. The critical question is, what is
sufficiently large in higher dimensions? The generalized Chebyshev inequality
(2.24) gives rigorous bounds for the failure probability pf = Pr(F), in case
that F(r) = {ε | ||ε||2 ≥ r}, r a constant radius. If the components of
ε = (ε1, . . . , εn) are uncorrelated, have mean 0 and variance 1, we get from
Neumaier [117]

pf = Pr(F) ≤ min(1,
n

r2
), (2.24)

and this bound can be attained.

The failure probability bounds from (2.24) differ significantly from those of
a normal distribution as shown in Figure 2.1. If we assume a multivariate nor-
mal distribution for ε, uncorrelated is equivalent to independent. The bounds
for normal distribution assumption can then be computed from the χ2(n) dis-
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Figure 2.1: Failure probability pf for the failure set F(r) in different dimensions
n, bounded from above by the Chebyshev inequality (solid line) and computed
from a normal distribution (dashed line), respectively.

tribution (a special case of the gamma distribution: χ2(n) = Γ(n
2
, 2)): the

sum of squares of independent standard normally distributed random vari-
ables ε1, . . . , εn is χ2(n) distributed, so pf = 1 − Fχ2(n)(r

2). We see that the
normal distribution assumption can be much too optimistic compared with
the optimal worst-case bounds from (2.24).

An alternative justification of the normal distribution assumption is the
maximum entropy principle, if the available information consists of mean
and standard deviation only. The principle of maximum entropy originates
from information theory, cf. Shannon & Weaver [145], and is utilized in
many fields of applications, cf., e.g., Grandy & Schick [62]. Entropy of a
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random variable X with PDF ρ can be defined by

H(X) := −
∫ ∞

−∞
ρ(x) log(ρ(x))dx. (2.25)

The intuitive meaning of entropy is: the larger the entropy the less informa-
tion (relative to the uniformly distributed improper prior) is reflected in the
probability measure with density ρ. In order to define a probability measure
given incomplete information, the principle of maximum entropy consists in
maximizing the entropy subject to constraints imposed by the information
available. For example, in the case of given mean and standard deviation this
ansatz leads to a normal distribution, in case of given interval information it
leads to a uniform distribution assumption. Note that as soon as we employ
the maximum entropy distribution as a probability measure we pretend to
have more information than actually available. Hence critical underestimation
of failure probabilities may show up.

In a nutshell, the concept of random variables and probability spaces en-
ables one to derive rigorous statements about failure probabilities and relia-
bility. But they require the probability measure to be precisely known. Oth-
erwise, tails of CDFs can be critically underestimated, so the estimation of
failure probabilities becomes quite poor. In Elishakoff [39] one can find a
demonstration that straightforward probabilistic computations are highly sen-
sitive to imprecise information. Imagine a CDF is known almost precisely, but
with a small deviation in some distribution parameter. This may easily lead
to a situation as shown in Figure 2.2, which illustrates the fact that the failure
probability is often underestimated (here by the factor 2).

In the univariate case it is simple to overcome problems with lack of in-
formation. One can apply Kolmogorov-Smirnov (KS) statistics as a powerful
tool. Assume that the uncertainty information is given by empirical data on
a random variable X, e.g., a small set of sample points x1, . . . , xN . The
empirical distribution F̃ is defined by

F̃ (ξ) :=
∑

{j|xj≤ξ}

1

N
. (2.26)

The KS test uses D := max |F̃ − F |, the maximum deviation of F̃ from F , as
its test statistics, and it can be shown that

√
ND converges in distribution to
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Figure 2.2: Small deviation in a distribution parameter (here 20% difference
in the standard deviation of two normal distributions) can lead to critical
underestimation of pf for a random variable X. Here pf is underestimated by
the factor 2, if the design failure set was F = {X | X ≤ −2}.

the Kolmogorov function

φ(λ) :=
+∞∑

k=−∞
(−1)ke−2k2λ2

(2.27)

for N → ∞, cf. Kolmogorov [82]. Conversely, if we choose a fixed confi-
dence level α, we can compute D from

D =
φ−1(α)√

N + 0.12 + 0.11√
N

, (2.28)

cf. Press et al. [131], and thus find a maximum deviation of the unknown

F from the known F̃ . That means that we have non-parametric bounds
[F̃ − D, F̃ + D] enclosing F with confidence α, only given the knowledge
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of x1, . . . , xN .

In case of high-dimensional random vectors, classical probability theory
has no means to cope with scarce data as in the univariate case with KS
bounds. Although multivariate CDFs can be defined as in the 1D case using
the componentwise partial order in Rn, the computational effort for obtaining
higher dimensional PDFs and their numerical integration prohibit the reliable
use of standard probabilistic methods in higher dimensions.

2.1.4 Safety margins

A simple and widely spread non-probabilistic uncertainty model is based on
so-called safety margins. This model is applied when very little informa-
tion is available, in situations where most information is provided as interval
information.

There are different kinds of sources for interval information, e.g., mea-
surement accuracy. Safety margins are a special kind of interval information,
namely one which is provided subjectively by an expert designer, as typically
the case in early design phases. If additional information is available, like
marginal distributions or safety margins from further experts, the safety mar-
gins approach cannot handle it and thus loses some valuable information. Since
safety margins are highly subjective information one cannot expect rigorous
results for the safety analysis. However, engineers hope to achieve reasonably
conservative bounds by using conservative margins.

The first approach – a tool to handle all kinds of interval information –
is interval analysis, cf. [107], [115]. We write X ∈ [a, b] for a ≤ X ≤ b in
the univariate case; in the higher dimensional case ε = (ε1, . . . , εn), we define
interval information ε ∈ [a, b] pointwise via a1 ≤ ε1 ≤ b1, . . . , an ≤ εn ≤ bn,
and call [a, b] a box. We always interpret equalities and inequalities of vectors
componentwise. In the following we present two frequent approaches to handle
the incoming interval information.

Assume that the cost or gain (or another assessment) function s : M ⊆
Rn → Rm, with design space M, models the response function of the design,
and the information about the uncertain input vector ε is given by the bounds

20



2.1. Basic principles

ε ∈ [a, b] ⊆ M. By way of interval calculations one achieves bounds compo-
nentwise on s(ε) – also called an interval extension of s.

Computing an interval extension is often affected by overestimation. A
variable εi ∈ [ai, bi] should take the same value from the interval [ai, bi] each
time it occurs in an expression in the computation of s. However, this is not
considered by straightforward interval calculations, so the range is computed
as if each time the variable εi occurs it can take a different value from [ai, bi],
leading to an enclosure which may be much wider than the range for f(ε).
One possible way out is based on Taylor series, cf. Makino & Berz [95].
Nonlinear interval computations in higher dimensions may become expensive,
growing exponentially with n, but can often be done efficiently and comple-
mented by simulation techniques or sensitivity analysis, as we will see later.
Note that in case that s is given as a black box evaluation routine – as in many
real-life applications – the interval extension cannot be determined rigorously
anyway. Also interval methods are often not applicable as a toolbox, but
require problem specific expert knowledge to overcome overestimation issues.

In the literature we find much utilization of interval computations in un-
certainty modeling. Analyzing the statistics for interval valued samples one
seeks to bound mean or variance, which are then also interval valued, cf.
Kreinovich [87]: Finding an upper bound on the variance is NP-hard, a
lower bound can be found in quadratic time. The field of applications of in-
terval uncertainty for uncertainty handling is vast, e.g., [47], [91], [111], [112],
[129].

Also probability theory proper makes use of non-probabilistic interval un-
certainty models. For example, consider a Markov chain model with transi-
tion matrix (pij), where the transition probabilities pij are uncertain, and only
given as intervals. Then one can build a generalized Markov chain model, cf.
[148], [149]. In [55] one can find a study of imprecise transition probabilities
in Markov decision processes.

The second approach to handle safety margin interval information is a
simplification of the information by fixing each uncertain variable εi ∈
[ai, bi] at the value of one of the safety margins ai or bi, and simply insert
this value, for instance ai for all i, as worst-case scenario to compute the
worst-case design response s(a). The decision where to fix the worst-case
scenario is taken merely subjectively or via a list of relevant cases. A designer
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may overestimate intentionally the subjective safety margin assignments, e.g.,
by adding 20% = 2 · 0.1 to the nominal interval bounds for a variable, i.e.,
ε ∈ [a − 0.1(b − a), b + 0.1(b − a)], in order to be suitably conservative in
computing the worst-case design response.

The computational effort with this latter approach is not very high and
also applies well in higher dimensions. Actually, there is no extra effort in
addition to the cost for evaluating s involved in this simple uncertainty model.

A field where safety margins are very popular is MDO. In many cases, in
particular in early design phases, it is common engineering practice to com-
bine the assignment of safety margins with an iterative process of refining or
coarsening the margins, while converging to a robust optimal design. The re-
finement of the intervals is done by experts who assess whether the worst-case
scenario determined for the design at the current stage of the iteration process
is too pessimistic or too optimistic. The goal of the whole iteration includes
both optimization of the design and safeguarding against uncertainties. The
achieved design is thus supposed to be robust. This procedure enables a very
dynamic design process and quick interaction between the involved disciplines.

All in all, safety margins allow for a simple, efficient handling of uncertain-
ties, also in large-scale problems, if no information is available but an interval
bounding from a single source. Otherwise, we have to look for improved meth-
ods, which can handle more uncertainty information. It should be remarked
that in most cases, even in early design stages, there is more information
available than assumed for the safety margin approach.

2.1.5 Safety factors

Remember the concept of failure probabilities as introduced in Section 2.1.2.
The failure probability was defined as pf = Pr(F), where F was the set of
events which lead to design failure. Let s : Rn → R be the design response of
a fixed design for uncertain inputs ε ∈ Rn. Assume that there is a limit state
ℓ for which s(ε) < ℓ means design failure, and s(ε) ≥ ℓ represents satisfying
design performance, i.e., that F is defined by

F = {ε | s(ε) < ℓ}. (2.29)
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The idea behind safety factors is to build the design in a way that the expected
value of s(ε) is greater than the limit state ℓ > 0 multiplied by a factor
ksafety > 1, called the safety factor. In other words, a design should fulfill

〈s(ε)〉 ≥ ksafetyℓ. (2.30)

where the expectation has to be suitably estimated. For s(ε) ∈ Rm we inter-
pret this definition componentwise for each safety requirement on the design
responses s1, . . . , sm, and ℓ = (ℓ1, . . . , ℓm).

Conversely, suppose that we are given a fixed design and 〈s(ε)〉 ≥ ℓ, s(ε) ∈
R, s ∈ C1. Define the maximal feasible safety factor as k := 〈s(ε)〉

ℓ
. To see the

relation between k and the design failure probability pf we assume that we
have determined pf for the fixed design, then pf = Pr(s(ε) ≤ ℓ) = Fs(ℓ). Here
Fs is the CDF of s(ε) with density ρs given by

ρs(x) = ρ(s−1(x)) · | det s′(x)|−1, (2.31)

with | det s′(x)| the absolute value of the determinant of the Jacobian of s.
Hence we get ℓ = F−1

s (pf ), assuming that Fs is invertible, and

k =
〈s(ε)〉
F−1

s (pf)
. (2.32)

As we are applying standard methods from probability theory to compute
safety factors, precise knowledge of ρ and of the limit state function s(ε)−ℓ
is required to achieve rigorous probability statements.

In the lower dimensional case, if ρ is unknown, but a narrow bounding
interval and certain expectations (e.g., means and covariances) for the random
vector ε are known, safety factors can still be well described approximately.
The expectation of smooth functions s of ε is then achievable from the Taylor
series for s, cf., e.g., Berleant et al. [11], since expectation is a linear operator
on random variables – similar to Taylor models for interval computations.
The problems mentioned in Section 2.1.3 concerning lack of information in the
higher dimensional case remain.

Probabilistic computation of safety factors is not as much affected by sub-
jective opinions of the designer as, for example, safety margins. Safety factors
are directly associated with required reliability. One important subjective de-
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cision is how to fix the required reliability or the admissible failure probability,
respectively. The decision can be based, e.g., on the assessment of failure cost
or on regulations by legislation.

2.1.6 Simulation methods

Simulation methods are ubiquitous tools, and uncertainty handling is one of
their application fields. Simulation means computational generation of sample
points as realizations of a random vector ε, assuming that the joint CDF,
marginal CDFs, or interval bounds are given. Thus the involved not necessarily
probabilistic uncertainties involved are simulated, which gives rise to the term
simulation methods. Simulation methods are also referred to via the terms
random sampling or Monte Carlo sampling.

After sample generation, the design response s : M → Rm is evaluated for
each generated sample point. If all or at least a reasonable majority of the
points meet the safety requirements s(ε) ≥ ℓ, the design is considered to be
safe.

The core part of simulation is the sample generation. There is a large
number of different techniques addressing it. I will shortly introduce three
classical variants, one based on CDF inversion, one based on Markov chains,
and Latin hypercube sampling.

The first one is a straightforward consequence of the CDF definition. As-
sume that we wish to generate a sample for the random variable X given its
continuous invertible joint CDF F . Then use the result that F (X) as a random
variable is U(0, 1) distributed, cf. Section 2.1.1. Hence to generate a sample,
first generate uniformly distributed sample points xu

1 , . . . , x
u
N and transform

them to the distribution of X by F−1(xu
1), . . . , F

−1(xu
N ). This method appar-

ently requires inversion of the CDF and is particularly not applicable in higher
dimensions.

The second variant is based on Markov chains. Let the sequence (Xk)k≥1

be a Markov chain with transition probabilities pij = Pr(Xk+1 = j | Xk = i)
for the states i, j. Here, Pr(Xk+1 = j | Xk = i) denotes the conditional

probability that a transition to the state j is performed given the state i.
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Conditional probability of an event A given the event B is defined as

Pr(A | B) :=
Pr(A ∩ B)

Pr(B)
. (2.33)

The Markov chain is called reversible if pipij = pjpji, where pi is the station-
ary probability of the state i. The result of interest for Markov chain random
sampling is that a reversible Markov chain visits each state i with a relative
frequency equal to its associated equilibrium probability pi. The sampling al-
gorithm constructs a reversible Markov chain using the Metropolis approach,
cf. Metropolis et al. [100], or the more general Hastings method, cf. Hast-

ings [66], by way of a rejection method. The rejection rule assures that it is
not necessary to compute pi, but only the easy-to-compute quotient

pj

pi
of two

different states which is independent of the dimension of Xn. This makes the
method highly attractive in higher dimensions.

Often importance sampling is used to speed up simulation techniques
by a reduction of the number of required simulations, e.g., [69], [79], [155].
The sample points are generated from a different distribution than the ac-
tual distribution of the involved random variables. The sampling density is
weighted by an importance density, e.g., a normal distribution with standard
deviation σ depending on where the most probable failure points are expected,
for instance, depending on the curvature of s. Thus the generated sample is
more likely to cover the ’important’ regions for the safety analysis.

The third variant is the so-called Latin hypercube sampling (LHS), cf.
McKay et al. [98]. First, one determines a finite grid of sizeNn, where N is the
desired number of sample points and n is the dimension of the random vector
for which we want to generate a sample. The grid is preferably constructed
such that the intervals between adjacent marginal grid points have the same
marginal probability. The N sample points x1, x2, . . . , xN , xi = (x1

i , . . . , x
n
i ) ∈

Rn are then placed to satisfy the Latin hypercube requirement,

For i, k ∈ {1, . . . , N}, j ∈ {1, . . . , n} : xj
i 6= xj

k if k 6= i, (2.34)

illustrated in Figure 2.3.

This procedure introduces some preference for a simple structure, i.e., we
disregard correlations, tacitly assuming independence. The advantage of the
method is that the full range of ε is much better covered than with a Markov
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ε1

ε2

Figure 2.3: LHS of 10 sample points in two dimensions for a marginal (sym-
metric) normal distribution of ε1 and a marginal (asymmetric) Γ distribution
of ε2. The intervals between adjacent marginal grid points have the same
marginal probability. The condition (2.34) requires exactly one sample point
in each row and column of the grid.

chain based method, giving deeper insight to the distribution tails of ε. Hence
failure probabilities can be better estimated. Moreover, one does not require
more sample points for higher n, so the application of LHS in higher dimensions
is still attractive.

Considering the rigor of the results one should be aware of the fact that
no estimation of failure probabilities computed from a simulation technique
is a rigorous bound. These methods are based on the law of large numbers,
and their results are only valid for a sufficient amount of sample points. It is
difficult to assess what ’sufficient amount’ means in a higher dimensional space;
one might need to generate an excessively large number of sample points for
estimating very small failure probabilities. That is why simulation methods
are endangered to critically underestimate CDF tails, cf. Ferson [44]. It gets
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particularly dangerous when the CDFs to sample from are unknown.

On the other hand, simulation methods are computationally very efficient,
they can be parallelized [89], and also apply well in higher dimensions, where
almost no alternatives exist at present.

Another important aspect comes with black box response functions s.
They principally impose no additional difficulties applying simulation meth-
ods. However, if the computational cost for evaluating s is very high, problems
will arise as simulation typically requires many evaluations, hence is limited
to simple models for s, often surrogate functions (cf., e.g., [37], [72]) for more
complex models.

As mentioned earlier simulation techniques have many applications, e.g.,
the computation of multi-dimensional integrals. They are related to many
uncertainty methods, also non-probabilistic ones like interval uncertainty.

2.1.7 Sensitivity Analysis

Sensitivity analysis is actually not an independent uncertainty method itself,
it rather applies in several different fields one of which is uncertainty handling.
Sensitivity analysis investigates the variability of a model function output f(ε)
f : Rn → R, ε = (ε1, ε2, . . . , εn)T , with respect to changes in the input variables
εi.

To this end one can follow different approaches, e.g., investigate the partial
derivatives of f if they are available, using ∂f

∂εi as an indicator for the influence
of εi on f . One can also vary a subset of all single input variables εi of f
while keeping all other inputs constant. Then one assesses the impact of this
subset by the variability of the output f by means of some uncertainty methods
introduced in this chapter, e.g., fuzzy set or simulation methods. Thus one
hopes to achieve a dimensionality reduction of f fixing those input variables
which turn out to have little influence on f . Frequently, e.g., Kreinovich

et al. [88], one assumes monotonicity of f and interval uncertainty of ε, since
this enables the use of very fast techniques in higher dimensions, the effort is
growing only linearly in the dimension n.

As a particular case of handling interval uncertainties in high dimensions
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with computationally expensive black box response functions s we mention the
Cauchy distribution based simulation for interval uncertainty, cf. Kreinovich

& Ferson [89]: Assuming that the intervals are reasonably small, e.g., given
as measurement errors, it is reasonable to assume that s is linear. Gener-
ate N independent sample points for the measurement errors from the scaled
Cauchy(0, 1) distribution, which is easy as the inverse CDF F−1

Cauchy(0,1) is
known explicitly in this case. Linear functions of Cauchy distributed vari-
ables are again Cauchy distributed, cf. Weisstein [164], with an unknown
parameter Θ. Having estimated the parameter Θ, e.g., by means of a maxi-
mum likelihood estimator, one can infer probabilistic statements about errors
in s which are Cauchy(0,Θ) distributed. Thus this method exploits the char-
acteristics of a Cauchy distribution to produce results the accuracy of which
can be investigated statistically depending on N , also for low N in case of
expensive s. No derivatives are required, only N black box evaluations of s.

Applications of sensitivity analysis can be found, e.g., in [125], [130].

2.1.8 Transformations to standard normal space

While sampling methods, introduced in the last section, may use transforma-
tions to generate a sample with a desired distribution from a set of a uniformly
distributed sample points, some uncertainty methods instead transform the
probability space to the so-called standard normal space. The transforma-
tion T : Rn → Rn of ε to standard normal space is sought to be constructed
such that u = T (ε) is standard normally distributed (i.e., with the identity as
covariance matrix and mean zero). The transformation T is not unique. Two
ways of constructing computationally are the Rosenblatt transformation [137]
and the Nataf transformation [113].

The Rosenblatt transformation is given by successive conditioning. A
conditional distribution Fi(t

i | t1, t2, . . . , ti−1) is the CDF of εi conditional on
ε1 = t1, ε2 = t2, . . . , εi−1 = ti−1. We define

T (ε) := (Φ−1(F1(ε
1)),Φ−1(F2(ε

2 | ε1)),Φ−1(F3(ε
3 | ε1, ε2)), . . . ,

Φ−1(Fn(εn | ε1, ε2, . . . , εn−1))), (2.35)

where Φ is the univariate standard normal distribution. Unfortunately this
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transformation requires the complete knowledge of the joint or conditional
CDFs of ε. But in practice there is rarely more information available than
marginal distributions or other incomplete information. Thus the Rosenblatt
transformation mainly serves as a theoretical tool.

The Nataf transformation takes random variables with known marginal
distributions and correlations as input. The marginal distributions are joined
via the concept of copulas to achieve a standard normal joint CDF.

The first transformation step is transformation of each variable ε1, . . . , εn

to a uniform distribution via the marginal CDF Fi. The second step is a
copula, cf. Sklar [147]. A copula is a multivariate CDF with uniformly
distributed 1-dimensional marginal CDFs. For the Nataf transformation the
copula is a multivariate N(µ,C) distribution. To this end one first transforms
the marginal CDFs to marginal N(0, σi) distributions Φi, where σi is the given
standard deviation of εi. We have

T (ε) := (Φ−1
1 (F1(ε

1)), . . . ,Φ−1
n (Fn(εn))). (2.36)

It remains to estimate the covariance matrix C of the CDF of u = T (ε). The
covariance matrix has to be determined by suitably transforming the input
correlations, e.g., cf. [121]. If the input information is based on statistical
sample data one can directly estimate C from the transformed data u.

Finally, a principal axis transformation completes the transformation to a
standard normal distribution. Further ways of finding T are studied in [68],
[121].

2.2 Reliability methods

Reliability methods are a very popular approach based on the concepts of re-
liability and failure probability and transformation to standard normal space,
cf. Rackwitz [134]. They represent a significant improvement in computa-
tional modeling of reliability compared to rather old-fashioned methods like
safety factors.

In order to investigate the failure probability pf given the joint CDF F ,
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or at least marginal CDFs, of the involved random vector ε, one first applies
a coordinate transformation u = T (ε) to standard normal space, cf. Section
2.1.8. Then the failure surface F = {s(ε) < ℓ} is approximated and embedded
in an optimization problem to estimate pf .

Once a T is found the new coordinates u live in standard normal space,
that means the level sets of the density of u are {u | ||u||2 = const}, due to the
shape of the multivariate normal distribution. Let s(u) be the design response
in the transformed coordinates. Then the most probable failure point u∗ from
the failure set F = {u | s(u) < ℓ} is the solution of

min
u

||u||2 (2.37)

s.t. s(u) < ℓ

i.e., the point from F with minimal 2-Norm. This critical point is called β-
point, and

pf ≈ Φ(−β) (2.38)

approximates the failure probability, where β = ||u∗||2 and Φ denotes the CDF
of the univariate N(0, 1) distribution.

Thus we have reduced the estimation of pf to the standard problem of
finding T and the remaining problem of solving the optimization problem
(2.37). The latter is a nonlinear optimization problem with all the problems
that come with it. Even if the limit state function is convex, after transforma-
tion it may become a strongly non convex problem in case that the CDF F
significantly differs from a normal distribution. Using a linear approximation
of the limit state function in the computation of β is called first order relia-

bility method (FORM), a quadratic approximation is called second order

reliability method (SORM).

One hopes that a unique solution for β exists; however in general, there is
usually no guaranteed global and unique solution for this optimization prob-
lem. Another problem about this approach is that the β-point found may not
be representative for the failure probability. A discussion on the involved op-
timization problem can be studied in Der Kiureghian & Dakessian [31],
investigating difficulties like multiple β-points. The entailed difficulties require
some caveats assessing the results of reliability methods: the methods may fail
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2.2. Reliability methods

to estimate pf correctly without warning the user. Especially when additional
problems appear – like higher dimensionality or black box response functions
s – the reliability methods become less attractive in many large-scale real-life
situations. It should be remarked that the search for u∗ can be supported
by sampling and simulation techniques like importance sampling, cf. Section
2.1.6, as means for corrections and reduction of the computational effort, e.g.,
[96].

Reliability methods are associated with design optimization within the field
of reliability based design optimization (RBDO). Instead of the often occurring
bilevel problem formulation (i.e., design optimization in the outer level, worst-
case scenario search in the inner level) one formulates a one level problem as
follows, cf. [78], [108]. Let sT = sT (θ, u) = s(θ, T (ε)), the design response
in transformed coordinates, with the controllable design vector θ which fully
specifies the design. Let g(θ) be the objective function, e.g., the cost of the
design or the cost of failure. One seeks to minimize g subject to some reliability
constraint pf ≤ pa where pf = Pr(s(θ, u) < ℓ) is approximated by equation
(2.38), and pa the fixed admissible failure probability. We get

min
θ

g(θ) (2.39)

s.t. Φ(−β) ≤ pa

θ ∈ T

where T is the set of possible design choices. For s ∈ Rm we have several
constraints Φ(−βi) ≤ pa, i = 1, . . . , m.

Usually simulation techniques are employed to solve (2.39), e.g., [139]. In
[126] it is suggested to use Monte Carlo methods to check the probabilistic con-
straints, and to train a neural network to check the deterministic constraints,
or even both probabilistic and deterministic. This can be implemented as par-
allelized computations which improves computation time significantly. In any
case, one should be aware that one uses a soft solution technique on top of a
soft uncertainty model.
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2.3 p-boxes

A p-box – or p-bound, or probability bound – is an enclosure of the CDF of
a univariate random variable X, Fl ≤ F ≤ Fu, in case of partial ignorance
about specifications of F . Such an enclosure enables, e.g., to compute lower
and upper bounds on expectation values or failure probabilities.

There are different ways to construct a p-box depending on the available
information about X. We illustrate it with four examples, cf. Ferson et al.
[46], visualized in Figure 2.4.

1. Assume that the shape of F is given (e.g., normal distribution), and
bounds on distribution parameters µl ≤ µ ≤ µu and σl ≤ σ ≤ σu. The
p-box construction then amounts to finding the extremal possible normal
distributions with parameters in the specified ranges, which might be a
complex optimization problem. However, due to the shape of the normal
distribution one only has to compute 4 distributions for the parameter
combinations (µl, σl), (µu, σu), (µl, σu), (µu, σl), and form the envelope to
determine the enclosure of F – similar simple p-box construction mech-
anisms exist for different convenient distribution shapes like lognormal,
uniform, exponential.

2. Assume that we are only given information about bounds X ∈ [a, b],
and mean µ of X, a < µ < b. To determine Fu(t) consider t ≤ µ. The
maximal CDF at t, that is the maximal probability measure on {X ≤ t}
must satisfy the condition on the average Fu(t)t + (1 − Fu(t))b = µ to
have at least mean µ. We get

Fu(t) =





0 if t < a,

min(1, b−µ

b−t
) if a ≤ t < b,

1 if t ≥ b.

(2.40)

For Fl we get analogously

Fl(t) =






0 if t < a,

max(0, t−µ

t−a
) if a ≤ t < b,

1 if t ≥ b.

(2.41)
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3. Assume that we know a bit more: X ∈ [a, b], and the median m of X.
Then

Fl =
1

2
(1[m,∞] + 1[b,∞]), (2.42)

Fu =
1

2
(1[a,∞] + 1[m,∞]) (2.43)

constructs the p-box.

4. Assume that we have empirical data for X. Then we can construct a
p-box with KS statistics, cf. (2.28), after fixing a confidence level α.
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Figure 2.4: Four examples for p-box construction. Case 1 with µl = 0.9,
µu = 1.1, σl = 0.1, σu = 0.2. Case 2 with a = 1, b = 3, µ = 2.
Case 2 with a = 1, b = 3, m = 2. Case 4 with the empirical sample
{1.0, 3.0, 4.0, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0} and α = 0.95.
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Higher order moment information on X (e.g., correlation bounds) cannot
be handled or processed yet. This is a current research field, cf., e.g., [48].

In Ferson et al. [49] we find an exhaustive description which construction
techniques can be applied to construct a p-box, related to the type of available
information. Moreover, it is illustrated how to construct p-boxes from different
uncertainty models like DS structures (cf. Section 2.5) or Bayesian update
estimates (cf. Section 2.4).

The studies on p-boxes have already lead to successful software implemen-
tations, cf. Berleant & Xie [12], Ferson [45].

To compute functions f of p-boxes, that means we have a p-box for ε1, . . . , εn

and seek a p-box for f = f(ε1, . . . , εn), one first regards f consisting of ele-
mentary arithmetical operations and finds bounds for these expressions. To
this end one discretizes the bounds for ε1, . . . , εn towards a discretization of
the bounds for f , and then finds an expression for the bound of f in terms
of the bounds for ε1, . . . , εn. This can be done for all elementary arithmetic
operations, without independence assumption for ε1, . . . , εn, cf. Williamson

& Downs [166], [167]. Thus the research on arithmetics for random variables
actually builds the foundation of p-boxes. The dependency problem is not
trivial, assume that one has independent random variables X, Y, Z, then the
variables S = X + Y and T = Y · Z are not independent in general.

One learns that the problem of rigorously quantifying probabilities given
incomplete information – as done with probability arithmetic and p-boxes – is
highly complex, even for simple problems, e.g., [90]. Due to their constructions
the methods are rather restricted to lower dimensions and non-complex models
f . Black box functions f cannot be handled as one requires knowledge about
the involved arithmetic operations. All in all, they often appear not to be
reasonably applicable in many real-life situations. On the other hand, as soon
as we can apply methods like p-boxes to calculate with bounds on probability
distributions, we are not restricted to the use of selecting less rigorous single
distribution assumptions (e.g., maximum entropy) anymore.

Two more remarks about p-boxes: First, the definition of p-boxes can be
generalized to higher dimensions based on the definition of higher dimensional
CDFs, cf. Destercke et al. [32]. However, this has not lead to practical re-
sults yet. Second, probability arithmetic given only the information X ∈ [a, b]
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2.4. Bayesian inference

can be regarded as a generalization of interval arithmetic. It is also related to
the world of imprecise probabilities (cf. Section 2.9) via sets of measures. From
a p-box [Fl, Fu] for X one can infer bounds on the expectation for f(X) by
〈f〉l = infFl≤F≤Fu

∫
Ω
fdF , 〈f〉u = supFl≤F≤Fu

∫
Ω
fdF , regarding Fl ≤ F ≤ Fu

as a set of measures, e.g., [160], [84]. The bounds can be computed numerically
by discretization and formulation of a linear programming problem (LP), cf.
Utkin & Destercke [157].

2.4 Bayesian inference

As soon as incomplete information is based on subjective knowledge and can be
updated iteratively by additional information, one can consider using Bayesian
inference to handle uncertainties.

Recall the definition of conditional probability given in Section 2.1.6:
Pr(A | B) := Pr(A∩B)

Pr(B)
. From this we get Pr(A|B)

Pr(B|A)
= Pr(A∩B)·Pr(A)

Pr(B)·Pr(B∩A)
. Since Pr(A∩B)

= Pr(B ∩ A) we have

Pr(A | B) =
Pr(B | A) Pr(A)

Pr(B)
, (2.44)

which is well-known as Bayes’ rule [6]. Analogously to conditional probabilities
we can define the conditional density of a random variable ε1 conditional

on ε2 by ρ(ε1 | ε2) = ρ(ε1,ε2)
ρ(ε2)

, where ρ(ε1, ε2) is the joint distribution of ε1 and

ε2. Then the joint PDF of the random vector ε = (ε1, ε2) can be represented
by ρ(ε) = ρ(ε1 | ε2)ρ(ε2). Bayesian inference means reasoning on the basis of
Bayes’ rule which in some sense enables to invert causalities calculating with
conditional probabilities.

For example, a statistician who is unfortunately a medical lay person wants
to asses the probability that his child has a cold given that the child has sneezed
3 times in a row. All information he has is the probability of the event that
the child sneezes 3 times in a row if it has a cold, so he wants to conclude
from a symptom to make a diagnosis, but he just knows the probability of the
symptoms given a diagnosis. Of course, this example is not representative as
it lacks the complexity of real-life situations. The generalization for multiple
possible diagnoses and symptoms is modeled by so-called Bayesian or belief
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networks (BNs). A BN is a directed acyclic graph (DAG) between states
of a system and observables. A node N and its parent nodes in the DAG
represent the input information of the network which consists of tables of
conditional probabilities of N conditional on its parent nodes. The whole
DAG represents the joint distribution of all involved variables, even in higher
dimensional situations. Computations using BNs can be done efficiently on
the DAG structure, assumed that all conditional probabilities are precisely
known.

What if the conditional PDFs of the tables of conditional probabilities
in BNs are unknown or not precisely known? This happens frequently in
practice, in particular for variables conditional on multiple further variables.
The Bayesian approach appears to become useless in this case. A generalized
approach to BNs with imprecise probabilities can be studied on the basis of so-
called credal networks, e.g., [25], [64]. A credal network is a set of BNs with
the same DAG structure, but imprecise values in the conditional probability
tables. The probabilities can be given as intervals, or more generally described.

The Bayesian approach accounts for uncertainties in statistical parameters
like distribution parameters Θ, and criticizes the standard CDF concept to
treat subjective expert opinions about Θ the same way as objective knowl-
edge. However, it can be shown that the same mathematical mechanisms
apply, so the involved calculations are mathematically equivalent: Classically,
expectation of a function f(X) is 〈f〉classic =

∫
f(x)ρ(x | Θ)dx, given Θ as a

fixed distribution parameter ρ(x | Θ) = ρΘ(x), cf. Section 2.1.1. Now consider
Θ to be a random variable, so ρ = ρ(x,Θ) is the new joint PDF. Expectation
now becomes 〈f〉Bayes =

∫
f(x)ρ(x,Θ)dxdΘ =

∫
f(x)ρ(x | Θ)ρ(Θ)dxdΘ =∫

〈f〉classicρ(Θ)dΘ.

In case of unknown joint distributions, conditional probabilities can be
used to update subjective knowledge towards the actual joint CDF. Bayes’
rule for densities reads

ρ(ε1 | ε2) =
ρ(ε2 | ε1)

ρ(ε2)
· ρ(ε1). (2.45)

Let ρ(ε1) be an initially assumed density. After obtaining additional infor-
mation ρ(ε2 | ε1), ρ(ε2) Bayes’ rule serves to update ρ(ε1) to ρ(ε1 | ε2) with

update ratio ρ(ε2|ε1)
ρ(ε2)

. One calls ρ(ε1) the prior and ρ(ε1 | ε2) the posterior.
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Here we have the crucial problem, how to select the prior. For a reasonable
choice real statistical data is needed in sufficient amount. Additionally, of
course, incoming new observations are required for updating. Priors can be
chosen, e.g., with the maximal entropy principle, cf. Section 2.1.3. In practice
one often chooses a normal distribution to simplify calculations, or conjugate
priors, i.e., a distribution where the posterior has a similar shape like the prior
except from a change in some parameters. Actually, it is a well-known criticism
that the choice of the prior often seems to be quite arbitrary and merely in
the will of the statistician.

The Bayesian approach also applies in design optimization, cf. Zhou &

Mourelatos [172]. Similar to RBDO (2.39) one minimizes a certain objec-
tive like design cost subject to probabilistic constraints involving the failure
distribution. The associated joint distribution is estimated and updated from
available data, starting with conjugate priors.

2.5 Dempster-Shafer theory

Dempster-Shafer theory enables to process incomplete uncertainty information
allowing to compute bounds for failure probabilities and reliability.

We start with defining fuzzy measures, cf. Sugeno [153]. A fuzzy mea-

sure µ̃ : 2Ω → [0, 1], fulfills

µ̃(∅) = 0, µ̃(Ω) = 1, (2.46)

A ⊆ B ⇒ µ̃(A) ≤ µ̃(B). (2.47)

The main difference to a probability measure is the absence of additivity. In-
stead, fuzzy measures only satisfy monotonicity (2.47). To find lower and
upper bounds for an unknown probability measure given incomplete informa-
tion one seeks two fuzzy measures belief Bel and plausibility Pl, where Bel
is a fuzzy measure with Bel(A ∪ B) ≥ Bel(A) + Bel(B) − Bel(A ∩ B), and Pl
is a fuzzy measure with Pl(A ∪B) ≤ Pl(A) + Pl(B) − Pl(A ∩B).

To construct the measures Bel and Pl from the given uncertainty informa-
tion one formalizes the information as a so-called basic probability assign-

ment m : 2Ω → [0, 1] on a finite set A ⊆ 2Ω of non-empty subsets A of Ω,
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such that

m(A)

{
> 0 if A ∈ A,
= 0 otherwise,

(2.48)

and the normalization condition
∑

A∈Am(A) = 1. Sometimes m is also called
basic belief assignment.

The basic probability assignment m is interpreted as the exact belief fo-
cussed on A, and not in any strict subset of A. The sets A ∈ A are called
focal sets. The structure (m,A), i.e., a basic probability assignment together
with the related set of focal sets, is called a Dempster-Shafer structure

(DS structure).

Given a DS structure (m,A) we can construct Bel and Pl by

Bel(B) =
∑

{A∈A|A⊆B}
m(A), (2.49)

Pl(B) =
∑

{A∈A|A∩B 6=∅}
m(A) (2.50)

for B ∈ 2Ω.

Thus Bel and Pl have the sought property Bel ≤ Pr ≤ Pl by construction
and, moreover, satisfy Bel(B) = 1 − Pl(Bc). The information contained in
the two measures Bel and Pl induced by the DS structure is often called a
random set.

In the classical case the additivity of non-fuzzy measures would yield
Pl(B) = 1 − Pl(Bc) = Bel. Thus Bel = Pr = Pl and classical probability
theory becomes a special case of DS theory. Also note that if we have a DS
structure on the singletons of a finite Ω, then we have full stochastic knowledge
equivalent to a CDF.

DS structures can be obtained from expert knowledge or in lower dimen-
sions from histograms, or from the Chebyshev inequality Pr(|X − µ| ≤ r) >
1 − σ2

r2 given expectation value µ and variance σ2 of a random variable X,
cf. [123], [124], [125]: Let r = σ√

1−α
for a fixed confidence level α, then

Pr({|X − µ| ≤ σ√
1−α

}) > α. The sets Cα := {ω ∈ Ω | |X(ω) − µ| ≤ σ√
1−α

}
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for different values of α define focal sets, and we get Belief and Plausibility
measures by Bel(Cα) = α and Pl(Cc

α) = 1 − α, respectively.

To extend one-dimensional focal sets to the multi-dimensional case one
can generate joint DS structures from the Cartesian product of marginal basic
probability assignments assuming random set independence, cf. Couso et al.
[24], or from weighting the 1-dimensional marginal focal sets, cf. Fetz [51].
In [172] we find the suggestion to employ Bayesian techniques to estimate and
update DS structures from little amount of information.

To combine different, or even conflicting DS structures (m1,A1), (m2,A2)
(in case of multiple bodies of evidence, e.g., several different expert opinions)
to a new basic probability assignment mnew one uses Dempster’s rule of com-
bination [28], forming the basis of Dempster-Shafer theory or evidence

theory [144],

mnew(B) =
∑

{A1∈A1,A2∈A2|A1∩A2=B}

m1(A1)m2(A2)

K
(2.51)

with the normalization constantK = 1−∑
{A1∈A1,A2∈A2|A1∩A2=∅}m1(A1)m2(A2)

which is interpreted as the conflict.

The combination rule enables to compute a joint DS structure. Also note
that the combination rule is a generalization of Bayes’ rule, motivated by the
criticism that a single probability assignment cannot model the amount of
evidence one has.

The complexity of the rule is strongly increasing in higher dimensions,
and in many cases requires independence assumptions for simplicity reasons
avoiding problems with interacting variables. It is not yet understood how the
dimensionality issue can be solved. Working towards more efficient computa-
tional implementations of evidence theory it can be attempted to decompose
the high-dimensional case in lower dimensional components which leads to
so-called compositional models, cf. Jirousek et al. [75].

The extension of a function f is based on the joint DS structure (m,A).
The new focal sets of the extension are Bi = f(Ai), Ai ∈ A, the new basic
probability assignment is mnew(Bi) =

∑
{Ai∈A|f(Ai)=Bi}m(Ai).
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To embed DS theory in design optimization one formulates a constraint
on the upper bound of the failure probability pf which should be smaller
than an admissible failure probability pa, i.e., Pl(F) ≤ pa, for the failure set
F. This can be studied in Mourelatos & Zhou [110] as evidence based
design optimization (EBDO). One can also find further direct applications in
engineering computing, e.g., in [53], [123].

DS structures enable to construct p-boxes [13], [32], [157], i.e., to determine
lower bounds Fl and upper bounds Fu of the CDF of a random variable X,

Fl(t) = Bel({ω ∈ Ω | X(ω) ≤ t}),
Fu(t) = Pl({ω ∈ Ω | X(ω) ≤ t}).

Conversely it is possible to generate a DS structure that approximates a given
p-box discretely, cf. [3], [30], [49]. Fix some levels α1 ≤ α2 ≤ · · · ≤ αN = 1 of
the p-box, then generate focal sets by

Ai := [inf{x | Fu(x) = αi}, inf{x | Fl(x) = αi}], (2.52)

m(A1) = α1, m(Ai) = αi − αi−1, i = 2, . . . , N.

Another relation to a different uncertainty representation concerns nested focal
sets, i.e., A = {A1, A2, . . . , Am}, A1 ⊆ A2 ⊆ · · · ⊆ Am. In this case

Bel(A ∩ B) = min(Bel(A),Bel(B)), (2.53)

Pl(A ∪ B) = max(Pl(A),Pl(B)). (2.54)

For nested focal sets the fuzzy measures Bel and Pl directly correspond to
possibility and necessity measures, respectively, which appear in fuzzy set
theory, cf. Dubois & Prade [34], as we will see in the next section.

We have learned that DS structures can unify several different uncertainty
models, see, e.g., [86], but cannot overcome the curse of dimensionality being
prohibitively expensive in higher dimensions.
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2.6 Fuzzy sets

The development of fuzzy sets has started roughly in parallel to the develop-
ment of DS theory with the goal to model vague verbal descriptions in absence
of any statistical data. It is a generalization of conventional set theory redefin-
ing the characteristic function of a set A by a so-called membership function

µA. The value µA(x) indicates the membership value of an uncertain variable
x with respect to A. The value can be any real number between 0 and 1 as
opposed to the characteristic function 1A(x) which only takes binary values.
A fuzzy set is a set A together with its related membership function µA.

This section will give a short overview on fuzzy sets, focussing on their
application for uncertainty handling. The following terms play an important
role in the theory of fuzzy sets. The height h of a fuzzy set is defined by
h := maxx µA(x). The support of a fuzzy set is the set {x | µA(x) 6= 0}. The
core or modal values of a fuzzy set is the set {x | µA(x) = 1}. The α-cut

Cα of a fuzzy set for a fixed value α ∈ [0, 1] is the set

Cα := {x | µA(x) ≥ α}. (2.55)

The α-cut is determined by the values of the membership function. Conversely
one can construct µA from the knowledge of the α-cuts, cf. Zadeh [170], to
achieve an α-cut based representation of a fuzzy set:

µA(x) = sup
α

min(α, 1Cα
(x)). (2.56)

Note the relationship between BPA-structures on nested focal sets, cf. Sec-
tion 2.5, and α-cuts of a fuzzy set with non-empty core, which are nested by
definition, i.e., Cα ⊆ Cβ for α ≥ β. Let 1 = α1 ≥ α2 ≥ · · · ≥ αN = 0 be
α-levels of a fuzzy set, then we can construct a BPA m on the α-cuts Cαi

by m(Cαi
) = αi − αi+1, i < N , m(CαN

) = αN . Conversely a BPA-structure
on nested focal sets A1 ⊆ A2 ⊆ · · · ⊆ AN allows to construct a fuzzy set by
αN = m(AN ), CαN

= AN , αN−1 = m(AN ) + m(AN−1), CαN−1
= AN−1, . . . ,

α1 =
∑N

i=1m(Ai) = 1, Cα1
= A1, and then applying (2.56). Thus it is possi-

ble to convert expert knowledge modeled by a fuzzy set into a DS structure.
Using the Dempster’s rule, however, to combine different bodies of evidence
in general leads to non-nested focal sets, hence a conversion back to the fuzzy
set formalism is not possible after applying a combination rule.
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Some special cases of fuzzy sets motivated the notation of fuzzy intervals
and fuzzy numbers, cf. Zadeh [169]. A fuzzy interval or convex fuzzy set

is a fuzzy set with µA(x) ≥ min(µA(a), µA(b)) for all a, b, x ∈ [a, b]. A fuzzy

number is a fuzzy interval with closed α-cuts, compact support, and a unique
modal value.

Let µA, µB be the membership functions of the fuzzy sets A and B, re-
spectively. Then we get the following properties, arising from fuzzy logic,

µA∩B(x) = min(µA(x), µB(x)),

µA∪B(x) = max(µA(x), µB(x)), (2.57)

µAc(x) = 1 − µA(x).

Recall the notation of a fuzzy measure, cf. Section 2.5. For all fuzzy measures µ
obviously holds µ(A∩B) ≤ min(µ(A), µ(B)) and µ(A∪B) ≥ max(µ(A), µ(B)).
From these properties we define 2 special, limiting cases of fuzzy measures, cf.
[34], [171], the simplicity of which makes them computationally attractive. A
possibility measure is a fuzzy measure Pos with

Pos(A ∩ B) = min(Pos(A),Pos(B)). (2.58)

A necessity measure is a fuzzy measure Nec with

Nec(A ∪ B) = max(Nec(A),Nec(B)). (2.59)

Note that possibility and necessity measures directly correspond to plausibility
and belief measures of DS structures in case of nested focal sets, cf. Section
2.5, and can thus be regarded as lower and upper probability measure bounds.

A possibility distribution is a possibility measure defined on the single-
tons of a finite Ω. By the equations (2.57) we see that a membership function
of a fuzzy set with non-empty core can be interpreted as a possibility distri-
bution. A possibility distribution Π imposes an associated possibility measure
by Pos(A) = maxx∈A Π(x).

The definition of a fuzzy set and its membership function in higher di-
mensions is a straightforward generalization of the one-dimensional case. The
extension of a function f(x) = z, f : Rn → R, for a fuzzy set with membership
function µ is constructed by the extension principle for a new membership
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function

µnew(z) = sup
x∈f−1(z)

µ(x), (2.60)

cf. Zadeh [169]. The construction involves an optimization problem with
rapidly increasing complexity in higher dimensions.

It can be attempted to solve this problem by reduction of the problem to
the α-cuts of the fuzzy set, cf. Section 2.6.1, or by sensitivity analysis, cf.
Section 2.1.7.

Except from the dimensionality issue another criticism of fuzzy sets is the
fact that the assignment of membership functions appears to be quite arbi-
trary, often defined by a single expert opinion. In lower dimensions member-
ship functions can be estimated, e.g., from histograms, but there is no general,
statistically well-grounded basis for the assignment of membership functions.
Of course, if only vague verbal descriptions, i.e., highly informal uncertainty
information, is available statistical properties are entirely absent. In this case,
which represents the classical motivation of fuzzy sets, it can be argued that
it is impossible to formulate a general recipe for processing the information.
However, usually the information consists of a mixture of statistical and fuzzy
descriptions, and conventional fuzzy methods cannot combine both. The con-
cept of fuzzy randomness, cf. [92], [102], [106], [133], is one attempt of a
combination.

The applications of fuzzy methods in engineering computing are vast. A
famous application of fuzzy methods is fuzzy control, cf. Sugeno [154]. More-
over, most design analyzing methods have their counterparts in the context
of fuzzy sets, for instance, fuzzy reliability methods (e.g., [21], [106]), fuzzy
differential equations (e.g., [52]), fuzzy finite element methods (e.g., [50], [103],
[111]), fuzzy ARMA and other stochastic processes (e.g., [104]).

In fuzzy statistics, i.e., with sample points that are modeled as fuzzy num-
bers, one can apply statistical methods on non-precise data, cf. Viertl [158].

In design optimization fuzzy methods can be used to find clusters of per-
missible designs with fuzzy clustering methods, e.g., [70], [77]. Seeking the
optimal design one can use fuzzy methods to compare different design points
of different clusters with respect to some criterion, e.g., weighted distances
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Chapter 2. An introductory survey of uncertainty modeling

from design constraints [7], [20], [73].

Also, similar to RBDO and EBDO, the concept of possibility measures
can be used to formulate safety constraints of a design optimization problem
(possibility theory based design optimization, PBDO), cf. Mourelatos &

Zhou [109].

The following subsection presents a special fuzzy set based method which
is highlighted because of its relationship to our approach based on clouds, cf.
Section 2.8.

2.6.1 α-level optimization

The α-level optimization approach Möller et al. [105] is the most relevant
fuzzy set based method for our purposes as it applies also in higher dimensional
real-life situations and uses similar techniques as we will use employing the
clouds formalism.

The α-level optimization method combines the α-cut representation (2.56)
and the extension principle to determine the membership function µf of a
function f(ε), f : Rn → R, given the membership function µ of the variable
ε. This is achieved by constructing the α-cuts Cf αi

belonging to µf from the
α-cuts Cαi

belonging to µ. To this end one solves the optimization problems

min
ε∈Cαi

f(ε), (2.61)

max
ε∈Cαi

f(ε) (2.62)

for different discrete values αi. Finally from the solution fi∗ of (2.61) and f ∗
i

of (2.62) one constructs the α-cuts belonging to f(ε) by Cf αi
= [fi∗ , f

∗
i ].

To simplify the optimization step one assumes sufficiently nice behaving
functions f and computationally nice fuzzy sets, i.e., convex fuzzy sets, typi-
cally triangular shaped fuzzy numbers.

In n dimensions one optimizes over a hypercuboid, obtained by the Carte-
sian product of the α-cuts Cαi

= C1
αi

× C2
αi

× · · · × Cn
αi

, where Cj
αi

:= {εj |
µj(εj) ≥ αi}, µj(εj) := supεk,k 6=j µ(ε), ε = (ε1, ε2, . . . , εn). Here one has to
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2.7. Convex methods

assume non-interactivity of the uncertain variables ε1, . . . , εn.

Using a discretization of the α-levels by a finite choice of αi the computa-
tional effort for this methods becomes tractable. From (2.56) one gets a step
function for µf which is usually linearly approximated through the points fi∗

and f ∗
i to generate a triangular fuzzy number.

2.7 Convex methods

Convex methods model uncertainty by so-called anti-optimization over con-
vex sets, cf. Ben-Haim & Elishakoff [8], [38]. Assume that we wish to
find the design point θ = (θ1, θ2, . . . , θno) with the minimal design objective
function value g(θ, ε), g : Rno × Rn → R under uncertainty of the vector of
input variables ε. Also assume that the uncertainty of ε is described by a
convex set C. Anti-optimization means finding the worst-case scenario for a
fixed design point θ by the solution of an optimization problem of the type

max
ε

g(θ, ε) (2.63)

s.t. ε ∈ C

The corresponding design optimization problem would be

min
θ

max
ε

g(θ, ε) (2.64)

s.t. ε ∈ C
θ ∈ T

where T is the set of possible selections for the design θ. As the inner level
of problem of (2.64), i.e., equation (2.63), maximizes the objective which is
sought to be minimized for the design optimization in the outer level (i.e.,
one seeks the design with minimal worst-case), the term anti-optimization has
been proposed for this approach. We will revisit these types of optimization
problems in more detail in Chapter 4 and Chapter 5.

Investigating convex regions for the worst-case search is motivated by
the fact that in many cases the level sets of probability densities are con-
vex sets, e.g., ellipsoids for normal distributions. In this respect the term
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Chapter 2. An introductory survey of uncertainty modeling

convex uncertainty for a random vector ε ∈ Rn is characterized by a con-
vex set C = {ε | Q(ε) ≤ c}, where Q is a quadratic form and ε is known
to belong to C with some confidence. The quadratic form could be, e.g.,
Q(ε) = (ε −m)TC−1(ε −m) with a vector of nominal values m and an esti-
mated covariance matrix C.

Once one has a description by convex uncertainty one can apply opti-
mization methods which can make convex methods applicable even in higher
dimensions.

It should be remarked that this particular idea is one of the inspirations
for the potential clouds concept, see the next section and Section 3.2, where
the potential function will be constructed to have convex level sets.

2.8 Potential clouds

This section will give an overview on uncertainty representation by means of
clouds, introduced in Neumaier [116], inspired by and combining ideas from
p-boxes, random and fuzzy sets, convex methods, interval and optimization
methods. Before we go into the details in Chapter 3 we will learn in this
section about the intuitive approach that has lead to use clouds for uncertainty
modeling, handling incomplete information in higher dimensions, and to weave
the methodology into an optimization problem formulation.

The goal is to construct confidence regions in which we should be able to
search for worst-case scenarios via optimization techniques. The construction
should be possible on the basis of scarce, high-dimensional data, incomplete
information, unformalized knowledge and information updates. As mentioned
in previous sections, in lower dimensions and provided real empirical data one
has powerful tools, like KS, e.g., to bound the CDF of a random variable
X. What could one do to tackle the same problems for higher dimensional
random vectors ε ∈ Rn with little or no information available? To generate
data we will first simulate a data set and modify it with respect to the available
uncertainty information. To reduce the dimensionality of the problem we will
use a potential function V : Rn → R. We will bound the CDF of V (ε) using
KS as in the one-dimensional case (like a p-box on V (ε), cf. Section 2.3). From
the bounds on the CDF of V (ε) we get lower and upper confidence regions for
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2.8. Potential clouds

V (ε), and finally lower and upper confidence regions for ε as level sets of V
(similar to α-cuts of an interval valued fuzzy set, i.e., a fuzzy set with interval
valued membership function – however, put in a probabilistic context).
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Figure 2.5: Nested confidence regions for the example of a 2-dimensional po-
tential cloud, α = 0.2, 0.4, 0.6, 0.8, 1. The lower confidence regions Cα plotted
with dashed lines, the upper confidence regions Cα with solid lines.

We denote the lower and upper confidence regions by Cα and Cα, respec-
tively, with the confidence level α. This nested collection of confidence regions
is a potential cloud, cf. Figure 2.5.

Note that potential clouds extend the p-box concept to the multivari-
ate case without the exponential growth of work in the conventional p-box
approach. From the fact that we construct a p-box on V (ε) one can also
see the relation to DS structures generated from p-boxes as in (2.52), with
Ai = Cαi

\Cαi
. Thus the focal sets are determined by the level sets of V .

The potential clouds approach not only helps us to overcome the curse of
dimensionality in real-life applications, but also it turns out to enable a flexible
uncertainty representation. It can process incomplete knowledge of different
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Chapter 2. An introductory survey of uncertainty modeling

kinds and allows for an adaptive interaction between the uncertainty elici-
tation and the optimization phase, reducing the incompleteness of epistemic
information via information updating. This is a unique feature in higher di-
mensions.

Expert opinion

Uncertainty

Cloud

System model

Optimization

Design point

Design
objective

information

Figure 2.6: Basic concept.

Figure 2.6 illustrates the basic concept of the approach. The designing
expert provides an underlying system model – e.g., given as a black box model –
and all currently available uncertainty information on the input variables of the
model. The information is processed to generate a cloud that provides a nested
collection of regions of relevant scenarios parameterized by a confidence level
α. Thus we produce safety constraints for the optimization. The optimization
minimizes a certain objective function (e.g., cost, mass) subject to the safety
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2.9. Imprecise probabilities

constraints to account for the robustness of the design, and subject to the
functional constraints which are represented by the system model. The results
of the optimization, i.e., the automatically found optimal design point and the
worst-case analysis, are returned to the expert, who is given an interactive
possibility to provide additional uncertainty information afterwards and rerun
the procedure.

2.9 Imprecise probabilities

Last, but not least, we mention the family of concepts from imprecise prob-
abilities, cf. Walley [159]. Imprecise probabilities can be regarded as the
most general point of view describing scarce, vague, incomplete, or conflict-
ing uncertainty information. This approach alludes to existing uncertainty
models being not sufficiently general to handle all kinds of uncertainty, and it
encourages to develop a unified formulation [161], opposed to the toolbox
philosophy mentioned in Chapter 1.

In a nutshell, imprecise probabilities should not be a new tool, or replace
existing tools, but rather complement classical concepts to a complete frame-
work to handle more general situations. The family of imprecise probabilities
includes upper and lower probabilities, cf. Smith [151], sets of probability
measures, cf. Good [61], and many concepts introduced in the last sections
appear as special cases, e.g., evidence theory, possibility measures.

2.10 Other approaches

The summary of uncertainty methods in the last sections represents a collec-
tion of most of the popular methods applied in real-life uncertainty modeling.
Of course, it can be extended to a vast family of related approaches. In this
section we briefly mention a few of them.

Chaotic probability models try to build an alternative framework to the
standard probabilistic methods. They attempt to involve both subjective and
objective uncertainties. The present stage of this theory still has a rather
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Chapter 2. An introductory survey of uncertainty modeling

conceptual than applied nature. It can be studied, e.g., in [54], [76], [135].
In the development of a logic programming language with semantics to repre-
sent qualitative and quantitative knowledge about uncertainty one can study
probabilistic logic programming, e.g., [140].

Now we turn our focus back to the uncertainty model of our choice which
leads us to the next chapter: clouds.
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Chapter 3

Uncertainty modeling with

clouds

This chapter is dedicated to the study of clouds. After the short intuitive
introduction in Section 2.8, we will now go into the details of this concept
towards handling higher dimensional, incomplete uncertainty information.

At first we follow the clouds formalism from Neumaier [116] in Section
3.1, picking those ideas that are most attractive for the handling of high-
dimensional uncertainties and elaborating them. Afterwards we investigate
the special case of potential clouds in Section 3.2. We will see how they help
to cope with dimensionality issues. In Section 3.3 we will learn how to interpret
approximations and bounds on cumulative distribution functions in terms of
clouds. Some considerations about suitable potential functions can be found in
Section 3.4. A survey on the algorithms that realize the described uncertainty
handling methods is given in Section 3.5.

3.1 The clouds formalism

We start with the formal definition of clouds and introduce the notation. Af-
terwards we restate the central results from [116], Sections 3 and 4, that will
be relevant for our studies later on.
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Chapter 3. Uncertainty modeling with clouds

Let ε be an n-dimensional random vector, M := ε(Ω). In the context of
worst-case analysis we will sometimes call a particular value for the realization
of ε an uncertain scenario.

A cloud is a mapping χ : M → I[0, 1], χ(x) = [χ(x), χ(x)], where I[0, 1]
denotes the set of closed and bounded intervals in [0, 1], χ(x) nonempty for all
x ∈ M, and

]0, 1[⊆
⋃

x∈M

χ(x) ⊆ [0, 1]. (3.1)

We call χ the lower level and χ the upper level of the cloud, and denote
the width of the cloud χ at x by χ(x)− χ(x). A cloud is called thin if it has
width 0 for all x.

We say that a random vector ε belongs to a cloud χ over M, if

Pr(χ(ε) ≤ y) ≤ y ≤ Pr(χ(ε) < y) (3.2)

for all y ∈ [0, 1].

3.1.1 Remark. Assume that the 1-dimensional random variable X has the
given CDF F , and F , χ and χ are continuous, invertible functions. Then
equation (3.2) is equivalent to F (χ−1(y)) ≤ y ≤ F (χ−1(y)) which directly
translates into the intuitive interpretation of lower and upper confidence re-
gions, cf. Figure 2.5.

A cloud is called discrete if χ and χ only take finitely many different val-
ues, i.e., χ(x), x ∈ M, only takes finitely many different values in I[0, 1]. It
can be shown that discrete clouds can be constructed from samples of discrete
or discretized continuous probability distributions in low dimensions via his-
tograms, cf. [116, Theorem 3.1], and in principle can approximate arbitrary
distributions arbitrarily well. As histograms and the related discrete clouds
are having computational problems in higher dimensions, we define continuous
clouds that will be much more important for our purposes: A cloud is called
continuous if the lower level χ and the upper level χ are continuous functions.

There exists a close relationship between thin continuous 1-dimensional
clouds and CDFs of real univariate random variables, cf. [116, Proposition
4.1].
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3.1.2 Proposition. Let F (t) = Pr(X ≤ t) be the CDF of the random vari-

able X, then χ(t) := F (t) defines a thin cloud and X belongs to χ, i.e., for

the thin case Pr(χ(t) ≤ y) = y, y ∈ [0, 1], if t has the same distribution as X.

Proof. From the definition of a CDF it follows that χ := F satisfies the con-
ditions that define a cloud. Due to the fact that F (t) is uniformly distributed
if t has the same CDF as X we have Pr(χ(t) ≤ y) = Pr(F (t) ≤ y) = y. ⊓⊔

3.1.3 Remark. By Proposition 3.1.2 one sees that the information contained
in a thin cloud represents full stochastic information. A cloud with χ ≡ 0 is
called fuzzy. The information contained in a fuzzy cloud is equivalent to that
of a fuzzy set with membership function χ(x).

CDFs are well known from probability theory. In particular the univariate
case is very handy, computationally appealing and intuitively understandable.
However, we want to deal with significantly higher dimensions than 1. This
leads to the idea to construct continuous clouds from user-defined potential
functions V : M → R.

3.1.4 Remark. Comparing the notation we introduced in this section with
[116] it should be remarked that ours corresponds to the so-called mirror

cloud χ′ = 1−χ. This is unproblematic in view of [116] Corollary 2.2. Observe
that the same set of random variables can be characterized by different clouds.

3.2 Potential clouds

As we learned in the last section potential function based clouds, in short
potential clouds, are a special class of continuous clouds supposed to help to
cope with high-dimensional uncertainties. Let ε be an n-dimensional random
vector. Though the probability density of ε usually cannot be estimated for
high n due to a lack of available data, the random variable V := V (ε) is
univariate and its CDF can be easily approximated by an empirical CDF.
The idea is to construct a cloud from an interval-valued function χ of a user-
defined potential function V , i.e., χ ◦ V : M → I[0, 1]. How this potential can
be constructed in practice will be discussed in Section 3.4.
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3.2.1 Theorem. Suppose that x ∈ M, α continuous from the left and mono-

tone, α continuous from the right and monotone, a ∈ R, V bounded below,

and

α(a) ≤ Pr(V (ε) < a), (3.3)

α(a) ≥ Pr(V (ε) ≤ a). (3.4)

Then the mapping χ defined by

χ(x) := [α(V (x)), α(V (x))], (3.5)

defines a cloud and ε belongs to χ.

Proof. Obviously (3.1) holds for χ. One has to show (3.2). Let y ∈ [0, 1].
Assume that ∃x ∈ R with α(x) = y.

Pr(χ(ε) ≤ y) = Pr(α(V (ε)) ≤ y) see (3.5)

= Pr(α(V (ε)) ≤ α(x)) definition of x

= Pr(V (ε) ≤ x) as α is monotone

≤ α(x)

= y

If ∄x ∈ R with α(x) = y and α(x) > y for all x, then

Pr(χ(ε) ≤ y) = Pr(α(V (ε)) ≤ y)

= 0 ≤ y

Otherwise if ∄x ∈ R with α(x) = y, then ∃y′ ∈ [0, 1], x, h ∈ R with α(x+h) =
y′ > y, and α(x) ≤ y as α is continuous from the right. This yields

Pr(χ(ε) ≤ y) = Pr(α(V (ε)) ≤ y)

≤ Pr(α(V (ε)) ≤ α(x+ h))

= Pr(V (ε) ≤ x+ h)

≤ α(x+ h),

thus in the limit h→ 0, Pr(χ(ε) ≤ y) ≤ y.
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Hence Pr(χ(ε) ≤ y) ≤ y. We get Pr(χ(ε) < y) ≥ y analogously, so χ
fulfills (3.2). ⊓⊔

Usually the CDF of V (ε) is unknown. However, Theorem 3.2.1 tells us
we only need to find a lower bound α(y) ≤ Pr(V (ε) < y) and upper bound
α(y) ≥ Pr(V (ε) ≤ y), α, α continuous from the right and monotone, to
construct a potential cloud.

3.2.2 Remark. This implies the relation between potential and p-boxes men-
tioned in Section 2.8. A potential cloud can be constructed from a p-box on
V (ε) regarding it as a random variable.

3.2.3 Remark. The constructed cloud χ is thin if V has a known continuous
CDF: Let F be the CDF of V (ε), then

α(y) = Pr(V (ε) ≤ y) = Pr(V (ε) < y) = α(y) = F (y)

and χ(x) = [F (V (x)), F (V (x))].

The last remark leads us to an important interpretation in terms of con-
fidence regions for ε. Let α ∈ [0, 1] be a given confidence level, let F be the
CDF of V (ε) and precisely known. Then Cα := {x ∈ M | F (V (x)) ≤ α} is an
α-confidence region for ε, as Pr(ε ∈ Cα) = Pr(F (V (ε)) ≤ α) = α.

More importantly, Theorem 3.2.1 tells us that it is sufficient to find an
appropriate bounding α, α on F to construct a potential cloud! As shown in
Section 2.1.3, this can be achieved approximately (at a given confidence level)
by KS statistics. Similarly to Cα we define the lower α-cut

Cα :=

{
{x ∈ M | V (x) ≤ V α} if V α := min{Vα ∈ V (M) | α(Vα) = α} exists,

∅ otherwise.

(3.6)

Analogously the upper α-cut

Cα :=

{
{x ∈ M | V (x) ≤ V α} if V α := max{Vα ∈ V (M) | α(Vα) = α} exists,

M otherwise.

(3.7)
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The sets Cα, Cα are the protagonists in the following important result for
potential clouds.

3.2.4 Theorem. The regions Cα and Cα can be interpreted as a nested

collection of lower and upper confidence regions, i.e.,

1. The region Cα contains at most a fraction of α of all scenarios in M, Cα

contains at least a fraction of α of all scenarios in M.

2. It holds Cα ⊆ Cα.

Proof.

1. It holds

Pr(ε ∈ Cα) ≤ Pr(α(V (ε)) ≤ α) by construction of Cα

≤ Pr(F (V (ε)) ≤ α) as α ≥ F

= α,

Pr(ε ∈ Cα) ≥ Pr(α(V (ε)) ≤ α) analogously

≥ Pr(F (V (ε)) ≤ α) = α as α ≤ F

= α.

2. This follows from the fact that α ≤ α, α, α monotone, continuous.
We just regard the non trivial case that solutions {Vα1} ⊆ V (M) of
α(Vα1) = α and solutions {Vα2} ⊆ V (M) of α(Vα2) = α exist. Then
V α = max{Vα1}, V α = min{Vα2} by definition. We show that V α ≤ V α,
then the proposition follows directly from the definition of Cα and Cα.
Assume that V α > V α. Then α(V α) ≤ α(V α) as α is monotone. The
case that α(V α) < α(V α) contradicts to α ≤ α as α(V α) < α(V α) = α =
α(V α). The case that α(V α) = α(V α) = α contradicts to the definition
of V α as the minimum of all solutions {Vα2} ⊆ V (M) of α(Vα2) = α.

⊓⊔

In terms of robust design the regions Cα and Cα, yield safety constraints,
as a design is called safe if all scenarios ε ∈ Cα satisfy the design requirements,
and it is called unsafe if one scenario ε ∈ Cα fails to satisfy these require-
ments. Between Cα and Cα there is a zone of borderline cases, where the
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statistical information is too scarce to fully analyze the safety. In robust de-
sign optimization, cf. Chapter 4 and Chapter 5, one looks for the optimal safe
design, or for the optimal design which is not unsafe. The latter approach has
the advantage that Cα is always bounded and we will additionally construct
it to be computationally attractive.

Let us summarize what is needed to generate a potential cloud: a potential
function V has to be chosen, then appropriate bounds on the CDF F of V (M)
must be found. How to find these bounds will be described in the following
Section 3.3. But how to choose the potential function? – it should be centered
around the mode and reflect the ’shape’ of ensembles of realizations. There
are endless possibilities to make the choice. Two special cases for choices of
the potential function are shown in Figure 3.1:

V (x) := max
k

|xk − µk|
rk

, (3.8)

where x, µ, r ∈ Rn, xk, µk, rk are the kth components of the vectors, defines a
box-shaped potential.

V (x) := ‖Ax− b‖2
2, (3.9)

where x, b ∈ Rn, A ∈ Rn×n, defines an ellipsoid-shaped potential.
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Figure 3.1: Lower level α for a 2-dimensional potential cloud based on a box
and ellipsoidal potential, respectively.

A variation of the shape of the potential to improve the uncertainty model
will be considered in Section 3.4.
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3.3 Generation of potential clouds

This section will investigate how to find appropriate bounds on the CDF F
of the potential V (ε). As we do not have the knowledge of F we have to
approximate it before we can assign bounds on it. To this end we will make
use of the well-known KS statistics [82] as suggested in the last section. That

means we approximate F by an empirical distribution F̃ . The generation
of an empirical distribution requires the existence of a sample S representing
our uncertainties.

It depends on the given uncertainty information whether a sample al-
ready exists. We assume that a priori uncertainty information consists of
given samples, boxes or invertible 1-dimensional marginal CDFs Fi, i ∈ I ⊆
{1, 2, . . . , n}, on the n-dimensional random vector ε, without any formal knowl-
edge about correlations or joint distributions. In case there is no sample pro-
vided or the given sample is very small, a sample has to be generated. For
these cases we first use a Latin hypercube sampling (LHS, cf. Section
2.1.6) inspired method to generate S. This introduces some preference for a
simple structure. The effect of this preference will be diminished by weighting
of the sample points, cf. (3.15).

To generateNS sample points we start with the creation of aNS×· · ·×NS =
Nn

S grid. In case of a given interval on εi the marginal grid points are chosen
equidistantly in the interval. In case of a given Fi, i ∈ I, the marginal grid
is transformed with respect to the marginal CDF Fi to ensure that each grid
interval has the same marginal probability. Let αS ∈ (0, 1], a confidence level
for the sample generation, pS = 1 − n

√
αS,

t1 =
pS

2
, t2 = t1 + 1 · 1 − pS

NS − 1
, t3 = t1 + 2 · 1 − pS

NS − 1
, . . . ,

tNS
= t1 + (NS − 1) · 1 − pS

NS − 1
= 1 − pS

2
, (3.10)

then the marginal grid points are chosen as

gi1 = F−1
i (t1), gi2 = F−1

i (t2), . . . , giNS
= F−1

i (tNS
). (3.11)

3.3.1 Remark. For i ∈ I the intervals between adjacent marginal grid points
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3.3. Generation of potential clouds

have the same marginal probability since

Pr(x ∈ [gik, gik+1]) = Fi(gik+1) − Fi(gik) = tk+1 − tk =
1 − pS

NS − 1
,

which is constant and independent from k, k ∈ {1, 2, . . . , NS − 1}.

From this grid the sample points x1, x2, . . . , xNS
are chosen to satisfy the

LHS condition (2.34) avoiding the grid diagonal, i.e., to avoid a choice xi =
(g1i, g2i, . . . , gni) for i = 1, . . . , NS.

3.3.2 Remark. Assume that I = {1, 2, . . . , n}, i.e., a marginal CDF is given
for each coordinate of ε. Assume that εi, i ∈ I, are independent, then αS is a
confidence level for ε.

Proof. Pr(ε ∈ [g11, g1NS
] × [g21, g2NS

] × · · · × [gn1, gnNS
])

=
∏

i∈I

Pr(εi ∈ [gi1, giNS
])

=

n∏

i=1

(Fi(giNS
) − Fi(gi1))

=
n∏

i=1

(tNS
− t1)

= (1 − pS)n = αS.

⊓⊔

Our sample generation leads to the following result.

3.3.3 Proposition. The marginal empirical distribution

F̃i(ξ) =
∑

{j|xi
j
≤ξ}

1

NS

, i ∈ I, (3.12)

of our sample approximates Fi uniformly for NS → ∞ and αS → 1.

Proof. For αS → 1 this proposition corresponds to the Glivenko-Cantelli
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Chapter 3. Uncertainty modeling with clouds

theorem (cf., e.g., [22]) by construction of our sample points. It states, that

lim
NS→∞

sup
ξ

|F̃i(ξ) − Fi(ξ)| = 0

almost surely. ⊓⊔

3.3.4 Remark. The confidence level αS can be freely chosen from (0, 1]. A
choice of αS = 1 allows gi1 = −∞, giNS

= ∞. In practice one chooses αS

smaller than but close to 1. We use αS = 0.998 and NS = 1000 in our
applications. Also note that by the use of αS < 1 the sample generation
can distinguish between mere interval information and a marginal uniform
distribution: the information that εi ∈ [a, b] will result in a different sample
than the information that εi is uniformly distributed in [a, b].

By Proposition 3.3.3 the generated sample S := {x1, x2, . . . , xNS
} repre-

sents the marginal CDFs arbitrarily well. However after a modification of S,
e.g., by cutting off sample points as we will do later providing a posteriori
information, the marginal empirical distributions will no longer approximate
the marginal CDFs, and thus the a priori information is no longer respected.
An assignment of weights to the sample points is necessary to preserve the
marginal CDFs. In order to do so the weights w1, w2, . . . , wNS

∈ [0, 1], cor-
responding to the sample points x1, x2, . . . , xNS

, are required to satisfy the
following conditions:

Let πj be a sorting permutation of {1, 2, . . . , NS}, such that xj

πk(1) ≤
xj

πk(2) ≤ · · · ≤ xj

πk(NS). Let again I be the index set of those entries of the
random vector ε where a marginal CDF Fi, i ∈ I is given. Then the weights
should satisfy for all i ∈ I, k ∈ {1, 2, . . . , NS}

k∑

j=1

wπi(j) ∈ [Fi(x
i
πi(k)) − d, Fi(x

i
πi(k)) + d],

NS∑

ℓ=1

wℓ = 1. (3.13)

The function

F̃i(ξ) :=
∑

{j|xi
j≤ξ}

wj (3.14)
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3.3. Generation of potential clouds

is a weighted marginal empirical distribution. For trivial weights, w1 =
w2 = · · · = wNS

= 1
NS

, F̃i is a standard empirical distribution as in Proposition
3.3.3.

To achieve weights satisfying (3.13) we formulate the following linear pro-
gram,

min
w1,w2,...,wNS

d

s.t. F̃i(ξ
i
k) ∈ [Fi(ξ

i
k) − d, Fi(ξ

i
k) + d] for all i, ξi

k

NS∑

i=1

wi = 1 (3.15)

wi ≥ 0 for all i

wi ≤
10

NS

for all i

d ≥ 0

where ξi
k are some given interpolation points on the related margin, F̃i the

weighted empirical marginal distributions as defined in (3.14). The number
of interpolation points allows to adjust the computational effort, cf. Section
3.5. We constrain the maximum of the weights to be less than 10 times the
mean of all weights, i.e., 1

NS
, to avoid extraordinarily large weights, which may

otherwise occur in higher dimensions.

The smallest d for which (3.13) holds is then

dmin = max
i∈I,j=1,2,...,NS

|F̃i(x
i
j) − Fi(x

i
j)| (3.16)

the maximum deviation of F̃i from Fi, i ∈ I. By the weight computation we
get a weighted empirical distribution

F̃ (ξ) :=
∑

{j|V (xj)≤ξ}
wj (3.17)

approximating the CDF of V (ε). The achievement of weights satisfying (3.13)
means, that all uncertainty information of the marginal CDFs is reflected in
the construction of F̃ , even if an a posterior modification of S has excluded
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Chapter 3. Uncertainty modeling with clouds

some sample points. The information given as boxes or sample data is reflected
anyway as this does not imply additional constraints to (3.13).

The constraints (3.13) require the weights to represent the marginal CDFs
with some reasonable margin d. In other words, the weighted marginal empir-
ical distributions F̃i, i ∈ I should not differ from the given marginal CDF Fi

by more than d. In practice, one chooses d = dKS,1 with a version of the KS
statistics [82] as introduced in Section 2.1.3. We work with the formula from
Press et al. [131],

dKS,1 =
φ−1(a)√

NS + 0.12 + 0.11√
NS

, (3.18)

where φ is the Kolmogorov function φ(λ) =
∑+∞

k=−∞(−1)ke−2k2λ2

, cf. (2.27),
and a = αw the confidence in the KS theorem.

3.3.5 Remark. The choice of dKS,1 is reasonable in practice although not
precisely fitting the assumptions used for the KS theorem. As mentioned in
Section 2.1.3 we invert the statement of the KS test to compute dKS,1. However,

for the KS test the empirical distribution F̃i is assumed to be independent
from the choice of the compared distribution Fi. In our case F̃i and Fi are not
chosen independently, as the sample which determines F̃i is generated from
information about Fi.

If dmin > dKS,1 weights satisfying (3.13) can only be achieved with d > dKS,1,
the relaxation dmin gives us a soft indicator for the quality of the approximation
which will be useful to construct bounds on the CDF F of V (ε). Remember

that after the approximation of F with F̃ , we are just one step away from
generating a potential cloud. The last step is seeking an appropriate bound
for F .

From the knowledge of dKS,1, and dmin we compute dKS,2 similar to before
(3.18), for a fixed confidence a = αb :

dKS,2 =
φ−1(a)√

NS + 0.12 + 0.11√
NS

· max(1,
dmin

dKS,1
), (3.19)

with the approximation quality factor dmin

dKS,1
. Now we define F := min(F̃ +
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3.3. Generation of potential clouds

dKS,2, 1) and F := max(F̃−dKS,2, 0) and fit these two step functions to smooth,
monotone lower bounds α and upper bounds α, cf. Figure 3.2. Observe that
if the quality of our approximation with F̃ or the sample size NS is decreased,
the width of the bounds is increased correspondingly.

Thus we have found an appropriate empirical bound of the CDF of V (ε)
and according to Theorem 3.2.1 we have generated a potential cloud that fulfills
the conditions that define a cloud via the mapping χ : x→ [α(V (x)), α(V (x))].

Note that if a weighted sample of real statistical data is actually available
(in the simplest case all weights are 1

NS
), we can directly compute F and F

from F̃ setting d = dKS,1.

 0 0.1 0.2 0.3 0.5 0.6 0.8 0.9
0

0.2

0.4

0.6

0.8

1

α, α

V 0.8 V 0.8 V (M)

Figure 3.2: The smoothed lower bounds α and upper bounds α enclosing the
empirical distribution of V (ε). The mapping x → [α(V (x)), α(V (x))] is a
potential cloud (cf. Section 3.2). The horizontal cut α = 0.8 is illustrated
and the corresponding V α and V α, given by α(V α) = α and α(V α) = α,
respectively.

The cloud represents the given information and now enables us to interpret
the potential level maps as confidence regions {x | V (x) ≤ Vα} for the random
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Chapter 3. Uncertainty modeling with clouds

vector ε: the worst-case relevant region is defined as Cα (cf. Section 3.2),
which is not empty if α ≥ dKS,2 which is typically the case (unless α is very
low and thus of little interest as a confidence level).

Thus clouds give an intuition and guideline how to construct confidence
regions for safety constraints. To this end we have combined several different
theoretical means: potential functions, KS statistics to approximate CDFs
with empirical distributions and estimate bounds, sample generation methods,
and weighting techniques.

3.4 The choice of the potential

The choice of the potential function V that determines the shape of the cor-
responding potential cloud can be chosen freely before cloud generation. In
Section 3.2 we already introduced the special cases of box-shaped (3.8) and
ellipsoid-shaped (3.9) potential choices. Now we will investigate some further
choices of V and reflect on what characterizes a good choice of V .

The quality of the choice of V can be assessed by looking at the shape of
the confidence regions Cα of the corresponding cloud. Figure 3.3 and Figure
3.4 visualize two confidence regions for the same confidence level, but differ-
ent potentials V , in two different cases for the distribution of ε. Figure 3.3
shows that uncertainties can be described reasonably by different clouds. Fig-
ure 3.4 illustrates that a shape of V which reflects the shape of the point set
representative for the uncertainties often means a less pessimistic worst-case
analysis with the cloud and can thus indicate a good choice of V . We empha-
size that a poor choice of the potential makes the worst-case analysis more
pessimistic as the confidence regions are larger, but will still result in a valid
robust uncertainty handling.

We are looking for a way to find a good choice of V that is computation-
ally attractive and giving the possibility to improve the potential iteratively.
Such a choice should allow for a simple computational realization of the con-
fidence regions, e.g., by linear constraints. This leads us to the investigation
of polyhedron-shaped potentials as a generalization of box-shaped poten-
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Figure 3.3: The regions C0.95 for two different choices of V , box- and circle-
shaped, respectively. The 2-dimensional sample belongs to two independent
N(0, 1)-distributed random variables ε1 and ε2. The two choices of V both
describe the shape of the point set reasonably.

tials. A polyhedron potential centered at m ∈ Rn can be defined as :

Vp(x) := max
k

(A(x−m))k

bk
, (3.20)

where (A(x − m))k, bk the kth component of the vectors A(x − m) and b,
respectively.

But how to achieve a polyhedron that reflects the given uncertainty in-
formation in the best way? As mentioned previously we assume the initially
available uncertainty information to consist of given samples, boxes or marginal
distributions. Furthermore we assume that additional information can be pro-
vided by an expert as unformalized dependency constraints.

After generation of a sample S as described in Section 3.3 we define a box
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Figure 3.4: The regions Cα for a box-shaped and polyhedral-shaped V . In this
case a polyhedral shape of V should be preferred as it is a better representation
of the given uncertain scenarios and will lead to a less pessimistic worst-case
analysis.

b0 containing 100% of the sample points by

b0 := [g11, g1NS
] × [g21, g2NS

] × · · · × [gn1, gnNS
], (3.21)

and we define our potential V0 box-shaped as in (3.8) taking the value 1 on
the margin of b0, i.e.,

µk =
gk1 + gkNS

2
, rk =

gkNS
− gk1

2
. (3.22)

Based on expert knowledge, a user-defined variation of V0 can be per-
formed afterwards by cutting off sample points deemed irrelevant for the worst-
case: The optimization phase, cf. Chapter 5, provides a worst-case scenario
which is highlighted in a graphical user interface (GUI). The expert can
decide to exclude, e.g., the worst-case or different scenarios, based on his tech-
nical knowledge. Assume that the linear constraints A(x − µ) ≤ b represent
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3.4. The choice of the potential

the exclusion of sample points and the box constraint from b0, we define our
polyhedron shaped potential as in (3.20) with m = µ. The exclusion in the
GUI will be conducted in 1-dimensional or 2-dimensional projections of ε as
we will see in Chapter 6, cf. Figure 6.2, thus the matrix A becomes sparse. By
means of this exclusion an expert can specify the uncertainty information in
the form of dependency constraints adaptively, even if the expert knowledge
is only little formalized, resulting in a polyhedron shaped potential.

3.4.1 Remark. There is a close relationship between the dependency con-
straints and correlation information. Consider the 2-dimensional normally
distributed case centered at 0, with non-zero correlation. Then the confidence
regions are ellipse shaped ||Ax||22 ≤ const. If one approximates the ellipse
with a parallelepiped ||Ax||∞ ≤ const you end up in a polyhedron shaped
confidence region, see, e.g., Figure 3.5.

Figure 3.5: Sample points in a 2-dimensional normally distributed example
with non-zero correlation. The elliptical confidence regions can be reasonably
approximated by linear constraints.

This potential, originating from a box potential, is suitable for symmet-
ric samples, but: If some uncertain variables are described by asymmetric
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Chapter 3. Uncertainty modeling with clouds

marginal probability densities, a better choice Vt of the potential could be
achieved by an appropriate coordinate transformation T , i.e.,

VT (x) := Vp(T (x)). (3.23)

An appropriate transformation would be, e.g., a logarithmic transformation
of εi if Fi : R+ → [0, 1]. An example of a 2-dimensional potential cloud with
V = VT is visualized in Figure 3.6.
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Figure 3.6: On the left, a 2-dimensional potential cloud mapping, i.e., the maps
x→ α(V (x)) and x→ α(V (x)); on the right, the contour lines of α ◦ V . The
marginal distributions for ε = (ε1, ε2) are a N(0, 1) and a Γ(10, 1) distribution,
respectively.

We can observe the advantage of a transformed potential in Figure 3.7.
Without transformation the functions α and α are obviously steeper, and for
α close to 1 the solution Vα of α(Vα) = α is much closer to 1 than in the
transformed case, which leads to larger confidence regions, mostly implicating
a more pessimistic worst-case analysis. The reason for that becomes apparent
looking at Figure 3.8. The confidence regions for the transformed box potential
are obviously smaller than for the non-transformed potential.

3.5 Computational ways to generate potential

clouds

Now we give a survey on the algorithms that realize the described methods
computationally. We will directly follow the considerations from the previous
sections. We will give code examples for the grid selection of LHS (2.34), for
the weight computation (3.15) and for the smooth fit of the bounds α, α.
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Figure 3.7: The lower bounds α and upper bounds α for a potential cloud with
transformation (left figure) and without transformation (right figure). The
marginal distributions for ε = (ε1, ε2) are a N(0, 1) and a Γ(10, 1) distribution,
respectively.

The first computation occurring in our approach is the sample generation
based on LHS. The algorithm for the sample generation is a straightforward
realization of the theoretical description in Section 2.1.6. After construction of
a grid as described, with a matrix grid of size Ns ×n containing the marginal
grid points, we generate the sample points in a Ns × n matrix samplepoints:

per=zeros(N,n); % initialization of per

for i=1:n

while 1

per(:,i)=randperm(N);

b=1;

% this construction avoids a sample

% on the grid diagonal:

for j=1:i-1

if ~all(per(:,i)==per(:,j))

b=1;

break;

else

b=0;

end;

end;

if b==1

break;

end;

end;

end;
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Figure 3.8: The figures show the regions Cα, α = 0.5, 0.8, 0.95 for a box
potential cloud with (left figure) and without (right figure) transformation.
The two samples are generated for ε distributed as in Figure 3.7.

for i=1:N

for j=1:n

samplepoints(i,j)=grid(per(i,j),j);

end;

end;

Recall the notation used for the weight computation. Let dind correspond
to I, w to w, d to dKS,1, br be the matrix containing interpolation points on
the margin, nbr the number of interpolation points which is chosen constant
on each margin, pdf an array of strings looking like, e.g., ’normcdf(x,0,1)’.
Then we can realize (3.15) in Matlab as follows:

for i=1:n

x=br(:,i); % project interpolation points to the related margin

cdf(:,i)=eval(pdf{i}); % CDF values of the interpolation points

for j=1:nbr

% permutation to construct the marginal empirical distributions:

perb{j,i}=find(sample(:,i)<=br(j,i));

end;

end;

cvx_begin

variable w(N);

variable e;

minimize(e);

subject to

e>0;
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sum(w)==1;

w>=zeros(size(w));

w<=(10/N).*ones(size(w));

for i=1:length(dind)

for j=1:nbr

sum(w(perb{j,dind(i)}))>=cdf(j,dind(i))-e*d;

sum(w(perb{j,dind(i)}))<=cdf(j,dind(i))+e*d;

end;

end;

cvx_end

The problem is solved using the Matlab convex programming toolbox
CVX developed by Grant & Boyd [63]. It should be remarked that we make
use of the Matlab Statistics Toolbox to evaluate probability distributions.
Also note that we use the Matlab eval function for simplicity of the code.
For performance reasons one should use function pointers instead.

After the weight computation we have all F̃i and F̃ as defined in equation
(3.14) and (3.17). We can compute dmin, the maximum deviation of F̃i from
Fi, i ∈ I, as in (3.16).

The number of constraints in the linear program (3.15) is NCVX = 2Nξ|I|+
2NS +2, where Nξ is the number of interpolation points on each margin, |I| the
cardinality of I. A reasonable value for NCVX with regard to the computation
time is between 2000 and 8000 on an Intel Core 2 Laptop CPU T5500 1.66
GHz computer with 2 GB RAM. Observe that in higher dimensions one may
have to decrease the number of interpolation points, and thus the weights
are likely to satisfy the constraints (3.13) only for dmin > dKS,1. This is the
point where the curse of dimensionality can appear during the computations
if dmin ≫ dKS,1.

Now we have achieved F̃ and dKS,2 from (3.19) and the next step is to

fit F := min(F̃ + dKS,2, 1) and F := max(F̃ − dKS,2, 0) smoothly. We first
fit these step functions with a continuous piecewise linear function lineval,
and afterwards make use of piecewise cubic Hermite splines, cf. Fritsch &

Carlson [57], for the final smooth fit via pchip. The main characteristics of
these splines for our purposes is the fact that they respect monotonicity.

We start within the interval [x0,x1] where the a priori continuous piece-
wise linear fit, that is lineval, is non constant. Let x be a vector of initial
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interpolation points ∈(x0,x1), lineval(x) be the evaluation of lineval at
x. Let v∈(x0,x1) a set of points where the spline fit is evaluated to be com-
pared with lineval, h some tolerance level to serve as stopping criterion for
the spline fit.

y=lineval(x);

lx=length(x);

for i=1:ceil(sqrt(N))-lx-1 % max. of sqrt(N) interpolation points

s=pchip(x,y,v); % Hermite spline

% check stopping criterion

if all(abs(lineval(v)-s)<=h)

break;

else

% find index of v with maximal deviation

[a,ind]=max(abs(lineval(v)-s));

% create a new interpolation point there

xnew=v(ind);

ynew=lineval(xnew);

x=[x,xnew];

y=[y,ynew];

[x,p]=sort(x);

y=y(p);

end;

end;

Eventually x ∈(x0,x1) are the interpolation points for the spline fit. We
add two more points, namely x0 and x1, where the slope of the spline is forced
to take value 0, this is possible for Hermite splines. With this final set of
interpolation points we achieve a smooth fit on the whole range of V , cf., e.g.,
Figure 3.2.

The fit of the smooth bounds completes the computational cloud generation
with respect to Section 3.3.

For the algorithms described above we initially choose V0 as the potential
function. But due to Section 3.4 we have implemented an adaptive variation
of the potential to a polyhedron shape via a graphical user interface which will
be presented in detail in Chapter 6.

72



Chapter 4

Design optimization

A classic approach to design optimization, without taking uncertainties into
account, leads to decision support for engineers, or even autonomous design,
but to a design which completely lacks robustness. We want to safeguard the
design against worst-case scenarios, i.e., the design should not only satisfy the
given requirements on functionalities, but should also work under uncertain,
adverse conditions that may show up during employment of the designed ob-
ject. This will involve methods for uncertainty modeling in the optimization
phase.

In this chapter we will elaborate a solution approach to design optimization
without taking uncertainty into account. Thus we prepare for the next chapter,
which finally combines uncertainty handling (see the last chapter) and design
optimization (see this chapter).

We start with a formal statement of the optimization problem in Section
4.1. Afterwards, in Section 4.2, we point out the difficulties related with the
problem. In Section 4.3 heuristic approaches to the solution of the problem
are presented. An implementation can be found in Section 4.4.
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4.1 Problem formulation

In an underlying model of a given structure, e.g., a spacecraft component, with
several inputs and outputs, we denote by x the vector containing all output

variables, and by z the vector containing all input variables. The inputs
contained in z can be divided into global input variables u and design

variables v.

The design variables are determined by the so-called design choice vari-

ables. A choice variable is a univariate variable controllable for the design.
The choice variables can be continuous, e.g., the diameter of an antenna, or
discrete, e.g., the choice of a thruster from a set of different thruster types.
Let θ be the vector of design choice variables θ1, θ2, . . . , θno. Let Id be the in-
dex set of choice variables which are discrete and Ic be the index set of choice
variables which are continuous, Id ∪ Ic = {1, 2, . . . , no}, Id ∩ Ic = ∅.

In the discrete case, i ∈ Id, the choice variable θi determines the value of
ni design variables. For example, if θi was the choice of a thruster, each choice
could be specified by the thrust and specific impulse of the thruster. Thrust
and specific impulse would be design variables vi

1 and vi
2, and ni = 2 in this

example. Let 1, 2, . . . , Ni be the possible choices for θi, i ∈ Id, then the discrete
choice variable θi corresponds to a finite set of Ni points (vi

1, v
i
2, . . . , v

i
ni

) ∈ Rni.
Usually this set is provided in an Ni × ni table (τ i

j,k) (see, e.g., Table B.3,
Ni = 30, ni = 3), and define

Z i(θi) := (τ i
θi,1, τ

i
θi,2, . . . , τ

i
θi,ni

) for θi ∈ {1, 2, . . . , Ni}, (4.1)

i.e., the θith row of (τ i
j,k). In the continuous case, i ∈ Ic, the choice variable

θi can be regarded as a design variable controllable in a given interval [θi, θi],
i.e.,

Z i(θi) := θi for θi ∈ [θi, θi]. (4.2)

A global input variable is an external input with a nominal value that cannot be
controlled for the underlying model, this could be, e.g., a specific temperature.

The complete vector of inputs z has the length
∑

i∈Id
ni + |{i ∈ Ic}| +
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length(u), where u is the vector of global inputs at their nominal values. Let

Z(θ) := (u, Z1(θ1), Z2(θ2), . . . , Zno(θno)). (4.3)

We call Z a table mapping as the nontrivial parts of Z consist of the tables
(τ i

j,k). The mapping Z assigns an input vector z to a given design choice θ.

Both design and global input variables can be uncertain. For the classic
problem formulation of design optimization we consider these variables to have
the nominal value and do not take any uncertainties into account. We assume
that the design optimization problem can be formulated as follows:

min
θ

g(x) (objective function)

s.t. z = Z(θ) (table constraints) (4.4)

G(x, z) = 0 (functional constraints)

θ ∈ T (selection constraints)

where the design objective g(x) is a function of the output variables of the
underlying model. The table constraints assign to each choice θ a vector
z of input variables. The functional constraints express the functional
relationships defined in the underlying model. It is assumed that the number
of equations and the number of output variables is the same (i.e., dimG =
dim x), and that the equations are (at least locally) uniquely solvable for x.
The selection constraints specify which choices are allowed for each choice
variable, i.e.,

θi ∈
{
{1, 2, . . . , Ni} if i ∈ Id,

[θi, θi] if i ∈ Ic.
(4.5)

4.2 Difficulties

The problem formulated in the last section features several difficulties of most

complex nature. The variable types can be both continuous and integer, so
the problem comes as a mixed integer nonlinear programming problem
(MINLP). MINLP can, e.g., entail combinatorial explosion, it is still a recent
research direction which has not yet matured, but we will not go very much into
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the details of it in this study. Profound difficulties arise from the fact that the
functional constraints, represented by G, can have strong nonlinearities and
can contain branching decisions such as case differentiation (implemented as,
e.g., if-structures in the code) which leads to discontinuities.

Common techniques to find local or global solutions of problem (4.4) can be
separated into symbolic and merely heuristic approaches. Symbolic solvers
require the underlying model to be formulated in a symbolic solver language
like Ampl (cf. Fourer et al. [56]), Gams (cf. Brooke et al. [18]), or Lingo

(cf. Schrage [141]). Thus they can, e.g., compute derivatives making use of
methods like automatic differentiation.

The formulation of the underlying model in a symbolic solver language
can become a very difficult task facing real-life problems since the people
who implement the underlying model for the design are sometimes working
independently from the optimization phase. A semi-automatic translation of
an underlying Matlab model can be found in Neumaier et al. [118]. This
study also examines the capabilities of symbolic solvers with regard to the
difficulties mentioned. It turned out that these solvers were unable to provide
solutions for the real-life applications discussed in Chapter 7.

As we assumed that the functional constraints of the underlying model
can be solved numerically for x given z we can treat them as a black box
function x = Go(z) and make use of specific strategies to search the space
of allowed inputs z = Z(θ), θ ∈ T . The relationship between θ and g(x) is
often modeled by a surrogate function. From the knowledge of the surrogate
function the heuristic methods can propose guesses for optimal solutions, or
they can improve the surrogate model by further evaluations of Go. There
are not only surrogate function based heuristics but also many more, e.g.,
evolution strategies [65], or based on clustering [27].

In view of the difficulties mentioned we decide to approach the solution of
(4.4) by means of heuristics, as described in the next section.
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4.3 Heuristic strategies

In this section we present a heuristic strategy to tackle the optimization prob-
lem (4.4) stated in Section 4.1. The method we develop is based on separable

underestimation. It exploits the characteristics of the problem, takes advan-
tage of the discrete nature of many of the choice variables involved in real-life
design, supporting, at the same time, continuous choice variables.

The functional constraints in problem (4.4) are given by the equation
G(x, z) = 0 which we assume to be uniquely numerically solvable for x. For
given z we solve the multivariate zero-finding problem G(x, z) = 0 numerically
and define Go(z) := x, the solution of the zero-finding problem. Note that the
functional constraints in (4.4) now can be formulated as Go(Z(θ)) = x after
inserting the table constraints z = Z(θ). Then a substitution of x in the
objective function of problem (4.4) leads to

g(x) = g(Go(Z(θ))) =: Gbb(θ), (4.6)

which is the relation between θ and g(x) described in the last section. Thus
we can incorporate the functional constraints and the objective function of
problem (4.4) in the black box Gbb(θ) and rephrase (4.4) as:

min
θ

Gbb(θ) (4.7)

s.t. θ ∈ T

Remember θ is the vector of design choice variables θ1, θ2, . . . , θno. We seek a
separable underestimator q(θ) for the objective function defined by

q(θ) :=
no∑

i=1

qi(θ
i). (4.8)

Assume that the black box Gbb has been evaluated No times resulting in the
function evaluations Gbb1

, Gbb2
, . . . , GbbNo

for the design choices θ1, . . . , θNo
∈

T . Let l ∈ {1, 2, . . . , No}. For a discrete choice θi
l , we define qi(θ

i) simply as a
constant. For a continuous choice θi

l , we define qi(θ
i) by a quadratic expression
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with the two constants qi1 and qi2. Thus we have

qi(θ
i
l) :=

{
qi,θi

l
, θi

l ∈ {1, 2, . . . , Ni} if i ∈ Id,

qi1θ
i
l + qi2θ

i
l

2
if i ∈ Ic.

(4.9)

If Id = ∅ we add an integer choice θi with Ni = 1 artificially to represent the
constant part which is left out in the definition of qi, i ∈ Ic.

The vectors qi of constants have the length Ni for i ∈ Id, and 2 for i ∈ Ic.
They are treated as variables qi in an LP with constant objective function
subject to the constraints

no∑

i=1

qi(θ
i
l) ≤ Gbbl

, l = 1, 2, . . . , No. (4.10)

To ensure that many constraints in (4.10) will be active we solve a modified
version of the above LP. We pick a subset of the design choices, i.e., θl, l ∈ Ia,
Ia ⊆ {1, 2, . . . , No}, such that

min
qj ,j∈{1,2,...,no}

no∑

i=1

qT
i qi (4.11)

s.t.
no∑

i=1

qi(θ
i
l) = Gbbl

, l ∈ Ia

has a feasible solution. Afterwards we compute the differences Gbbl
−∑no

i=1 qi(θ
i
l)

for all l ∈ {1, 2, . . . , No} and find those l with the largest negative values for
the difference redefining the set Ia, and those l with the largest positive values
defining the set Iia. Then we continue with solving

min
qj ,j∈{1,2,...,no}

no∑

i=1

qT
i qi +

∑

l∈Iia

(Gbbl
−

no∑

k=1

qk(θ
k
l ))

2 (4.12)

s.t.

no∑

i=1

qi(θ
i
l) = Gbbl

, l ∈ Ia

and iterate this procedure until either Gbbl
− ∑no

i=1 qi(θ
i
l) is nonnegative for

all l ∈ {1, 2, . . . , No}, so that q is constructed to be an underestimator of Gbb

at the given points θ1, θ2, . . . , θNo
satisfying (4.10), or a maximum number of
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iterations is reached. In the latter case

qmaxniter(θ) :=
no∑

i=1

qi(θ
i) − max

l∈{1,2,...,No}
(Gbbl

−
no∑

i=1

qi(θ
i
l)) (4.13)

is an underestimator for Gbb at the given points θ1, θ2, . . . , θNo
anyway. The

underestimator q(θ) is separable and can be easily minimized via

θi = min
j∈{1,2,...,Ni}

qi,j if i ∈ Id (4.14)

θi =





− qi,1

2qi,2
if qi,2 6= 0

θi if qi,2 = 0, qi,1 < 0

θi if qi,2 = 0, qi,1 ≥ 0

if i ∈ Ic. (4.15)

In addition to the development of the method of separable underestimation
we also make use of further strategies to find a solution of the optimization
problem (4.7). The first one is called Snobfit, developed by Huyer & Neu-

maier [72]. It is surrogate function based and fits a quadratic model for Gbb.
Integers are treated as continuous variables and rounded to a grid with step
width 1. After the analysis of the quadratic model, a user-defined number
of choices θ is requested to be computed from Gbb(θ) to update the model
in the next iteration. The requests also contain the minimizer for the cur-
rent quadratic model. The stopping criterion can be freely chosen within the
implementation of the method. For surrogate function based strategies it is
reasonable to prepare the integer choices for the black box model prior to the
optimization. Remember each value 1, 2, . . . , Ni of a discrete choice variable
θi, i ∈ Id corresponds to a point in Rni via Z i(θi). The involved table τ i

represents a sequence of Ni points in Rni. This sequence should be sorted
in a reasonable way, e.g., seeking monotonicity in each column of τ i which
correspond to the design variables, to impose a good surrogate function fit.

Another method we use is based on evolution strategy with covariance
matrix adaptation, called CMAES, developed by Hansen & Ostermeier

[65]. It is not surrogate function based, but a specific stochastic method to
sample the search space T . This strategy requires quite a large amount of
function evaluations. Integers are also treated as continuous variables rounded
to the next integer value.

Finally the minimizers that result from all methods used are taken as start-
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ing points for a limited global search, i.e., an integer line search for the discrete
choice variables, afterwards multilevel coordinate search (MCS), developed by
Huyer & Neumaier [71], for the continuous choice variables and an iteration
of this procedure until satisfaction. Thus we hope to find the global optimal
solution, but as we are using heuristics there is no guarantee.

4.4 Implementation

In this section we give an implementation of the methods introduced in the
last sections. The zero-finding problem mentioned in Section 4.3 is solved
numerically by the Matlab package NLEQ, cf. [33], [122].

For a Matlab implementation of the method of separable underestimation
we must be able to formulate (4.12). Let n_o be no, lZZ(i) be Ni, let Ic

correspond to the index set Ic, Ia correspond to Ia, let intcheck be 1 if
Id = ∅ (remember we need a constant c in this case). Let objstr, viopen,
constr be evaluable strings, objstr contains the objective function

∑no

i=1 q
T
i qi

as in (4.11), viopen contains
∑

l∈Iia
(Gbbl

−∑no

k=1 qk(θ
k
l ))

2, and constr contains∑no

i=1 qi(θ
i
l) for l ∈ Ia, as in (4.12). Then we can formulate (4.12) by means of

CVX [63].

cvx_begin

for i=1:n_o

if any(i==Ic) % i.e., i in I_c

variable([’q’ num2str(i) ’(2)’]);

else

variable([’q’ num2str(i) ’(’ num2str(lZZ(i)) ’)’]);

end;

end;

if intcheck

variable(’c(1)’);

end;

minimize(eval(objstr)+eval(viopen));

subject to

for i=1:length(Ia)

eval(constr{Ia(i)})==f(Ia(i));

end;

cvx_end
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4.4. Implementation

From the solution of this problem the computation of the optimal choice
is straightforward by equation (4.14).

As mentioned in the last section an implementation of the strategy using
a quadratic model fit is realized by the routine Snobfit available online as
Matlab code, and moreover, an implementation of the evolution strategy with
covariance matrix adaptation exists as the program CMAES, also available
online as Matlab code. Eventually we apply methods of discrete line search
and MCS as suggested before, for a limited global search, called lsearch.

Let modelevaluation be an evaluation of Gbb(θ) for a given θ. Let sep

be the implementation of the method of separable underestimation provid-
ing a guess theta for the optimal design. It may also be replaced or sup-
ported by another strategy we introduced, like CMAES or Snobfit. Then
the methods described are implemented in a loop as below. A user defined
value optimumconfirmed defines the stopping criterion: if the best solution
does not change for optimumconfirmed iterations the loop stops.

% load starting points x and corresponding function evaluations f

load startingpoints;

% best starting point

[minf,ind]=min(f);

xbesto=x(ind,:);

fbesto=f(ind);

oc=0; % needed for the stopping criterion

while 1

theta=sep(x,f); % sep replaceable by other strategies

x=[x;theta];

% evaluate choice theta

fnew=modelevaluation(theta);

f=[f fnew];

[lsx,lsf]=lsearch(theta);

x=[x;lsx];

f=[f lsf];

% optimal solution

[minf,ind]=min(f);
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xbest=x(ind,:);

fbest=f(ind);

% stopping criterion

if fbest>=fbesto

oc=oc+1;

else

fbesto=fbest;

xbesto=xbest;

oc=1;

end;

if oc>=optimumconfirmed

fbest=fbesto;

xbest=xbesto;

break;

end;

end;

The resulting xbest is our guess for the optimal design. As already men-
tioned the heuristics cannot guarantee any global optimality.
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Uncertainty modeling in design

optimization

In this chapter we combine uncertainty handling and design optimization for-
mulating our goal of finding the optimal, robust design. The uncertainties
will be handled as described in Chapter 3, design optimization will be tackled
as in Chapter 4. Similar to the approach in the last chapter we start with
the problem formulation in Section 5.1, we point out the characteristics and
difficulties that originate from the problem statement in Section 5.2. Using
the methods developed we present an approach to a solution for the optimal
robust design in Section 5.3.

5.1 Problem formulation

We will stick to the same notation as introduced in the chapters before. As
mentioned in Section 4.1 both design and global input variables contained in
the vector z are uncertain, ε denotes the related random vector of uncertain
errors. We assume that the optimization problem can be formulated as a
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mixed-integer, bilevel problem of the following form:

min
θ

max
x,z,ε

g(x) (objective functions)

s.t. z = Z(θ) + ε (table constraints)

G(x, z) = 0 (functional constraints) (5.1)

θ ∈ T (selection constraints)

VT (ε) ≤ V Tα
(cloud constraint)

The table constraints now assign to each choice θ an input vector z whose
value is the nominal entry from the table mapping Z(θ) plus its error ε with
uncertainty specified by the cloud. The new cloud constraint involves the
potential function VT as described in Chapter 3 and models the worst-case
relevant region {ε ∈ M | VT (ε) ≤ V Tα

} = Cα assuming that V Tα
exists. The

confidence level α should be chosen to reflect the seriousness of consequences
of the worst case event. In our applications we used α = 0.95, cf. Chapter 7.

With this problem formulation we ask to find the design with the optimal
worst-case scenario, that implicates the bilevel structure. It is possible to trade
off between the worst-case scenario and the nominal case of a design, but this
would lead to a multi-objective optimization problem formulation which will
not be investigated in this study.

5.2 Difficulties

Apart from the difficulties already mentioned in Section 5.2 we now face ad-
ditionally a bilevel structure imposed by the uncertainties, which is already
a nontrivial complication in the traditional situation where all variables are
continuous. Difficulties arise, e.g., in the evaluation of the objective function,
i.e., the inner level. The evaluation can be very expensive as it is an opti-
mization problem itself, and derivatives of the inner level do not exist, so we
do not have derivatives in the outer level optimization. The current methods
for handling such problems require at least that the objective and the func-
tional constraints are continuously differentiable. Standard optimization tools
cannot be used to tackle problem (5.1). Symbolic solvers already had severe
problems with solving the one level problem (4.4), so they are not suitable
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for this even more complicated problem. Currently it is not even possible to
formulate problem (5.1) for the real-life applications discussed in Chapter 7
in a symbolic solver language without a modification of the underlying model,
cf. Neumaier et al. [118].

Since the design problem (5.1) is so highly complex we are limited to the
use of heuristic methods and will take advantage of the methods which we
already developed in the last chapter.

5.3 Solution approach

The approach to the solution of problem (5.1) now combines all presented
methods from uncertainty handling and heuristic design optimization.

We will first reformulate the problem, similarly to (4.7), incorporating the
objective function and functional constraints for the underlying model in the
black box function

Gbb(θ, ε) := g(Go(Z(θ) + ε)) = g(x). (5.2)

This is possible as we again assume that the functional constraints can be
solved numerically for x given z, i.e., x = Go(z). Then effectively only an
optimization over ε is needed in the inner level of the problem.

min
θ

max
ε

Gbb(θ, ε) (5.3)

s.t. θ ∈ T

VT (ε) ≤ V Tα

5.3.1 Remark. The function Gbb for a fixed design θ can be interpreted as
the design response function s in Chapter 2.

We start with a look at the inner level of the problem, i.e., for a fixed θ ∈ T

max
ε

Gbb(θ, ε) (5.4)

s.t. VT (ε) ≤ V Tα
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Note that the cloud constraint VT (ε) ≤ V Tα
is not linear, so we perform the

coordinate transformation T prior to solving problem (5.4), i.e., εT = T (ε),
VT (ε) = Vp(T (ε)) = Vp(εT ).

Because of the polyhedral structure of Vp, the cloud constraint can then be
written as a collection of linear inequalities parameterized by the confidence
level α. For a fixed θ we approximate Gbb(θ, T −1(εT )) linearly in a box b con-
taining the polyhedron {εT ∈ T (M) | Vp(εT ) ≤ V Tα

} by a function Gbblin
(εT ).

Thus problem (5.4) becomes a linear programming problem (LP),

max
εT

Gbblin
(εT ) (5.5)

s.t. Vp(εT ) ≤ V Tα

The maximizer ε̂T for the fixed design choice θ corresponds to the worst-case
objective function value

Ĝbb(θ) := Gbb(θ, T −1(ε̂T )). (5.6)

Now consider θ not to be fixed. The function θ → Ĝbb(θ) implicated by the
solution of problem (5.5) is the objective function of the outer level of problem
(5.3) and can thus be used to get rid of the bilevel structure in (5.3):

min
θ

Ĝbb(θ) (5.7)

s.t. θ ∈ T

This 1-level problem can be solved with the same techniques like problem (4.7),
cf. Section 4.3 and Section 4.4, seeking the robust, optimal design.

5.3.2 Remark. By approximating Gbb linearly we assume that Gbb is a nice
behaving function for fixed θ. Nice behaving means that there are no strong
peaks within the box b, that Gbb has little curvature, or is monotone in b. Thus
a linearization would be justified. This is the case in many real-life situations
if the box b is reasonably small.

For the implementation in Section 4.4 the modelevaluation has to be
replaced by a worst-case search within the polyhedron {εT ∈ T (M) | Vp(εT ) ≤
V Tα

} to represent Ĝbb. But this worst-case search is a straightforward solution
of the LP (5.5), using CVX.
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CBDO software

In this chapter we present the realization of our methods in a graphical user

interface (GUI). Since our approach can be considered as design optimization
based on uncertainty modeling with clouds, we call the software cloud based

design optimization (CBDO), cf. [19].

We have developed the GUI using the concept as already visualized in
Figure 2.6, i.e., we have a sequential, iterative structure. The first two steps
represent the uncertainty elicitation, that is on the one hand, providing the
initially available information (Section 6.1), on the other hand, scenario ex-
clusion (Section 6.2). The next step is the optimization phase (Section 6.3).
Eventually, the user has the possibility of adaptively refining the uncertainty
information and rerunning the procedure until satisfaction (Section 6.4).

To install the software it is sufficient to copy the cbdo folder on the com-
puter where it is going to be run, change to that folder in Matlab, run
cvxsetup once to set up CVX. Afterwards one calls the program by cbdogui,
it should work out of the box. To prepare the Matlab file containing the
underlying system model G(x, z) (cf. Chapter 4) one has to use the following
conventions. Choose a name for the model file, e.g., model.m, and create the
model file to have the form

[obj,rekvdiff]=model(rekvars,uncvars,designvars,fixedvars)
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where rekvars corresponds to x, uncvars to u, designvars to v, fixedvars
to a set of constant parameters, obj to g(x), and rekvdiff to G(x, z). The
inputs of the model file have to be declared in a Matlab script file, say,
varinit.m. Both model.m and varinit.m have to be created in the /model

subfolder. This subfolder also contains templates for the inputs declaration
file, i.e., /model/samplevarinit.m, and for the underlying model file, i.e.,
/model/samplemodel.m.

6.1 Uncertainty elicitation

After starting the GUI with cbdogui it asks whether to load the last state to
the workspace unless it is run for the first time. In the latter case one should
first configure the options to set up the model file and inputs declaration file
names, and other user-defined parameters after clicking Options/Edit Options.
The notation from the Chapters 3, 4, and 5 in correspondence to the editable
options, and their associated default values are shown in Table 6.1. Tooltips are
given for each option in the GUI to guide the user through the configuration.
Having set up the options one returns to the uncertainty elicitation clicking

Table 6.1: Correspondence of notation

GUI notation Symbolic notation Default value

Samplesize NS 1000
Transformation T Logarithmic
Confidence level (cloud) α, cf. (5.1) 95%
Confidence level (sample) αS 99.8%
Confidence level (weights) αw 95%
Confidence level (width) αb 95%
Weight computation constraints NCVX 3000
Number of starting points No

(
no+3

2

)

Optimum confirmations optimumconfirmed 2

Back. The initially available information specified in the inputs declaration
file can be modified choosing a variable’s name and specifying its associated
marginal CDF, or interval bound, respectively, cf. Figure 6.1.
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Figure 6.1: Example for the uncertainty elicitation GUI.

The Next button leads to the next step which is scenario exclusion.

6.2 Scenario exclusion

From the information given in the first step the program generates a sample as
described in Section 3.3. The second step enables the user to exclude scenarios
by linear constraints as described in Section 3.4 and Section 5.3.

To this end the user selects a 1-dimensional or 2-dimensional projection
of the generated sample using the field Projection on the right. To add a
constraint one hits the Add constraint button and defines the linear exclusion
by two clicks into the sample projection on the left. All linear constraints can
be selected from the Constraint Selection box to revise and possibly remove
them via the Remove constraint button. Figure 6.2 shows a possible exclusion
in two dimensions.

After the exclusion the Next button leads to the optimization phase.
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Figure 6.2: Example for scenario exclusion.

6.3 Optimization

The Start button initiates two computations: potential cloud generation,
which includes weight computation if necessary, cf. Section 3.3, and opti-
mization, cf. Chapter 5. As a result one gets the optimal design point found
by the program, and the associated objective function value, cf. Figure 6.3.
It should be remarked that the workspace of the optimization including all
results is stored as .mat files in the cbdo directory.

The user now has the possibility for the adaptive analysis of the results as
indicated in Chapter 3. Thus the Next button leads back to the uncertainty
elicitation which is waiting for refinement.
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Figure 6.3: Example for the optimization phase.

6.4 Adaptive step

The GUI determining the a priori information is not modifiable anymore at
this stage of the program. Meanwhile, observe that in the lower part of the
GUI a histogram illustrates the weighted marginal distributions of the sample,
which respect both the a priori information and the scenario exclusion, cf.
Figure 6.4.

Hitting the Next button makes the scenario exclusion appear again and
enables the a posteriori adaption of the uncertainty information. For exam-
ple, the expert who uses the program can consider the worst-case scenario
(highlighted with a red dot) to be too pessimistic and exclude it, cf. Figure
6.5.

The Next button leads to the optimization phase again and the user can
rerun the procedure until satisfaction.
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Figure 6.4: Example for uncertainty elicitation in the adaptive step.

Figure 6.5: Example for a posteriori scenario exclusion.
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Space mission design

applications

We already mentioned a few applications of uncertainty handling in Chapter
1 and Chapter 2. In this chapter we refer to further studies that can be found
in the literature, applying uncertainty models in real-life situations. The main
focus of this chapter are two examples of successful application of our approach
to robust design optimization based on clouds, cf. Section 7.1 and Section 7.2.

Safety analysis using advanced methods for uncertainty handling has nu-
merous, diverse fields of application, cf. Sexsmith [143]: risk mitigation for
new and existing bridge structures, avoiding of ship collisions, nuclear power
plant siting. But also less engineering related topics involve uncertainty han-
dling nowadays. A comparison of the success of different teaching techniques
in education with uncertainty methods can be found in Kosheleva & Cebe-

rio [83]. Survival analysis and prediction of epidemics is researched in Bickis

& Bickis [15]. Problems from food processing concerned with the ripening of
cheese are studied in Baudrit et al. [5]. The problem of jury compositions in
jurisprudence is investigated with statistical methods in Coolen et al. [23].

Space related sciences have employed uncertainty methods as well, such as
trajectory optimization in formation flying spacecrafts [136]. The two high-
lighted examples presented in detail in the next sections are typical problems
found in the field of spacecraft system design. In the past of spacecraft en-
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gineering there have been only small steps made in quantifying reliability in
high-dimensional design problems. The conventional approach is based on
simulation techniques [4], [97], [150], or on cautious attempts to involve more
sophisticated methods, e.g., from fuzzy logic, cf. Ross [138], or evidence the-
ory, cf. Croisard et al. [26], with the drawbacks introduced in Chapter 2.
To harmonize the different disciplines involved in spacecraft design one fol-
lows the approach of multidisciplinary design optimization traditionally using
safety margins as uncertainty tool, cf. Section 2.1.4.

In the following sections we investigate two case studies with respect to
the applicability of our cloud based design optimization approach to real-life
problems with high-dimensional uncertainties given incomplete information.
In Section 7.1 we study the XEUS mission which leads to a 10-dimensional
design problem with a 24-dimensional uncertainty domain. In Section 7.2
we study the Mars Exploration Rover mission stating a 1-dimensional design
problem with a 34-dimensional uncertainty domain. We produce and assess
the results and compare them to the conventional safety margins methods
popular among many engineers. We did not choose a transformation T in
these examples, and the experts did not provide dependency constraints. A
publication of the results can also be found in Fuchs et al. [58] and Neumaier

et al. [118].

7.1 Example: XEUS mission

In this section we investigate a spacecraft design problem in the context of the
2004 X-ray Evolving Universe Spectroscopy (XEUS) mission of the European
Space Agency (ESA). The XEUS is supposed to be a permanent space-borne
X-ray observatory with the scientific goal to study black holes, galaxy groups,
clusters, and the interstellar medium, cf. [43], [168].

Provided by ESA with Matlab versions of modified subsystem models for
the XEUS mission (not the original models), our goal is to find a spacecraft
design for the given subsystems considering minimization of the total mass
mtot and robustness of the solution. The modified version of the models, im-
plemented on the basis of Larson & Wertz [93], consists of nine m-files
defining Matlab functions: six for the various subsystems, one for the mass
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budget, and two auxiliary functions, cf. Table 7.1. The uncertainty informa-

Table 7.1: Subsystem models

file name use

DH ss.m Data Handling System
TTC ss.m Tracking, Telemetry and Command
pow ss.m Power System
str ss.m Structure System
str stabil.m aux. for Structure System
target planet func.m aux. for Thermal Protection System
thermal ss.m Thermal Protection System
prop ss.m Propulsion System
mass budget.m Mass Budget

tion was given as interval uncertainty on the vector of global input variables u,
cf. Chapter 4, in 24 dimensions, which is a representative dimensionality for
real-life uncertainty handling. The vector of design choices θ is 10-dimensional,
where θ1, . . . , θ9 are discrete choices (cf. Appendix A.1), and θ10 ∈ [0.5, 8.0]
is a continuous choice. This is a very complex setting for a design problem.
The functional constraint G(x, z) = 0 is given as a fixed point problem, i.e.,
G(x, z) = x, hence G(x, z) = G(x, z)− x, where x is the vector containing the
three recursive variables in the model: mtot, pow_prop and pow_ther.

The variable structure is summarized in Appendix A.1. An evaluation of
G(x, z) amounts to running once the Matlab functions for the subsystems,
cf. Appendix A.2.

7.1.1 Results

The cloud constraint for the optimization is generated for a confidence level of
α = 95% and a generated sample sizeNS = 1000. For the optimization we used
heuristics based on multiple runs with Snobfit. The best design point found
is given in Table 7.2, showing the optimal design choice and the corresponding
value of the objective function mtot for the nominal case and for the worst
case, respectively. In total we made 20 runs considering the uncertainty in the
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Table 7.2: Nominal and worst-case values of mtot for the optimal design choice

Design Choice θ (27, 4, 9, 33, 14, 1, 1, 2, 1, 0.6125)
Nominal value mtot 1566.1
Worst-case mtot 1730.7

model inputs, and 20 additional runs not taking uncertainties into account.
Figure 7.1 illustrates the difference of the results computed with and without
uncertainty. By comparing with the diagonal line x = y, we see that for the
robust solutions found (crosses running almost parallel), the difference between
the worst-case and the nominal case for mtot appears to be almost constant,
reflecting the effect of the variation in the domain of uncertainty.

On the other hand, only two of the choices found without uncertainty
methods (circles) are feasible under all admissible uncertainties; and in these
two cases, the worst-case value in the feasible range is much worse than that
for the robust solutions found.

Moreover, by comparing the values for the nominal case (the x values) for
both crosses and circles, we see that the best robust solutions (found by opti-
mization under uncertainty) have nominal values of mtot which are competitive
with those of the best solutions computed without uncertainty.

We conclude that in this application example the quality of the optimal
solutions does not differ significantly, whether or not you take uncertainty into
account, while the robustness is drastically improved.

We also investigate the behavior of the objective function within the given
uncertainty domain: for a robust choice in Figure 7.3, for an unstable choice
in Figure 7.2, disclosing various hidden constraints. In general, hidden con-
straints such as those in Figure 7.2 (gaps in R24) cannot be handled with
heuristics.

In conclusion we are able to solve the robust optimization problem in case
of interval uncertainties satisfactorily except for the presence of hidden con-
straints, which could possibly be avoided by suitable attention during the
creation of the subsystem models.
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Figure 7.1: Circles denote design points found in different runs by optimization
without uncertainty; crosses denote design points found by optimization with
uncertainty. The x-axis displays the nominal value of mtot for each design
point, while the y-axis displays the worst-case value of mtot for each design
point. Thus we plot the points (x(θi),y(θi)) for each design point θi. Because
of the different ranges of the coordinates, the points where x = y lie on the
only slightly slanted line drawn. The line should help to see the difference
between the worst-case and the nominal value for mtot.

Solving the optimization problem with uncertainty revealed significant ro-
bustness advantages of our approach using uncertainty, without significantly
compromising the quality of the solutions at the nominal values.

7.2 Example: Mars Exploration Rover

In this section we apply our methods to the Attitude Determination and Con-
trol Subsystem (ADCS) for the NASA’s Mars Exploration Rover (MER) mis-
sion [42], [99] whose scientific goal is to investigate the history of water on
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Figure 7.2: For each uncertain variable ui, i = 1, . . . , 24 (scaled) we fix all
the other uncertain variables uk, k 6= i at the midpoint of their boxes and plot
mtot(u

i). The figure discloses various hidden constraints.

Mars. The ADCS is composed by eight thrusters aligned in two clusters.
Onboard the spacecraft there is no main propulsion subsystem. The mission
sequence after orbit injection includes a number of spin maneuvers and slew
maneuvers. Spin maneuvers are required for keeping the gyroscopic stability
of the spacecraft, whereas slew maneuvers serve to control the direction of the
spacecraft and to fight effects of solar torque. Fault protection is considered
to correct possible errors made when performing nominal maneuvers.

Our goal is to select the type of thrusters (from a set of possible candidates
as listed in Table B.3) considering both minimization of the total mass mtot,
and assessment of the worst possible performance of a thruster with respect
to mtot. That corresponds to finding the thruster with the minimal worst-case
scenario, i.e., a problem formulation as in Chapter 5. The total mass consists of
the fuel needed for attitude control (computed as the sum of the fuel needed for
each maneuver) plus the mass of the eight thrusters that need to be mounted
on the spacecraft. According to our notations, the choice variable θ, i.e., the
type of thruster, can be selected as an integer between 1 and 30.
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Figure 7.3: The same information as in Figure 7.2, but for a robust choice.
Within the domain of uncertainty, the dependence on the uncertain variables
is essentially linear.

Uncertainty specifications, variable structure, the MER mission maneuver
sequence, and system model equations to compute the total mass mtot are
taken from Thunnissen [156]. The uncertainty specification for the model
variables are reported in Table B.4 in Appendix B.5. The number of uncertain
global input variables (dimension of u) in this application example is 33 plus 1
uncertain design variable. The variable structure is summarized in Appendix
B.1. Moreover, a survey on the system model equations and the MER mission
sequence can be found in Appendix B.2 and Appendix B.3, respectively.

Compared to the case study in Section 7.1 this example is even more com-
plicated from the uncertainty handling point of view, i.e., we have to cope
with a higher dimensionality, and additional uncertainty information in form
of given marginal CDFs.
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7.2.1 Results

The cloud constraints for the optimization are generated for a confidence level
of α = 95% and a generated sample size NS = 1000. We produce results for
four different settings of uncertainty information and handling:

a. The uncertainties are as specified in Table B.4. Here we treat them in a
classical engineering way, assigning 3 σ (i.e., 3·standard deviation) safety
margins to the uncertain variables which is supposed to correspond to a
99.7% confidence interval for a single variable. Then the optimal design
choice is θ = 9 with an objective function value of mtot = 3.24 kg in the
nominal case, and mtot = 5.56 kg in the worst case.

b. The uncertainties are again as in Table B.4. With our methods we find
the optimal design choice θ = 9 as in setting (a). However, if we compare
the worst-case analysis of b and a, it is apparent that the results for the 3
σ boxes are far too optimistic to represent a reliable worst-case scenario,
the value of mtot is now 8.08 kg instead of 5.56 kg for the 3 σ boxes.

c. In this setting we do not take any uncertainties into account, generally
assuming the nominal case for all uncertain input variables for the op-
timization. The optimal design choice then is θ = 3 with a value of
mtot = 2.68 kg in the nominal, but mtot = 8.75 kg in the worst case,
which is significantly worse than in setting (b).

d. The uncertainties are obtained by taking the values from Table B.4 and
doubling the standard deviation of the normally distributed variables. It
is interesting to report that if we increase the uncertainty in the normally
distributed uncertain variables simply in this way, the optimal design
choice changes to θ = 17 with a value of mtot = 3.38 kg in the nominal,
and mtot = 9.49 kg in the worst case.

The results are summarized in Table 7.3, showing the optimal design choice for
each setting and the corresponding value of the objective function mtot for the
nominal case and for the worst case, respectively. The results show a number
of important facts related to spacecraft design. The comparison between the
settings (b) and (d) suggests that the optimal design point θ is quite sensitive
to the uncertainty description, a fact well-known to the system engineers who
see their spacecraft design changing frequently during preliminary phases when
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Table 7.3: Nominal and worst-case values of mtot for different design choices
obtained by the four different settings.

Setting Design Choice θ Nominal value mtot Worst-case mtot

a 9 3.24 5.56
b 9 3.24 8.08
c 3 2.68 8.75
d 17 3.38 9.49

new information becomes continuously available. Our method captures this
important dynamics and processes it in rigorous mathematical terms.

The comparison between the settings (b) and (c) suggests that the uncer-
tainties need to be accounted for in order not to critically overestimate the
spacecraft performances.

Finally, the comparison between the settings (b) and (a) suggests that the
simple 3 σ analysis of uncertainties, frequent in real engineering practice, pro-
duces quite a different estimation of the spacecraft performances with respect
to a more rigorous accounting of the uncertainty information.
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Appendix A

XEUS case study

The following sections report the variable structure, the underlying subsystem
model function calls for the application example from Section 7.1.

Notation conflicts between some physical variables in the model and the
variables we used in previous chapters are possible, however, their meaning
should be clear from the context.

A.1 Variable structure

The 107 variables involved in the subsystem functions fall into five different
classes:

• 24 fixed variables.
Input variables for the functions with fixed values and no uncertainty.
Among them are a number of variables which have the value zero, which
arise since the problem under discussion is in fact part of a bigger model
in which these variables would get nontrivial values.

• 24 global input variables.
Uncertainty variables which correspond to the vector u in Chapter 5.

• 24 design variables.
The 24 design variables belong to 10 different design choices θ1, . . . , θ10,
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each of which can be chosen independently and determines one or more
design variables. The choices θ1, . . . , θ9 are discrete (cf. Table A.1), and
θ10 ∈ [0.5, 8.0] is a continuous choice.

Table A.1: Choices θi and size of the corresponding table τ i, i.e., Ni × ni

choice variable size of τ i

θ1 4 × 3
θ2 14 × 1
θ3 6 × 1
θ4 8 × 1
θ5 5 × 4
θ6 20 × 3
θ7 9 × 4
θ8 44 × 2
θ9 30 × 4

• 16 only result variables.
The only result variables only occur as result variables and do not contain
the objective function. Hence they are immaterial for the difficulty of
the problem.

• 19 intermediate result variables.
All other variables are intermediate result variables, and occur both as
input of some file and as output of some file.

For the detailed description of the values and interval bounds for the fixed vari-
ables and global inputs, respectively, and for the full tables τ i, see Neumaier

et al. [118].

A.2 Subsystem function calls

The Matlab functions for the subsystems are called as follows:
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[mass_DH,pow_DH,cost_DH,aff_DH]=...

DH_ss_preprocessed(data_tot,punt_mem,punt_mem_mass,...

punt_mem_pow)

[beam,mass_TTC,pow_TTC,cost_TTC,aff_TTC]=...

TTC_ss_preprocessed(punt_f,punt_D,punt_Eb,elev,S,GSD,DR)

[diam_SA,P_SA,A_SA,T_SA,mass_SA,cost_SA,aff_SA,capacita,...

volume_batt,mass_batt,cost_batt,aff_batt,pow_tot,...

mass_pow,cost_pow,aff_pow]=...

pow_ss_preprocessed(punt_eta,punt_alfa,punt_ro,punt_d,...

punt_spec,punt_eff,punt_dens,max_sun_dist,min_sun_dist,...

Tecl,teta0,Tday,y,cicli,body_mount_SA,primary,...

target_planet,punt_h_vs_r,powzero,pow_TTC,pow_DH,...

pow_aocs,pow_prop,pow_ther)

[diam,S_Thickness,height,area_tot,mass_str,cost_str,aff_str]=...

str_ss_preprocessed(punt_El,punt_rho,punt_ult_str,...

punt_h_vs_r,punt_yie_str,m_tot,diam_SA,body_mount_SA,...

ax_g,lat_g,ax_freq,lat_freq)

[H_planet,Gs_hot_2,H_min_IR]=...

target_planet_func2_preprocessed(target_planet,...

H_terra,H_target)

[rad_area,mass_ther,pow_ther,c_ther,a_ther]=...

thermal_ss_preprocessed(Tup,Tdown,target_planet,...

min_sun_dist,max_sun_dist,punt_alfa_sup,punt_eps_sup,...

area_tot,A_SA,P_SA,dens_dep_rad,Tecl,body_mount_SA,...

m_tot,H_planet,Gs_hot_2,H_min_IR)

[m_fuel,m_tot_prop,mass_prop,pow_prop,N_prop,cost_prop,...

aff_prop,cost_tot,aff_tot]=...

prop_ss_preprocessed(deltaV,T_PP,punt_I,punt_m_eng,...

punt_P_eng,punt_T_eng,mzero,mass_TTC,mass_DH,...

mass_aocs,mass_pow,mass_ther,mass_str)

[mass_harness,m_tot,m_tot_mb]=...

mass_budget_preprocessed(mzero,mass_TTC,mass_pow,...

mass_prop,mass_str,mass_DH,mass_aocs,mass_ther,m_fuel,...

count)
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Appendix B

MER case study

The following sections report the variable structure, the underlying model
equations, the mission maneuver sequence, the design and the uncertainty
specifications for the application example from Section 7.2.

Notation conflicts between some physical variables in the model and the
variables we used in previous chapters are possible, however, their meaning
should be clear from the context.

B.1 Variable Structure

The 49 variables involved in the model fall into the following four categories:

• 7 fixed parameters.
Input variables for the model with fixed values and no uncertainty (for
the values see Table B.1).

1. c0, speed of light in a vacuum

2. d, average distance from the spacecraft to the sun in AU

3. g0, gravity constant

4. t, total mission time

5. θi, sunlight angle of incidence
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6. χ, the specific impulse efficiency parameter is a property of a par-
ticular thruster. Lacking the specification of χ for several thrusters
we fixed χ to take the same values for all thrusters.

7. c1, the numerical solution x of tan(x) − x/(1 − χ) = 0

Table B.1: Values of the fixed parameters

Fixed parameter Value

c0 3 · 108 m/s
d 1.26 AU
g0 9.81 m/s2

t 216 days
θi 0◦

χ 0.0375
c1 0.334

• 33 Uncertain input variables.
The uncertainties are specified by probability distributions for each of
these variables (cf. Appendix B.5).

1. Amax, maximal cross-sectional area

2. Jxx, Jzz, moments of inertia

3. R, engine moment arm

4. δ1, δ2, engine misalignment angle

5. gs, solar constant at 1 AU

6. κ, distance from the center of pressure to the center of mass

7. ωspini
, spin rates, i = 0...3, given in rpm

8. ψslewi
, slew angles, i = 1...19, given in ◦

9. q, spacecraft surface reflectivity

10. uncfuel, additive uncertain constant that represents inaccuracies
in the equations used for the calculation of the fuel masses

• 3 Design variables.
Thruster specifications relevant for the model. There is uncertainty in-
formation given on one of them (the thrust).

1. F , thrust

2. Isp, specific impulse
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3. mthrust, mass of a thruster

• 6 Output variables.
Result variables containing the objective for the optimization mtot.

1. mfp, fuel mass needed for fault protection maneuvers

2. mfuel, total fuel mass needed for all maneuvers

3. mslew, fuel mass needed for slew maneuvers

4. mslews
, fuel mass needed for slew maneuvers fighting solar torque

5. mspin, fuel mass needed for spin maneuvers

6. mtot, total mass of the subsystem

B.2 Model equations

The background for the equations of the ADCS subsystem model are the
equations from Chapter 9 of Thunnissen [156].The basic equations are as
follows:

c = Isp · g0 (B.1)

r = sin(40◦) ·R (B.2)

Fidealtot
= 2 · F (B.3)

Facttot
= (cos(δ1) + cos(δ2)) · F (B.4)

To calculate the fuel mass mspin needed for one spin maneuver (change in spin
rate from ωspini

to ωspini+1
, i = 0...2) the following equations are given:

∆ωideal = |ωspini
− ωspini+1 | (B.5)

Iideal =
∆ωideal · Jzz

r
(B.6)

tspin =
Iideal

Fidealtot

(B.7)

Iactual = tspin · Facttot
(B.8)

mspin =
Iactual

c
(B.9)

To calculate the fuel mass mslew needed for one slew maneuver the following
equations are given (requires the slew angle ψslew for the maneuver and the
current spin rate ωspin at the time the maneuver is performed):
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thalf rev =
π

ωspin

(B.10)

tonideal
=

2 · c1
ωspin

(B.11)

∆φideal = tonideal
· ωspin (B.12)

∆τ =
2 · Fidealtot

· r
∆φideal · sin

(
∆φideal

2

) (B.13)

H = Jzz · ωspin (B.14)

∆ψideal =
∆τ · tonideal

H
(B.15)

npulsesideal
=

⌈
ψslew

∆ψideal

⌉
(B.16)

∆ψ =
ψslew

npulsesideal

(B.17)

∆Itorque = H · ∆ψ (B.18)

∆φ = 2 · arcsin

(
∆Itorque · ωspin

2 · Fidealtot
· r

)
(B.19)

ton =
∆φ

ωspin

(B.20)

η =
ton

thalf rev

(B.21)

csd = c · ηχ (B.22)

mslew = npulsesideal
· Facttot

· ton

csd

(B.23)

To calculate the total fuel mass mfuel needed for all maneuvers we compute
for each maneuver to be performed the mass mspin or mslew (depends on the
maneuver type), and achieve mfuel as the sum of these masses. To calculate
the total mass mtot we compute

mtot = mfuel · (1 + uncfuel) + 8 ·mthrust (B.24)

B.3 MER mission sequence

The sequence of maneuvers for the MER mission is listed in Table B.2.

B.4 Thruster specification

Table B.3 shows the thruster specifications and the linked choice variable θ.
The table entries are sorted by the thrust F . The difference between the so-
called design and choice variables can be seen easily in this table (τ 1): the
table is a N1 × n1 table with N1 = 30, n1 = 3, and thus represents 30 discrete
choices in R3. The 3 design variables v1

1, v
1
2, v

1
3 are the 3 components of these

points in R3. The choice variable θ = θ1 is 1-dimensional (no = 1) and has an
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Table B.2: Mission sequence (cf. Thunnissen [156])

Mission sequence event Maneuver type parameter value unit

De-spin from 3rd stg. spin ωspin1 2.000 rpm
A-practice slew ψslew1 5.000 ◦

ACS-B1 slew ψslew2 50.45 ◦

ACS-B2 slew ψslew3 5.130 ◦

ACS-B3 slew ψslew4 6.350 ◦

ACS-B4 slew ψslew5 2.760 ◦

ACS-B5 slew ψslew6 8.510 ◦

ACS-B6 slew ψslew7 9.880 ◦

ACS-B7 slew ψslew8 5.640 ◦

ACS-B8 slew ψslew9 5.040 ◦

ACS-B9 slew ψslew10 5.750 ◦

ACS-B10 slew ψslew11 4.470 ◦

ACS-B11 slew ψslew12 5.530 ◦

ACS-B12 slew ψslew13 5.850 ◦

FP: spin event spin ωspin2 2.750 rpm
FP: spin recovery spin ωspin3 7.410 rpm
FP: emergency slew 1 slew ψslew14 15.75 ◦

FP: emergency slew 2 slew ψslew15 15.75 ◦

FP: emergency slew 3 slew ψslew16 15.75 ◦

FP: emergency slew 4 slew ψslew17 15.75 ◦

FP: emergency slew 5 slew ψslew18 15.75 ◦

FP: emergency slew 6 slew ψslew19 15.75 ◦

integer value between 1 and 30. The various sources for the data contained in
Table B.3 are [36], [128], [132], [156], [174].

B.5 Uncertainty specification

All uncertainty specifications taken from Thunnissen [156] are reported in
Table B.4. The notation used for the distributions is as in Table 2.1. The un-
certainty information on the design variable F should be interpreted as follows:
The actual thrust of a thruster is normally distributed, has the mean Ftable

(:= the nominal value for F specified in Table B.3) and standard deviation
7

300
Ftable.
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Table B.3: Thruster specifications and the linked choice variable θ, given as a
table τ 1 with N1 = 30, n1 = 3: Thrust F in Newtons, specific impulse Isp in
seconds, mass mthrust in grams

θ Thruster F Isp mthrust

1 Aerojet MR-111C 0.27 210.0 200
2 EADS CHT 0.5 0.50 227.3 200
3 MBB Erno CHT 0.5 0.75 227.0 190
4 TRW MRE 0.1 0.80 216.0 500
5 Kaiser-Marquardt KMHS Model 10 1.0 226.0 330
6 EADS CHT 1 1.1 223.0 290
7 MBB Erno CHT 2.0 2.0 227.0 200
8 EADS CHT 2 2.0 227.0 200
9 EADS S4 4.0 284.9 290

10 Kaiser-Marquardt KMHS Model 17 4.5 230.0 380
11 MBB Erno CHT 5.0 6.0 228.0 220
12 EADS CHT 5 6.0 228.0 220
13 Kaiser-Marquardt R-53 10 295.0 410
14 MBB Erno CHT 10.0 10 230.0 240
15 EADS CHT 10 10 230.0 240
16 EADS S10 - 01 10 286.0 350
17 EADS S10 - 02 10 291.5 310
18 Aerojet MR-106E 12 220.9 476
19 SnM 15N 15 234.0 335
20 TRW MRE 4 18 217.0 500
21 Kaiser-Marquardt R-6D 22 295.0 450
22 Kaiser-Marquardt KMHS Model 16 22 235.0 520
23 EADS S22 - 02 22 290.0 650
24 ARC MONARC-22 22 235.0 476
25 ARC Leros 20 22 293.0 567
26 ARC Leros 20H 22 300.0 408
27 ARC Leros 20R 22 307.0 567
28 MBB Erno CHT 20.0 24 234.0 360
29 EADS CHT 20 25 230.0 395
30 Daimler-Benz CHT 400 400 228.6 325
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Table B.4: ADCS uncertainty specifications

Variable Probability Distribution Variable Probability Distribution

Amax N(5.31, 0.053) ψslew6 N(8.51, 0.4)
Jxx U(300, 450) ψslew7 N(9.88, 0.5)
Jzz U(450, 600) ψslew8 N(5.64, 0.2)
R N(1.3, 0.0013) ψslew9 N(5.04, 0.2)
δ1 N(0, 0.5) ψslew10 N(5.75, 0.2)
δ2 N(0, 0.5) ψslew11 N(4.47, 0.1)
gs N(1400, 14) ψslew12 N(5.53, 0.1)
κ U(0.6, 0.7) ψslew13 N(5.85, 0.1)
ωspin0 N(12, 1.33) ψslew14 Γ(1.5, 10.5)
ωspin1 N(2, 0.0667) ψslew15 Γ(1.5, 10.5)
ωspin2 Γ(11, 0.25) ψslew16 Γ(1.5, 10.5)
ωspin3 L(2, 0.0667) ψslew17 Γ(1.5, 10.5)
ψslew1 N(5, 0.5) ψslew18 Γ(1.5, 10.5)
ψslew2 N(50.45, 5) ψslew19 Γ(1.5, 10.5)
ψslew3 N(5.13, 0.5) q N(0.6, 0.06)
ψslew4 N(6.35, 0.6) uncfuel N(0, 0.05)
ψslew5 N(2.76, 0.2) F N(Ftable, 7/300Ftable)
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Index

Symbols

(τ i
j,k), 74

Cα, confidence region, 15, 55
F , CDF of V (ε), 55
F , failure set, 15
Fi, marginal CDF, 16, 58
G(x, z), 75
Go(z), black box function, 76, 85
Gbblin

(εT ), 86
Gbb(θ, ε), 85
Gbb(θ), 77
I, special index set, 58
Ia, 78
Ic, index set of continuous choice

variables, 74
Id, index set of discrete choice

variables, 74
Iia, 78
L(µ, σ), lognormal distribution, 14
N(µ, σ), normal distribution, 14
NS, size of the sample S, 58, 88
Ni, 74
No, 77, 88
Nξ, 71
NCVX, 71, 88
R, reliability, 15
S, sample, 58
T , 75
U(a, b), uniform distribution, 14
V , potential, 53

Vp, polyhedron potential, 65
VT , transformed polyhedron potential,

68, 84
X, random variable, 12
Z(θ), table mapping, 75
Z i(θi), 74
Γ(α, β), gamma distribution, 14
Ω, sample space, 12
Φ, N(0, 1)-distribution, 28
Pr, probability, 13, 52
α, confidence level, 15, 55, 88
αS, confidence level for sample

generation, 58, 88
αb, confidence level for bounding F ,

62, 88
αw, confidence level for weight

computation, 62, 88
χ, cloud mapping, 52
χ2(n), chi2 distribution, 14
∅, empty set, 16
Cauchy(m,Θ), Cauchy distribution, 14
st, statement, 12
〈·〉, expectation, 12
I[0, 1], set of closed intervals in [0, 1],

52
M, 52
B, Borel σ-algebra, 12
T , coordinate transformation, 68, 88
α, 63
Cα, upper α-cut, 55
F , 62
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Index

V α, 55
χ, upper level, 52
φ, Kolmogorov function, 19, 62
π, permutation, 60
θ, vector of choice variables, 74
α, 63
Cα, lower α-cut, 55, 84
F , 63
V α, 55
χ, lower level, 52
ε belongs to a cloud, 52
ε, random vector, 12, 52, 83
Ĝbb(θ), 86

F̃ , empirical distribution, 18, 58, 61
F̃i, weighted marginal empirical

distribution, 60
ξi
k, 61
d, 62
dKS,1, 62
dKS,2, 62
n, dimension of ε, 52
ni, 74
no, dimension of θ, 74
pS, 58
pf , failure probability, 15
q(θ), 77
qi(θ

i), 77
s, design response function, 20
u, global input variables, 74
v, design variables, 74
wi, weights, 60
xj

i , j
th coordinate of the sample point

xi, 25, 59
z, input vector of the underlying model,

74, 83
Exp(µ), exponential distribution, 14
T , transposed, 12
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Index

Nomenclature

p-box, 5, 32
ADCS, Attitude Determination and

Control Subsystem, 97
BN, Bayesian/Belief network, 35
CBDO, 87
CDF, cumulative distribution function,

14, 52
CMAES, 79, 81
DAG, directed acyclic graph, 36
DS, Dempster-Shafer, 38
Dempster-Shafer structure, 38
GUI, graphical user interface, 66, 87
KS, Kolmogorov-Smirnov, 18, 55, 62
LHS, Latin hypercube sampling, 25,

58, 69
LP, linear programming problem, 35,

78, 86
MCS, multilevel coordinate search, 80,

81
MDO, multidisciplinary design

optimization, 7
MER, Mars Exploration Rover, 97
MINLP, mixed integer nonlinear

programming, 8, 75
Monte Carlo sampling, 24
NLEQ, 80
Nataf transformation, 29
PDF, probability density function, 13
Rosenblatt transformation, 28
XEUS, X-ray Evolving Universe

Spectroscopy, 94
aleatory uncertainty, 2
anti-optimization, 45
basic probability assignment, 37
belief measure, 37
borderline, 56
choice variables, 74

cloud, 52
constraint, 84
continuous, 52
discrete, 52
fuzzy, 53
lower level, 52
mirror cloud, 53
potential cloud, 47, 53
thin, 52
upper level, 52
width, 52

conditional density, 35
conditional distribution, 28
conditional probability, 24
confidence region, 15
cumulative distribution function, 14
design choice variables, 74
design variables, 74
empirical distribution, 18

weighted, 61
epistemic uncertainty, 2
expectation, 12
failure probability, 15
focal sets, 38
functional constraints, 75
fuzzy set, 5, 41

α-cut, 41
convex fuzzy set, 42
core, 41
fuzzy interval, 42
fuzzy measure, 37
fuzzy number, 42
height, 41
modal values, 41
support, 41

global input variables, 74
importance sampling, 25
interval extension, 21
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Index

limit state function, 23
lower confidence region, 56
marginal distribution, 16
marginal empirical distribution, 59

weighted, 61
membership function, 41
necessity measure, 42
plausibility measure, 37
possibility distribution, 42
possibility measure, 42
potential, 53

box-shaped, 57
ellipsoid-shaped, 57
polyhedron shaped, 65

probability, 13
probability density function, 13
probability measure, 12
random set, 38
random variable, 12
random vector, 12
realization, 12
reliability, 15
s.t., subject to, 30
safety factor, 23
scenario, 52
selection constraints, 75
separable underestimation, 77
standard normal space, 28
statement, 12
symbolic solver, 76
table constraints, 75, 84
toolbox philosophy, 3
upper confidence region, 56
weights, 60
worst-case relevant region, 64
Ampl, 76

Gams, 76

Lingo, 76

Snobfit, 79, 81
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[104] B. Möller, M. Beer, and U. Reuter. Theoretical basics of fuzzy-
randomness – application to time series with fuzzy data. In Safety

128

http://marsrovers.nasa.gov/mission/spacecraft.html


Bibliography

and Reliability of Engineering Systems and Structures: Proceedings of
the 9th International Conference on Structural Safety and Reliability,
Rome, Italy, 2005.
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Uncertainty modeling in higher
dimensions: Towards robust design

optimization

Deutsche Zusammenfassung

Moderne Design Probleme stellen Ingenieure vor mehrere elementare Auf-
gaben.

• Das Design muss die angestrebten Funktionalitäten aufweisen.

• Es muss optimal sein in Hinsicht auf eine vorgegebene Zielfunktion.

• Schließlich muss das Design abgesichert sein gegen Unsicherheiten, die
nicht zu Versagen des Designs führen dürfen.

All diese Aufgaben lassen sich unter dem Begriff der robusten Design Opti-
mierung zusammenfassen und verlangen nach computergestützten Methoden,
die Unsicherheitsmodellierung und Design Optimierung in sich vereinen.

Unsicherheitsmodellierung enthält einige fundamentale Herausforderungen:
Der Rechenaufwand darf gewisse Grenzen nicht überschreiten; unbegründete
Annahmen müssen so weit wie möglich vermieden werden. Die beiden kritisch-
sten Probleme betreffen allerdings den Umgang mit unvollständiger stochas-
tischer Information und mit hoher Dimensionalität. Der niedrigdimensionale
Fall ist gut erforscht, und es existieren diverse Methoden, auch unvollständige
Informationen zu verarbeiten. In höheren Dimensionen hingegen ist die Anzahl
der Möglichkeiten derzeit sehr begrenzt. Ungenauigkeit und Unvollständigkeit
von Daten kann schwerwiegende Probleme verursachen – aber die Lage ist
nicht hoffnungslos.

In dieser Dissertation zeigen wir, wie man den hochdimensionalen Fall
mit Hilfe von ”Potential Clouds” in ein eindimensionales Problem übersetzt.
Dieser Ansatz führt zu einer Unsicherheitsanalyse auf Konfidenzregionen rele-
vanter Szenarien mittels einer Potential Funktion. Die Konfidenzregionen wer-
den als Nebenbedingungen in einem Design Optimierungsproblem formuliert.
Auf diese Weise verknüpfen wir Unsicherheitsmodellierung und Design Op-
timierung, wobei wir außerdem eine adaptive Aktualisierung der Unsicher-
heitsinformationen ermöglichen. Abschließend wenden wir unsere Methode in
zwei Fallstudien an, in 24, bzw. in 34 Dimensionen.
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