1,256 research outputs found

    Markov-Decision-Process-Assisted Consumer Scheduling in a Networked Smart Grid

    Get PDF
    Many recently built residential houses and factories are equipped with facilities for converting energy from green sources, such as solar energy, into electricity. Electricity consumers may input the extra electricity that they do not consume into the smart grid for sale, which is allowed by law in countries such as Japan. To reduce peak-time electricity usage, time-varying pricing schemes are usually adopted in smart grids, for both the electricity sold to consumers and the electricity purchased from consumers. Thanks to the development of cyber-physical systems and advanced technologies for communication and computation, current smart grids are typically networked, and it is possible to integrate information such as weather forecasts into such a networked smart grid. Thus, we can predict future levels of electricity generation (e.g., the energy from solar and wind sources, whose generation is predominantly affected by the weather) with high accuracy using this information and historical data. The key problem for consumers then becomes how to schedule their purchases from and sales to the networked smart grid to maximize their benefits by jointly considering the current storage status, time-varying pricing, and future electricity consumption and generation. This problem is non-trivial and is vitally important for improving smart grid utilization and attracting consumer investment in new energy generation systems, among other purposes. In this paper, we target such a networked smart grid system, in which future electricity generation is predicted with reasonable accuracy based on weather forecasts. We schedule consumers\u27 behaviors using a Markov decision process model to optimize the consumers\u27 net benefits. The results of extensive simulations show that the proposed scheme significantly outperforms the baseline competing scheme

    Control and Communication Protocols that Enable Smart Building Microgrids

    Full text link
    Recent communication, computation, and technology advances coupled with climate change concerns have transformed the near future prospects of electricity transmission, and, more notably, distribution systems and microgrids. Distributed resources (wind and solar generation, combined heat and power) and flexible loads (storage, computing, EV, HVAC) make it imperative to increase investment and improve operational efficiency. Commercial and residential buildings, being the largest energy consumption group among flexible loads in microgrids, have the largest potential and flexibility to provide demand side management. Recent advances in networked systems and the anticipated breakthroughs of the Internet of Things will enable significant advances in demand response capabilities of intelligent load network of power-consuming devices such as HVAC components, water heaters, and buildings. In this paper, a new operating framework, called packetized direct load control (PDLC), is proposed based on the notion of quantization of energy demand. This control protocol is built on top of two communication protocols that carry either complete or binary information regarding the operation status of the appliances. We discuss the optimal demand side operation for both protocols and analytically derive the performance differences between the protocols. We propose an optimal reservation strategy for traditional and renewable energy for the PDLC in both day-ahead and real time markets. In the end we discuss the fundamental trade-off between achieving controllability and endowing flexibility

    Guest Editorial: Design and Analysis of Communication Interfaces for Industry 4.0

    Get PDF
    This special issue (SI) aims to present recent advances in the design and analysis of communication interfaces for Industry 4.0. The Industry 4.0 paradigm aims to integrate advanced manufacturing techniques with Industrial Internet-of-Things (IIoT) to create an agile digital manufacturing ecosystem. The main goal is to instrument production processes by embedding sensors, actuators and other control devices which autonomously communicate with each other throughout the value-chain [1]

    Role of control, communication, and markets in smart building operation

    Full text link
    This thesis explores the role of control, communication, and markets in the operation of smart buildings and microgrids. It develops models to study demand response (DR) alternatives in smart buildings using different communication and control protocols in building management systems. Moreover, it aims at understanding the extent to which smart buildings can provide regulation service reserves (RSR) by real time direct load control (DLC) or price-based indirect control approaches. In conducting a formal study of these problems, we first investigate the optimal operational performance of smart buildings using a control protocol called packetized direct load control (PDLC). This is based on the notion of the energy packet which is a temporal quantization of energy supplied to an appliance or appliance pool by a smart building operator (SBO). This control protocol is built on top of two communication protocols that carry either complete or binary information regarding the operation status of the appliances in the pool. We discuss the optimal demand side operation for both protocols and analytically derive the performance differences between them. We analyze the costs of renewable penetration to the system's real time operation. In order to strike a balance between excessive day-ahead energy reservation costs and stochastic real time operation costs, we propose an optimal reservation strategy for traditional and renewable energy for the PDLC in both the day-ahead and the real time markets to hedge the uncertainty of real time energy prices and renewable energy realization. The second part of the thesis proposes systematic approaches for smart buildings to reliably participate in power reserve markets. The problem is decomposed into two parts in the first of which the SBO starts by estimating its prior capacity of reserve provision based on characteristics of the building, the loads, and consumer preferences. We show that the building's reserve capacity is governed by a few parameters and that there is a trade off for smart buildings to provide either sustained reserve or ramping reserve. Based on the estimated capacity, we propose two real time control mechanisms to provide reliable RSR. The first is a DLC framework wherein consumers allow the SBO to directly modulate their appliances' set points within allowable ranges. We develop a feedback controller to guarantee asymptotic tracking performance of the smart building's aggregated response to the RSR signal. The second is a price controlled framework that allows consumers to voluntarily connect and consume electricity based on their instantaneous utility needs. Consumers' time varying dynamic preferences in providing RSR are studied by Monte Carlo simulation, in which such preferences are characterized by sufficient statistics that can be used in a stochastic dynamic programming (DP) formulation to solve for the optimal pricing policy

    Information Theory and Cooperative Control in Networked Multi-Agent Systems with Applications to Smart Grid

    Get PDF
    This dissertation focuses on information theoretic aspects of and cooperative control techniques in networked multi-agent systems (NMAS) with communication constraints. In the first part of the dissertation, information theoretic limitations of tracking problems in networked control systems, especially leader-follower systems with communication constraints, are studied. Necessary conditions on the data rate of each communication link for tracking of the leader-follower systems are provided. By considering the forward and feedback channels as one cascade channel, we also provide a lower bound for the data rate of the cascade channel for the system to track a reference signal such that the tracking error has finite second moment. Finally, the aforementioned results are extended to the case in which the leader system and follower system have different system models. In the second part, we propose an easily scalable hierarchical decision-making and control architecture for smart grid with communication constraints in which distributed customers equipped with renewable distributed generation (RDG) interact and trade energy in the grid. We introduce the key components and their interactions in the proposed control architecture and discuss the design of distributed controllers which deal with short-term and long-term grid stability, power load balancing and energy routing. At microgrid level, under the assumption of user cooperation and inter-user communications, we propose a distributed networked control strategy to solve the demand-side management problem in microgrids. Moreover, by considering communication delays between users and microgrid central controller, we propose a distributed networked control strategy with prediction to solve the demand-side management problem with communication delays. In the third part, we consider the disturbance attenuation and stabilization problem in networked control systems. To be specific, we consider the string stability in a large group of interconnected systems over a communication network. Its potential applications could be found in formation tracking control in groups of robots, as well as uncertainty reduction and disturbance attenuation in smart grid. We propose a leader-following consensus protocol for such interconnected systems and derive the sufficient conditions, in terms of communication topology and control parameters, for string stability. Simulation results and performance in terms of disturbance propagation are also given. In the fourth part, we consider distributed tracking and consensus in networked multi-agent systems with noisy time-varying graphs and incomplete data. In particular, a distributed tracking with consensus algorithm is developed for the space-object tracking with a satellite surveillance network. We also intend to investigate the possible application of such methods in smart grid networks. Later, conditions for achieving distributed consensus are discussed and the rate of convergence is quantified for noisy time-varying graphs with incomplete data. We also provide detailed simulation results and performance comparison of the proposed distributed tracking with consensus algorithm in the case of space-object tracking problem and that of distributed local Kalman filtering with centralized fusion and centralized Kalman filter. The information theoretic limitations developed in the first part of this dissertation provide guildlines for design and analysis of tracking problems in networked control systems. The results reveal the mutual interaction and joint application of information theory and control theory in networked control systems. Second, the proposed architectures and approaches enable scalability in smart grid design and allow resource pooling among distributed energy resources (DER) so that the grid stability and optimality is maintained. The proposed distributed networked control strategy with prediction provides an approach for cooperative control at RDG-equipped customers within a self-contained microgrid with different feedback delays. Our string stability analysis in the third part of this dissertation allows a single networked control system to be extended to a large group of interconnected subsystems while system stability is still maintained. It also reveals the disturbance propagation through the network and the effect of disturbance in one subsystem on other subsystems. The proposed leader-following consensus protocol in the constrained communication among users reveals the effect of communication in stabilization of networked control systems and the interaction between communication and control over a network. Finally, the distributed tracking and consensus in networked multi-agent systems problem shows that information sharing among users improves the quality of local estimates and helps avoid conflicting and inefficient distributed decisions. It also reveals the effect of the graph topologies and incomplete node measurements on the speed of achieving distributed decision and final consensus accuracy

    Enabling Cyber Physical Systems with Wireless Sensor Networking Technologies

    Get PDF
    [[abstract]]Over the last few years, we have witnessed a growing interest in Cyber Physical Systems (CPSs) that rely on a strong synergy between computational and physical components. CPSs are expected to have a tremendous impact on many critical sectors (such as energy, manufacturing, healthcare, transportation, aerospace, etc) of the economy. CPSs have the ability to transform the way human-to-human, human-toobject, and object-to-object interactions take place in the physical and virtual worlds. The increasing pervasiveness of Wireless Sensor Networking (WSN) technologies in many applications make them an important component of emerging CPS designs. We present some of the most important design requirements of CPS architectures. We discuss key sensor network characteristics that can be leveraged in CPS designs. In addition, we also review a few well-known CPS application domains that depend on WSNs in their design architectures and implementations. Finally, we present some of the challenges that still need to be addressed to enable seamless integration of WSN with CPS designs.[[incitationindex]]SCI[[booktype]]紙
    corecore