4,497 research outputs found

    Taxonomic classification of planning decisions in health care: a review of the state of the art in OR/MS

    Get PDF
    We provide a structured overview of the typical decisions to be made in resource capacity planning and control in health care, and a review of relevant OR/MS articles for each planning decision. The contribution of this paper is twofold. First, to position the planning decisions, a taxonomy is presented. This taxonomy provides health care managers and OR/MS researchers with a method to identify, break down and classify planning and control decisions. Second, following the taxonomy, for six health care services, we provide an exhaustive specification of planning and control decisions in resource capacity planning and control. For each planning and control decision, we structurally review the key OR/MS articles and the OR/MS methods and techniques that are applied in the literature to support decision making

    Telemonitoring after discharge from hospital with heart failure: cost-effectiveness modelling of alternative service designs.

    Get PDF
    Objectives To estimate the cost-effectiveness of remote monitoring strategies versus usual care for adults recently discharged after a heart failure (HF) exacerbation. Design Decision analysis modelling of cost-effectiveness using secondary data sources. Setting Acute hospitals in the UK. Patients Patients recently discharged (within 28 days) after a HF exacerbation. Interventions Structured telephone support (STS) via human to machine (STS HM) interface, (2) STS via human to human (STS HH) contact and (3) home telemonitoring (TM), compared with (4) usual care. Main outcome measures The incremental cost per quality-adjusted life year (QALY) gained by each strategy compared to the next most effective alternative and the probability of each strategy being cost-effective at varying willingness to pay per QALY gained. Results TM was the most cost-effective strategy in the scenario using these base case costs. Compared with usual care, TM had an estimated incremental cost effectiveness ratio (ICER) of £11 873/QALY, whereas STS HH had an ICER of £228 035/QALY against TM. STS HM was dominated by usual care. Threshold analysis suggested that the monthly cost of TM has to be higher than £390 to have an ICER greater than £20 000/QALY against STS HH. Scenario analyses performed using higher costs of usual care, higher costs of STS HH and lower costs of TM do not substantially change the conclusions. Conclusions Cost-effectiveness analyses suggest that TM was an optimal strategy in most scenarios, but there is considerable uncertainty in relation to clear descriptions of the interventions and robust estimation of costs

    Queuing with future information

    Full text link
    We study an admissions control problem, where a queue with service rate 1p1-p receives incoming jobs at rate λ(1p,1)\lambda\in(1-p,1), and the decision maker is allowed to redirect away jobs up to a rate of pp, with the objective of minimizing the time-average queue length. We show that the amount of information about the future has a significant impact on system performance, in the heavy-traffic regime. When the future is unknown, the optimal average queue length diverges at rate log1/(1p)11λ\sim\log_{1/(1-p)}\frac{1}{1-\lambda}, as λ1\lambda\to 1. In sharp contrast, when all future arrival and service times are revealed beforehand, the optimal average queue length converges to a finite constant, (1p)/p(1-p)/p, as λ1\lambda\to1. We further show that the finite limit of (1p)/p(1-p)/p can be achieved using only a finite lookahead window starting from the current time frame, whose length scales as O(log11λ)\mathcal{O}(\log\frac{1}{1-\lambda}), as λ1\lambda\to1. This leads to the conjecture of an interesting duality between queuing delay and the amount of information about the future.Comment: Published in at http://dx.doi.org/10.1214/13-AAP973 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Hospitalization admission control of emergency patients using markovian decision processes and discrete event simulation

    Get PDF
    International audienceThis paper addresses the hospitalization admission control policies of patients from an emergency department that should be admitted shortly or transferred. When an emergency patient arrives, depending on his/her health condition, a physician may decide to hospitalize him/her in a specific department. Patient admission depends on the availability of beds, the length of stay (LOS) and the reward of hospitalization which are both patient-class specific. The problem consists in determining patient admission policies in order to maximize the overall gain. We first propose a Markov Decision Process (MDP) Model for determination of the optimal patient admission policy under some restrictive and necessary assumptions such as exponentially distributed LOS. A simulation model is then built to assess MDP admission policies under realistic conditions. We show that MDP policies significantly improve the overall gain for different types of facilities

    Service needs forecasting: an approach for the automotive industry using analogies with medical ER management models.

    Get PDF
    During the past years, the industry has shifted position and moved towards “the luxury universe” whose customers are demanding, treating individuals as unique and valued customer for the business, offering vehicles produced with the state of the art technologies and implementing the highest finishing standards. Due to the competitive level in the market, car makers enable processes which equalizes customer services to E.R. management, being dealt with the maximum urgency that allows the comparison between both, car workshops and emergency rooms, where workshop bays or ramps will be equal to emergency boxes and skilled technicians are equivalent to the health care specialist, who will carry out tests and checks prior to afford any final operation, keeping the “patient” under control before it is back to normal utilization. This paper establishes a valid model for the automotive industry to estimate customer service demand forecasting under variable demand conditions using analogies with patient demand models used for the medical ER

    Flexible nurse staffing based on hourly bed census predictions

    Get PDF
    Workload on nursing wards depends highly on patient arrivals and patient lengths of stay, which are both inherently variable. Predicting this workload and staffing nurses accordingly is essential for guaranteeing quality of care in a cost effective manner. This paper introduces a stochastic method that uses hourly census predictions to derive efficient nurse staffing policies. The generic analytic approach minimizes staffing levels while satisfying so-called nurse-to-patient ratios. In particular, we explore the potential of flexible staffing policies which allow hospitals to dynamically respond to their fluctuating patient population by employing float nurses. The method is applied to a case study of the surgical inpatient clinic of the Academic Medical Center (AMC) Amsterdam. This case study demonstrates the method's potential to study the complex interaction between staffing requirements and several interrelated planning issues such as case mix, care unit partitioning and size, and surgical block planning. Inspired by the numerical results, the AMC decided that this flexible nurse staffing methodology will be incorporated in the redesign of the inpatient care operations during the upcoming years
    corecore