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Abstract

This dissertation focuses on information theoretic aspects of and cooperative control techniques

in networked multi-agent systems (NMAS) with communication constraints.

In the first part of the dissertation, information theoretic limitations of tracking problems in

networked control systems, especially leader-follower systems with communication constraints,

are studied. Necessary conditions on the data rate of each communication link for tracking of the

leader-follower systems are provided. By considering the forward and feedback channels as one

cascade channel, we also provide a lower bound for the data rate of the cascade channel for the

system to track a reference signal such that the tracking error has finite second moment. Finally,

the aforementioned results are extended to the case in which the leader system and follower system

have different system models.

In the second part, we propose an easily scalable hierarchical decision-making and control ar-

chitecture for smart grid with communication constraints in which distributed customers equipped
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with renewable distributed generation (RDG) interact and trade energy in the grid. We introduce

the key components and their interactions in the proposed control architecture and discuss the

design of distributed controllers which deal with short-term and long-term grid stability, power

load balancing and energy routing. At microgrid level, under the assumption of user coopera-

tion and inter-user communications, we propose a distributed networked control strategy to solve

the demand-side management problem in microgrids. Moreover, by considering communication

delays between users and microgrid central controller, we propose a distributed networked con-

trol strategy with prediction to solve the demand-side management problem with communication

delays.

In the third part, we consider the disturbance attenuation and stabilization problem in net-

worked control systems. To be specific, we consider the string stability in a large group of inter-

connected systems over a communication network. Its potential applications could be found in

formation tracking control in groups of robots, as well as uncertainty reduction and disturbance

attenuation in smart grid. We propose a leader-following consensus protocol for such intercon-

nected systems and derive the sufficient conditions, in terms of communication topology and con-

trol parameters, for string stability. Simulation results and performance in terms of disturbance

propagation are also given.

In the fourth part, we consider distributed tracking and consensus in networked multi-agent

systems with noisy time-varying graphs and incomplete data. In particular, a distributed tracking

with consensus algorithm is developed for the space-object tracking with a satellite surveillance

network. We also intend to investigate the possible application of such methods in smart grid net-

works. Later, conditions for achieving distributed consensus are discussed and the rate of conver-

gence is quantified for noisy time-varying graphs with incomplete data. We also provide detailed

simulation results and performance comparison of the proposed distributed tracking with consen-

sus algorithm in the case of space-object tracking problem and that of distributed local Kalman

filtering with centralized fusion and centralized Kalman filter.

The information theoretic limitations developed in the first part of this dissertation provide
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guildlines for design and analysis of tracking problems in networked control systems. The results

reveal the mutual interaction and joint application of information theory and control theory in net-

worked control systems. Second, the proposed architectures and approaches enable scalability in

smart grid design and allow resource pooling among distributed energy resources (DER) so that the

grid stability and optimality is maintained. The proposed distributed networked control strategy

with prediction provides an approach for cooperative control at RDG-equipped customers within

a self-contained microgrid with different feedback delays. Our string stability analysis in the third

part of this dissertation allows a single networked control system to be extended to a large group of

interconnected subsystems while system stability is still maintained. It also reveals the disturbance

propagation through the network and the effect of disturbance in one subsystem on other subsys-

tems. The proposed leader-following consensus protocol in the constrained communication among

users reveals the effect of communication in stabilization of networked control systems and the in-

teraction between communication and control over a network. Finally, the distributed tracking and

consensus in networked multi-agent systems problem shows that information sharing among users

improves the quality of local estimates and helps avoid conflicting and inefficient distributed deci-

sions. It also reveals the effect of the graph topologies and incomplete node measurements on the

speed of achieving distributed decision and final consensus accuracy.
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Chapter 1

Introduction

1.1 Background and Motivation

With dramatic developments in wireless communication technology and network science, the re-

strictions on information exchange between spatially distributed agents have been relaxed and

traditional control systems have been extended in a distributed manner. The application of dis-

tributed control is made possible to large-scale control objects and physically distributed agents.

Networked multi-agent system is a system, in which multiple agents with distributed control archi-

tecture exchange information and interact with each other in the form of data packages through a

network.

One unique feature of networked multi-agent system is that the agents are interconnected but

physically decoupled, whereas are coupled via information exchange and interaction with each

other when trying to accomplish certain assigned tasks. Besides, with information exchange among

agents, distributed control laws are generated according to not only the local feedback, but also the

messages from other agents. In networked multi-agent systems, complicated tasks, which are

too difficult for single agent, may be accomplished through collaboration of agents over network.

Networked multi-agent system also shows advantages in simple structure, low cost, robustness,
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1.1. BACKGROUND AND MOTIVATION

scalability, and enhanced functionality.

In recent years, cooperation and coordinated control in networked multi-agent systems has re-

ceived significant attention from scientific community. Typical application of multi-agent systems

can be found in smart grid [1–4], automated highway systems [5–9], air traffic control [10, 11],

congestion control on the internet [12, 13], and sensor networks [14–16] and so forth. In those

applications, an agent can represent a power plant, an airplane, a vehicle, an internet router or even

a smart sensor with computation capability.

However, the applications of networked multi-agent systems also bring in a couple of issues

that need to be addressed.

Compared to single agent case, the dynamics of multi-agent systems are more complicated

and more difficult to predict due to interactions among agents. Some problems could be very

complicated under certain condition, such as multi-agent markov game [17].

Communication links in networked multi-agent systems are not perfect and unpredictable,

which introduces time delays and packet losses. In wireless network, information is transmitted

over a wireless highly constrained communication medium. The signal propagation through wire-

less channels experiences random power fluctuations over time, which is multipath interference

caused by reflection and attenuation from objects. These power fluctuations cause time-varying

data rates and intermittent connectivity, which inevitably introduces time delays and packet losses.

The network topology of agents greatly affects the stability and performance of networked

multi-agent systems. In networked multi-agent systems the assigned task is cooperatively accom-

plished by group of agents. The performance issue depends on not just the agent dynamics but also

the agent interaction over network.

The task assignment and time synchronization among agents over network are issues need to be

considered. Task decomposition and assignment are traditionally solved in a centralized manner.

However, for distributed agents over network, there is no centralized controller to conduct such

task assignment. Also, asynchronization issue will rise among agents which communicate over

2



1.2. LITERATURE REVIEW

network with time delays and packet losses.

To address and overcome these technological challenges in networked multi-agent systems,

inter-disciplinary designs and strategies should be used from areas such as control theory, com-

munication theory, computation. It is very clear that control theory can definitely benefit from

other closely related disciplines, such as algebraic graph theory, communication theory, distributed

computation and network information theory [18].

In this report, our work on information theory and cooperative control in networked multi-agent

systems is presented along with short survey of recent work in the following topics: information

theory for tracking in networked control systems, distributed demand-side management in smart

grid with communication constraints, disturbance attenuation and string stabilization in automated

highway systems, and distributed tracking and consensus seeking in wireless sensor networks.

1.2 Literature Review

1.2.1 Infomtion Theory in Networked Control Systems

In networked control systems, agents or system components, which may be distributed over ge-

ographically disparate locations, coordinate with each other by exchange information through a

communication network [19–21,32]. Since cooperation and communication is over a network with

certain uncertainties, such as time delay, noisy communication links, changing network topology.

Analyzing the performance of such system not only depends on the agent dynamics and coordina-

tion, but also relies on the condition of the network. In literature, network information theory has

provided useful tools in analysis of such system and its application has become an important topic

in this area.

There has been considerable attention given to the application of information theory in the

stabilization of networked control systems [23–40]. Previous work in [23–25] has shown that

3
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stabilization of a linear and time-invariant plant, requires that the channel capacityCCap to be larger

than
∑

i max{0, log2(|λi(A)|)}, where the sum is over all unstable eigenvalues of the dynamic

matrix of the state-space representation of the plant. The papers [26, 28–32] have shown that

the extra rate CCap −
∑

i max{0, log2(|λi(A)|)} is critical for performance, as measured by the

expected power of the state of the plant. The authors in [29,30,41] studied fundamental limitations

in disturbance rejection in feedback systems and extended the Bode’s integral equation for the case

where the preview is made available to the controller via a general, finite capacity, communication

channel. Authors in [27,28,33,34] provided necessary conditions on the data rate of each channel

for stabilization of a linear and time-invariant plant over a packet-based network. In [42–44],

authors introduced ε-entropy to measure the variety of a linear continuous time system, which is

defined as the difference between ε-entropy rates of system input and output. Relations within

variety, Bode sensitivity integral and H∞entropy were then derived.

Later, Authors in [35,49–51] extended the Shannon channel capacity which is not sufficient to

characterize a noisy communication channel in feedback loop to stabilize an unstable scalar linear

system. They introduced ”Anytime” channel capacity and showed its necessity and sufficiency in

characterizing the stabilization of networked control systems over noisy communication channels.

Further, the authors in [36–40] extended the problem of feedback stabilization of a linear time

invariant (LTI) plant with a feedback communication channel with finite capacity to the one with

channel that is subject to a constraint on the channel signal-to-noise ratio (SNR). The authors

obtained a closed-form expression for the infimal SNR for stabilizability subject to quantization

error of a memoryless AWGN channel.

On the other hand, other recent work has been focused on tracking issues in networked feed-

back systems. The work in [52–54] shows that a necessary condition for efficient tracking is that

the information flow from the reference signal to the output should be greater than the information

flow between the disturbance and the output. The concept of directed information and mutual in-

formation were introduced to provide necessary conditions for tracking in linear feedback systems.

Meanwhile, the work in [56–58] defines conditions for tracking such that tracking error has finite

4
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energy. Following the same approach, in this chapter we find conditions for tracking such that the

power of the tracking error stays finite. The authors in [57, 58] obtained information theoretical

conditions for tracking in linear time-invariant control systems, where the closed loop contains a

channel in the feedback loop. The authors provided an upper bound for the mutual information

rate between the feedback signal and the reference input signal and showed that this rate must be

maximized to improve the tracking performance.

1.2.2 Distributed Demand-side Management over Smart Grid

New solutions for electrical energy generation have been proliferated in recent years, including

wind and solar power, most of which are intrinsically distributed and inherently unpredictable.

The integration of such distributed energy resources (DER), mainly of renewables, into power

generation mix has brought about the concept of Smart Grid. In essence, the smart grid is a power

network composed of intelligent nodes that can operate, communicate, and interact autonomously

to efficiently deliver power and electricity to their consumers [59]. With the help of two-way

communication, distributed optimization and control technologies, the smart grid is expected to be

capable of integrating DERs and loads more reliably, efficiently and sustainably [60].

The concept of a microgrid plays an important role as the building block of smart grid due to its

flexibility and scalability [61]. A microgrid is a localized grouping of distributed generation (DG)

(i.e. fuel cells, photovoltaic array, wind power, etc), distributed storage (i.e., flywheels, batteries)

and controllable loads. A microgrid can operate both in grid-connected and islanded mode [62]:

in grid-connected mode, the microgrid is connected to a traditional power grid as usual. When

a fault occurs in the upstream grid, however, it can be disconnected from the grid and function

autonomously in an islanded mode. The microgrid aids future smart grid for its capability of

aggregating DER and presenting itself to the electrical network as a controllable entity [63].

Demand-side management (DSM) is an essential aspect of current and future smart grid system

that allows the utility companies and consumers (e.g. residences and businesses) to interact with
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each other in order to achieve objectives such as energy efficiency and demand profile improvement

[64, 65], utility and cost optimization [69] and emission control [64].

There has been considerable attention on demand-side management in smart grids, especially

within microgrids [64–67,69–71]. Optimization techniques such as dynamic, stochastic and robust

programming are widely used as tools in demand-side management for microgrids [62]. For ex-

ample, the authors in [64] designed a three-step control and optimization strategy and focused on

the control algorithms to reshape the energy demand profile of a large group of buildings and their

requirements on the smart grid. An online learning algorithm for residential demand response to

reduce residential energy costs and smooth energy usage was proposed in [65]. A stochastic pro-

gram was formulated by applying microgrid technology to minimize the overall cost of electricity

and natural gas for a building operation in [66]. The authors in [67] proposed a robust optimization

model to adjust the hourly load level of a given consumer in response to hourly electricity prices.

The above approaches have often formulated a system-level optimization problem based on at

centralized objective function, which requires collective information at a centralized controller. On

the other hand, distributed analytical techniques, such as game theory and distributed control, are

ideal in solving problems through coordination and interaction among customers. Under the non-

cooperative user assumption, the authors in [68] developed a distributed auctioning game to coor-

dinate the interaction among all customers to meet an optimal aggregate load profile. The authors

in [69] developed a demand-side energy consumption scheduling game to optimize the aggregate

load of the users by coordination of user energy usage through a two-way digital communication

infrastructure. The authors in [70] applied a distributed subgradient method in a demand response

problem to minimize the total cost of electricity from all residences and the total user dissatisfac-

tion, subject to the individual load consumption constraints. In [71], the authors formulated an

optimal power scheduling problem in a smart grid subject to generation, consumption and stor-

age constraints and developed a decentralized average message passing method through message

exchange within a neighborhood and parallel optimization.

This paper considers a framework in which distributed customers equipped with renewable dis-
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tributed generation (RDG) interact and trade energy within a mircogrid. We consider distributed

demand-side management for such a microgrid by optimizing the aggregate load of users through

coordination among them. Compared to the aforementioned distributed approaches [68–71], we

take advantage of cooperation among users in energy consumption coordination and apply dis-

tributed control to achieve aggregate load optimization. We first propose a distributed networked

control strategy based on information exchange among nodes to optimize the aggregate load of

users and maintain supply-demand balance. Next, by taking into account the possible delay in com-

munication between users and management system within microgrids, we propose a distributed

networked control strategy with prediction to solve the aggregate load optimization problem with

communication delays.

1.2.3 String Stablization in Automated Highway Systems

Automated highway system (AHS) [6, 7, 72–75] is a vehicle platoon among which each vehicle

maintains a fixed distance behind the preceding one by using closed loop control. AHS is designed

to solve traffic congestion problem and improve the traffic management in transportation system.

In this vehicle platoon, vehicles are coupled with each other through feedback loops and the distur-

bance in one vehicle could propagate and affect other vehicles in the string. Adaptive cruise control

(ACC) [76,77,79] has been proposed as an enhancement over existing cruise controllers on ground

vehicles. Adaptive cruise control (ACC) systems control the vehicle speed to follow a drivers set

speed closely when no lead vehicle is insight. When a slower leading vehicle is present in an AHS,

the controlled vehicle will follow the lead vehicle at a safe distance. AHS and ACC research first

began in the 1960s [80], and has received ever-growing attention in the last decade. However, their

commercial implementation is not possible until recently with significant progresses in sensors,

actuators, and other enabling technologies.

Over the last decade, many different approaches have been proposed for the design of algo-

rithms [8, 9, 79, 81–89]. In the earlier work, the focus has been on the performance of the host
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vehicle. The performance was usually evaluated based on 2- car platoons. The effect of AHS on

a string of vehicles has not received much attention. The term string stability [5] is introduced

to describe the amplification along the string of the response to a disturbance to the lead vehicle.

It is widely known that when the transfer function from the range error of a vehicle to that of its

following vehicle has a magnitude less than 1, string stability is guaranteed [76]. [6,72] developed

a formal definition of string stability and used the norm induced by the signal norm to character-

ize it. The string stability ensures that range errors decrease as they propagate along the vehicle

stream. In a long string of vehicle with tight formation, string stability could be not ensured when

each vehicle uses only the relate spacing information of its predecessor.

To achieve string stability with constant inter-vehicle spacing, researchers tried to design dif-

ferent control schemes and vehicle-to-vehicle communication was shown to be necessary [90].

Yanakiev and Kanellakopoulos used a simple spring-mass-damper system to demonstrate the idea

of string stability and show the string stability criterion for constant time headway and variable

time-headway policies [73]. Swaroop and Hedrick proved [6,7,72], among many other interesting

things that if the coupling between two vehicles is weak enough, the controlled system is string

stable. In [7, 9] authors proposed “multi-look ahead”control scheme, in which controller on each

vehicle utilizes only information about itself and the one directly ahead. [8] proposed predecessor

and leader following control scheme in which each vehicle has access to information from the

lead vehicle. [89] presented distributed receding horizon control algorithms and derived sufficient

conditions that guarantee asymptotic stability, leader-follower string stability, and predecessor-

follower string stability, following a step speed change in the platoon.

Despite predecessor-following and predecessor and leader following control strategies, the uni-

directional scheme was proposed in which each vehicle not only communicates with its predeces-

sor but also its next vehicle in the string. [84–88] considered the string stability with the unidi-

rectional nearest neighbor communications. The authors introduced “time headway policy” and

provided conditions under which the L2-norm and the L∞-norm of states are bounded and derived

a formula for the minimal time headways required to guarantee string stability.
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Communication delay among vehicles would worsen the string stability by increasing the pos-

sible actuation time of each vehicle. Authors in [74,75,77,78] studied the effect of communication

delay in string stability of vehicle platooning and showed that string stability could be guaranteed

when the constant time headway is much larger that the time delay.

Although string stability among vehicles with identical controllers has been extensively ex-

plored, heterogeneous string stability received less attention. [81–83] considered string stability in

vehicle platoon with heterogeneous controllers and constructed a controller design procedure that

gives string stability and robustness to external disturbances for heterogeneous vehicle strings.

1.2.4 Tracking and Consensus over Sensor Networks

Multi-sensor tracking problems have attracted the attention of many researchers in robotics, sys-

tems, and control theory over the past three decades [91–94]. Target tracking problems are of great

importance in surveillance, security, and information systems for monitoring the behavior of agents

using sensor networks, such as tracking pallets in warehouses, vehicles on roadways, or firefighters

in burning buildings [95, 96]. With the introduction of the concept of consensus, distributed track-

ing and coordination without any fusion center has also received considerable attention in recent

years [98, 99].

Distributed consensus estimation in sensor networks has been studied with both fixed as well

as time varying communication topologies, taking into account issues such as link failure, packet

losses and quantization or additive channel noise [14,99,101–111]. Olfati-Saber and Murray [101]

considered the average consensus for first-order integrator networks with fixed and switching

topologies. Kingston and Beard [102] extended the results of [101] to the discrete-time models

and relaxed the graph condition to instantaneously balanced, connected-over-time networks. Xiao

and Boyd [14] considered discrete-time distributed averaging consensus over fixed and undirected

graphs. They designed the weighted adjacency matrix to optimize the convergence rate by semi-

definite programming. Huang and Manton [108] considered the discrete-time average consensus
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with fixed topologies and measurement noises. They introduced decreasing step size in the protocol

to attenuate the noises. Li and Zhang [109–111] considered the continuous-time average consensus

with time-varying topologies and communication noises, where time-varying consensus gains are

adopted. They gave a necessary and sufficient condition for mean square average-consensus with

fixed graph topologies and sufficient conditions for mean square average-consensus and almost

sure consensus with time-varying graph topologies.

On the other hand, the distributed consensus tracking over networks with and without noise-

less communication links among nodes have also been considered [113–118]. Recent work in

[113,114] considered the distributed consensus tracking over a fixed graph with noiseless commu-

nication among nodes. A distributed Kalman filter with embedded consensus filters was proposed

in [113] and further extended to heterogeneous and nonlinear sensing models in [114]. Distributed

Kalman filtering using one-step weighted averaging was considered in [115]. Each node desires

an estimate of the observed system and communicates its local estimate with neighbors in the net-

work. Then new estimate is formed as a weighted average of the neighboring estimates, where the

weights are optimized to yield a small estimation error covariance. In [116], the authors presented

a distributed Kalman filter to estimate the state of a sparsely connected, large-scale, dynamical

system. The complex large-scale systems is decomposed spatially into low-order overlapping sub-

systems. A fusion algorithm using bipartite fusion graphs and local average consensus algorithms

is applied to fuse observations for those overlapping subsystems. A tracking control problem for

multi-agent consensus with an active leader and variable interconnection topology was considered

in [117], where the state of the considered leader keeps changing and may not be measured. A

neighbor-based local controller together with a neighbor-based state-estimation rule is given for

each agent to track such a leader. In [118], the authors proposed a greedy stepsize sequence design

to guarantee the convergence of distributed estimation consensus over a network with noisy links.

Distributed tracking with consensus, addressed in this chapter and previous work [121, 122],

refers to the problem that a group of nodes need to achieve an agreement over the state of a dynam-

ical system by exchanging tracking estimates over a network. For instance, space-object tracking
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with a satellite surveillance network which consists of fixed nodes that are connected together and

mobile nodes that could only have active links with other nodes within their communication ra-

dius could benefit from such distributed tracking with consensus, due to the fact that individual

sensor nodes may not have enough observations of sufficient quality [119]. Thus, different sensor

nodes may arrive at different local estimates regarding the same space object of interest [119].

Information exchange among nodes may improve the quality of local estimates and consensus es-

timates may help avoid conflicting and inefficient distributed decisions. Other applications of this

problem include flocking and formation control, real-time monitoring, target tracking and global

positioning system (GPS) [119, 120]. In [122], the performance analysis of distributed tracking

with consensus on noisy time-varying graphs was addressed and later the algorithm of distributed

tracking with consensus with incomplete data was proposed without theoretical proof in [121] .

1.3 Outline of This Dissertation

The research has several threads and this document is organized by focusing on a different topic in

each chapter as follows.

Chapter 2 considers the problem of tracking in networked control systems – leader-follower

systems under communication constraints. By using information theory and control theory, we

provide necessary information theoretic conditions on the channel data rate of each communication

link for tracking in such system.

Then, Chapter 3 focuses on distributed demand-side management in smart grid, which is a

networked multi-agent system with RDG, loads and DS. We propose a distributed control based

energy scheduling method by optimizing the aggregate load of users with RDG through user energy

usage coordination to maintain load demand balance.

Chapter 4 analyzes the string stability problem in automated highway systems (AHS) with

an inter-vehicle communication network. We consider controlling a platoon of vehicles in which
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each vehicle tries to maintain a fixed distance from its predecessor, which is an instance of the

“string stability” problem. We propose a control protocol – leader-following consensus protocol

and derive the sufficient conditions in terms of communication topology and control parameters,

for string stability in such system.

Later, in Chapter 5 we consider the problem of distributed tracking in wireless sensor networks

(WSN) through cooperative control. We formulates the problem of the distributed tracking in a

network of sensors with a time-varying network graph, incomplete node data and noisy communi-

cation links. A distributed tracking with consensus algorithm is proposed and the convergence of

the proposed algorithm and the steady state behavior are presented.

Finally, Chapter 6 draws conclusions from the completed work and outlines future research

work.
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Chapter 2

Information Theory for Tracking in

Networked Control Systems

2.1 Introduction

In networked control system problems, understanding the fundamental relationship between how

the control parts and the communication parts of the distributed system interact is significant

for controller and communication channel design. Previous work in [23, 24] has shown that

stabilization of a linear and time-invariant plant, requires that the data rate C to be larger than∑
i max{0, log2(|λi(A)|)}, where the sum is over all unstable eigenvalues of the dynamic matrix

of the state-space representation of the plant. The papers [26, 29] have shown that the extra rate

C −
∑

i max{0, log2(|λi(A)|)} is critical for performance, as measured by the expected power of

the state of the plant.

On the other hand, recent work has been focused on tracking issues in networked feedback

systems. The work in [41] shows that a necessary condition for efficient tracking is that the in-

formation flow from the reference signal to the output should be greater than the information flow

between the disturbance and the output. Meanwhile, the work in [57] defines conditions for track-
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ing such that tracking error has finite energy. Following the same approach, in this chapter we find

conditions for tracking such that the power of the tracking error stays finite. The authors in [57]

obtained information theoretical conditions for tracking in linear time-invariant control systems,

where the closed loop contains a channel in the feedback loop. The authors provided an upper

bound for the mutual information rate between the feedback signal and the reference input signal

and showed that this rate must be maximized to improve the tracking performance.

In this chapter, we introduce a general framework for tracking in leader-follower systems un-

der communication constraints, where the leader system, follower system and the corresponding

controllers are spatially distributed and connected over communication links. The communication

channels are used to exchange information and control signals among spatially distributed system

components. We consider the particular case in which both the forward link from the reference

signal input and the feedback link from the system output contain communication channels with

finite data rate.

For this particular problem, we derive necessary conditions on channel data rate of the forward

and feedback links for tracking in the leader-follower systems. Then, we show the effect of exis-

tence of the feedback link on the required channel data rate of the forward link, when the feedback

link is noisy. By considering the forward and feedback channels as one cascade channel, we also

provide a lower bound for the data rate of the cascade channel for the system to track the reference

signal such that the tracking error has finite second moment.

The chapter is divided into five sections as follows: Section 2.2 introduces the notation and

the main definitions and properties from information theory. The problem formulation of leader-

follower systems under communication constraints is given in Section 2.3, where we describe the

assumptions on communication channels, dynamic systems and the reference signal. In Section

2.4, we show the necessary conditions on individual channels for tracking in leader-follower sys-

tem and provide a lower bound on the data rate of the cascade channel by considering the forward

channel and feedback channel together. In Section 2.5, these above results are extended to the case

that leader and follower systems have different system models. In Section VI, we study special
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cases and demonstrate our results in Section 2.6. The conclusions are provided in Section 2.7.

2.2 Definitions and Properties

In the following, we present the definitions and properties used later in this chapter.

Definition 2.2.1. (Entropy): For a given discrete random variable x, the entropy is defined by:

h(x) =
∑
x

p(x) log p(x),

where p(x) is the probability density function of x.

Definition 2.2.2. (Mutual Information): The mutual information between discrete random vari-

ables x and y is defined as

I(x; y) =
∑
x∈A

∑
y∈B

p(x,y) log2

p(x,y)

p(x)p(y)
,

where p(x,y) is the joint probability density function of x and y.

Definition 2.2.3. (Entropy Rate): For a given stochastic process a, the entropy rate is defined

as [128]:

h∞(a) = lim sup
k→∞

h(ak)

k
.

Definition 2.2.4. (Information Rate): Let a and b be stochastic processes. The mutual information

rates are defined as [29]:

I∞(a; b) = lim sup
k→∞

I(ak; bk)

k
.

where I(ak; bk) is mutual information between ak and bk and it can be obtained as follows:

I(ak; bk) = h(ak)− h(ak|bk). (2.1)
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Definition 2.2.5. (Directed Mutual Information and Directed Information Rate): Let a and b be

stochastic processes. The directed mutual information is defined as follows [29]:

I(ak → bk) =
k∑
i=1

I(ai; b(i)|bi−1),

and the directed information rate is given by

I∞(a→ b) = lim sup
k→∞

I(ak → bk)

k
.

Definition 2.2.6. (Channel Capacity): For channel CHi with input xi let the corresponding output

be denoted by x̂i, define the error function Ei(k) at time step k as Ei(k) =

 1 xi 6= x̂i

0 xi = x̂i
. The

channel capacity CCap
i is defined as the supremum of all achievable rates,

CCap
i = sup

p(xi)

I(xi; x̂i). (2.2)

Properties 2.2.7. Assume that a, b, c, d ∈ Rn are random variables, and f and g are real

functions. All the following properties may be found in [128, 133].

(P1) I(a; b) = I(b; a) ≥ 0 and I(a; b|c) = I(b; a|c) ≥ 0.

(P2) I((a,b); c|d) = I(b; c|d) + I(a; c|(b,d)).

(P3) If f and g are measurable functions then I(f(a); g(b)|c) ≤ I(a; b|c) and equality holds

if f and g are invertible.

(P4) Given a function f : C → C ′, it follows that I(a; f(c)|c) = 0.

(P5) h(a|b) = h(a− g(b)|b).

(P6) h(a|b) ≤ h(a) with equality if a and b are independent.
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(P7) Let a ∈ Rn have mean µ and covariance Cov{a}. Then

h(a) ≤ 1

2
log2

(
(2πe)ndet

(
Cov{a}

))
with equality if a has a multivariate normal distribution.

(P8) I((a,b); c) = I(a; c|b) + I(b; c).

(P9) (Fano’s inequality) For channel CHi with input xi and corresponding output x̂i. Let the

probability of error as Pe,i = Pr{x̂i 6= xi}. Then

h(Pe,i) + Pe,i log2 |Xi| ≥ h(xi|x̂i), (2.3)

where Xi is the alphabet for input xi.

(P10) I((a,b); c) ≥ I(b; c).

2.3 Information Theory in Leader-Follower Systems

Consider the following networked control system as in Fig. 2.1. There are two physical systems

P1 and P2 controlled by corresponding controllers C1 and C2 over communication channels CHi

for i ∈ {11, 12, 2, 3, 4} with finite rates. The systems and controllers are spatially distributed

and connected over communication links. The communication channels are used to exchange

information and control signals among spatially distributed system components such as controllers,

actuators and sensors.

In our framework, the two linear and time-invariant systems denoted as the leader P1 and the

follower P2 are assumed to be identical. The framework could be further extended to more general

leader-follower network with multiple leaders and followers interconnected over communication

links. There are many possible applications of such a general framework including, for example,
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Figure 2.1: A general model of a networked control system with two plants.

distributed control of power plants in smart-grid, where control input could be applied to one

generator and other generators could act as followers to track the state of that generator. Another

possible application is the formation control of homogeneous robots with exterior control applied

only to the leader [125–127]. However, such general network topologies are beyond the scope of

this report.

Suppose that the reference signal r(k) is only available for the leader system P1. The follower

system P2 does not have information of r(k) and has to track the state of the leader system based

only on the output of the plant P1 over a communication network. The goal is to find the lower

bound of channel data rate for channel CHi to convey enough information to both controllers C1

and C2 to generate efficient feedback control signals such that the plants P1 and P2 could track r(k)

accurately. Note that, the reference signal r(k) may not be available for follower system P2 as a
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result of the high cost of information delivery to each plant due to long-range spatial separation

between systems or a large number of follower systems (not considered here).

In the following, we formulate the discrete-time state-space representation for the leader and

follower systems1:

xj(k + 1) = Fxj(k) +Gûj(k),

yj(k) = Hxj(k), k ≥ 0, j = 1, 2, (2.4)

where the states xj(k) takes values in Rn and the received control input ûj(k) takes values in Rr.

The initial state xj(0) is a zero mean Gaussian random variable with covariance matrix Σ0j . The

state is observed by a sensor that generates the measurement yj(k) taking values in Rq.

We assume that the pair (F,G) is controllable and the pair (F,H) is observable based on the

fact that follower system P2 tries to track the state of leader system P1, which requires system

state x1 to be observable and x2 to be controllable. Since the pair (F,H) is observable, the system

state xj could be sufficiently determined by output signal yj . In order to simplify the derivation

in next section and achieve theoretical results, we assume that system state could be estimated by

xj = Lyj for j = 1, 22, where matrix L ∈ Rn×q is a transformation matrix.

Here we define the tracking errors of systems P1 and P2 as ξ1(k) = r(k)− x1(k) and ξ2(k) =

x1(k) − x2(k), where ξj(k) is a stochastic process with mean µj and covariance Cov{ξj}, for

j = 1, 2. Assume that the matrix F =

 Fs 0

0 Fu

 where 0 < |λi(Fs)| < 1 and |λi(Fu)| ≥ 1.

Therefore, F k is invertible ∀k.

The encoders and decoders are described as follows:

1) Encoder: At every time step k, encoder εi calculates and transmits the vector si(k) for

1For ease of mathematical derivation, we only consider identical model systems.
2The state-output relation assumption may limit the use of this chapter’s results in some practical appli-

cations. We are currently working on relaxing this assumption on further extensions.
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i = 1, · · · , 4, according to the following functional structure:

s1(k) = ε1(yk1), s2(k) = ε2(yk2),

s3(k) = ε3(uk1), s4(k) = ε4(uk2),

where si(k) takes values in Rm and yki = {yi(1), · · · ,yi(k)}.

2) Discrete-time memory-less channel (DMC): Let Si and Zi be given input and output alpha-

bets, along with a white stochastic process, denoted as ci, with alphabet Ci. Consider the mapping

Fi : Si × Ci → Zi for i ∈ {11, 12, 2, 3, 4} such that the following maps: zi(k) = Fi(si(k), ci(k)),

where ci is the channel noise.

3) Decoder: We consider the decoder for channel CHi is of the following form:

ŷ11(k) = Dk
11(ŷk−1

11 , zk11), ŷ12(k) = Dk
12(ŷk−1

12 , zk12),

ŷ2(k) = Dk
2(ŷk−1

2 , zk2), û1(k) = Dk
3(ûk−1

1 , zk3),

û2(k) = Dk
4(ûk−1

2 , zk4).

The controllers C1 and C2 are defined as follows:

C1 : u1(k) = f1

(
ek1
)

with e1(k) = Hr(k)− ŷ11(k), (2.5)

C2 : u2(k) = f2

(
ek2
)

with e2(k) = ŷ12(k)− ŷ2(k),

where we assume that reference signal r(k) has finite power such that E[r(k)T r(k)] <∞.

2.4 Information Theoretic Conditions for Tracking

In order to be able to derive useful results on channel capacity and conditions for optimal control,

first we simplify the general model in Fig. 2.1 as shown in Fig. 2.2. In Fig. 2.2, the controllers are

assumed to be directly connected to actuators that operate the systems, so that we can assume that

the channels CH3 and CH4 are lossless with no delays.
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Figure 2.2: A simplified model of a networked control system with two plants.

2.4.1 Necessary Conditions on Individual Channel

Channel CH11

Consider block 1 in Fig. 2.2. Plant P1 is not affected by the second plant P2. The block is a

closed-loop system with communication channel in feedback link as in [57]. Before proceeding

with our results, we extend Lemma 2 in [57] without assuming that H = I and state it as Lemma

2.4.1.

Lemma 2.4.1. Consider the closed-loop system in block 1 in Fig. 2.2, where plant P1 is an LTI

system described by (2.4). Assume that the pair (F,G) is controllable and (F,H) is observable.
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Assume E[r(k)T r(k)] <∞ for reference signal r(k). If E[ξ1(k)Tξ1(k)] <∞, then

lim
k→∞

I(x1(0); ek1|rk)
k

≥ lim
k→∞

I(x1(0); ek1)

k
≥
∑
i

max{0, log2(|λi(F )|)}, (2.6)

where ek1 = Hrk − ŷk11.

Proof. Note that the matrix F can be written in the form F =

 Fs 0

0 Fu

 where Fs corresponds

to the stable subspace (0 < |λi(Fs)| < 1) and Fu corresponds to the marginally stable and unstable

subspace (|λi(Fu)| ≥ 1). If F = Fs, from (P1) we just have I(x1(0); ek1) ≥ 0. For any control

sequence, the system remains stable. Hence, without loss of generality, we can restrict our attention

to matrix F = Fu that contains only marginally stable and unstable eigenvalues.

From the system model of P1 in (2.4), the definition of controller C1 in (2.5), we may write the

system state x1(k) as

x1(k) = F kx1(0) +
k−1∑
i=0

F k−i−1Gg1

(
ei1
)
. (2.7)

With the definition of tracking error ξ1(k) = r(k) − x1(k), by rearranging the terms in (2.7), we

have

−F−k
(
ξ1(k)− r(k)

)
= x1(0) +

k−1∑
i=0

F−i−1Gg1

(
ei1
)
. (2.8)

For bounded reference signals r(k) and E[ξ1(k)Tξ1(k)] <∞, from the triangle inequality we have

E[x1(k)Tx1(k)] ≤ E[ξ1(k)Tξ1(k)] +E[r(k)T r(k)] <∞, implying that the system remains stable.

From the definition and properties of the mutual information, we can easily show that

I(x1(0); ek1|rk) ≥ I(x1(0); ek1) = h(x1(0))− h(x1(0)|ek1), (2.9)
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where we have used the fact that x1(0) and rk are independent. From (2.8) and (P5):

h(x1(0)|ek1) = h
(
− F−k(ξ1(k)− r(k))|ek1

)
,

≤ h
(
− F−k(ξ1(k)− r(k))

)
, (2.10)

≤ 1

2
log2

(
(2πe)ndet(Cov{−F−k(ξ1 − r)})

)
, (2.11)

=
n

2
log2

(
2πe
)

+
1

2
log2

(
det(F−k(F−k)T )

)
+

1

2
log2

(
det(Cov{ξ1 − r})

)
,

=
n

2
log2

(
2πe
)
− k

∑
i

log2 (|λi(F )|) +
1

2
log2

(
det(Cov{ξ1 − r})

)
,

where (2.10) is due to (P6) and (2.11) is from (P7). Substituting these into (2.9), we obtain

I(x1(0); ek1|rk) ≥ I(x1(0); ek1) ≥ h(x1(0))− n

2
log2(2πe)

+ k
∑
i

log2 (|λi(F )|)− 1

2
log2 (det(Cov{ξ1 − r})) .

Since E[x1(k)x1(k)T ] < ∞ and x1 = r − ξ1, we have log2

(
det(Cov{ξ1 − r})

)
< ∞. Fi-

nally, if we divide above by k and take the limit k → ∞, then we have limk→∞
I(x1(0);ek1 |rk)

k
≥

limk→∞
I(x1(0);ek1)

k
≥
∑

i log2(|λi(F )|). If we reintroduce matrix F with some stable eigenvalues,

the Lemma follows.

By applying Lemma 2.4.1 to plant P2 and with the definition of tracking error ξ2, we have the

following corollary.

Corollary 2.4.2. Consider the closed-loop system in block 2 in Fig. 2.2, where plant P2 is an LTI

system described by (2.4). Assume that the pair (F,G) is controllable and (F,H) is observable.

Let L be a transformation matrix such that x2 = Ly2. Assume E[ŷ12(k)T ŷ12(k)] < ∞ for signal

ŷ12(k). If E[(Lŷ12(k)− x2(k))(Lŷ12(k)− x2(k))T ] <∞, then

lim
k→∞

I(x2(0); ek2|ŷk12)

k
≥ lim

k→∞

I(x2(0); ek2)

k
≥
∑
i

max{0, log2(|λi(F )|)}.

Proof. See the proof of Lemma 2.4.1.
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2.4. INFORMATION THEORETIC CONDITIONS FOR TRACKING

We now examine necessary conditions on the channel rate of CH11 to guarantee E[ξ1(k)Tξ1(k)] <

∞ in plant P1.

Lemma 2.4.3. Consider the closed-loop system given in block 1 in Fig. 2.2, where the plant P1 is

an LTI system described by (2.4). The channel CH11 is a feedback link with rate C11. Assume finite

power for reference signal E[r(k)T r(k)] <∞. If E[ξ1(k)Tξ1(k)] <∞, then

C11 ≥ I∞(r, ŷ11) +
∑
i

max{0, log2(|λi(F )|)}. (2.12)

Proof. By the chain rule (P8) for mutual information , we have

I((rk,x1(0)); ŷk11) = I(rk, ŷk11) + I(x1(0); ŷk11|rk). (2.13)

From (P3) and using the fact that ek1 = Hrk − ŷk11, we have

I(x1(0); ŷk11|rk) = h(ŷk11|rk)− h(ŷk11|x1(0), rk),

= h(ek1|rk)− h(ek1|x1(0), rk),

= I(x1(0); ek1|rk). (2.14)

Substituting (2.13) into (2.14), we have

I(rk, ŷk11) = I((rk,x1(0)); ŷk11)− I(x1(0); ek1|rk). (2.15)

From Lemma 7.9.2 of [128], for a discrete memoryless channel, we have average data rate kC11 ≥

I((rk,x1(0)); ŷk11). Hence, from (2.15), we obtain

I(rk, ŷk11) ≤ kC11 − I(x1(0); ek1|rk). (2.16)

If we divide (2.16) by k and take the limit k →∞, then the result follows from Lemma 2.4.1.

From Lemma 2.4.3, we know that for the system P1 to track r(k) with finite energy error, the

channel data rate of CH11 should be at least as large as
∑

i max{0, log2(|λi(F )|)} + I∞(r, ŷ11).

24



2.4. INFORMATION THEORETIC CONDITIONS FOR TRACKING

The term I∞(r, ŷ11) is the average amount of information about r contained in channel output ŷ11

over time. It can be seen from Fig. 2.2 that channel CH11 conveys the information of r and the

uncertainty of system P1 to channel output ŷ11. Hence, the channel data rate should be larger than

the sum of system uncertainty
∑

i max{0, log2(|λi(F )|)} and the mutual information rate between

r and ŷ11. In practice, mutual information rate could be estimated by Monte Carlo methods given

a large amount of data [129, 130].

Channels CH2 and CH12

If we consider y1(k) as the reference signal to plant P2, then block 2 in Fig. 2.2 could be considered

a closed-loop system with communication channels in both forward and feedback links. In the

following lemma, first we examine necessary conditions on the data rate of feedback channel CH2

to guarantee that the tracking error has finite second moment for plant P2 to track ŷ12(k).

Lemma 2.4.4. Consider the closed-loop system given in block 2 in Fig. 2.2, where the plant P2 is

an LTI system described by (2.4). The channel CH2 is a feedback link with data rate C2. Assume

that the pair (F,G) is controllable and (F,H) is observable. LetL be a transformation matrix such

that xj = Lyj for j = 1, 2. Assume E[ŷ12(k)T ŷ12(k)] <∞. If E[(Lŷ12(k)− x2(k))T (Lŷ12(k)−

x2(k))] <∞, then

C2 ≥ I∞(ŷ12, ŷ2) +
∑
i

max{0, log2(|λi(F )|)}. (2.17)

Proof. Similar to the proof of Lemma 2.4.3, and is omitted.

Lemma 2.4.4 shows that if plant P2 tracks ŷ12(k) with E[(Lŷ12(k) − x2(k))T (Lŷ12(k) −

x2(k))] <∞, then (2.17) should be satisfied. However, our goal is to guarantee E[ξ2(k)Tξ2(k)] <

∞ for plant P2 to track y1(k). Therefore, we need to derive necessary conditions on forward

channel CH12 and determine the interaction of the two channels in such a system.
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2.4. INFORMATION THEORETIC CONDITIONS FOR TRACKING

In the rest of this section, we first start with Lemma 2.4.5 which shows a lower bound on the

rate of forward channel CH12 by assuming that feedback channel CH2 is lossless and has no delays.

Later, we will relax this assumption and arrive at our main result on necessary conditions on both

channels CH12 and CH2 in Theorem 2.4.7.
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Figure 2.3: Closed-loop system (block 2) with communication channel in forward link and channel
CH2 as lossless with no delays.

Lemma 2.4.5. Consider the feedback interconnection represented in Fig. 2.3, where the plant P2

is an LTI system described by (2.4). Assume that the channel CH2 is lossless and has no delays.

Assume that encoder ε1 and decoder Dk
12 are causal and E[y1(k)Ty1(k)] < ∞. Assume that the

pair (F,G) is controllable and (F,H) is observable. Let L be a transformation matrix such that

xj = Lyj for j = 1, 2. If E[ξ2(k)Tξ2(k)] <∞, then

C12 ≥ I∞(y1,y2) +
∑
i

max{0, log2(|λi(F )|)} − h(x2(0)), (2.18)

where C12 represents the rate of channel CH12. In addition, channel noise c12 = 0, then (2.18) is

given by

C12 ≥ I∞(ŷ12,y2) +
∑
i

max{0, log2(|λi(F )|)} − h(x2(0)), (2.19)

Proof. From the chain rule (P8) for mutual information,

I((x2(0),yk1); yk2) = I(yk1 ; yk2) + I(x2(0); yk2 |yk1). (2.20)
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From the system model (2.4) of P2 and the definition (2.5) of controller C2, we may write the

output y2(k) as

y2(k) = HF kx2(0) +H

k−1∑
i=0

F k−i−1Gg2

(
ŷi12 − yi2

)
,

= ĝ2(x2(0), ŷ12(k)). (2.21)

This shows that y2(k) is a function of initial state x2(0) and the reference signal ŷ12. From (P3)

and (2.21), we obtain

I
(
(x2(0),yk1); yk2

)
≤I
(
(x2(0),yk1); qk

)
,

=I(yk1 ; ŷk12) + I
(
x2(0), (x2(0), · · · ,x2(0))

)
,

=I(yk1 ; ŷk12) + kh(x2(0)), (2.22)

where qk = {q(1), · · · ,q(k)}, q(k) = (x2(0), ŷ12(k)) and the second step results from the inde-

pendence between x2(0) and (yk1 , ŷ
k
12). From (P8), we have

I((yk1 , ŷ
k
12); yk2) = I(yk1 ; yk2) + I(ŷk12; yk2 |yk1),

= I(ŷk12; yk2) + I(yk1 ; yk2 |ŷk12).

Since I(ŷk12; yk2 |yk1) = 0 due to (P4) and c12 = 0 and I(yk1 ; yk2 |ŷk12) ≥ 0 due to (P1), we have

I(yk1 ; yk2) ≥ I(ŷk12; yk2). (2.23)

From the definition of mutual information, we further have

I(x2(0); yk2 |yk1) = h(x2(0)|yk1)− h(x2(0)|yk2 ,yk1),

= h(x2(0)|ŷk12)− h(x2(0)|yk2 , ŷk12) (2.24)

= I(x2(0); yk2 |ŷk12),

= h(yk2 |ŷk12)− h(yk2 |x2(0), ŷk12),

= h(ek2|ŷk12)− h(ek2|x2(0), ŷk12), (2.25)

= I(x2(0); ek2|ŷk12), (2.26)

27



2.4. INFORMATION THEORETIC CONDITIONS FOR TRACKING

where (2.24) is due to the independence between x2(0) and (yk1 , ŷ
k
12) and (2.25) is due to (P5) and

the fact that ek2 = ŷk12 − yk2 . Substitution of (2.22), (2.23) and (2.26) into (2.20) results in the

following:

I(yk1 ; ŷk12) + kh(x2(0)) ≥ I(ŷk12; yk2) + I(x2(0); ek2|ŷk12).

We have average channel data rate kC12 ≥ I(yk1 ; ŷk12). By dividing above by k and taking the limit

k →∞, the result follows by using Corollary 2.4.2.

Remark 2.4.6. From Lemma 2.4.5, it could be seen that if C12 <
∑

i max{0, log2(|λi(F )|)} −

h(x2(0)), the channel can not convey information at a high enough rate to match the speed of the

system dynamics such that the reference signal does not provide any information related to the

feedback signal, rendering feedback useless. By comparing Lemma 2.4.4 and Lemma 2.4.5, we

know that there is one more term −h(x2(0)) in (2.19), which is due to the fact that x2(0) passes

through channel CH2 but does not go through channel CH12. When calculating the channel data

rate, the information of x2(0) is taken into account in C2 but not in C12. If we assume x2(0) is not

a random variable but a deterministic one, there is no uncertainty in x2(0) such that h(x2(0)) = 0

and the bounds on C2 and C12 are the same.

By combining Lemma 2.4.4 and Lemma 2.4.5, we provide the following theorem which states

the necessary conditions on channels CH12 and CH2 together to guarantee E[ξ2(k)Tξ2(k)] < ∞

for tracking of y1(k) by plant P2.

Theorem 2.4.7. Consider block 2 represented in Fig. 2.2, where plant P2 is an LTI system de-

scribed by (2.4). Assume that encoders ε1, ε2 and decodersDk
12,Dk

2 are causal and E[r(k)T r(k)] <

∞. Assume that the pair (F,G) is controllable and (F,H) is observable. LetL be a transformation
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matrix such that xj = Lyj for j = 1, 2. If E[ξ2(k)Tξ2(k)] <∞, then 3

C2 ≥ I∞(ŷ12, ŷ2) +
∑
i

max{0, log2(|λi(F )|)}, and

C12 ≥ I∞(y1, ŷ2) +
∑
i

max{0, log2(|λi(F )|)} − h(x2(0)), (2.27)

where C2 and C12 are the channel rates of CH2, CH12.

Proof. The first equation in (2.27) results directly from Lemma 2.4.4. In the following, we provide

the proof for the second equation. From the chain rule (P8) for mutual information, we obtain

I((x2(0),yk1); ŷk2) = I(yk1 ; ŷk2) + I(x2(0); ŷk2 |yk1). (2.28)

From (2.26) and using the fact that ek2 = ŷk12 − ŷk2 , we have

I(x2(0); ŷk2 |yk1) = I(x2(0); ek2|ŷk12). (2.29)

Using the properties of mutual information, we have

I((x2(0),yk1); ŷk2) ≤I((x2(0),yk1); (yk2 , c
k
2)), (2.30)

=I((x2(0),yk1); yk2), (2.31)

≤I(yk1 ; ŷk12) + kh(x2(0)), (2.32)

where (2.30) results from (P3) and ŷk2 is a function of yk2 and ck2, (2.30) is due to the independence

between ck2 and (x2(0),yk1) and (2.32) results from (2.22). Substitution of (2.29) and (2.32) into

(2.28) results in the following

I(yk1 ; ŷk12) + kh(x2(0)) ≥ I(yk1 ; ŷk2) + I(x2(0); ek2|ŷk12).

We have the average channel rate as kC12 ≥ I(yk1 ; ŷk12). Hence, by dividing above by k and taking

the limit k →∞, the result follows by using Corollary 2.4.2.

3The calculation of information rate in practice is difficult due to enormous computation. However, it
still could be closely estimated by Monte Carlo techniques given a large enough amount of data [129, 130].
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In Theorem 2.4.7, it can be seen that when two channels appear as forward link (CH12) and

feedback link (CH2) as in block 2 in Fig. 2.2, the rate of the forward channel is affected by the

existence of the feedback channel, if the feedback channel is noisy where we have I∞(y1, ŷ2) in

(2.27) instead of I∞(y1,y2) in (2.18). The physical meaning of Theorem 2.4.7 is that the channels

CH12 and CH2 should convert information at a high enough rate not just to guarantee system

stability by stabilizing the unstable poles of system matrix (
∑

i max{0, log2(|λi(F )|)}), but also

ensure effective tracking by providing related information between reference signal and feedback

signal, which is represented by the mutual information I∞(ŷ12, ŷ2) and I∞(y1, ŷ2).

2.4.2 Necessary conditions on cascade channel made of CH12 and CH2

Theorem 2.4.7 shows necessary conditions on data rate of each individual link for tracking in plant

P2 with finite energy tracking error. It also shows the interaction between forward and feedback

channels in this networked feedback system. However, a general overview and abstraction of the

necessary conditions on both channels for tracking in such a system is still needed. With regards to

information flow, the forward and feedback channels could be connected in a cascade manner. By

considering forward and feedback channels together as one cascade channel, we could provide a

lower bound on the rate of the cascade channel for tracking in plant P2 such that E[ξ2(k)Tξ2(k)] <

∞.

We may reformulate the structure of block 2 in Fig. 2.2 as shown in Fig. 2.4 [29]. In Fig. 2.4,

two channels are connected in cascade with feedback from the output of the second channel to the

intermediate node. The first channel CH12,new consists of CH12 and the lossless link that transmits

x2(0). The encoder input of the first channel is denoted as (y1,x2(0)) and the decoder output is

denoted by (ŷ12,x2(0)), since x2(0) is not affected by the channel noise. For the second channel

CH2, we denote the encoder input as (ŷ12,x2(0)) and decoder output as ŷ2. Here we consider

controller C2, plant P2 and encoder ε2 as a macro encoder for the second channel.

In this formulation, we reconsider the two channels CH12,new, CH2 described in Fig. 2.4 as one
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Figure 2.4: Closed-loop system (block 2) with communication channels in forward and feedback
links.

cascade channel CHcas with encoder ε1, decoder D2 and the components in between as the new

channel. Here we want to find the minimum channel rate for the cascade channel CHcas for plant

P2 to track y1(k) with E[ξ2(k)Tξ2(k)] <∞.

In [29], a similar reformation of closed-loop system with feedback channel is considered. Here

we extend the results in [29] to a cascade channel in which both forward and feedback channels

are considered. In order to proceed with our results, we first modify Theorem 2.1 in [29] and state

it here as Lemma 2.4.8.

Lemma 2.4.8. Consider the closed-loop system given in Fig. 2.4, where the plant P2 is an LTI

system described by (2.4). Assume that the encoders and decoders for the two channels CH12 and

CH2 are causal operators. Assume that the pair (F,G) is controllable and (F,H) is observable.
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Let L be a transformation matrix such that xj = Lyj for j = 1, 2. Let the following assumptions

hold:

(A1) The decoder D2 for the second channel CH2 satisfies: ∀k > a, ŷa+1,k
2 = Dk

2(ŷ1,a
2 , zk2)

for some a ∈ N+ and a sequence of functions Dk
2 , where ŷa+1,k

2 = {ŷ2(a + 1), · · · , ŷ2(k)} and

the output of the decoder D2 is based on all the received values from channel zk2 and the previous

output of decoder ŷ1,a
2 .

(A2) The fading memory condition lim supk→∞
1
k
I(ŷ1,a

2 ; x2(0),yk1)|zk2) = 0 holds.

Under the above conditions, the following is true:

lim sup
k→∞

1

k
I(x2(0),yk1 |zk2) ≤ I∞(s12 → z). (2.33)

Proof. We separate the proof into two parts.

1) First, using (P2) and (P10) we can write the following equality, for any given i ∈ {1, · · · , k}:

I(z2(i); (x2(0),yi−1
1 )|zi−1

2 ) ≤ I(z2(i); si12|zi−1
2 ) + I(z2(i); (x2(0),yi−1

1 )|zi−1
2 , si12). (2.34)

Now notice that (P2) allows us to rewrite:

I(z2(i); (x2(0),yi−1
1 )|zi−1

2 , si12) = I((zi2, s
i
12); (x2(0),yi−1

1 ))− I((zi−1
2 , si12); (x2(0),yi−1

1 )).

(2.35)

But, from (P3), we know that

I((zi2, s
i
12); (x2(0),yi−1

1 )) = I((n(i), zi−1
2 , si12); (x2(0),yi−1

1 )).

where n(i) represents the additive components in the cascade channel CHcas, including additive

noises c12(i), c2(i) and channel output feedback ŷ2(i). Then, by chain rule, we have

I((zi2, s
i
12); (x2(0),yi−1

1 )) = I((zi−1
2 , si12); (x2(0),yi−1

1 ))

+ I(n(i); (x2(0),yi−1
1 )|(zi−1

2 , si12)). (2.36)
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Since n(i) is independent of (x2(0),yi−1
1 ) given (si12, z

i−1
2 ), we have I(n(i); (x2(0),yi−1

1 )|(zi−1
2 , si12)) =

0. Then,

I((zi2, s
i
12); (x2(0),yi−1

1 )) = I((zi−1
2 , si12); (x2(0),yi−1

1 )). (2.37)

By making use of (2.35) and (2.37) we infer that I(z2(i); (x2(0),yi−1
1 )|zi−1

2 , si12) = 0. Together

with (P1) and (2.34), this leads to:

I(z2(i); (x2(0),yi−1
1 )|zi−1

2 ) ≤ I(z2(i); si12|zi−1
2 ). (2.38)

From causality (A1), yi,k1 is independent of (x2(0),yi−1
1 , zi2) implying

I(z2(i); (x2(0),yk1)|zi−1
2 ) = I(z2(i); (x2(0),yi−1

1 )|zi−1
2 ). (2.39)

Substituting (2.39) in (2.38) and summing over i from i = 1 to i = k, then we have

I(zk2; (x2(0),yk1)) ≤ I(sk12 → zk2). (2.40)

2) Second, by using (P2) and (P10), we have the following inequality

I(ŷk2 ; (x2(0),yk1)) ≤ I(zk2; (x2(0),yk1)) + I(ŷk2 ; (x2(0),yk1)|zk2). (2.41)

From (P2) and assumption (A1), we obtain the following:

I(ŷk2 ; (x2(0),yk1)|zk2) = I(ŷa+1,k
2 ; (x2(0),yk1)|zk2, ŷa2) + I(ŷa2; (x2(0),yk1)|zk2).

From (P4), we have I(ŷa+1,k
2 ; (x2(0),yk1)|zk2, ŷa2) = 0. Then,

I(ŷk2 ; (x2(0),yk1)|zk2) = I(ŷa2; (x2(0),yk1)|zk2). (2.42)

By substitution of (2.42) in (2.41) and using the assumption (A2), we obtain:

lim sup
k→∞

1

k
I(ŷk2 ; (x2(0),yk1)) ≤ lim sup

k→∞

1

k
I(zk2; (x2(0),yk1)),

which, together with (2.40), completes the proof.
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By the definitions of channel rate and directed mutual information, from Lemma 2.4.8, we have

Ccas ≥ I∞(s12 → z2) ≥ lim supk→∞
1
k
I(ŷk2 ; (x2(0),yk1)). Then, we have the following:

Ccas ≥ lim sup
k→∞

1

k
I(ŷk2 ; (x2(0),yk1)). (2.43)

Since I((yk1 ,x2(0)); ŷk2) = I(yk1 , ŷ
k
2) + I(x2(0); ŷk2 |yk1), from (P3) and the fact that ek2 =

ŷk12 − ŷk2 = f̂(yk1)− ŷk2 , we have

I(x2(0); ŷk2 |yk1) = h(ŷk2 |yk1)− h(ŷk2 |x2(0),yk1)

= h(ek2|yk1)− h(ek2|x2(0),yk1);

= I(x2(0); ek2|yk1). (2.44)

From (2.44), we have

I(yk1 , ŷ
k
2) = I((yk1 ,x2(0)); ŷk2)− I(x2(0); ek2|yk1). (2.45)

By Corollary 2.4.2 and dividing (2.45) by k and taking the limit k →∞, we obtain

I∞(y1, ŷ2) ≤ lim sup
k→∞

1

k
I((yk1 ,x2(0)); ŷk2)−

∑
i

max{0, log2(|λi(F )|)}. (2.46)

Substituting (2.43) in (2.46), we have

I∞(y1, ŷ2) ≤ Ccas −
∑
i

max{0, log2(|λi(F )|)}.

This result may be summarized in the following theorem:

Theorem 2.4.9. Consider the system formulation given in Fig. 2.4, where the plant P2 is an LTI

system described by (2.4). Consider the cascade channel, which is the combination of channels

CH12 and CH2. Assume that the pair (F,G) is controllable and (F,H) is observable. Let L be

a transformation matrix such that xj = Lyj for j = 1, 2. Assume that E[r(k)T r(k)] < ∞. If

E[ξ2(k)Tξ2(k)] <∞, then

Ccas ≥ I∞(y1, ŷ2) +
∑
i

max{0, log2(|λi(F )|)}. (2.47)
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Remark 2.4.10. Theorem 2.4.9 shows that the rate of the cascade channel which includes CH12

and CH2 is lower bounded by the mutual information between yk1 and ŷk2 and a function of the

unstable poles of plant P2. From the data processing inequality, the rate of cascade channel is

less than the rate of each component channel [131]. Since channels CH12,new and CH2 are in

cascade connection as in Fig. 2.4, we have that C12,new ≥ Ccas and C2 ≥ Ccas, where C12,new

is the rate of channel CH12,new. Since the link that transmits x2(0) is lossless, the channel rate

C12,new = C12 + h(x2(0)). The result in Theorem 2.4.9 is also confirmed by Theorem 2.4.7.

Theorem 2.4.9 provides a guideline for communication channel design in networked feedback

systems by giving a lower bound on the required overall channel rate. In practice, we could adjust

the rate of each component channel and the channel orderings to optimize the overall channel rate.

Theorem 2.4.9 shows that the rate of the cascade channel I∞((y1,x2(0)); ŷ2) can be estimated in

two parts. The first part I∞(y1, ŷ2) could be directly measured by partial input and output relation.

The second term I∞(x2(0), ŷ2|y1) which is caused by internal information loss in the channel

could be estimated by the system parameters
∑

i max{0, log2(|λi(F )|)}.

2.5 Extensions to Different System Models

In this section, we consider the extension of above results to tracking in a leader-follower system

in which the leader system and follower system have different system models as follows:

x1(k + 1) = F1x1(k) +G1û1(k),

y1(k) = H1x1(k),

and

x2(k + 1) = F2x2(k) +G2û2(k), (2.48)

y2(k) = H2x2(k), k ≥ 0,

where the states x1(k) and x2(k) take values in Rn and the received control inputs û1(k) and û2(k)

take values in Rr. The initial states x1(0) and x2(0) are zero mean Gaussian random variables with
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covariance matrices Σ01 and Σ02, respectively. The states are observed by sensors that generate the

measurements y1(k) and y2(k) taking values in Rq.

In order to comply to the same formulation as in Section 2.3, the terms e1 and e2 are defined as

e1 = L1r− ŷ1 and e2 = L−1
2 L1ŷ12 − ŷ2, where L1 and L2 are invertible transformation matrices

and x1 = L1y1 and x2 = L2y2. By following the derivation of above lemmas and theorems,

similar results could be obtained for tracking in leader-follower system where the leader system

and follower system have different system models. Due to space limitation, we only list the main

results here and the proofs follow the same derivation as for Theorems 2.4.7 and 2.4.9.

Theorem 2.5.1. Consider block 2 represented in Fig. 2.2, where plant P2 is an LTI system

described by (2.48). Assume that encoders ε1, ε2 and decoders Dk
12, Dk

2 are causal and that

E[r(k)T r(k)] < ∞. Assume that the pair (Fj, Gj) is controllable and (Fj, Hj) is observable. Let

Lj be an invertible transformation matrix such that xj = Ljyj for j = 1, 2. If E[ξ2(k)Tξ2(k)] <

∞, then

C2 ≥ I∞(ŷ12, ŷ2) +
∑
i

max{0, log2(|λi(F2)|)}, and

C12 ≥ I∞(y1, ŷ2) +
∑
i

max{0, log2(|λi(F2)|)} − h(x2(0)), (2.49)

where C2 and C12 are the channel rates of CH2, CH12.

Theorem 2.5.2. Consider the system formulation given in Fig. 2.4, where the plant P2 is an LTI

system described by (2.48). Consider the cascade channel, which is the combination of channels

CH12 and CH2. Assume that the pair (Fj, Gj) is controllable and (Fj, Hj) is observable. Let Lj be

an invertible transformation matrix such that xj = Ljyj for j = 1, 2. Assume that E[r(k)T r(k)] <

∞. If E[ξ2(k)Tξ2(k)] <∞, then

Ccas ≥ I∞(y1, ŷ2) +
∑
i

max{0, log2(|λi(F2)|)}. (2.50)
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2.6 Examples and Simulations

Leader-follower system is defined as a dynamic system in which multiple agents are connected in

such a way that followers are controlled or influenced by the behaviors of leaders. In such system,

each follower will keep track of the state or output of the leader and generate its own output based

on the received information. In this section, we show simulations of a leader-follower system and

demonstrate the necessity of above derived conditions for tracking. We consider the close-loop

system as in block 2 in Fig. 2.2. Channels CH12 and CH2 are assumed to be erasure channels

with limited data transmission rates R12 and R2 and packet loss erasure probabilities of p12 and

p2, respectively. The average data rate of erasure channel is given by Ci = Ri(1 − pi) [128]. The

reference signal satisfies E[r(k)T r(k)] ≤ 103.

We consider a two-part encoder-decoder scheme as follows [57]: encoder εi converts the input

to its binary form, truncates the binary representation to its Ri most significant bits, encapsulates

the bits in a packet and sends the packet through the channel. If the packet is received, the decoder

Di extracts the bits in the packet and converts them to its real number representation. Otherwise,

the decoder will assume that a zero was sent and outputs zero. The scheme also assumes that the

decoder knows exactly the operation of the encoder and that both have access to control signal.

Consider system equation of plant P2 with a simple control law as x2(k + 1) = 16x2(k) + u2(k),

y2(k) = 15x2(k) and u2(k) = ŷ12(k) − 1.07ŷ2(k). The control law will drive system state

to x2(k) = r(k) if the two channels are lossless and have no delays. The initial state x2(0) is

Bernoulli distributed with success probability px2 = 0.5.

Our necessary conditions were given in terms of the mutual information rate, which is difficult

to compute directly. However, our results impose limits to guarantee that E[ξ2(k)Tξ2(k)] < ∞.

Since E[ξT2 ξ2] = 1
2π

∫ π
0

Φ2(ω)dω, where Φ2(ω) is the power spectral density of ξ2(k) [132], we

may plot the power spectral density of ξ2 to estimate E[ξT2 ξ2]. From Theorem 2.4.7, we know

that lower bounds on channel data rate C2 and C12 are 4 bits/timestep, for the above assumed

system. Figures 2.5 and 2.6 show the power spectral density Φ2(ω) of the tracking error ξ2(k) of

37



2.7. CONCLUSIONS

the follower system when only one channel satisfies these necessary conditions. It can be seen

that the power spectral density Φ2(ω) is unbounded at every ω ∈ [0, π]. Then, the average power

spectrum over an area of [0, π] is unbounded. From the above equation, we know that E[ξT2 ξ2] is

no longer finite. However, if the lower bounds are satisfied by both channels as assumed in Fig.

2.7, the power spectral density is finite. Hence, E[ξT2 ξ2] stays bounded.
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Figure 2.5: Example with erasure channels: C12 = 2.5, C2 = 4.

2.7 Conclusions

In this chapter, we considered tracking in leader-follower systems under communication con-

straints, where the system components are distributed and connected over communication links

with finite data rates. We provided lower bounds on the channel rate of each communication link
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Figure 2.6: Example with erasure channels: C12 = 4, C2 = 2.3.

as necessary conditions for tracking in such a leader-follower system. We also showed examples

to demonstrate our results. The results in this work provide fundamental limitations in terms of

information quantities on communication links which can have important roles on control design

in leader-follower systems. Limitations in both overall channel and individual channel are pro-

vided and it should be taken into account for designing new control system with communication

constraints. Our future work is to extend the leader-follower system to more general framework

in which multiple leaders and followers are interconnected as a network with more general graph

topologies.

In the next chapter, we consider distributed demand-side management for smart grid by op-

timizing the aggregate load of users with DG through user energy usage coordination. Under

the cooperative user and inter-user communication assumption, we propose a distributed control
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Figure 2.7: Example with erasure channels: C12 = 4, C2 = 9.

based energy scheduling method to improve the demand shape profile and reduce energy loss. We

will consider possible delay in communications, sensing and actuation and propose a distributed

networked control strategy with prediction algorithm to solve the problem.
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Chapter 3

Distributed Demand-side Management for

Mircogrid through Cooperative User

Coordination

3.1 Introduction

In this chapter, we consider distributed demand-side management for microgrids by optimizing

the aggregate load of users with RDG through user energy usage coordination. Under the as-

sumption of user cooperation and inter-user communications, we propose a distributed networked

control strategy to improve the demand shape profile and maintain supply-demand balance. The

proposed approach is based on distributed control in which users exchange their own information

with other users via inter-user communications and apply optimal control to adjust their energy

usage. By considering possible delay in communications between users and management system,

we propose a distributed networked control strategy with prediction to solve the aggregate user

load optimization problem with same and different communication delays.

The rest of this chapter is organized as follows: Section 3.2 proposes a scalable, hierarchical
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decision-making and control architecture for the smart grid. The mirogrid level control frame-

work of the proposed architecture further discussed in Section 3.3. Section 3.3 also formulates

the demand-side management problem in mircogrid level of our proposed architecture under the

assumption of initial long-term energy schedule is already established. Section 3.4 derives a dis-

tributed networked control strategy to maintain the real-time microgrid stability. In Section 3.5,

by considering communication delay among users and the microgrid controller, we propose a dis-

tributed networked control with prediction algorithm to achieve optimality and maintenance in the

grid. Section 3.6 demonstrates the applicability and performance of the proposed methods. Section

3.7 concludes this chapter.

3.2 A Scalable, Hierarchical Control Architecture for the Grid

Much work has been done on control infrastructure for smart grid in literature. [134] provides

an architecture that automates the interactions between the Utilities and their customers for de-

mand response programs in power grid but it only supports demand response application in a

centralized way without aggregation of renewables. GridStat [135] provides a flexible quality

of service(QoS)-aware communication infrastructure for power grid based on internet technolo-

gies. However, it does not provide a detailed generic distributed control infrastructure. Virtual

Power Plant (VPP) [136] manages aggregation of DER as a virtual conventional generation sys-

tem while providing higher efficiency and more flexibility in reaction to fluctuations. VPP is a

generation-level virtual architecture and requires a complicated optimization, control, and secure

communication methodology.

Here we propose a scalable, hierarchical decision-making and control architecture at distribu-

tion level of smart grids. We provide a distributed control infrastructure by utilizing distributed

demand-side management in microgrids through coordination and cooperation among users with

RDG. Our proposed architecture not only ensures scalability in decision-making and control proto-

cols and allows sufficient-level resource pooling. In the proposed architecture, a Utility-maintained
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conventional plant and certain RDG’s that are best modeled at the distribution-level feed a grid

consisting of several substations (SS). Note that, wind-energy is perhaps one such RDG [62]. The

objective of each substation is to maintain a nearly-flat demand-response with minimum conven-

tional generation. Each substation is connected to Nf number of feeders each of which serves, a

possibly large collection of customers. In general, the number of feeders connected to each sub-

station may allow to be varied from substation to substation, although in practice this may not be

desirable. Hence, for the brevity of notation, we assume the same fixed number Nf of feeders per

substation although this can be made a variable quantity without effecting any of the development

to follow. Each substation is to have energy routing capabilities, routing energy through switching,

to facilitate possibility of exchanging energy among its feeders, and also be able to request power

from the central plant, if needed. Therefore, we will assume that the substation has direct access

and influence over conventional generation decisions. It merely ensures that at some-level in the

energy-grid there is an entity with direct influence over the conventional generation decisions, and

that entity will ultimately be brought to balance out the supply-demand equation. In the following,

we assume that this entity’s presence can be assumed at the substation level decision making.

Our goal is to ensure the model we propose for the smart-grid decision-making and interac-

tions is scalable without precluding resource pooling capability which is one of the most important

strategies to energy efficiency, maximizing energy utilization in the grid [137]. A tradeoff to sta-

bility and resource pooling can be achieved by using the notion of microgrids: The DERs served

by a feeder can be divided in to several microgrids [62]. The assumption is that each microgrid is

a collection of customers that are nearly self-contained and this provides a hierarchical smart-grid

decision-making and control architecture as shown in Fig. 3.1 that is both scalable and allows

sufficient resource pooling. We assume that there is a microgrid controller unit that is the inter-

face between any given microgrid and the feeder. At each feeder-level there is a Master controller

that interfaces with microgrid controllers of each microgrid. Master controllers interface at the

substation level. In this hierarchical decision-making and control model, each microgrid is to be

nearly self-contained, then each feeder is to be self-contained, and finally each substation is to be

self-contained. Any changes at the lowest levels are to mostly effect the microgrid in question
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Figure 3.1: A hierarchical decision-making and control architecture for future smart-grid.

and it will only effect the Master controllers at the feeder level only if the change is too great to

be resolved within the microgrid’s own capabilities and resources. The same applies with respect

to each feeder and substation level interaction, leading to a highly distributed and easily scalable

decision-making and control architecture for the grid operation.

Within this scalable and hierarchical model, our proposed interactive framework starts with the

predicted information from the customers on their look-ahead energy requirements for the next

scheduling period Ts. Usually, but not necessarily, this long-term scheduling period can be of one

day duration. To be specific, let us assume that at the 0-th hour of the day, each customer unit

informs its predicted energy profile for the next Ts the duration (of, say, 24 hours) to its microgrid

controller. This profile essentially indicates at each hour (say) of the day how much energy the

customer would need from the grid or will be trading to the grid. Each microgrid controller is

responsible for maintaining a nearly self-contained grid operation within its microgrid. For that,
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based on all input customer energy profiles, it computes an optimized energy supply plan for the

Ts duration that ensures near-constant energy draw from the feeder. The microgrid controller

performs this optimization subject to various constraints on the amount of maximum expected

energy from the feeder level, the energy-link capacities, fairness, QoS requirements and priorities

of each customers [137]. The current framework allows systematically extending the real-time

interactive smart-grid framework proposed in our earlier work [138] from microgrid level only to

include the whole grid.

The long-term schedule computed by each microgrid controller is informed to all customer

units as well as to the Master controller at the feeder-level. The Master controller at each feeder

receives the nearly-equalized energy profiles from each microgrid under its control and performs

an optimization to self-sustain its power consumption by routing positive energy flow from one

microgrid to another with negative at a given time of the schedule. The computed energy schedule

by the Master controller at each feeder will then be passed on to the substation level which will

then perform a similar scheduling optimization among all its feeders. As can be seen from this

description, the proposed architecture provides granularity at each level to ensure scalability in

decision-making and control protocols as well as allow suffcient-level of resource pooling.

The above long-term or day-ahead, scheduling provides a nominal operating point for the nodes

in the grid. However, these schedules are based on predicted values of loads and generations which

will inevitably deviate from the actual values during the real-time operation [138]. These inevitable

real-time departures from the agreed-upon schedule are to be managed within each microgrid at a

finer time-scale (short-term or real-time). While there are various ways to enforce or incentivize the

customers within a microgrid to pursue this collective goal of self-sustainability of a microgrid, in

this chapter we limit ourselves to distributed networked control strategies: i.e. we assume that each

customer unit is to observe the state, or a measurement related to the state, of the microgrid and to

implement a classical control on its own DER to help maintain the required grid performance.

The focus of the rest of this chapter, is the demand-side management within each microgrid at

a finer time scale to ensure that the state of the grid is maintained at a scheduled operating point. In
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other words, we do not consider initial long-term scheduling problem within microgrid, feeder and

substation levels but rather assume that these are already established (see, for example, [67, 138]

for possible approaches to solve the initial scheduling problem).

3.3 Demand-side management within a Microgrid

Consider the following short-term demand-side management problem within a microgrid in grid-

connected mode1, which consists of N customers and one microgrid controller P as in Fig. 3.2.

Each customer has energy storage and is equipped with RDG. At the beginning of each long-term

day-ahead scheduling period Ts, each customer unit informs its predicted energy profile for the

next Ts duration to its microgrid controller P over the communication channel CHi. Based on all

input customer energy profiles, microgrid controller P computes an optimized demand response

schedule for the Ts duration that ensures near-constant energy draw from the feeder-level. Then,

microgrid controller P informs this long-term demand response schedule to all customer units over

feedback communication channels Chi in its microgrid at the beginning of the scheduling period

Ts, say at time step k = 0.

Let Z(k) represent the scheduled operational point at microgrid controller P at time step k

according to the established long-term schedule of duration Ts where k = 0, 1, 2 · · · , Ts. Let yi(k)

and y(k) denote user i’s real-time net power consumption and the net power consumption over all

users at time step k. Since the schedules are based on predicted values of loads and generations, the

actual values of y(k) during the real-time operation will inevitably deviate from the agreed-upon

schedule Z(k) which is be managed within each microgrid in real-time. This deviation is described

by power offset e(k), which is defined as e(k) = Z(k)−
∑N

i=1 yi(k) for 0 ≤ k ≤ Ts. The goal

is that with the support of energy storage and RDG, each customer unit observes the state of the

microgrid and adjusts its net power consumption yi(k) to maintain load-supply balance within the

1The management goals are quite different in two operation modes. While in grid-connected mode, the
controlling power is a necessary management function rather than the frequency and voltage in islanded
mode [62]. In this paper, we only consider microgrid in grid-connected mode.
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Figure 3.2: Microgrid with N users and one microgrid controller P .

microgrid.

3.3.1 User Model

Consider user i as an agent equipped with RDG and energy storage devices and with decision-

making capability to decide its net power consumption yi(k) from microgrid based on load-supply

information. User i’s load demand can be supplied by RDG, energy storage and microgrid. Re-

newable sources such as wind and solar, are usually intermittent, uncertain, and uncontrollable,

which results in fluctuations in RDG energy supply. On the other hand, the user load demand has

very limited freedom to be controlled through load shaping because of non-elastic loads [139].

However, energy storage serves as an compensation to RDG making user load demand from a mi-
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crogrid more elastic. User i can store excess renewable energy generation into energy storage and

supply its load with energy storage instead of requesting energy from microgrid when renewable

energy is insufficient2. In this way, by using energy storage, user i can supply its load demand and

also be able to adjust its net power consumption yi(k) from microgrid such that the aggregate net

power consumption y(k) can match to the agreed-on energy schedule Z(k).

Upon receiving load-balance information e(k) from microgrid controller P , user i determines

its net power consumption yi(k). To take into account the stochastic characteristics of RDG and

user load, we formulate this decision-making process as a stochastic system as follows [141]:

xi(k + 1) = Fi(xi(k),ui(k),wi(k)),

yi(k) = Gi(xi(k)), (3.1)

where xi(k) is the state of user i at time k, wi(k) is random disturbance, i.e. fluctuation in RDG

energy supply, disturbance from user load, ui(k) is user i’s control decision, yi(k) is user i’s net

power consumption at time k and Fi(·), Gi(·) are deterministic functions. Fi(·) describes user

i’s state transition dynamics. Gi(·) describes the relation between user i’s state and its net power

consumption.

In this formulation, at time k, user i has its current state xi(k) related to its net power con-

sumption yi(k). Upon receiving power offset e(k) from microgrid controller, user i makes control

decision ui(k) on its net energy usage at the next time step. With control decision ui(k), and state

xi(k), user i applies function Fi(·) to update its state xi(k + 1) and outputs its net power usage

yi(k + 1) using function Gi(·). This stochastic system in (3.1) describes the decision-making pro-

cess of each user and also takes into account the stochastic characteristics from renewable energy

supply and user load consumption by considering them as random disturbance wi(k).

In (3.1), functions Fi(·) and Gi(·) could be nonlinear and complex functions for which ana-

lytical results may be not available [142]. In order to derive useful mathematical results, we only

2Energy storage devices have limited capacites [140]. Here we assume that the short-term user energy
consumption is within this limit.
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consider linear functions Fi(·) and Gi(·). Hence, we can simplify (3.1) into a linear time-invariant

(LTI) stochastic system [141] as follows:

xi(k + 1) = Axi(k) +Bui(k) + wi(k),

yi(k) = Cxi(k) for 0 ≤ k ≤ Ts, (3.2)

where system state xi(k) and net load yi(k) take values in Rp and control decision ui(k) takes

values in Rq for p, q ∈ {1, 2, · · · }. The initial state xi(0) and noises wi are assumed to be zero mean

Gaussian random variables with covariance matrices Σx and Σw. Here we assume that the system is

observable and controllable such that each customer unit can observe the state xi(k) and implement

control decision ui(k) to adjust net load yi(k). Our objective is to design a control strategy for

each user i such that energy utilization in the smart grid is optimized, which is characterized in

term of the second moment of power offset e(k). In the following sections, we consider distributed

networked control strategy based on the assumption that information exchange is feasible among

users.

3.4 Distributed Networked Control Strategy

As mentioned in Section 1.2.2, optimization techniques provide a system-level analysis but operat-

ing in a centralized manner, while game theory provides distributed decision-making strategies but

lacking a system-level design. To obtain a system-level optimization of the demand-side manage-

ment problem while providing distributed analytical techniques to microgrids with DG, we propose

a distributed control algorithm with information exchange among users. Under the assumption of

cooperative users and inter-user communication, the proposed approach applies optimal control

to aggregate user energy usage within a microgrid and it could be implemented distributedly in

each RDG-equipped user. A tradeoff can be made between control effort and tracking accuracy.

This approach requires digital communication infrastructure among users to enable information

exchange. When communication delay exists, it also requires previous control inputs of all users,

meaning that each node should have data storage capability.
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The demand-side management problem we posed in Section 3.3 is to match the aggregate

user energy consumption
∑N

i yi(k) with the agreed-on schedule Z(k) so that energy utilization is

optimized in the smart grid, which is characterized by the mean squared error of power offset e(k)

given by E[e(k)T e(k)]. This is a tracking control problem in optimal control theory [143]. Indeed,

from optimal control theory, we could define a quadratic cost function JTs0 in terms of tracking

accuracy and control effort relating to the user power utilization dynamics in (3.2) for 0 ≤ k ≤ Ts

as follows:

JTs0 = E
[1

2

Ts−1∑
k=0

(e(k)TQe(k) +
N∑
i=1

ui(k)TRui(k)) +
1

2
e(Ts)

TF e(Ts)
]
, (3.3)

where F and Q are p × p symmetric, positive semidefinite matrices, and R is a q × q symmet-

ric, positive definite matrix. The first term e(k)TQe(k) is a measure of tracking accuracy be-

tween the total user net consumption
∑N

i=1 yi(k) and agreed-upon energy schedule Z(k). The term∑N
i=1 ui(k)TRui(k) represents the control effort over all customers and e(Ts)

TF e(Ts) represents

the terminal tracking accuracy. Hence, we have the optimization problem in the following form:

minimize JTs0

subject to xi(k + 1) = Axi(k) +Bui(k) + wi(k),

yi(k) = Cxi(k), xi(0) = xi,0,

Q, F ≥ 0, R > 0, (3.4)

In order to achieve optimal energy utilization, we need to minimize the cost function to acquire an

optimal control input ui(k) for each user.

3.4.1 Derivation of the Distributed Optimal Controller:

The optimization problem defined in (3.4) is an additive disturbance stochastic LQR problem [152]

with disturbance wi(k) as an additive white Gaussian noise. According to certainty-equivalence

principle [152], this additive disturbance stochastic problem can be solved as a deterministic prob-

lem with stochastic variable wi(k) replaced by its average value E[wi(k)] = 0. Thus, the optimal
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control for this additive disturbance stochastic problem is identical to the optimal control for the

deterministic case as follows:

minimize J̃Ts0 =
1

2

Ts−1∑
k=0

(
e(k)TQe(k) +

N∑
i=1

ui(k)TRui(k)
)

+
1

2
e(Ts)

TF e(Ts)

subject to xi(k + 1) = Axi(k) +Bui(k),

yi(k) = Cxi(k), xi(0) = xi,0,

Q, F ≥ 0, R > 0. (3.5)

In the remaining of this section, instead of solving the stochastic problem in (3.4), we will derive

the optimal controller for the deterministic case in (3.5)3. First, we define the Hamiltonian for the

optimization problem in (3.5) as

H
(
xi(k),ui(k),γi(k + 1)

)
=

1

2

Ts−1∑
k=0

(
e(k)TQe(k) +

N∑
i=1

ui(k)TRui(k)
)

+
N∑
i=1

γTi (k + 1)[Axi(k) +Bui(k)], (3.6)

where γTi (k + 1) for 1 ≤ i ≤ N are Lagrange multipliers to be determined. The Hamiltonian

is obtained by adjoining the original cost function (3.3) with plant relation (3.2) using Lagrange

multiplier γTi (k + 1). Define E = BR−1BT , V = CTQC and W = CQ. From calculus of vari-

ations [144], the Euler-Lagrange difference equation corresponding to the Hamiltonian (3.6) with

variables γi(k + 1), xi(k) and ui(k) leads to the following required conditions for an extremum:

xi(k + 1) =
∂H

∂γi(k + 1)
= Axi(k) +Bui(k), (3.7)

γi(k) =
∂H
∂xi(k)

= ATγi(k + 1) + V
N∑
i=1

xi(k)−WZ(k), (3.8)

0 =
∂H

∂ui(k)
= Rui(k) +BTγi(k + 1). (3.9)

3The distributed optimal controller in (3.5) is an extension of the standard optimal controller [143],
because its optimization problem is defined over N different systems instead of one single system.
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3.4. DISTRIBUTED NETWORKED CONTROL STRATEGY

From the Eular-Lagrange difference equation and the established long-term schedule of duration

Ts, we have the following boundary condition at time k = Ts:

γi(Ts) =
∂

∂xi(Ts)

[1
2

e(Ts)
TF e(Ts)

]
= CTFC

N∑
i=1

xi(Ts)− CTFZ(Ts), (3.10)

From (3.10), it is clear that γi(Ts) = γj(Ts) for 1 ≤ i, j ≤ N . By substituting (3.10) into (3.8), we

have that γi(k) = γj(k) for 1 ≤ i, j ≤ N and 0 ≤ k ≤ Ts, which together with (3.9) and (3.10)

yield

ui(k) = uj(k) = −R−1BTγi(k + 1), (3.11)

for 1 ≤ i, j ≤ N and 0 ≤ k ≤ Ts. From the nature of the boundary condition (3.10), we may

assume a transformation as follows

γi(k) = P (k)
N∑
i=1

xi(k)− g(k), (3.12)

where matrix P (k) and vector coefficient g(k) are needed to be determined. Substituting (3.12)

into (3.7) and solving for xi(k) yields that

xi(k) = A−T [EP (k + 1)
N∑
i=1

xi(k + 1) + xi(k)− Eg(k + 1)]. (3.13)

Using (3.13) and (3.12) in equation (3.8), we have

[(V − P (k))A−1(NEP (k + 1) + 1)ATP (k + 1)]
N∑
i=1

xi(k + 1)

+ g(k)− [AT +N(V − P (k))A−1E]g(k + 1)−WZ(k) = 0. (3.14)

Since (3.14) holds for all values of state xi(k+ 1), it implies that the coefficient of
∑N

i=1 xi(k+ 1)

and the rest of the terms must vanish individually. Hence, by letting these terms in (3.14) equal to
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zero, we obtain the Riccati function P (k) and vector coefficient g(k) as

P (k) = V + AT (P−1(k + 1) +NE)−1A, (3.15)

g(k) = [AT +N(V − P (k))A−1E]g(k + 1) +WZ(k), (3.16)

Comparing boundary condition (3.10) and (3.12), we have that P (Ts) = CTFC and g(Ts) =

CTFZ(K). Substituting (3.15), (3.16) and transformation (3.12) into (3.11), we have the controller

ui(k) as following:

ui(k) = −L(k)
N∑
i=1

xi(k) + Lg(k)g(k + 1), (3.17)

Lg(k) = [R +NBTP (k + 1)B]−1BT , (3.18)

L(k) = Lg(k)P (k + 1)A, (3.19)

where P (k) and g(k) are defined in (3.15) and (3.16) with final condition P (Ts) = CTFC and

g(Ts) = CTFZ(Ts).

Remark 3.4.1. In equation (3.17), the ith user’s control input ui(k) depends on not just its own

current state xi(k) but also the current states of other users. It requires information exchange

among users or microgrid control broadcasting information to users such that each user could

obtain the sum of states over all users in the microgrid. The feedback gain L(k) and feed-forward

gain Lg(k) in equations (3.19) and (3.18) depend on the Riccati function P (k+ 1) in the next time

step. The Riccati function P (k) could be obtained by solving backwards the discrete-time Riccati

equation using the final condition P (Ts) = CTFC. Z(k) could be obtained from power offset e(k)

and aggregate user net load
∑N

i=1 yi(k).
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3.5 Demand-side Management within Microgrid with Commu-

nication Delays

3.5.1 Same Communication Delay

Consider the demand-side management in microgrid with communication delays as in Fig. 3.2,

where the feedback channels Chis between users and microgrid controller P are assumed time-

delayed. Here we are interested in designing distributed networked control with prediction to

control this microgrid with time-delayed feedback.

To illustrate that, we first start with the case that all feedback channels Chis have the same

communication delay h. Since feedback channels have time delay, the power offset received by

user i at time k is e(k− h). We assume that before receiving feedback information e(k) no control

effort is applied. Hence, we have the control input of each system is time delayed ui(k−h), where

ui(k) = 0 for 0 ≤ k ≤ h. By using reduction method [145], we transform this control system with

input time delayed into a new system without delay. From the user dynamics in (3.2), the system

state xi(k + h) is

xi(k + h) = Ahxi(k) +
k+h∑
l=k

Ak+h−l(Bui(l − h) + wi(l − h)
)

= Ahξi(k), (3.20)

where new system state ξi(k) = xi(k) +
∑k+h

l=k A
k−l(Bui(l − h) + wi(l − h)

)
. Then we have the

new system described as follows:

ξi(k + 1) = Aξi(k) + A−hBui(k) + A−hwi(k),

ηi(k) = Cξi(k), (3.21)

where ηi(k) is the system output.

For this new system, assume that ui(k) = 0 for 0 ≤ k ≤ h. It is reasonable that we ignore the

cost term related to wi(k) for 0 ≤ k ≤ h, because the additive noise is not controllable. Then the
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cost function in (3.3) becomes

JTs0 =
1

2

h∑
k=0

e(k)TQe(k) + JTsh , (3.22)

where JTsh is the cost function from time h to Ts. The first term in (3.22) is constant. Hence, to

minimize JTs0 , we need to minimize the term JTsh , which could be written as

JTsh =
1

2

Ts−h∑
k=0

[
α(k)TFα(k) +

N∑
i=1

ui(k)TRui(k)
]

+
1

2
β(Ts)

TFβ(Ts), (3.23)

where α(k) =
∑

iCA
hξi(k)− Z(k + h) and β(Ts) =

∑
iCA

hξi(Ts − h)− Z(Ts). Following the

derivation in Section 3.4, we could find the following optimal controller

ui(k) = −L(k)
∑
i

(
xi(k)− u(k)

)
+ Lg(k)g(k + 1),

u(k) =
k+h−1∑
l=k

Ak−1−lB
N∑
i=1

ui(l − h), (3.24)

where the parameters is defined as follows

P (k) = ATP (k + 1)[I +NEP (k + 1)]−1A+ V ,

g(k) = [AT +N(V − P (k))A−1E]g(k + 1) +WZ(k + h),

Lg(k) = [R +NBTA−h′P (k + 1)A−hB]−1BTA−h′,

L(k) = Lg(k)P (k + 1)A, (3.25)

where V = CTQCAh, E = A−hBR−1BTA−h′, W = CTF , P (Ts) = CTFCAh, g(Ts) =

CTFZ(Ts + h) and A−h′ denotes
(
AT
)−h. From (3.24), we know that for each user, the system

input ui(k) at time k depends on the previous inputs of all users
∑N

i=1 ui(l) for 0 ≤ l ≤ k. Hence,

we need each user to communicate with other users not just its current state xi(k) but also its

control input ui or microgrid controller to broadcast this information to users.

3.5.2 Different Communication Delays

Next, we extend the demand-side management within microgrid over the same time delay to the

case with different time delays. Let us denote the pure time delay for each feedback channel as hi,
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where hi 6= hj , if i 6= j. Without loss of generality, we assume that h1 ≤ h2 ≤ · · · ≤ hN and the

system input ui(k) = 0 for 0 ≤ k ≤ hi. The cost function in (3.3) can be written as

JTs0 = Jh10 + Jh2h1 + Jh
3

h2
+ · · ·+ JTshN , (3.26)

where Jh10 is constant and we need to minimize Jh2h1 , · · · , J
Ts
hN

in order to minimize JTs0 . Then, for

each J ba, we can optimize it based on the number of users have non-zero system input ui(k) 6= 0 for

a ≤ k ≤ b. For each time slot hp ≤ k ≤ hq, we can find the optimal control input ui(k) for user

1 ≤ i ≤ hq by following the derivation in the same communication delay case in Section 3.5.1.

3.6 Simulated Performance Examples

In this section, we will demonstrate the numerical performance and applicability of the proposed

approaches.

First, we show the performance of the above distributed networked control strategy in a mi-

crogrid problem. In this simulation, we consider the following system parameters. The following

parameters do not take realistic values, but they are chosen for simplicity and to better demonstrate

the effectiveness of the proposed approach. A =


0.8907 0.8704 −0.0785

−0.2019 0.7166 −0.1449

−0.1784 −0.0873 0.8659

, B =


0 0

0 1

1 0

,

C =
[
0.1000 0 0.15

]
, N = 20, l = 3, K = 60, F = Q = I , R = I , Σw = 0.01I and Σx = I 4.

We assume that the established energy schedule Z(k) is modeled as follows

Z(k) = CpX(k), X(k + 1) = ApX(k) + np(k), (3.27)

where np(k) is a zero mean Gaussian random variable with covariance matrix Σp = 0.04I , Ap =

4Note that, the elements of matrix A and Ap are chosen such that the largest eigenvalues of A and Ap
equal to one, while the systems remain marginally stable.
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Figure 3.3: Ditributed networked control with prediction for microgrid with multiple time delays
– (top) short term comparison between total user net consumption y(k) and energy schedule Z(k),
(down) mean squared error.


0.9763 0.9541 −0.0861

−0.2213 0.7855 −0.1588

−0.1956 −0.0957 0.9492

 and Cp =
[
0.1000 0 0.15

]
.

Figure 3.3 shows the short-term minutely energy schedule Z(k) and aggregate user consump-

tion
∑N

i=1 yi(k) for distributed control with inter-user communications. It can be seen from Fig.

3.3 that the proposed approach drives the aggregate user consumption
∑N

i=1 yi(k) to track the

agreed-on energy schedule Z(k) within 10 minutes and the MSE E[e(k)T e(k)] decreases as time

k increases. Figure 3.4 shows the average MSE over time 1
Ts

∑
k E[e(k)T e(k)] as a function of

number of users in microgrid with same initial condition Σx = 0 and Σw = 0. It can be seen that

the average MSE decreases as the number of users N increases, which is advantageous and bene-

ficial. It implies that by using distributed control approach, better energy schedule maintenance in

microgrid can be achieved as more users participate and take cooperative coordination in adjusting
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energy consumption, which is not the case for non-cooperative game theory approach.
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– user net power consumption yi(k).

58



3.7. CONCLUSIONS

Next, we demonstrate the performance of the proposed algorithm on the demand-side manage-

ment in microgrid with time-delayed feedback. The established energy schedule Z(k) defined in

(3.27) with the same parameters except for Ap =


1.0536 0.1044 −0.0009

−0.0259 1.0327 −0.0187

−0.0209 −0.0010 1.0392

. Time delays

h1 = 1, h2 = 2, h3 = h4 = 3 and F = Q = 100I , R = 0.01I . The rest parameters are defined

as the same as in the second simulation. Fig. 3.5 shows short-term minutely each user’s net power

consumption yi(k). It can be seen that each user shows different response latencies due to time

delays in reception of power offset e(k). Also, because of time delays and different initial condi-

tions xi(0), the users’ outputs are different from one another but show the same pattern. Compared

to previously proposed optimization approaches that requires collective information at centralized

controller, our approach is distributed, fully scalable and easy to implement in each user to achieve

the optimal performance. In Fig. 3.6, it could be seen that the MSE starts increasing at the be-

ginning due to no feedback input. After time delay h1, the total user net consumption y(k) starts

tracking and follows the energy schedule Z(k) and the MSE decreases. The system could respond

as fast as the smallest delay h1 instead of waiting till the largest delay h4 as shown in Section 3.5.2.

(optimality principle)

3.7 Conclusions

In this chapter, we proposed a hierarchical decision-making and control architecture for smart

grid in which distributed customers equipped with RDG interact and trade energy in the grid.

Within this framework, we proposed a distributed networked control strategy with prediction to

solve the demand-side management problem encountered within a microgrid with time delay. Our

approaches are distributed, fully scalable and easy to implement, which provides nearly perfect

performance with the cost of communication. However, here we do not consider factors such as

pricing information, storage cost and utilities of the adjustable loads, etc. Possible further work

59



3.7. CONCLUSIONS

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6
E

n
e

rg
y 

C
o

n
su

m
p

tio
n

Short term time period (minute)

 

 

Agr ee-on en er gy s ch ed u l e Z (k )

Aggr egat e u s er con sump t i on
∑

i

y i(k )

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5

M
S

E

Short term time period (minute)

 

 

MSE

Figure 3.6: Ditributed networked control with prediction for microgrid with multiple time delays
– (top) comparison between total user net consumption y(k) and energy schedule Z(k), (down)
mean squared error.

involves relaxing the assumption of information exchange among users and designing a distributed

control method under that assumption.

In the next chapter, we discuss the application of graph theory and cooperative control in an-

other type of networked multi-agent system – automated highway system. We consider the string

stability problem in vehicle platoons with an inter-vehicle communications network, in which each

vehicle tries to maintain a fixed distance from its predecessor. We propose an leader-following

consensus protocol and derive the sufficient conditions, in terms of communication topology and

control parameters for string stability in such system.
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Chapter 4

Disturbance Attenuation and Stabilization

in Automated Highway Systems

4.1 Introduction

In this chapter, we consider the problem of controlling a platoon of vehicles in which each vehi-

cle tries to maintain a fixed distance from its predecessor, which is an instance of the so-called

“string stability” problem. Our model includes a communication network among the platoon of

vehicles and an associated leader-following consensus protocol. We derive the sufficient condi-

tions, in terms of communication topology and control parameters, for string stability by using the

leader-following consensus algorithm. Comparison of our proposed algorithm with previously pro-

posed control methods in literature shows that ours is a generalization that encompasses previous

approaches as special cases obtained by assuming specific communication topologies. Simula-

tion results and performance in terms of disturbance propagation are also given, showing that the

proposed leader-following consensus protocol leads to almost the same level of performance as

the previous approaches, while the proposed algorithm has additional advantages of scalability,

robustness and fully distributed implementation.
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The rest of the chapter is organized as follows: Section 4.2 formulates the string stability prob-

lem in a vehicle platoon and describes the assumed system model of each vehicle and network

model. In Section 4.3, we propose the leader-following consensus algorithm over a communi-

cation network and derive the sufficient conditions for achieving string stability. We also point

out previously proposed control approaches found in literature as special cases of our proposed

method with specific types of communication graphs. Section 4.4 shows the simulation results

and compares the performance of our proposed method with that of previously proposed control

approaches. The conclusions are provided in Section 4.5.

4.2 Problem Formation

4.2.1 System Model

Consider a string of N + 1 systems as a platoon as in Fig. 4.1. Let x0(t) denote the position of the

leader vehicle and xi(t) (1 ≤ i ≤ N) denote the position of the ith follower vehicle in the string.

Assume that all the systems have the same model and are controlled by identical control laws. The

desired spacing δ between each two consecutive vehicles is a constant. We assume that the string

of vehicles start with zero spacing errors. The lead vehicle starts at x0(0) = 0 and xi(0) = −iδ for

1 ≤ i ≤ N . Let wi(t) and ui(t) denote the disturbance and control input at the ith vehicle node.

The goal is to achieve string stability in this platoon, which means that small disturbances at the

beginning of a chain of vehicles does not get amplified as one progresses down the chain.

The dynamics for the i-th vehicle are assumed to be linear time invariant with a scalar transfer

function H(s) ∈ C and scalar input ui(t) ∈ R. The vehicle dynamics are given in the Laplace

domain as

Xi(s) = H(s)(Ui(s) +Wi(s)) +
xi(0)

s
for 1 ≤ i ≤ N, (4.1)

where xi(0) is the initial state of the ith system and Wi(s) is the input disturbance at the ith node
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Figure 4.1: Automated Highway System platoon.

in Laplace domain.

The spacing error is defined as ei(t) = xi−1(t) − xi(t) − δ where δ is the constant desired

vehicle spacing. Let Ei(s) = L(ei(t)) represent the Laplace transform of the spacing error ei(t).

Then, we have

Ei(s) = Xi−1(s)−Xi(s)−
δ

s
, 1 ≤ i ≤ N. (4.2)

4.2.2 Network Model

In the vehicle platoon shown in Fig. 4.1, we consider three types of graph components. Assume

that each follower measures the distance to its predecessor, xi−1−xi, such that ei = xi−1−xi−δ is

known only to the ith vehicle. Sensing graph Gs(V,Es) is a fixed directed graph, whose edges are

the collection of node pairs in which one measures the distance to another (its predecessor). With
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this measurement, each node transmits its spacing error ei to other followers over a communication

graph, denoted by Gc(Vf , Ec), which could be time-varying due to fading and other environmental

effects on communication channel and Vf is a set of follower nodes. Leader adjacency graph

Gl(V,El) denotes each node’s connection with the leader by receiving its broadcast or have a

direct link with the leader, where V is a set of vertices including the leader and all followers.

By combining the three graph components, information graph Gi(V,E) is formed as shown,

for example, in Fig. 4.2, where E = El
⋃
Es
⋃
Ec. It is necessary that the information graph is

connected from leader node (node 0) such that the leader information could be transmitted to each

follower in the string. Since each follower measures the distance to its predecessor, the sensing

graph is fixed and connected from leader node. Hence, the information graph is connected from

leader node even if the communication graph is time-varying with different topologies. Let us

define the Laplacian matrix of communication graph Gc as L = [lij] ∈ RN×N and the leader

adjacency matrix C as a lower triangular matrix with cij = di for 1 ≤ j ≤ i, where di is equal to 1

whenever the agent i is a neighbor of the leader and 0 otherwise.

4.3 Leader-Following Consensus Over a Communication Net-

work

Consensus algorithms have been considered as a basic approach to achieve cooperative control

and formation control in robotics and sensor networks [147,148]. In a leader-following consensus

problem, there is a leader that specifies the objective for the whole group. The agreement of a

group of agents on their common states is to be achieved via local interaction [148, 149]. The

leader is a special agent whose state is normally independent of the others and is to be followed by

the others. However, since not all followers may have access to information of the leader’s state,

the followers may exchange their information by forming a communication network. The leader’s

information could be passed onto followers if there exists a directed path from the leader to these
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Figure 4.2: Information graph in a platoon of five vehicles.

followers. The goal of leader-following consensus problem is to reach consensus at which the

error between each follower and the leader converges to zero, or equivalently limt→∞ |ei(t)| = 0

for ∀i ∈ {1, · · · , N}. If there is a directed spanning tree in the communication graph, it is known

that leader-following consensus tracking algorithm will make each follower’s state converge to that

of the leader as time goes on [148].

In vehicular technology context, previous research has considered different control schemes to

achieve string stability, such as predecessor and leader following approach, bidirectional control

and time-varying headway approach [86, 146, 150]. However, there is only a little previous work
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on the application of communication techniques for node communications and its effect on the

string stability itself. In the following, we discuss the application of a leader-following consensus

algorithm with inter-vehicle communication in achieving string stability.

4.3.1 Sufficient Conditions for Leader-following Consensus

In this section, we propose a leader-following consensus algorithm for vehicle platoon control with

network model in Section 4.2.2 and the scalar system model in (4.1). In our proposed algorithm,

each agent i receives information Ej(s) from its neighbors j ∈ Ni in communication graphGc and

information X0(s) from the leader if the agent i is a neighbor of the leader. Here the neighborhood

Ni of node i is the set of vertices that send information to node i.

Each agent i calculates the difference between the spacing errors of itself and jth neighbor for

j ∈ Ni and its distance from the leader and uses them to form a control input Ui(s) as follows:

Ui(s) = K
∑
j∈Ni

lij
(
Ei(s)− Ej(s)

)
−Kdi

(
Xi(s)−X0(s)− iδ

s

)
, (4.3)

where K is a control parameter. In (4.3), the first term describes the relative position error between

itself and its neighbors and the second term describes the ith node’s distance from the leader when

it is directly connected with the leader. If node i has a direct link with the leader, it will incorporate

the leader information in the second term. Otherwise, in the first term, it can extract the leader

information from the spacing errors received from its neighbors which are directly connected with

the leader. Agent i needs the information Xj(s) from its neighbors and leader’s information X0(s)

if possible. For agent i to acquire this information, we make the following two assumptions: First,

each vehicle is capable of communication and a communication network among followers exists.

Second, the information graph is connected from leader node such that the leader has directed

paths to all followers through communication in the network 1.
1In the ideal case, if the leader broadcasts its positionX0(s) to every follower, leader-follower consensus

could easily be achieved. However, it comes at the cost of increased communication requirements as the
platoon length increases. In our case, when the position of the leaderX0(s) is only available to some agents,
other agents can attain this information if the graph is connected from leader node.
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There are various detailed models for vehicle dynamics and most are complex higher order

system models [151], for which analytical results are difficult to obtain. Since in this paper we are

interested in obtaining analytical conditions for string stability, we consider a simple point mass

model, formulate it as a first order system and consider the proper transfer function H(s) = B
s−A

in (4.1) for the following analysis2. Substituting (4.3) into (4.1), we have the ith vehicle’s system

dynamics as

Xi(s) = H(s)K
∑
j∈Ni

lij(Ei(s)− Ej(s)) (4.4)

−H(s)Kdi(Xi(s)−X0(s)− iδ
s

) +H(s)Wi(s) +
xi(0)

s
,

where H(s) = B
s−A . The error dynamics for i = 1 could be written as (using (4.2)),

E1(s) = X0(s)−H(s)K
∑
j∈N1

l1j(E1(s)− Ej(s))−H(s)(Kd1E1(s) +W1(s)).

and for i > 1,

Ei(s) = H(s)K
[ ∑
l∈Ni−1

li−1,l(Ei−1(s)− El(s))−
∑
j∈Ni

lij(Ei(s)− Ej(s))

+ di−1

i−1∑
k=1

Ek(s)− di
i∑

q=1

Eq(s)
]

+H(s)(Wi−1(s)−Wi(s)). (4.5)

We may obtain a matrix form of error dynamics from (4.5):

E(s) = −H(s)KVE(s) +H(s)MW (s) + Φ1X0(s), (4.6)

where E(s) = [E1(s) · · · EN(s)]T , W (s) = [W1(s) · · · WN(s)]T , Φ1 = [1 0 · · · 0]T ∈ RN ,

M =


−1

1 −1
. . . . . .

1 −1

, V = L − L̃ + C − C̃, L̃ is a shifted version of matrix L such that

2The chosen transfer function is a strictly proper transfer function of a linear time-invariant system,
which is obtained by feedback linearization of an abstraction of vehicle model [146].
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l̃1,j = 0 and l̃i,j = li−1,j for 2 ≤ i ≤ N and 1 ≤ j ≤ N , C̃ is a shifted version of matrix C such that

c̃1,j = 0 and c̃i,j = ci−1,j for 2 ≤ i ≤ N and 1 ≤ j ≤ N . From (4.6), we have

E(s) = Gde(s)W (s) +Gxe(s)X0(s), (4.7)

where Gde(s) = [1 +H(s)KV]−1H(s)M represents the transfer function matrix from disturbance

W (s) to error E(s) and Gxe(s) = [1 +H(s)KV]−1Φ1 represents the transfer function matrix from

leader position X0(s) to error E(s).

We are interested in analyzing the error prorogation as the length N of the platoon increases.

As mentioned earlier, string stability requires that spacing errors do not amplify as they propa-

gate upstream from one vehicle to another vehicle [146, 150]. Here we modify the definition of

string stability from [150] and restate it as string stability with respect to input disturbance w(t) as

follows:

Definition 4.3.1. (String stability): Consider a string of N dynamic systems described in (4.1)

with error dynamics given by (4.2). Let Wi(s) be the input disturbance at the ith vehicle. The

string is stable with respect to input disturbance if given any ε > 0 there exists a δ > 0, such that

||Wi(s)||∞ < δ ⇒ ||Ei(s)||∞ < ε for i ∈ {1, · · · , n}, where ||Wi(s)||∞ = supω∈R σmax(Wi(jω))

is the H∞ norm of transfer function matrix Wi(s) and σmax is the maximum singular value [6].

The above definition states that if the input disturbance of each vehicle is uniformly bounded,

the error dynamics of each follower vehicle must also be uniformly bounded. From (4.7), X0(s) is

constant and W (s) is uniformly bounded. To achieve bounded error E(s), we need the largest dis-

turbance to error transfer function which is the largest element of transfer function matrixGde(s) to

be uniformly bounded. In other words, if ||Gde||∞ = supω σmax

(
Gde(jω)

)
is uniformly bounded,

then the string is stable. It means that σmax

(
Gde(jω)

)
must be uniformly bounded over all fre-

quencies ω.

In the following, we invoke a lemma on H∞ norm bound from [152] and then obtain our main

theorem on the sufficient conditions for string stability by bounding the disturbance to error transfer

function matrix Gde:
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Lemma 4.3.2. For the following continuous time LTI system

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t), (4.8)

if the solution of the nonstandard Riccati equation

0 = ATP + PA+ CTC + PBBTP (4.9)

is positive definite and the pair (A,C) is observable, then the followingH∞ norm bound is satisfied

||C(SI − A)−1B||∞ ≤ 1. (4.10)

Proof. See the proof in [152].

Lemma 4.3.2 shows that the H∞ norm of system transfer matrix is bounded if the nonstandard

Riccati equation has positive definite solutions. Meanwhile, the H∞ norm bound is arbitrary. The

next lemma shows the properties of matrix M in (4.6)

Lemma 4.3.3. The maximal singular values of matrix M defined as M =


−1

1 −1
. . . . . .

1 −1


is less than 2. i.e. σmax(M) ≤ 2. The eigenvalues of M are equal to −1. i.e. λi(M) = −1 for all

i.

Proof. See Appendix A.

By adopting Lemma 4.3.2 and 4.3.3, we will obtain the following theorem.

Theorem 4.3.4. (Suffcient conditions for string stability): Consider a platoon of vehicles as de-

picted in Fig. 1 with vehicle dynamics given by (4.1) with H(s) = B
S−A . Each vehicle is to use

the leader-following consensus algorithm given in (4.3). The transfer function matrix Gde(s) from
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disturbance W (s) to error E(s) is given in (4.7), where matrices L and C are the communication

graph Laplacian matrix and leader adjacency matrix, respectively. If the solution of the nonstan-

dard Riccati equation

0 = (A−BKV)TP + P (A−BKV) + I + PBBTP (4.11)

is positive definite, where V = L− L̃ + C− C̃, then ||Gde||∞ < 2 for all N ∈ {1, 2, · · · }.

Proof. Consider the sufficient conditions for ||Gde(s)||∞ ≤ 13, whereGde(s) = [I+H(s)KV]−1H(s)M .

From the sup-multiplicative property of H∞ norm [156], we have ||Gde(s)||∞ ≤ ||T (s)||∞||M ||∞,

where T (s) = [I + H(s)KV]−1H(s) and, as assumed earlier, H(s) = B
s−A . From Lemma 4.3.3,

we have that σmax(M) ≤ 2, which yields ||M ||∞ ≤ 2 for M is a constant matrix. With this, we

have

||Gde(s)||∞ ≤ ||T (s)||∞||M ||∞ ≤ 2||T (s)||∞ (4.12)

Recall that ||T (s)||∞ = ||[I + H(s)KV]−1H(s)||∞ and substitute H(s) = B
s−A into T (s). Then

we have

||T (s)||∞ = ||[sI − (A−BKV)]−1B||∞. (4.13)

Let us formulate the following LTI system with T (s) as its transfer function

ẋ(t) = (A−BKV)x(t) +Bu(t)

y(t) = x(t). (4.14)

Since output matrix C = I , it is clear that the pair (C,A) is observable. By using Lemma 1, if the

solution of (4.11) is positive definite, then ||T (s)||∞ ≤ 1. Later, by substituting this into (4.12),

we will have ||Gde(s)||∞ ≤ 2.

3Because we want to achieve an analytical condition for simulation purpose, we choose a specific bound
||Gde|| ≤ 2 which could be easily extended to a general case ||Gde|| ≤ ε, for given ε > 0 .
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Theorem 4.3.4 shows that if the graph Laplacian matrix L, leader-adjacency matrix C and

control parameter K satisfy (4.11), then the spacing error does not amplify as it propagates in

the string regardless of the length of the platoon N . The result of Theorem 4.3.4 implies that by

applying the leader-consensus following algorithm, the vehicle platoon is robust to disturbances in

the string and string stability is guaranteed regardless of the size N of the platoon. The sufficient

conditions given in (4.11) can thus provide guidelines for adjusting the control parameter K in

each vehicle and the topology design of the communication network in the platoon so as to ensure

string stability.

4.3.2 Comparison with Previous Approaches

There are several control approaches previously proposed in literature to achieve string stability and

vehicle platoon control. However, they mainly focus on control performance and stability analy-

sis without mentioning the underlying communication graph. By proposing the leader-following

consensus algorithm with a general communication graph, we could consider the previous control

approaches as special cases of our proposed framework with specific types of assumed communi-

cation graphs.

Predecessor Following Control

Predecessor following control is a linear control law based on relative spacing error with respect to

the predecessor [8]. Each vehicle only receives information from its predecessor without direct ac-

cess to the leader. In [8], a linear, single-input-single-output system model with first order actuator

dynamics is considered. The control method of predecessor following control is

Ui(s) = Kf (s)Ei(s), (4.15)
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with the scalar spacing error dynamics as

E1(s) = S(s)X0(s) =
1

1 +H(s)Kf (s)
X0(s)

Ei(s) = T (s)Ei−1(s) =
H(s)Kf (s)

1 +H(s)Kf (s)
Ei−1(s) (4.16)

where the sensitivity function S(s) is the transfer function fromX0(s) toE1(s) and complementary

sensitivity function T (s) is the transfer function from Ei−1(s) to Ei(s).

In the predecessor following method, the leader information is not broadcasted and each fol-

lower only senses its predecessor. From Section 4.2.2, we can see that the leader adjacency

graph is not connected and C = 0. Since there is no communication between every two fol-

lowers, the communication graph is not connected and communication graph Laplacian matrix

L =


1 0 · · ·

0 1 · · · · · ·
. . . . . . 0

· · · · · · 0 1

. By using (4.6), we can obtain that V =


1 0 · · ·

−1 1 · · · · · ·
. . . . . . 0

· · · · · · −1 1

.

Substitute matrix V in (4.11) with other parameters shown in Section 4.4 and solve the algebraic

riccati equation (ARE). The Hamiltonian matrix Ph =

A−BKV BBT

−I −(A−BKV)T

 has eigen-

values on the imaginary axis. Hence, the ARE does not have stabilizing solutions from Lemma

A.2.2 in [153]. From the result of Theorem 4.3.4, there does not exist bounded H∞ norm for

predecessor following approach. Hence, the predecessor following approach could not guarantee

string stability.

Predecessor and Leader Following Control

In predecessor and leader following control [8], each vehicle receives information from its pre-

decessor and the leader will broadcast its location to each follower. With this information, each

vehicle applies a linear control law based on relative spacing errors with respect to the predecessor
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and the leader, respectively:

Ui(s) = Kp(s)Ei(s) +Kl(s)
(
X0(s)−Xi(s)−

iδ

s

)
. (4.17)

The scalar spacing error dynamics is written as

E1(s) = Slp(s)X0(s) =
1

1 +H(s)(Kp(s) +Kl(s))
X0(s),

Ei(s) = Tlp(s)Ei−1(s) =
H(s)Kp(s)

1 +H(s)(Kp(s) +Kl(s))
Ei−1(s). (4.18)

From Section 4.2.2, since each vehicle receives information from the leader, we have di = 1 for

i = 1, · · · , N and C− C̃ = I . Because of no communication among followers, the communication

graph is not connected and communication graph Laplacian matrix L =


1 0 · · ·

0 1 · · · · · ·
. . . . . . 0

· · · · · · 0 1

.

Then, we obtain matrix V =


2 0 · · ·

−1 2 · · · · · ·
. . . . . .

· · · · · · −1 2


Substituting matrix V in (4.11) with other parameters shown in Section 4.4 and solving this

algebraic riccati equation (ARE), we can find out that predecessor and leader following approach

has unique positive stabilizing solutions. From the result of Theorem 4.3.4, there exists bounded

H∞ norm for predecessor and leader following approach, which is consistent with the simulation

results in Section 4.4.

Bidirectional Control with Leader Information

In bidirectional control with leader information [154,155], platoon controller uses relative spacing

errors with respect to adjacent vehicles (predecessor and follower) and the leader. Consider the
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bidirectional control strategy with leader information as follows: for i = 1, · · · , N − 1,

Ui(s) = Kp(s)(Ei(s)− Ei+1(s)) +Kl(s)(X0(s)−Xi(s)−
iδ

s
).

For i = N ,

UN(s) = Kp(s)EN(s) +Kl(s)(X0(s)−XN(s)− Nδ

s
).

Here we assume that the spacing error of the leader is E0(s) = 0 and the leader has the same

controller as other sub-systems. Then, we have the scalar spacing error as For 1 ≤ i ≤ N − 1

Ei(s) = H(s)Kp(s)[Ei−1(s) + Ei+1(s)− 2Ei(s)]

−H(s)Kl(s)Ei(s) +H(s)(Wi−1(s)−Wi(s)).

For i = N ,

EN(s) = H(s)Kp(s)[EN−1(s)− 2EN(s)]

−H(s)Kl(s)EN(s) +H(s)(WN−1(s)−WN(s)).

In vector form, we have

E(s) = Gde(s)W (s) +Gxe(s)X0(s)

= [1 +H(s)Kp(s)V]−1H(s)MW (s) + [1 +H(s)Kp(s)V]−1Φ1X0(s), (4.19)

where

V =


2 −1

−1 3 −1
. . . . . . . . .

−1 3

 ,M =


−1

1 −1
. . . . . .

1 −1

 .

Through comparison with leader-following consensus algorithm with a general communication

graph, we have C − C̃ = I and L =


1 −1 · · ·

1 −1 · · ·
. . . . . .

· · · 1

, since the ith vehicle communicates
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with the i+ 1th vehicle and the leader information is broadcasted to each follower. Then, we have

the same V as in (4.19).

Substituting matrix V in (4.11) with other parameters shown in Section 4.4 and solving this

algebraic riccati equation (ARE), we can find out that bidirectional control with leader information

approach has unique positive stabilizing solutions. From the result of Theorem 4.3.4, there exists

bounded H∞ norm for bidirectional control with leader information approach, which is consistent

with the simulation results in Section 4.4.

The results obtained from above analysis is consistent with those in [8, 154, 155] and we are

able to fit these previously control schemes into different specific communication topologies in

our scenario. In the next section, we will study the performance of those approaches and compare

them with our proposed leader-follower consensus algorithm.

4.4 Simluation Results

In this section, we study the performance of the proposed leader-following consensus algorithm

under different communication graphs. We will also compare the performance with previously

proposed approaches described in Section 4.1: predecessor following, predecessor and leader fol-

lowing, and bidirectional control with leader information.

In the first simulation, we investigate the performance of leader-following consensus algorithm

with different communication graphs. We consider a scalar vehicle model in (4.1). We consider

that each follower is connected to leader and the communication graph among followers is a ran-

dom graph with time-invariant topology G(N, p), where 0 ≤ p ≤ 1 is the probability of having

a link between any two nodes. The assumed parameters are: A = 1, B = 2, K = 1.5 and

N = 1, 2, 5, 10, 20. Figures 4.3, 4.4 and 4.5 show the performance of the leader-following con-

sensus algorithm with random graphs for p = 0.1, 0.5 and 1, respectively. Here x-axis represents

the frequency ω and y-axis represents the largest singular value σmax
(
Gde(jω)

)
of disturbance to
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Figure 4.3: The performance of leader-following consensus algorithm with random communica-
tion graph among followers – G(N, p) (p = 0.1).

error transition matrix Gde(jω) at frequency ω. As seen from Fig. 4.3, since each follower is

connected to leader, with proper parameters, even if the communication graph is less connected,

the string stability is achieved (disturbance to error gain σmax
(
Gde(jω)

)
is bounded at each ω in

frequency domain.). From Figs. 4.3, 4.4 and 4.5, it can be seen that for the same string length N ,

the disturbance to error gain σmax
(
Gde(jω)

)
decreases as the graph connectivity increases. Com-

pare the peak values of curves in Fig. 4.4 and Fig. 4.5. In Fig. 4.4, the peak value of each curve

||Gde||∞ = supω σmax
(
Gde(jω)

)
first increases then decreases as N increases. However, in Fig.

4.5, the peak value decreases as N increases. The reason is due to the combined effect of platoon

size N and link probability p on error propagation in the platoon. If the platoon size N increases,

then the error propagates longer, which tends to increase the maximum spacing error in the string.
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Figure 4.4: The performance of leader-following consensus algorithm with random communica-
tion graph among followers – G(N, p) (p = 0.5).

However, as link probability p increases, the graph becomes more connected, which mitigates the

effect of error propagation and leads to lower spacing error. Therefore, we can see the from Fig.

4.4 that with lower link probability, the string length plays a dominating effect and it leads to

higher spacing error (higher value of ||Gde||∞). In Fig. 4.5 with higher link probability, the link

probability plays a dominating effect and it leads to lower spacing error (lower value of ||Gde||∞).

In the second simulation, we compare the performance of our approach and that of previously

proposed approaches [146, 150]: predecessor following, predecessor and leader following, and

bidirectional control with leader information. We consider the same scalar vehicle model as before:

A = 1, B = 2 with Kf = 3, Kp = Kl = K = 1.5, p = 0.5 and N = 1, 2, 5, 10, 20, where Kf ,
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Figure 4.5: The performance of leader-following consensus algorithm with random communica-
tion graph among followers – G(N, p) (p = 1).

Kp, Kl are the control parameters associated with predecessor following, leader and predecessor

following and bidirectional control with leader information approaches, respectively [146]. All

three approaches are with fixed communication graphs according to their control schemes. Figures

4.6, 4.7 and 4.8 show the performance of predecessor following, predecessor and leader following

and bidirectional control with leader information, respectively. In Fig. 4.8, the disturbance to

error gain is relatively independent of platoon size N . In Fig. 4.7, the disturbance to error gain

increases as N grows but it is still bounded when N is large, which is consistent with the results

reported in [146]. Here the peak value of curves at frequency ω 6= 0 is due to the control scheme

it applies [146]. We see from Figs. 4.7 and 4.8 that bidirectional control method performs better

than predecessor and leading following method because the former assumes stronger connectivity
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Figure 4.6: The performance of predecessor following approach.

in the communication graph. Indeed, in bidirectional control method, each agent i communicates

with its preceding and following vehicles, while in predecessor and leader following method it

only receives information from its previous vehicle. From Fig. 4.6, it can be seen that simple

predecessor following method may not guarantee string stability as error propagation may grow

unbounded with large platoon size.

By comparing Figs. 4.6-4.8 with Fig. 4.4, we can see that compared to previously proposed

methods, our approach achieves a similar disturbance to error gain for smaller platoon size (N=5)

but achieves a smaller disturbance to error gain for large platoon size (N=20). Thus, for example,

with average link connectivity p = 0.5, our approach performs better than previously proposed ap-

proaches for large platoon size. Moreover, previously proposed methods require that each vehicle
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Figure 4.7: The performance of predecessor and leader following approach.

must know its position in the string in order to apply associated control schemes. The controller

has different forms for the first vehicle, the last one and the rest in between. In our proposed algo-

rithm, no information about the number of cars in the string is needed because each vehicle only

communicates with its neighbors and processes information locally. This allows much simpler

coordination requirements compared to previously proposed methods and makes it more scalable

and distributed. Our proposed algorithm applies the same controller form to each vehicle, which

also leads to simplicity in implementation of on-vehicle controller.
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Figure 4.8: The performance of bidirectional control with leader information approach.

4.5 Conclusions

In this chapter we introduced a leader-following consensus algorithm with a communication net-

work to achieve string stability in vehicle platoons. We showed the sufficient conditions on the

connectivity of communication graph and the control parameters in each vehicle for string stabil-

ity by using the leader-following consensus algorithm. From simulation results, we investigated

the effects of communication topology on string stability in terms of disturbance propagation. We

demonstrated the advantage of our proposed approach in term of distributed processing, scalability

and simpler coordination requirements by comparing its performance with the previously proposed

control methods. Future research may further analyze tradeoff between the graph connectivity and
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control cost and apply these results into controller design and communication topology design.

In the next chapter, we consider the problem of distributed tracking in wireless sensor net-

works (WSN) through cooperative control. We formulates the problem of the distributed tracking

in a network of sensors with a time-varying network topology, incomplete node data and noisy

communication links. By using graph theory and cooperative control, we propose a distributed

tracking with consensus algorithm to improve the cooperative tracking performance of the net-

work and we also prove the convergence of the proposed algorithm and analyze its steady state

behavior.
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Chapter 5

Distributed Tracking and Consensus over

Networked Multiagent Systems

5.1 Introduction

In this chapter, we consider distributed tracking with consensus over networked multi-agent sys-

tems which were proposed in [119]. Distributed tracking with consensus refers to the problem

that a group of nodes need to achieve an agreement over the state of a dynamical system by ex-

changing tracking estimates over a network. Information exchange among nodes may improve

the quality of local estimates and consensus estimates may help avoid conflicting and inefficient

distributed decisions. Other applications of this problem include flocking and formation control,

real-time monitoring, target tracking and global positioning system (GPS) [119, 120]. In the rest

of this chapter, we provide proof to the results in [121, 122] and analyze the convergence of the

proposed algorithm and the steady state behavior. The outline of this chapter is as follows. Section

5.2 introduces our assumed system and network model and the proposed distributed tracking with

consensus algorithm. In Section 5.3 conditions for achieving distributed consensus are discussed

and the rate of convergence is quantified. The steady-state performance of the proposed distributed
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tracking with consensus algorithm is also analyzed in Section 5.3 . Section 5.4 provides detailed

simulation results and performance comparison of the proposed distributed tracking with consen-

sus algorithm and that of distributed local Kalman filtering with centralized fusion and centralized

Kalman filter. Finally, conclusions are given in Section 5.5 .

5.2 Tracking over Noisy Time-varying Graphs with Incomplete

Data

5.2.1 Problem Formulation

Consider an N -node sensor network with a connectivity graph G(j) =
(
V,E(j)

)
at time j. As-

sume that the graph G(j) is undirected, but time varying due to nodes moving out of communica-

tion ranges of each other or needing to cease transmissions to save battery power. The objective

is to perform distributed tracking of a target and exchange tracking estimates over noisy commu-

nication links and try to reach consensus over the network. The tracking updates are performed

at k instances, where k denotes the tracking time step (k = 0, 1, · · · ). Consensus updates are

performed between every two tracking updates, where 0 ≤ j < J denotes the consensus iteration

number and J is the number of consensus iterations per tracking update (assumed to be fixed). The

dynamics of the target evolves according to

x(k + 1) = Fx(k) + w(k); x(0) ∼ N
(
x(0), P0

)
. (5.1)

The sensing model of the n-th sensor is

yn(k) = Hnx(k) + vn(k), yn ∈ Rl. (5.2)

Note that, the observation matrices Hn’s can be different for each node. Both w(k) and vn(k) are

assumed to be zero-mean white Gaussian noise (WGN) and x(0) ∈ RM is the initial state of the
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target. The second-order statistics of the process and measurement noise are given by

E
[
w(k)w(k′)T

]
= Qδkk′ , E

[
vn(k)vn′(k′)T

]
= Rnδkk′δnn′ ,

where δkk′ = 1 if k = k′ and δkk′ = 0, otherwise. Note that the above system model is linear,

while the system model assumed in [119] is highly nonlinear making it difficult to analyze to obtain

theoretical performance characterization.

Figure 5.1 shows the system model of distributed tracking with consensus on a time-varying

graph with incomplete data and noisy communication links. Let xn(k, j) denote the node n’s

updated tracking estimate at the j-th consensus iteration that follows the k-th tracking update step

with xn(k, 0) = x̂n(k|k), where x̂n(k|k) is the n-th node’s filtered tracking estimate in the k-th

tracking update. The received data at node n from node l, for n 6= l, at iteration j can be written as

zn,l(k, j) = xl(k, j) + φn,l(j), for 0 ≤ j < J, (5.3)

whereφn,l(j) denotes the receiver noise at the node n in receiving the estimate of node l at iteration

j and zn,n(k, j) = xn(k, j). Assume that E
[
φn,l(j)

]
= 0M , E

[
φn,l(j)φ

T
n,l(j)

]
= σ2

n,lIM with

supn,l,j E
[
‖φn,l(j)‖2

]
= u <∞.

As depicted in Fig. 5.1, at the end of the k-th tracking update, each node n which has an

observation of the target will have a filtered estimate x̂n(k|k) with associated covariance matrix

P̂n(k|k). In order to improve the tracking estimate accuracy, it will exchange this filtered estimate

with its neighbors over noisy communication links and try to reach consensus over the network.

Note that, the goal here is to obtain a consensus tracking estimate over the local estimates at each

tracking time step k, and thus, the consensus problem is essentially a problem of consensus in

estimation.

Due to time-varying topology of the network, at any given tracking time step k not all nodes

may observe the target. Thus, these nodes will not have local tracking estimates, which is denoted

as incomplete data. In previous consensus literature [14,99,101–111], all node estimates are taken
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into account in forming consensus estimates. However, the same method may not be extended

to incomplete data case, since the nodes that mostly do not have observation (yn(k) = vn(k))

will exchange their predicted filtered estimates with others. Those predicted tracking estimates are

considered as valid estimates and are taken into account to form consensus estimates, which results

in inaccurate estimates and worsens the sensor network performance. By considering incomplete

data here, the nodes do not have data will not communicate their invalid tracking estimates (by

setting x̂n(k|k) = 0 and P̂n(k|k) = εIM for some ε > 0 instead). By introducing active node

set and effective network graph, each node will notice which node has data in current consensus

iteration. Only the estimates from active nodes are considered into forming consensus estimates.

The estimates from non-active nodes will not be considered until it forms its updated estimate by

fusing the filtered estimates from neighboring active nodes. Since the non-active nodes join the

consensus process without invalid tracking estimates, faster consensus process could be achieved

while the network performance is still maintained.

In the space object tracking problem treated in [119], each node observes the target and locally

processes its data in data sampling period. After forming local estimates, each node will share

its information among neighboring nodes in information sharing period. Here the information

sharing rate is much larger compared to the data sampling rate so that each data sample node

may exchange their local estimates many times in between, which may conceivably lead to better

consensus estimates. The distributed tracking with consensus problem as formulated above may

have other applications beyond the space object tracking problem, such as in multi-target tracking

with a group of autonomous robots [159], battlefield life signs detection by UAVs (Unmanned

Aerial Vehicles) [160], package tracking in warehouse by sensor networks [161], etc.

5.2.2 Network Model

We define the active node set Sjk in a time-varying graphG(j) as the set of nodes that have updated

local estimates to be shared with others in the j-th consensus iteration after the k-th tracking
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Figure 5.1: Block diagram of distributed tracking with consensus on a time-varying graph with
incomplete data and noisy communication links.

update [119]. Define effective network graph of a network G(j) =
(
V (j), E(j)

)
with active

node set Sjk as G̃(j) =
(
V (j), Ẽ(j)

)
, where Ẽ(j) = E(j) ∩

(
∪n∈Sjk Υout

n (j)
)
, where Υout

n (j) =

{(n, l)|(n, l) ∈ E(j)} denotes the set of directed edges with initial vertex as n at iteration j. Note

that, the effective network graph G̃(j) is a directed graph, which is obtained by removing the

outgoing edges of the nodes that do not have data in G(j). For a static graph G(j) = G(V,E),

Ẽ(j) can be written as Ẽ(j) = Ẽ(j − 1) ∪l∈Sj−1
k

(
∪n∈Ωl Υout

n

)
, where Ẽ(0) = E ∩

(
∪n∈S0

k
Υout
n

)
.

Note that, the nodes that do not observe the target will not have updated local estimates to share at

the beginning of consensus update process (at j = 0). However, as information exchange among

nodes progresses, some of these nodes may be able to form their own updated local estimates

at the consensus iteration j for j > 0. Therefore, the active node set Sjk is time-varying and

Sjk = Sj−1
k ∪l∈Sj−1

k
Ωl(j − 1), where S0

k is the set of nodes that have observations of the target in

the k-th tracking update step as in Fig. 5.1. Figure shows the relation between the connectivity

graph G(j) and the effective network graph G̃(j) for a graph of 6 nodes with active node set

Sjk = (1, 2, 4, 6), where solid circles denote active nodes.

Let ISjk denote an N ×N matrix generated from the active node set Sjk as follows:

[ISjk
]nn′ =

 1 if n = n′ and n′ ∈ Sjk
0 else

.
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Figure 5.2: Connectivity graph and effective network graph.

Note that, ISjk is a diagonal matrix with n′-th diagonal element equal to zero for n′ ∈ (Sjk)
c, where

(·)c denotes the set complement. By combining the connectivity graph G(j) with the active node

set Sjk, we obtain the effective network graph G̃(j). Thus, the adjacency matrix of the effective

network graph is given by A(j) = A(j)ISjk
. The corresponding degree matrix D(j) can then be

obtained from A(j), and the Laplacian matrix is L(j) = D(j)− A(j) by definition.

As an example, consider the same network model in Fig. 5.2. The matrix ISjk = diag(1, 1, 0,

1, 0, 1). The Laplacian matrices of the connectivity graph and effective network graph are as

follows:

L(j) =



4 −1 0 −1 −1 −1

−1 3 −1 −1 0 0

0 −1 2 0 −1 0

−1 −1 0 3 −1 0

−1 0 −1 −1 4 −1

−1 0 0 0 −1 2


and L(j) =



3 −1 0 −1 0 −1

−1 2 0 −1 0 0

0 −1 1 0 0 0

−1 −1 0 2 0 0

−1 0 0 −1 3 −1

−1 0 0 0 0 1


.

5.2.3 Distributed Tracking with Consensus Algorithm

In this subsection, we propose a distributed tracking and consensus algorithm for the above dis-

tributed tracking problem over a time-varying graph with incomplete data and noisy communica-

tion links. This algorithm is based on the architecture that was first proposed in [119] in the special

context of consensus tracking in a satellite sensor network for situational awareness.
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Figure 5.3: Timing diagram of tracking and consensus updates in the proposed algorithm for dis-
tributed tracking with consensus.

Figure 5.3 shows the timing diagram of tracking and consensus updates process in the proposed

distributed tracking with consensus algorithm. As in Fig. 5.3, at tracking time step k, node n is

assumed to have completed its consensus iterations corresponding to time k − 1. If the output

of this consensus update following the (k − 1)-th tracking update step is xn(k − 1, J) with the

associated covariance matrix P n(k − 1, J), then node n sets xn(k − 1|k − 1) = xn(k − 1, J) and

P n(k−1|k−1) = P n(k−1, J). Next, at the k-th tracking update step, each node n where n ∈ Sjk,

passes its observation yn(k) through its local Kalman filter as follows [91]:

x̂n(k|k − 1) = Fxn(k − 1|k − 1),

P̂n(k|k − 1) = FP n(k − 1|k − 1)F T +Q,

Kn(k) = P̂n(k|k − 1)HT
n

(
HnP̂n(k|k − 1)HT

n +Rn

)−1

,

x̂n(k|k) = x̂n(k|k − 1) +Kn(k)
(

yn(k)−Hnx̂n(k|k − 1)
)
,

P̂n(k|k) =
(
I −Kn(k)Hn

)
P̂n(k|k − 1), (5.4)

where xn(k− 1|k− 1) = xn(k− 1, J) with xn(0, J) = x(0) and P n(k− 1|k− 1) = P n(k− 1, J)

with P n(0, J) = P0. Let X(k−1, j) =
[
x1(k−1, j)T , x2(k−1, j)T , · · · , xN(k−1, j)T

]T . Denote

P (k − 1, j) as the covariance matrix corresponding to X(k − 1, j). The P n(k − 1, J) in (5.4) can

be obtained by extracting the n-th M ×M main diagonal block of P (k − 1, J).

Node n uses its filtered estimate x̂n(k|k) obtained by the above tracking update step as the ini-

tial estimate for consensus update exchanges by setting xn(k, 0) = x̂n(k|k) with initial covariance
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matrix P (k, 0) = P̂1(k|k) ⊕ P̂2(k|k) ⊕ · · · ⊕ P̂N(k|k)1, where ⊕ denotes the direct sum. On the

other hand, for nodes n ∈ (Sjk)
c, we may arbitrarily set x̂n(k|k) = 0 and P̂n(k|k) = εIM for some

ε > 0.

During the (j + 1)-th consensus update, each node n forms a linear estimate of the following

form as its consensus estimate:

xn(k, j + 1) = xn(k, j) + γn(j)
N∑
l=1

An,l(j)
(

zn,l(k, j)− zn,n(k, j)
)
, (5.5)

where γn(j) is the n-th node’s weight coefficient at iteration j and 0 ≤ j < J . We set γn(j) = γ(j)

for n ∈ Sjk and γn(j) = 1∑N
l=1 An,l(j)

for n ∈ (Sjk)
c and

∑N
l=1 An,l(j) 6= 0. For node n that does not

have local tracking estimate, we assume that it will generate its estimate by averaging the tracking

estimates from its neighbors2.

By defining X(k, j) =
[
x1(k, j)T , x2(k, j)T , · · · , xN(k, j)T

]T , the consensus update dynamics

can be written in vector form as follows:

X(k, j + 1) = X(k, j)−
[(

Γ(j)L(j)
)
⊗ IM

]
X(k, j)−

(
Γ(j)⊗ IM

)
Φ(j), (5.6)

where Γ(j) = diag
(
γ1(j), · · · , γN(j)

)
, Φ(j) =

[
φ1(j)T · · ·φN(j)T

]T and φn(j) = −
∑

l∈Ωn(j)

φn,l(j). Note that, from (5.3), E[Φ(j)] = 0 and supj E[‖Φ(j)‖2] = η ≤ N(N − 1)u <∞.

Let us define e(k, j) to be the error vector at the j-th consensus iteration after the k-th tracking

update: e(k, j) , X(k, j)− (1⊗ IM)x(k). From (5.6), it follows that

e(k, j + 1) =
(
A(j)⊗ IM

)
e(k, j)−

(
Γ(j)⊗ IM

)
Φ(j)

+
((

A(j)⊗ IM
)
− I
)

(1⊗ IM)x(k), (5.7)

where A(j) = IN − Γ(j)L(j). Note that, this coefficient matrix A(j) is slightly different from the

one proposed in [119]. In [119], A(j) = Ĩ(j) − γ(j)L̃(j), where Ĩ(j) and L̃(j) are the modified

1The assumption here is that at the beginning of the consensus update process, the filtered estimates at
different nodes are statistically uncorrelated.

2Note that, for n ∈ (Sjk)
c and

∑N
l=1 An,l(j) = 0, node n does not receive information from any node

that has local tracking estimate. Then, xn(k, j + 1) = xn(k, j).
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identity and Laplacian matrices. The required modification however does not lend itself to a conve-

nient relation between the original matrices and the modified ones that can be used in mathematical

derivations.

Note that, if the filtered estimate x̂n(k|k) at the end of the measurement update stage is an

unbiased estimate, then xn(k, 0) is also unbiased for all n ∈ Sjk. From (5.5), since xn(k, j + 1) =

1∑N
l=1 An,l(j)

∑N
l=1 An,l(j)

(
xl(k, j) + φn,l(j)

)
for n ∈ (Sjk)

c, then xn(k, j + 1) is also unbiased for

n ∈ (Sjk)
c if xl(k, j) is unbiased for l ∈ Sjk. From (5.7), it can be shown that the unbiasedness

in consensus estimate X(k, j) can be maintained if matrix A(j) satisfies the condition
((

A(j) ⊗

IM
)
− I
)

(1 ⊗ IM) = 0, which is equivalent to requiring
((

A(j) − IN
)
1
)
⊗ IM = 0. It follows

that the unbiasedness in consensus estimate X(k, j) requires 0 to be an eigenvalue of the Laplacian

matrix L(j) with the associated eigenvector 13. Define the covariance matrix corresponding to

X(k, j) as P (k, j) = E[e(k, j)e(k, j)T ]. From (5.7) and unbiasedness condition, it can be easily

seen that

P (k, j + 1) =
(
A(j)⊗ IM

)
P (k, j)

(
A(j)⊗ IM

)T
+ E

{(
Γ(j) ⊗ IM

)
Φ(j)Φ(j)T

(
Γ(j) ⊗ IM

)T}
. (5.8)

As shown in Fig. 5.3, after J consensus iterations each node n will feed xn(k, J) back to their

local Kalman filters by setting xn(k|k) = xn(k, J) and P n(k|k) = P n(k, J) before starting next

tracking update at time k + 1. Recall that here P n(k, J) is the n-th M ×M main diagonal block

of P (k, J). Algorithm 1 shows a summary of the steps in the proposed distributed tracking with

consensus algorithm.

3Note that, similar results on the unbiasedness of consensus estimate were obtained in [119].
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5.3 Performance Analysis

5.3.1 Conditions for Achieving Consensus

In this section, we analyze the convergence of the proposed distributed tracking with consensus

algorithm and the convergence rate. Note that, the proofs of lemmas and theorems in this section

are different from those in [107] due to vector state and incomplete data, which results in two stages

of consensus process: obtaining complete data from incomplete data and reaching consensus on

complete data. In the scenarios we consider, we assume that the information exchange rate during

the consensus update process is much higher compared to the data sampling rate for the tracking

updates. Hence, we can assume that J � 14, guaranteeing enough time for information to be

exchanged over the network so that consensus can be reached if the weight
{
γ(j)

}
is chosen

properly. As mentioned above, for a fixed k and J � 1, the consensus update process after the

k-th tracking update can be considered as a consensus in estimation problem. Thus, to simplify

notation, in the following we omit the tracking time step index k in X(k, j).

We start by defining the consensus subspace C as

C =
{

X ∈ RNM |X = 1N ⊗ a, a ∈ RM
}
.

If the consensus algorithm (5.6) converges to the consensus subspace C, each node estimate xn(j)

will converge to the same value xn(j) = a for 1 ≤ n ≤ N , a ∈ RM and consensus is reached over

the network. It is well known from the stochastic approximation literature [164] that, in order to

ensure asymptotic convergence to consensus subspace, the weight coefficient γ(j) must satisfy the

persistence condition as follows

γ(j) > 0,
∞∑
j=0

γ(j) =∞,
∞∑
j=0

γ(j)2 <∞. (5.9)

4For practical consideration, due to energy constraints of sensor networks, the time period J for con-
sensus process is not too long such that the nodes can still efficiently obtain new information from the
source [162]. Simulation results in Section IV show how the algorithm performs in this case.
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We recall the following result on distance properties in RNM :

Lemma 5.3.1. Suppose that X ∈ RNM and consider the orthogonal decomposition X = XC+XC⊥ .

Then the Euclidean distance ρ(X, C) = ‖XC⊥‖.

In the following, we prove that the consensus algorithm given in (5.6) converges almost surely

(a.s.). This is achieved in two steps: First, Lemma 5.3.3 proves that the state vector sequence{
X(j)

}
j≥0

converges a.s. to the consensus subspace C. Theorem 5.3.4 then completes the proof

by showing that the sequence of component-wise averages
{

Xavg(j)
}
j≥0

converges a.s. to a finite

random variable Θ, where Xavg(j) = 1
N

(1T ⊗ IM)X(j). The proof of Theorem 5.3.4 will require a

basic result on convergence of Markov processes from [164], which is restated as Lemma 5.3.2 in

our context. Before stating the lemma, however, we need to introduce the notation of [164].

Let
{

X(j)
}
j≥0

be a Markov process in RNM . Define the generating operator L corresponding

to
{

X(j)
}
j≥0

as

LV (j,X) = E
{
V
(
j + 1,X(j + 1)

)
|X(j) = X

}
− V (j,X),

for functions V (j,X), j ≥ 0, X ∈ RNM , provided the conditional expectation exists. If DL is the

domain of L, then we say that V (j,X) ∈ DL in a domain C, if LV (j,X) is finite for all (j,X) ∈ C.

For G ⊂ RNM , the ε-neighborhood of G and its complement are defined as,

Uε(G) =

{
X| inf

Y∈G
ρ(X,Y) < ε

}
, Vε(G) = RNM \ Uε(G). (5.10)

With these notations, we may now state the desired lemma on the convergence of Markov pro-

cesses:

Lemma 5.3.2. (Convergence of Markov Processes): Let
{

X(j)
}
j≥0

be a Markov process with

generating operator L. Let there exist a non-negative function V (j,X) ∈ DL in the domain
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G ⊂ RNM for j ≥ 0 and X ∈ RNM . Assume that

inf
j≥0,X∈Vε(G)

V (j,X) > 0, ∀ε > 0, and V (j,X) = 0, X ∈ G,

lim
X→G

sup
j≥0

V (j,X) = 0, and LV (j,X) ≤ g(j)
(
1 + V (j,X)

)
− γ(j)ϕ(j,X),

where ϕ(j,X),X ∈ RNM is a non-negative function such that

inf
j,X∈Vε(G)

ϕ(j,X) > 0, ∀ε > 0; γ(j) > 0,
∑
j≥0

γ(j) =∞; and g(j) > 0,
∑
j≥0

g(j) <∞.

Then the Markov process
{

X(j)
}
j≥0

with an arbitrary initial distribution converges almost surely

(a.s.) to G as j →∞:

P
(

lim
j→∞

ρ
(
X(j), G

)
= 0

)
= 1.

Proof. Proof is a vector generalization of that in [107], and is omitted.

Lemma 5.3.2 guarantees a.s. convergence of a general Markov process with an arbitrary ini-

tial distribution under the assumption of the existence of a Lyapunov function V (j,X). In fact,

the state vector sequence
{

X(j)
}
j≥0

given in (5.6) is a Markov process, since P
[
X(j)|X(j −

1), · · · ,X(0)
]

= P
[
X(j)|X(j − 1)

]
. In the next lemma, we prove that the state estimate sequence{

X(j)
}
j≥0

given in (5.6) converges a.s. to the consensus subspace C by showing that the consensus

algorithm over an undirected effective network graph satisfies the Lyapunov function assumptions

of Lemma 5.3.2 .

Lemma 5.3.3. (a.s. convergence of the proposed algorithm to the consensus subspace): Consider

the consensus algorithm in (5.6) with initial state X(0) ∈ RNM . The weight coefficients satisfy the

persistence condition in (5.9). Assume that the undirected connectivity graph Laplacian L(j) is

independent of communication noise φn,l(j) for 1 ≤ n, l ≤ N . If L(j) = L + L̃(j) with mean

L = E
[
L(j)

]
is such that λ2(L) > 0 and p(l, n) > 0 for {l, n} ∈ E(j), then

P
[

lim
j→∞

ρ
(
X(j), C

)
= 0

]
= 1.
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Proof. See Appendix B.

Lemma 5.3.3 shows that the state estimate sequence
{

X(j)
}
j≥0

given in (5.6) converges a.s. to

the consensus subspace C. The key to the proof is to show that the directed effective network graph

will become an undirected graph after all nodes have local estimates and the consensus algorithm

over this undirected effective network graph satisfies the condition required in Lemma 5.3.2. In the

following theorem, we state our main result and complete the convergence proof for the proposed

distributed tracking with consensus algorithm by showing that the sequence of component-wise

averages
{

Xavg(j)
}
j≥0

converges a.s. to a finite random variable Θ, where Xavg(j) = 1
N

(1T ⊗

IM)X(j).

Theorem 5.3.4. (a.s. convergence to a finite random vector): Consider the consensus algorithm

in (5.6) with initial state X(0) ∈ RNM . The weight coefficients satisfy the persistence condition in

(5.9). Assume that the time-varying connectivity graph Laplacian L(j) is independent of commu-

nication noise φn,l(j) for 1 ≤ n, l ≤ N . If L(j) = L + L̃(j) with mean L = E
[
L(j)

]
is such that

λ2(L) > 0, and if p(l, n) > 0 for {l, n} ∈ E(j), then there exists an almost sure finite real random

vector Θ such that

P
[

lim
j→∞

X(j) = 1N ⊗Θ

]
= 1.

Proof. Since the mean connectivity graph L is connected with non-zero link probability, for j

large enough, each node will receive information from one another and generate its updated local

estimate. For a fixed k, let Jk = inf{j|(Sjk)c = ∅, j ≥ 0}. Then, Γ(j) = γ(j)IN for j ≥ Jk and

(5.6) becomes

X(j + 1) = X(j)− γ(j)
[(
L(j)⊗ IM

)
X(j) + Φ(j)

]
for j ≥ Jk. (5.11)

Define the average of X(j) as Xavg(j) = 1
N

(1T ⊗ IM)X(j). Multiply both sides of (5.11) by
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1
N

(1T ⊗ IM) and use the fact that 1TL(j) = 0N , so that for (Sjk)
c = ∅. Then we have

Xavg(j + 1) = Xavg(j)− ε(j) = Xavg(Jk)−
∑

Jk≤l≤j

ε(l),

where ε(j) = γ(j)
N

(1T⊗IM)Φ(j). Assuming that receiver noise is zero-mean and time independent,

we obtain

E
[
‖ε(j)‖2

]
=
γ2(j)

N2
E
[
Φ(j)T (1T ⊗ IM)T (1T ⊗ IM)Φ(j)

]
=
γ2(j)

N2
E

[ ∑
1≤n≤N

(
φn(j)

)T
φn(j)

]
,

where φn(j) = −
∑

l∈Ωn(j)φn,l(j) denotes the total incoming noise from node l ∈ Ωn(j) to

node n and the last step follows from the independence of φl(j) and φn(j). By assuming that

E
[
φl,n(j)φl,n(j)T

]
= σ2IM for 1 ≤ l, n ≤ N , we obtain

E
[
‖ε(j)‖2

]
≤γ

2(j)

N2
MN(N − 1)σ2 =

γ2(j)M(N − 1)

N
σ2.

From independence of X(j) and Φ(j) and the independence of noise over time, we then have that

E
[
‖Xavg(j + 1)‖2

]
≤ E

[
Xavg(Jk)

TXavg(Jk)
]

+

j∑
l≥Jk

γ2(l)M(N − 1)

N
σ2 ≤ ∞.

Denote Xavg(j) =
[
Xavg,1(j) · · ·Xavg,M(j)

]T . It can be easily seen that

E
[(
Xavg,m(j + 1)

)2] ≤ E
[(
Xavg,m(Jk)

)2]
+

j∑
l≥Jk

γ2(l)(N − 1)

N
σ2 ≤ ∞.

Hence, the sequence
{
Xavg,m(j)

}
is an L2 bounded martingale and thus converges a.s. in L2

to a finite random scalar θ. Define Xm(j) =
[
eTmx1, · · · , eTmxN

]T . From the conclusion of

Lemma 5.3.3, we have that P
[
limj→∞ ‖X(j)− 1N ⊗ Xavg(j)‖ = 0

]
= 1, which implies that

P
[
limj→∞ ‖Xm(j)−Xavg,m(j)1N‖ = 0

]
= 1. Then, we obtain that P

[
limj→∞Xm(j) = θ1N

]
=

1 and the theorem follows.

Theorem 5.3.4 shows that the proposed distributed tracking with consensus algorithm will

reach consensus almost surely and the consensus estimate limj→∞ x(j) is a finite random vector Θ.
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Since the consensus algorithm in (5.6) falls in the framework of stochastic approximation, we may

also analyze the convergence rate of the consensus algorithm based on the ODE method (Ordinary

Difference Equation) [166]. The next theorem characterizes an upper bound to the convergence

rate of the proposed distributed tracking with consensus algorithm.

Theorem 5.3.5. (convergence rate): Consider the consensus algorithm in (5.6) with initial state

X(0) ∈ RNM . The weight coefficients satisfy the persistence condition in (5.9) and γ(j) ≤
2

λ2(L)+λn(L)
. Assume that the time-varying connectivity graph Laplacian L(j) is independent of

communication noise φn,l(j) for 1 ≤ n, l ≤ N . For j ≥ Jk, the effective network graph Laplacian

is L(j) = L + L̃(j) with mean L = E
[
L(j)

]
. If the connectivity graph Laplacian L(j) with mean

L = E
[
L(j)

]
is such that λ2(L) > 0, and if p(l, n) > 0 for {l, n} ∈ E(j), the convergence rate5,

of the proposed consensus algorithm is bounded by −λ2(L)
(

1
J−Jk

∑
Jk≤j≤J γ(j)

)
.

Proof. For a fixed i, let Jk = inf{j|(Sjk)c = ∅, j ≥ 0}. From the asymptotic unbiasedness

of Θ, we have limj→∞ E
[
X(j)

]
= 1N ⊗ r, where r = Xavg(Jk). For j ≥ Jk, define Ξ(j) =

INM − γ(j)(L⊗ IM), where L = E
[
L(j)

]
. Using the fact that L(j) and X(j) are independent, and

E
[
Φ(j)

]
= 0NM , from (5.6), we have that

E
[
X(j + 1)

]
= Ξ(j)E

[
X(j)

]
=

j∏
l=Jk

Ξ(l)E
[
X(Jk)

]
, ∀j ≥ Jk. (5.12)

From the persistence condition γ(j) > 0,
∑

j≥0 γ(j) = ∞ and
∑

j≥0 γ
2(j) ≤ ∞ [107], it

follows that γ(j)→ 0. From the mixed-product property of Kronecker product (A⊗B)(C⊗D) =

AB ⊗ CD and
(
INM − γ(j)L

)
1N = 1N [158], we have

1N ⊗ r = Ξ(j)
(
1N ⊗ r

)
. (5.13)

5Note that the convergence rate calculated here is for the period of Jk ≤ j ≤ J , where J � 1 is the
number of consensus iterations. From persistence condition (9), limj→∞ γ(j) = 0. Then γ(j) is very close
to zero and the convergence speed can be assumed negligible for j ≥ J and J large enough [118, 165].
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From (5.12) and (5.13), it can be shown that

‖E
[
X(j)

]
− 1N ⊗ r‖ ≤

∏
Jk≤l≤j−1

ρ
(
1− γ(l)L

)
‖E
[
X(Jk)

]
− 1N ⊗ r‖

=
∏

Jk≤l≤j−1

(
1− γ(l)λ2(L)

)
‖E
[
X(Jk)

]
− 1N ⊗ r‖,

where last step follows from Lemma 8 of [106] and ρ(·) denotes the spectral radius of a matrix.

From the assumption on weight coefficient γ(j), we have 0 ≤ γ(l)λ2(L) ≤ 1. Since 1− α ≤ e−α

for 0 ≤ α ≤ 1, we then have that

‖E
[
X(j)

]
− 1N ⊗ r‖ ≤

(
e−λ2(L)

(∑
Jk≤l≤j−1 γ(l)

))
‖E
[
X(Jk)

]
− 1N ⊗ r‖. (5.14)

Therefore, as j → J , the convergence rate is bounded by −λ2(L)
(

1
J−Jk

∑
Jk≤l≤J γ(l)

)
, which

depends on the algebraic connectivity λ2(L) and the weights γ(j), for Jk ≤ j ≤ J .

Theorem 5.3.5 shows that the convergence rate of the proposed algorithm depends on the topol-

ogy through the algebraic connectivity λ2(L) of the effective network graph G̃(j) and through

weights γ(j), for j ≥ Jk. Since for j ≥ Jk, ISjk = I and L(j) = L(j) , we have L = E
[
L(j)

]
=

E
[
L(j)

]
. In (5.14), λ2(L) is the algebraic connectivity of the mean Laplacian corresponding to the

time-varying network graphs. For a static network, this reduces to the algebraic connectivity of the

static Laplacian L.

Since the consensus algorithm in (5.6) is iterative, whose energy consumption is proportional

to the time necessary to achieve consensus and inversely proportional to transmit power. From

[162, 163], for energy-constrained sensor networks, there exists a trade-off between convergence

time which depends on network connectivity and the transmit power of each node necessary to

establish the links with the desired reliability. Therefore, we can minimize the energy consumption

for consensus process by optimizing transmit power, network topology and weights γ(j).

98



5.3. PERFORMANCE ANALYSIS

5.3.2 Steady-State Analysis for Noiseless Graphs

In this section, we analyze the steady-state performance of the proposed distributed tracking with

consensus algorithm. When the filter reaches steady-state, the error covariance matrix is time-

invariant and the corresponding filter gain is constant. Therefore, finding the steady-state of the

proposed algorithm will help understanding its asymptotic behavior, analyzing error covariance

and filter design. From (5.8), it can be seen that the propagation of communication noise implies

the non-existence of an upper bound to the covariance matrix. Therefore, the covariance matrix in

the Kalman filter may not also converge and the filter may not reach steady-state. However, time-

varying graph assumption does not affect the existence of steady-state. Since for J → ∞, con-

sensus is reached over the network and the outputs of the consensus update Xn(k, J) and P (k, J)

depend only on the inputs Xn(k, 0) and P (k, 0) for complete data case with noiseless time-varying

graphs (for incomplete data case with noiseless time-varying graphs, this property still holds for

some special types of graphs). Hence, the combined system of distributed tracking with consensus

can be transformed into a Kalman filter with time-invariant parameters. Therefore, steady-state

can still be reached [91]. In the following, assuming noiseless time-varying graphs, we start with

steady-state analysis for the case with complete data and then we extend the results to the case with

incomplete data.

Complete Data with Noiseless Time-varying Graphs

Here we assume complete data, a scalar target state x ∈ R1 (for simplicity) and noiseless time-

varying graphs, where the connectivity graph Laplacian L(j) with mean L = E[L(j)] is such

that λ2(L) > 0, and p(l, n) > 0 for {l, n} ∈ E(j). Note that, since a closed form equation for

P̂n(k + 1|k) can not be easily obtained when the target state x ∈ RM for M > 1, the following

derivation would not apply to vector state.

From the result of Theorem 5.3.4 for scalar target state, it can be shown that limJ→∞X(k, J) =

Xavg(k, 0)1N , where Xavg(k, j) = 1
N

1TX(k, J). From the definition of X(k, j) and xn(k, 0) =
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x̂n(k|k), we have for 1 ≤ n ≤ N

lim
J→∞

xn(k, J) =
1

N

N∑
n=1

x̂n(k|k). (5.15)

With the assumptions above, the covariance matrix (5.8) in the (j + 1)-th consensus iteration

after the k-th tracking update simplifies to P (k, j + 1) = A(j)P (k, j)A(j)T . For complete data

case, L(j) = L(j). Since 1TL(j) = 0, from (5.7) we have 1TA(j) = 1. Then, we can obtain that

1TP (k, j + 1)1 = 1TP (k, j)1. (5.16)

By applying the result of Theorem 5.3.4, we have limJ→∞ P (k, J) = (Xavg(k, 0) − x(k))211T .

Since all the elements in limJ→∞ P (k, J) are equal, from (5.16), it follows that

lim
J→∞

P (k, J) =
1TP (k, 0)1

N2
11T =

∑N
n=1 P̂n(k|k)

N2
11T . (5.17)

Since P n(k, J) is the n-th M ×M main diagonal block of P (k, J), we have the covariance matrix

for node n (1 ≤ n ≤ N ) as below:

lim
J→∞

P n(k, J) =

∑N
n=1 P̂n(k|k)

N2
. (5.18)

From (5.15) and (5.18), we have xn(k, J) = xl(k, J) and P n(k, J) = P l(k, J) for J → ∞

and 1 ≤ n, l ≤ N . Then, each node n sets xn(k|k) = xn(k, J) and P n(k|k) = P n(k, J). From

(5.4), we have x̂n(k + 1|k) = x̂l(k + 1|k) and P̂n(k + 1|k) = P̂l(k + 1|k) for 1 ≤ n, l ≤ N and it

follows that for 1 ≤ n ≤ N

x̂n(k + 1|k) = F
1

N

N∑
q=1

x̂q(k|k − 1)− F 1

N

N∑
q=1

[
Kq(k)

(
yq(k)−Hqx̂q(k|k − 1)

)]
,

P̂n(k + 1|k) = Q+
1

N2

N∑
q=1

F
(
I −Kq(k)Hq

)
P̂q(k|k − 1)F T . (5.19)
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Let x̂n(k + 1|k) = x̂(k + 1|k) and P̂n(k + 1|k) = P̂ (k + 1|k). Then, the combined system of

distributed tracking with consensus can be transformed into a single Kalman filter as follows:

x̂(k + 1|k) = Fx̂(k|k − 1) +
F

N

N∑
n=1

[
Kn(k)

(
yn(k)−Hnx̂n(k|k − 1)

)]
,

Kn(k) = P̂ (k|k − 1)HT
n

[
HnP̂ (k|k − 1)HT

n +Rn

]−1

,

P̂ (k + 1|k) = Q+
1

N2

N∑
n=1

[
FP̂ (k|k − 1)F T

−FKn(k)
(
HnP̂ (k|k − 1)HT

n +Rn

)
Kn(k)TF T

]
. (5.20)

Theorem 5.3.6. Consider the system dynamics in (5.1) and (5.2) and the Kalman filter in (5.20).

Assume that the connectivity graph Laplacian L(j) with mean L = E[L(j)] is such that λ2(L) > 0,

and p(l, n) > 0 for {l, n} ∈ E(j). If the pair (F,Hn) is observable for 1 ≤ n ≤ N , then the

prediction covariance matrix P̂ (k|k − 1) converges to a constant matrix

lim
k→∞

P̂ (k|k − 1) = P,

where P is the unique definite solution of the discrete algebraic Riccati equation (DARE)

P = Q+
1

N2

N∑
n=1

[
FPF T − FPHT

n

(
HnPH

T
n +Rn

)−1
HnPF

T
]
. (5.21)

Proof. See Proof of Theorem 5.3.7. By settingm = N and βn(k) = 1 for 1 ≤ n ≤ N , the Kalman

filter in (5.24) can be reduced to the one in (5.20). Theorem 5.3.6 can be considered as a special

case of Theorem 5.3.7. Thus, it can be proved in a similar manner.

As a consequence of Theorem 5.3.6, the local Kalman filter gain converges to

lim
k→∞

Kn(k) = PHT
n

[
HnPH

T
n +Rn

]−1
.

From (5.21), it can be seen that limN→∞ P = Q. i.e. as the size of the sensor networkN increases,

the steady-state covariance P , which in this case is a scalar, will decrease. This implies that if the
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network size is large enough, asymptotically the tracking is noiseless and follows the target exactly.

It is obvious that this result still holds for distributed local Kalman filtering with centralized fusion.

However, the distributed tracking with consensus results in the same performance even if the graph

is time-varying and it also improves the robustness and scalability due to consensus exchanges.

For the assumed scalar case, for example, if Hn = H and Rn = R for 1 ≤ n ≤ N , then we have

K = HP
H2P+R

and P =
−B+
√
B2+4H2QR

2H2 , where B =
(

1− F 2

N

)
R−H2Q. This implies that for the

same sensing model, each node will have the same Kalman gain K and prediction covariance P in

the steady-state.

Incomplete Data with Noiseless Time-varying Graphs

Next, we assume incomplete data, a scalar target state x ∈ R1 and noiseless time-varying graphs,

where the connectivity graph Laplacian L(j) with mean L = E[L(j)] is such that λ2(L) > 0, and

p(l, n) > 0 for {l, n} ∈ E(j). Furthermore, we assume that only m nodes can observe the target

and without loss of any generality the index of those m nodes are ordered as 1, 2, · · · ,m, where

m is constant and 1 ≤ m ≤ N . This implies that the active node set S0
k = {1, 2, · · · ,m}, which

does not require further assumptions on the connectivity graph for consensus, since the graph is

connected on average and the information can still propagate over the network even if only a fixed

number of nodes have observation.

With the assumption of incomplete data and noiseless time-varying graphs, 1TL(j) = 0 for

Jk ≤ j < J . Then, (5.17) becomes

lim
J→∞

P (k, J) =
1TP (k, Jk)1

N2
11T =

1T
[
AJk−1

0

]
P (k, 0)

[
AJk−1

0

]T
1

N2
11T =

∑m
n=1 P̂n(k|k)β2

n(k)

N2
11T ,(5.22)

where
[
AJk−1

0

]
= A(Jk − 1) · · ·A(0) and βn(k) =

∑N
l=1

[
AJk−1

0

]
ln

is the n-th column sum of[
AJk−1

0

]
that depends on time k. The last step of (5.22) follows from that P̂n(k|k) = ε for m <
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n ≤ N and some ε > 0. Then, as in previous subsection, we have for 1 ≤ n ≤ N

lim
J→∞

P n(k, J) =

∑m
n=1 P̂n(k|k)β2

n(k)

N2
and lim

J→∞
xn(k, J) =

1

N

m∑
n=1

x̂n(k|k)βn(k).

(5.23)

From (5.23), for J →∞, we have xn(k, J) = xl(k, J) and P n(k, J) = P l(k, J) for 1 ≤ n, l ≤ N .

By setting xn(k|k) = xn(k, J) and P n(k|k) = P n(k, J), from (5.4), we can obtain recursive

update equations for P̂n(k + 1|k) and x̂n(k + 1|k). Furthermore, we also have x̂n(k + 1|k) =

x̂l(k + 1|k) and P̂n(k + 1|k) = P̂l(k + 1|k) for 1 ≤ n, l ≤ N . Let x̂n(k + 1|k) = x̂(k + 1|k) and

P̂n(k+ 1|k) = P̂ (k+ 1|k). Then, the combined system of distributed tracking with consensus can

then be transformed into a single Kalman filter for node n (1 ≤ n ≤ m) as below:

x̂(k + 1|k) =
F

N

m∑
n=1

x̂(k|k − 1)βn(k) +
F

N

m∑
n=1

[
Kn(k)

(
yn(k)−Hnx̂(k|k − 1)

)
βn(k)

]
,

Kn(k) = P̂ (k|k − 1)HT
n

[
HnP̂ (k|k − 1)HT

n +Rn

]−1

, (5.24)

P̂ (k + 1|k) = Q+
1

N2

m∑
n=1

[
FP̂ (k|k − 1)F T

−FKn(k)
(
HnP̂ (k|k − 1)HT

n +Rn

)
Kn(k)TF T

]
β2
n(k),

where (5.20) is a special case of (5.24) with m = N and βn(k) = 1 for 1 ≤ n ≤ N .

Theorem 5.3.7. Consider the system dynamics in (5.1) and (5.2) and the Kalman filter in (5.24).

Assume thatm nodes can observe the target and the index of thosem nodes are fixed and ordered as

1, · · · ,m. The connectivity graph Laplacian L(j) with mean L = E[L(j)] is such that λ2(L) > 0,

and p(l, n) > 0 for {l, n} ∈ E(j). The connectivity graph has switching topologies and is periodic

such that βn(k) = βn is time-invariant. If the pair (F,Hn) is observable for 1 ≤ n ≤ m, then the

prediction covariance matrix P̂ (k|k − 1) converges to a constant matrix

lim
k→∞

P̂ (k|k − 1) = P,
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where P is the unique definite solution of the discrete algebraic Riccati equation (DARE)

P = Q+
1

N2

m∑
n=1

[
FPF T − FPHT

n

(
HnPH

T
n +Rn

)−1
HnPF

T
]
β2
n. (5.25)

Proof. See Appendix C.

Theorem 5.3.7 asserts that if the connectivity graph topology is switching and periodic, the pro-

posed algorithm can still reach steady-state and the steady-state covariance matrix can be obtained

by solving (5.25). The conditions of graph topology assumed in Theorem 5.3.7 are strong. How-

ever, it may still be applicable in certain situations such as satellite surveillance network in [119],

since the existence of a communication link depends on distance between nodes and the trajecto-

ries of satellites are pre-determined and periodic, whenever ratios of the orbit periods are rational.

As an example, consider the network model in Fig. 5.8. The connectivity graph in Fig. 5.8 is

switching and periodic with period equal to 4 and it can be seen that the graph is connected on

average. Let N = 6, m = 4, S0
k = {1, 2, 3, 4} and γ(j) = 1

j+1
for 0 ≤ j < J . After iteration

Jk = 1, all nodes will have updated local estimates to be shared. In this case,
[
AJk−1

0

]
becomes

[
AJk−1

0

]
=



−1 1 0 1 0 0

1 −2 1 1 0 0

0 1 0 0 0 0

1 1 0 −1 0 0

1
3

0 1
3

1
3

0 0

1 0 0 0 0 0


.

It can be seen that
[
AJk−1

0

]
is time-invariant, due to the time-variance of m and the periodic graph

topology. Thus, βn(k) = βn is also time-invariant and 1
N

∑m
n=1 βn = 1, which follows from the

condition for unbiasedness in the consensus estimate X(k, j). As we will see shortly, from the

simulation results in Section IV the filter indeed reaches steady-state in this case, and then the

error covariance matrix becomes time-invariant and the corresponding filter gain is constant.
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5.4 Numerical Examples

In this section, we consider the performance of the proposed distributed tracking with consensus al-

gorithm and compare it with centralized Kalman filter and distributed local Kalman filtering with

centralized fusion. The performance of the centralized Kalman filter is well-understood [167]

and provides a benchmark performance for distributed local Kalman filtering with centralized

fusion. In distributed local Kalman filtering with centralized fusion, all nodes send their fil-

tered estimates to a fusion center. The fusion center then generates a fused estimate x̂fusion(k) =

1
|S0
k|
∑

n∈S0
k

x̂n(k|k).

In the first simulation we compare the performance of the proposed algorithm with the dis-

tributed local Kalman filtering with centralized fusion and the centralized Kalman filter over a

random graph with noisy communication links and incomplete data. We consider a random con-

nectivity graph G(N, p) with N = 20 and the probability that each link exists p = 0.5. The other

parameters of the simulation setup are: F = 1, Q = 1, x(0) = 0, P0 = 0, Rn = 0.25, Hn = 1,

σ2
l,n = σ2 = 0.1, S0

k = {n|1 ≤ n ≤ 10, n ∈ Z} and J = 30.

Figure 5.4(a) shows the node estimates of the three algorithms in a time-varying graph with

noisy communication links. As we can see, the node estimates of the three algorithms follow the

target’s trajectory. In Fig. 5.4(a), the curve with cross marker denotes the first node’s estimate

by using distributed tracking with consensus algorithm, the dashed curve denotes the distributed

local Kalman filtering with centralized fusion, the curve with circle marker denotes the centralized

Kalman filter and the solid curve denotes the target’s trajectory. Figure 5.4(b) compares the result-

ing mean squared error (MSE) of the three algorithms, where the MSE of the distributed tracking

with consensus is defined to be the average MSE over all nodes 1
N

∑N
n=1

[(
xn(k, J)− x(k)

)T(
xn(k, J)− x(k)

)]
. In Fig. 5.4(b), it can be seen that the MSE of the proposed distributed track-

ing with consensus algorithm is close to that of the distributed local Kalman filtering with cen-

tralized fusion. As expected, both of them are higher than the MSE of the centralized Kalman

filter, which acts as a benchmark. The results in Fig. 5.4 show that the performance of the pro-
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Figure 5.4: Comparison of the proposed distributed tracking with consensus algorithm with dis-
tributed local Kalman filtering with centralized fusion and centralized Kalman filter – (a) node
estimates, (b) mean squared error.

posed distributed tracking with consensus algorithm is close to that of the distributed local Kalman

filtering with centralized fusion in a time-varying random graph with noisy communication and

incomplete data. Additional communication bandwidth, which depends on graph topology G and

number of iterations J , is required for the proposed algorithm due to information exchange among

nodes. However, it resolves the bandwidth-constraints problem of fusion center for centralized

fusion case and has a high level of fault tolerance and reliability. Also, because of its advantages

of fully distributed implementation, robustness and scalability, it may be preferable in practical

applications.

In the second simulation, we consider the two dimensional tracking problem treated in [114].

The connectivity graph is again assumed to be a random graph G(N, p) with N = 50 and the

probability that each link exists p = 0.5. The probability of each node having an observation at a

given time instant is ps = 0.9. The other parameters of the simulation setup are as follows: F =

I2 + εF0 + ε2

2
F 2

0 + ε3

6
F 3

0 , F0 =

 0 −2

2 0

, ε = 0.015, Q = (εc2
w)2I2, cw = 5, x(0) = [15,−10]T ,
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Figure 5.5: Comparison of the proposed distributed tracking with consensus algorithm and dis-
tributed Kalman filter with centralized fusion in a two dimensional tracking problem – (a) trajec-
tory, (b) mean squared error.

Hn = [1, 0] for n is odd and Hn = [0, 1] for n is even, Rn = c2
v

√
n for n = 1, · · · , N with cv = 30,

σ2
l,n = σ2 = 1, J = 10. Note that, the target is moving on noisy circular trajectories. The target is

not fully observable by an individual node, but is collectively observable by all nodes.

Figure 5.5(a) shows the node estimates (trajectory) of the two algorithms over a time-varying

graph with incomplete data. In Fig. 5.5(a), the curves with markers denote all the node estimates by

using distributed tracking with consensus algorithm, while the dashed curve denotes the distributed

local Kalman filtering with centralized fusion and the solid curve denotes the target’s trajectory.

As we can see, both algorithms overcome the impact of partial observations at each node resulting

in improved overall observation quality and the node estimates by using distributed tracking with

consensus algorithm are noisy due to the communication noise. Note that the estimates are close to

the trajectory of the target but with a small gap. That is because the observation noise covariance

is rather large at each node. Figure 5.5(b) compares the resulting MSE of these algorithms. It can

be seen that the mean squared error of the proposed algorithm is slightly higher than that of the

distributed Kalman filtering with centralized fusion.
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Next, we study the steady-state behavior in the case of time-varying graphs with complete data

and noiseless communication. We consider a random connectivity graph G(N, p) with N = 6 and

the probability that each link exists p = 0.5. The other parameters of the simulation setup are as

follows: F = 1, Q = 1, x(0) = 0, P0 = 0.5, Rn = 0.25, σ2
l,n = σ2 = 0, J = 30, Hn = 1. Figure

5.6(a) shows the node consensus estimates xn(k, J) over a random graph with noiseless commu-

nication links and complete data. It can be seen that all node estimates xn(k, J) converge to the

same value and follow the target state, as asserted by Theorem 5.3.4. Figure 5.6(b) and 5.6(c) show

the node estimates xn(k, j) in the consensus update after the 21-st tracking update and the vari-

ance of all the node estimates, respectively. Here the variance of all the node estimates is defined

as var(k, j) = E
[
(xn(k, j)− µ(k, j))T (xn(k, j)− µ(k, j))

]
, where µ(k, j) = 1

N

∑N
n=1 xn(k, j).

From Fig. 5.6(b), it can be seen that the node estimates converge to the average which is also

confirmed in Fig. 5.6(c), where the variance var(k, j) decreases as consensus iteration number

increases and becomes static (around 10−17) after consensus is reached. Figure 5.7 shows the node

estimate variance P̂n(k|k − 1) and Kalman gain Kn(k) of the filter in (5.20). It can be seen that

as the Kalman filter reaches steady-state, both the node estimate variance and the Kalman gain

converge, as asserted by Theorem 5.3.6.

Next, we study the steady-state behavior on a graph with switching topologies and incomplete

data and noiseless communication. The assumed parameters in the first simulation setup are as

follows: F = 1, Q = 1, x(0) = 0, P0 = 0.5, Rn = 0.25, σ2
l,n = σ2 = 0, N = 6, J = 40,

S0
k = {1, 3, 4, 6}, Hn = 0.5 for n = 1, 3 and Hn = 1 for n = 4, 6. The connectivity graph

Laplacian is

L(j) =



L1 j = 4m

L2 j = 4m+ 1

L3 j = 4m+ 2

L4 j = 4m+ 3

for m = 0, 1, 2, · · · ,

which is shown in Fig. 5.8. As we can see, the graph is connected on average and p(l, n) > 0 for

{l, n} ∈ E(j), satisfying the conditions on the connectivity graph Laplacian required in Theorem

5.3.4.
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Figure 5.6: Performance of the distributed tracking with consensus algorithm for complete data
and noiseless communication case – (a) node consensus estimates xn(k, J) versus tracking time
step, (b) node estimates xn(k, j) versus consensus iteration number, (c) variance of node estimates
var(k, j) versus consensus iteration number.
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Figure 5.7: Steady-state performance of the distributed tracking with consensus algorithm for
complete data and noiseless communication case – (a) prediction covariance matrix P̂n(k|k − 1),
(b) Kalman gain Kn(k).
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Figure 5.8: A time-varying graph with switching topologies.

Figure 5.9 shows the prediction covariance matrix P̂n(k|k − 1) and Kalman gain Kn(k) of

the filter in (5.20), respectively. It can be seen that as the Kalman filter reaches the steady-state,

and both the prediction covariance matrix and the Kalman gain converge, as asserted by Theorem

5.3.7. Note that the limit of the Kalman gain is different for different nodes in Fig. 5.9 because the

observation matrix Hn is different for different nodes.

5.5 Conclusions

In this chapter, we considered the problem of distributed tracking with consensus on a time-varying

graph with incomplete data and noisy communication links. We developed a framework consisting

of tracking and consensus updates to handle the issues of time-varying network topology and

incomplete data. We discussed the conditions for achieving consensus, quantified the convergence

rate and analyzed the steady-state performance when applicable. Our simulation results showed

that the proposed distributed tracking with consensus algorithm improves the estimation quality

at each node and its performance is close to that of the distributed local Kalman filtering with

centralized fusion. The proposed algorithm shows advantages of fully distributed implementation,

robustness and scalability, which is preferable in practical application.
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Figure 5.9: Steady-state performance of the distributed tracking with consensus algorithm for
incomplete data and noiseless communication case – (a) prediction covariance matrix P̂n(k|k−1),
(b) Kalman gain Kn(k).
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Algorithm 1 Distributed Tracking with Consensus Algorithm
Initialize: x(0), F , Hn, Q,Rn

while new data exists do

Kalman filtering in tracking process:

x̂n(k|k − 1) = Fxn(k − 1|k − 1)

P̂n(k|k − 1) = FP n(k − 1|k − 1)F T +Q

Kn(k) = P̂n(k|k − 1)HT
n

(
HnP̂n(k|k − 1)HT

n +Rn

)−1

x̂n(k|k) = x̂n(k|k − 1) +Kn(k)
(

yn(k)−Hnx̂n(k|k − 1)
)

P̂n(k|k) =
(
I −Kn(k)Hn

)
P̂n(k|k − 1)

update the initial state of consensus process:

xn(k, 0) = x̂n(k|k)

P (k, 0) = P̂1(k|k)⊕ P̂2(k|k)⊕ · · · ⊕ P̂N(k|k)

j ← 0

while j ≤ J − 1 do

xn(k, j + 1) = xn(k, j) + γn(j)
∑N

l=1 An,l(j)
(

zn,l(k, j)− zn,n(k, j)
)

j ← j + 1

end while

xn(k|k) = xn(k, J)

P n(k|k) = P n(k, J)

k ← k + 1

end while
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Chapter 6

Conclusions and Future Work

In this dissertation we considered the application of information theory and distributed control to

different types of networked multi-agent systems, such as wireless sensor networks, networked

leader-follower systems, smart grid with DGs and loads, automated highway systems with inter-

vehicle communication.

In Chapter 2 we considered tracking in leader-follower systems under communication con-

straints, where the system components are distributed and connected over communication links

with finite data rates. By using information theory and control theory, we provided lower bounds

on the channel rate of each communication link as necessary conditions for tracking in such a

leader-follower system. We presented limitations in each feedback and forward channel and both

channels as a cascade link. Although we only applied simple system models, the results also pro-

vide fundamental limitations in terms of information quantities on communication links which can

have important roles on control design in leader-follower systems and it should be taken into ac-

count for designing new control system with communication constraints. Another limitation of

our leader-follower system model is that it only includes a leader and a follower. Our future work

is to extend the leader-follower system to more general framework in which multiple leaders and

followers are interconnected as a network with more general graph topologies.
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In Chapter 3 we proposed a hierarchical decision-making and control architecture for smart

grid in which distributed customers equipped with RDG interact and trade energy in the grid.

Within this framework, we proposed a distributed networked control strategy with prediction to

solve the demand-side management problem encountered within a microgrid with time delay. The

approaches we proposed here are distributed, fully scalable and easy to implement, which pro-

vides nearly perfect performance with the cost of communication. But in this approach we do not

consider economic factors such as pricing information, storage cost and utilities of the adjustable

loads, etc, which could be an extension of this work. On the other hand, the method we proposed

demands information exchange among users and a communication infrastructure is required with

communication cost. Possible further work involves relaxing the assumption of information ex-

change among users and designing a suboptimal but more practical control algorithm to reduce

information exchange.

In Chapter 4 we introduced a leader-following consensus algorithm with communication net-

work in vehicle platoons to guarantee string stability. We showed the sufficient conditions on the

eigenvalues of communication graph Laplacian matrix and the control parameters in each vehicle

for string stability by using the leader-following consensus algorithm. From simulation results,

our proposed approach shows advantage in term of distributed processing, scalability and simpler

coordination requirements compared to the previous proposed control methods. However, in our

simulation, we only considered random graph topology model. In practical, due to distance separa-

tion, more general communication graph model should be included, which is a possible extension.

In Chapter 5, we considered the problem of distributed tracking with consensus on a time-

varying graph with incomplete data and noisy communication links. We developed a framework

consisting of tracking and consensus updates to handle the issues of time-varying network topology

and incomplete data. We discussed the conditions for achieving consensus, quantified the conver-

gence rate and analyzed the steady-state performance when applicable. Our simulation results

showed that the proposed distributed tracking with consensus algorithm improves the estimation

quality at each node and its performance is close to that of the distributed local Kalman filtering
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with centralized fusion. The proposed algorithm shows advantages of fully distributed implemen-

tation, robustness and scalability, which is preferable in practical application. The drawback of

our approach is the communication cost during consensus process, in which each node needs to

exchange its local data with every other node in the network. An possible extension is to shorten

the iteration of consensus process or compress the local data that is to be transmitted in order to

reduce communication cost.
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Appendices

A Proof of Lemma 4.3.3

B Proof of Lemma 5.3.3

C Proof of the Theorem 5.3.7
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Appendix A

Proof of Lemma 4.3.3:

Proof. The matrix M is non-singular, since det(M) 6= 0. Define R = MTM . Since M is a square

matrix and nonsingular, R is positive definite [156]. From the relation between the singular value

decomposition (SVD) of M and the eigenvalue-decomposition of MTM [156], we have σi(M) =√
λi(MTM) =

√
λi(R). From Gersgorin circle theorem [156], we have |λi(R) − ri,i| ≤ G(R),

where G(R) =
∑n

j 6=i |ri,j| and ri,j is the (i, j)th element of matrix R. Hence, 0 ≤ λi(R) ≤ 4.

Then, we have 0 ≤ σi(M) ≤ 2.
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Appendix B

Proof of Lemma 5.3.3:

Proof. Since λ2(L) > 0 and p(l, n) > 0 for {l, n} ∈ E(j), the undirected time-varying connec-

tivity graph G(j) is connected on average with non-zero link probability. For j large enough, each

node will receive the information from one another and generate its updated local estimates. For a

fixed k, let Jk = inf{j|(Sjk)c = ∅, j ≥ 0}. Then, we have the effective network graph is the same

as connectivity graph G̃(j) = G(j), L(j) = L(j) and Γ(j) = γ(j)IN for j ≥ Jk.

Since P
[
X(j)|X(j − 1), · · · ,X(0)

]
= P

[
X(j)|X(j − 1)

]
, the process

{
X(j)

}
j≥0

is Markov.

Define V (j,X) = XT
(L ⊗ IM)X. Since we assume the graph is undirected and connected on

average, L is positive semi-definite. Then, the potential function V (j,X) is nonnegative. Since X ∈

C is an eigenvector of L⊗IM with zero eigenvalue, V (j,X) ≡ 0,X ∈ C, limX→C supj≥0 V (j,X) =

0. From Courant-Fisher Theorem [157, 168], for Z ∈ RNM and Z⊥C, we have

ZT (L⊗ IM)Z ≥ λ2(L⊗ IM)ZTZ. (B.1)

From Lemma 5.3.1 and the complement of the ε-neighborhood of a set in (5.10), we have X ∈

Vε(C) ⇒ ‖XC⊥‖ ≥ ε. Then for X ∈ Vε(C), from (B.1) and the properties of Kronecker product
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and eigenvalues, we will have

V (j,X) =XT
(L⊗ IM)X = XT

C⊥(L⊗ IM)XC⊥ + XT

C (L⊗ IM)XC ≥ λ2(L⊗ IM)‖XC⊥‖2,

=λ2(L)‖XC⊥‖2 ≥ λ2(L)ε2. (B.2)

Since λ2(L) > 0, we get infj≥0,X∈Vε(C) V (j,X) ≥ λ2(L)ε2 > 0. Consider the generating operator

L and (5.11). Using the fact that L(j) = L(j) for j ≥ Jk, we obtain

LV (j,X) =E
[
X(j + 1)T (L⊗ IM)X(j + 1)|X(j) = X

]
− XT

(L⊗ IM)X,

=E
[ [

X− γ(j)
(
L(j)⊗ IM

)
X− γ(j)Φ(j)

]T
(L⊗ IM)

×
[
X− γ(j)

(
L(j)⊗ IM

)
X− γ(j)Φ(j)

]]
− XT

(L⊗ IM)X for j ≥ Jk.

From (5.6), we have E
[
‖Φ(j)‖2

]
≤ η. By using the independence of L(j) and Φ(j) with respect

to X(j) and XT
LX ≤ λN(L)‖XC⊥‖2 [158], after some work we have that

LV (j,X) = −2γ(j)XT
(L⊗ IM)2X + γ2(j)XT

(L⊗ IM)3X

+ E
[
γ2(j)

[(
L̃(j)⊗ IM

)
X
]T

(L⊗ IM)
(
L̃(j)⊗ IM

)
X
]

+ E
[
γ2(j)Φ(j)T (L⊗ IM)Φ(j)

]
,

≤ −2γ(j)XT
(L⊗ IM)2X + γ2(j)

[
λ3
N(L)‖XC⊥‖2

+ λN(L)E
[
‖
(
L̃(j)⊗ IM

)
X‖2

]
+ λN(L)E

[
‖Φ(j)‖2

]]
,

≤ −2γ(j)XT
(L⊗ IM)2X + γ2(j)

[
λ3
N(L)‖XC⊥‖2 + 4N2λN(L)‖XC⊥‖2 + λN(L)η

]
.

The last step follows from the fact that all the eigenvalues of L̃(j) are less than 2N in absolute

value, by the Gershgorin circle theorem. Using the fact that XT
(L⊗ IM)X ≥ λ2(L)‖XC⊥‖2 from

(B.2), we have

LV (j,X) ≤− 2γ(j)XT
(L⊗ IM)2X + γ2(j)

[
λN(L)η +

(
λ3
N(L)

λ2(L)
+

4N2λN(L)

λ2(L)

)
XT

(L⊗ IM)X
]
,

≤− 2γ(j)ϕ(j,X) + g(j)
[
1 + V (j,X)

]
for j ≥ Jk,

where ϕ(j,X) = 2XT
(L ⊗ IM)2X, g(j) = γ2(j) max

(
λN(L)η,

λ3N (L)

λ2(L)
+ 4N2λN (L)

λ2(L)

)
. Then, the

theorem follows by using Lemma 5.3.2.
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Appendix C

Proof of Theorem 5.3.7:

Proof. Step 1: Bound on the error covariance

From (5.1), it can be easily shown that the controllability matrix has full rank and the system

is controllable. Since (F,Hn) is detectable, ∃K ′n such that (F −K ′nHn) are stable. Consider the

sub-optimal filter

x̂n(k + 1|k) = Fx̂n(k|k − 1) +K ′n
(
yn(k)−Hnx̂n(k|k − 1)

)
,

Since consensus is reached in consensus update part, x̂n(k|k − 1) = x̂l(k|k − 1) = x̂(k|k − 1) for

1 ≤ n, l ≤ N . Then,

x̂(k + 1|k) =
1

N

(
F

m∑
n=1

βn −
m∑
n=1

K ′nHnβn

)
x̂(k|k − 1) +

1

N

m∑
n=1

K ′nyn(k)βn.

It is easily verified that

x̃(k + 1|k) = x
(
k + 1

)
− x̂(k + 1|k),

=

(
F − 1

N

m∑
n=1

K ′nHnβn

)
x̃(k|k − 1)− 1

N

m∑
n=1

K ′nvn(k)βn + w(k),
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where the last step follows from the fact that the estimate is unbiased and 1
N

∑m
n=1 βn = 1. Since

(F−K ′nHn) is stable,
(
F − 1

N

∑m
n=1 K

′
nHnβn

)
is also stable. It follows that the covariance matrix

Π(k) = Cov
[
x̃(k|k− 1)

]
is bounded, where Cov(x) denotes the covariance matrix of x. However,

the filter above is sub-optimal, so that P (k|k − 1) ≤ Π(k).

Step 2: Monotonicity of the error covariance

Recall that the mapping f : P̂n(k|k − 1)→ P̂n(k + 1|k) as P̂n(k + 1|k) = minKn g
(
P̂n(k|k −

1), Kn

)
, where

g(P̂n, Kn) = (F −KnHn)P̂n(F −KnHn)T +KnRnK
T
n +Q.

Thus, if P̂n(k|k − 1) ≥ P̂ ′n(k|k − 1) ,

P̂n(k + 1|k) = min
Kn

g
(
P̂n(k|k − 1), Kn

)
= g
(
P̂n(k|k − 1), K∗n

)
≥ g
(
P̂ ′n(k|k − 1), K∗n

)
,

≥ min
Kn

g
(
P̂ ′n(k|k − 1), Kn

)
= P̂ ′n(k + 1|k).

Therefore, the mapping f from P̂n(k|k − 1) to P̂n(k + 1|k) is monotonic. Because P̂ (k + 1|k) =

1
N2

∑m
n=1 P̂n(k + 1|k)β2

n, the mapping f̂ : P̂ (k|k − 1)→ P̂ (k + 1|k) is also monotonic.

Step 3: Use of zero initial covariance

Suppose P̂ (0| − 1) = 0. Then P̂ (1|0) ≥ P̂ (0| − 1) = 0. But from Step 2 it follows that

P̂ (k+1|k) ≥ P̂ (k|k−1), for k ≥ 0. Since
{
P̂ (k|k − 1)

}
is bounded by Step 1, then P̂ (k|k−1)→

P for some P ≥ 0. Obviously, P must be a stationary point of the covariance update equation,

hence solves the DARE.

Step 4: Asymptotic stability of the filter

With Kn the stationary gain corresponding to P , the DARE is

P =

(
F − 1

N

m∑
n=1

KnHnβn

)
P

(
F − 1

N

m∑
n=1

KnHnβn

)T

+
1

N2

m∑
n=1

KnRnK
T

nβ
2
n +GGT ,
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where GGT = Q. Let ν be a left eigenvector of
(
F − 1

N

∑m
n=1 KnHnβn

)
with eigenvalue λ. Then

(
νPνT

)
= |λ|2

(
νPνT

)
+

1

N2

m∑
n=1

νKnRnK
T

nν
Tβ2

n + νGGTνT . (C.1)

Since Rn and Q are positive semidefinite, it implies that |λ| ≤ 1. It only remains to show that

|λ| = 1 is impossible. If |λ| = 1, we have from (C.1) and the definition of ν:

ν

(
F − 1

N

m∑
n=1

KnHnβn

)
= λν, νKn = 0, and νG = 0,

which gives that ν[λI − F,G] = 0. This contradicts the assumption that (F,G) is stabilizable.

Step 5: Nonzero initial covariances

Suppose we use the stationary suboptimal filter K ′n ≡ Kn to obtain the estimate x̂(k|k − 1).

We show that its error covariance converges to P . Defining x̃(k|k − 1) , x(k) − x̂(k|k − 1) we

obtain

x̃(k|k − 1) =

(
F − 1

N

m∑
n=1

KnHnβn

)
x̃(k|k − 1)− 1

N

m∑
n=1

Knvn(k)βn + w(k).

Since (F − 1
N

∑m
n=1 KnHnβn) is stable with eigenvalue |λ| < 1, it follows from above results on

stationary behavior that Π(k) ≡ Cov[x̃(k|k − 1)] → P̃ ≥ 0, where P̃ is the unique non-negative

solution of the Lyapunov equation:

P̃ =

(
F − 1

N

m∑
n=1

KnHnβn

)
P̃

(
F − 1

N

m∑
n=1

KnHnβn

)T

+
1

N2

m∑
n=1

KnRnK
T

nβ
2
n +Q.

However, substituting Kn this is just the DARE which is satisfied by P , hence P̃ = P . Now

x̂(k|k − 1) is sub-optimal so that P (k|k − 1) ≤ Π(k) → P̃ . On the other hand, by monotonicity

of mapping f̂ : P̂ (k|k− 1)→ P̂ (k+ 1|k), it follows that P (k|k− 1) ≥ P 0(k|k− 1)→ P , where

P 0(k|k − 1) is the covariance for P (0| − 1) = 0. Hence, P (k|k − 1)→ P .
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