
Chapter 5
Operations Research for Occupancy Modeling at
Hospital Wards and Its Integration into Practice

N.M. van de Vrugt, A.J. Schneider, M.E. Zonderland, D.A. Stanford,
and R.J. Boucherie

5.1 Introduction

Medical and technological advancements are contributing to increase healthcare
expenditures and increase numbers of hospitalized patients (Chernew and New-
house 2012), while at the same time the length of stay (LoS) for these patients
decreases. However, healthcare expenditures are still rising (OECD). Society calls
for improved cost effective healthcare delivery, which puts pressure on available
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financial resources. At present, hospitals tend to focus on process improvement
by decreasing unnatural (e.g. self-created) variability and alignment of different
services.

During hospitalization, patients spend most of their time in wards. These wards
are also referred to as inpatient care facilities, and provide care to hospitalized
patients by offering a room, a bed and board. Wards are strongly interrelated
with upstream hospital services such as the operating theater and the emergency
department. Due to this interrelation it is essential to attain a high efficiency level at
hospital wards in order to achieve efficient patient flow. Hospital ward management
often aims for bed occupancy rates above 85% in order to maximize throughput,
leaving little slack for flow fluctuations which results in refused, deferred and/or
rescheduled patients.

Operations Research (OR) can give managerial insights about trade-offs between
performance indicators, such as bed occupancy rates and blocked patients. Although
OR methods have the potential to lead to large improvements in all sorts of
processes, it appears that the cases in which the models and/or results have been
actually implemented are sparse. Using OR models, possible interventions can be
evaluated in a safe environment, reducing the risk of implementing an intervention
that appears to be counter-productive.

OR models may be invoked for different objectives, for example to provide
insights or to optimize a certain performance measure and what effects changes in
demand or supply have on these performance indicators. The logistically important
performance measures for hospital wards are throughput, blocking probability and
occupancy. A possible objective in this area could be to determine the optimal
capacity, warranting a prespecified maximal blocking probability and minimal
occupancy levels.

In this chapter we focus on occupancy modeling. Related topics, not covered
in this chapter, are for example optimizing the assignment of patients to beds, and
optimizing patients’ access times. The bed assignment problem becomes important
when, for example, a ward accommodates patients with infectious diseases, or
patients that do not share rooms with the opposite sex. A patient’s access time is
the number of days between the request for an appointment and the appointment
itself, and may be improved by optimizing patient admission schedules and/or
the operating theater schedule. Additionally, material logistics and facility design
problems are outside the scope of this chapter.

Our aim in this review chapter is to guide both researchers and healthcare
professionals through the OR concepts which have been applied to hospital wards.
We first present the terminology on the different types of wards and performance
indicators covered in this chapter. Next, we give an overview of articles where
OR techniques are applied to ward related problems, followed by some detailed
examples on how to apply these models. We conclude the chapter by looking at
the integration of OR models into practice and possibilities for further research.
As background information, we provide a brief introduction of OR models in the
appendix.
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5.2 Hospital Ward Types and Terminology

In this section we introduce the types of hospital wards and performance measures
as used in this chapter. Throughout this chapter, we define a hospital ward as
follows: an area or unit within a hospital where inpatients with comparable medical
conditions are admitted to a bed to receive care. This typically involves staying
overnight until their medical condition changes in such a way that the patient either
leaves the hospital, or is transferred to a ward with a different level of care. We
therefore place the beds associated with the operating theater (OT), the emergency
department (ED) or the outpatient clinics outside the scope of this chapter, as they
usually temporarily accommodate patients that undergo a (short) treatment.

The logistical performance of wards is generally assessed by three indicators
which are related to each other: throughput, blocking probability and occupancy.
The exact definitions of these three performance indicators is given in Sect. 5.2.2,
after our definitions of different ward types.

5.2.1 Taxonomy

In this section we distinguish different ward types based on logistical characteristics:
the type of in- and outflow, typical length of stay (LoS) and resources, and planning
problems the wards face. Based on the literature cited in this chapter, we distinguish
the following types of wards:

– Intensive Care Unit (ICU)
– Acute Medical Unit (AMU)
– Obstetric ward (OBS)
– Weekday ward (WDW)
– General ward

We describe each type of ward in terms of (logistical) characteristics below and
demonstrate why it is a different type of ward. An overview of the differences is
summarized in Table 5.1, in which ‘0’ denotes average occurrence, occupancy or
costs, and ‘C’ (‘�’) denotes increased (decreased) compared to average.

Intensive Care Unit (ICU) For this category in our taxonomy we group several
ward types with similar logistical characteristics: traditional ICUs, specialized
ICUs, and Critical, High or Medium Care Units. Specialized ICUs are, for example,
stroke units, cardiac care units and neonatal ICUs. High Care and Medium Care
Units are sometimes combined and often referred as step-down units between ICUs
and general wards. In the United Kingdom these combined wards are also referred
’Critical Care Units’. The difference between high and medium care is generally
the necessity of breathing support. The ICU of a hospital accommodates the
most severely ill patients who require constant close monitoring and support from
advanced medical equipment and staff (nurses mostly on a 1:1 basis and intensivists
which are readily available) (Mallor and Azcarate 2014). In the remainder of this
chapter we refer to the ward types discussed in this section as ‘ICUs’.
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Table 5.1 Summary of characteristics per ward type

ICU AMU WDW OBS General

Long LoS C � � 0 C

Short LoS C C C C 0

Acute admissions C C � C C

Elective admissions C � C C C

Bed occupancy C � C � 0

Staff/bed ratio C C � 0 0

Equipment C 0 � 0 0

Due to the used equipment and available staff the ICU has the highest costs per
bed of all hospital wards. An ICU preferably doesn’t defer patients, as this would
imply serious mortality risks. However, the costs per bed do not allow for a large
buffer in the number of available beds. Therefore, ICUs tend to be fully occupied,
and discharge the least ill patient when a bed needs to be freed for a newly arriving
patient, or cancel an elective procedure at the OT which requires ICU capacity
afterwards. Patient typically either have a short LoS or a very long LoS, and arrive
from the OT, ED, wards or surrounding hospitals.

Acute Medical Unit (AMU) AMUs lack a uniform definition. We think the
following definition covers the best definition of AMUs ‘an AMU is a designated
hospital ward specifically staffed and equipped to receive medical inpatients
presenting with acute medical illness from EDs and outpatient clinics for expedited
multidisciplinary and medical specialist assessment, care and treatment for up to a
designated period (typically between 24 and 72 h) prior to discharge or transfer to
medical wards’ (Scott et al. 2009). Often, AMUs serve as a buffer for both the ED
and inpatient wards. Since an AMU treats only urgent patients and should alleviate
ED congestion, management is more focused on throughput and LoS, and the target
utilization of the AMU beds is typically lower compared to general wards. AMUs
are also known under synonyms as ‘emergency observation and assessment ward,
‘acute assessment unit’ and ‘acute medical assessment units’. The review papers
available (Cooke et al. 2003; Scott et al. 2009) provide a comprehensive overview
of definitions and concepts for AMUs. The inflow mainly consists of acute patients
from the ED, outpatient clinics, surrounding hospitals or General Practitioners.

Weekday Ward (WDW) WDWs are wards admitting patients with an expected
LoS between 2 and 5 days, which are usually only open on weekdays (Conforti
et al. 2011). WDW-type of hospitals are also sometimes referred to as ‘Monday
to Friday clinic’ or ‘Week Hospital’. Most patients at WDWs are elective, and
can be transferred to regular wards without any health risks. Only patients with
a highly predictable LoS may be admitted, which is why WDWs mostly treat
patients for which strict treatment protocols apply. Scheduling patients at a WDW
is complicated by each patient’s different LoS and urgency level, which implies
a deadline by which the patient should be treated. The requirement that the
ward should be closed during weekends also complicates patient scheduling. Most
admissions arrive directly from home.
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Obstetric Ward (OBS) Obstetric and Gynecology wards provide care for women
during their pregnancy, during and after labor, and also take care of their new-
borns (Cochran and Bharti 2006). Additionally, Gynecology wards accommodate
women with problems regarding their reproductive organs. The women at these
wards often require (brief) surgical intervention, and typically a short hospitaliza-
tion. Some hospitals group these types of wards under names like ‘Birthing Center’,
’Maternity Clinic’, or ‘Women’s and Child’s Center’. Most patients arrive from
home, outpatient clinics or other hospitals.

General Wards General wards in hospitals are often dedicated to a single medical
specialty such as Neurology, Geriatrics, or Hematology. As these wards are
generally equipped with similar resources and accommodate both acute and elective
admissions which and differ in LoS, we aggregate these ward types. General wards
can either be surgical or medical and some wards, such as psychiatric or geriatric
wards, are closed, implying that patients cannot leave the wards without approval.
Other wards are equipped with a specific type of resource, such as dialysis machines
and heart monitors. The nurse to patient ratio is often 1:5–1:6. Patients with a
particular medical specialty are typically not all accommodated in the same ward,
but may also be admitted at for example a WDW or an ICU. Patient inflow is
mainly formed by referrals of outpatient clinics, ICUs, General Practitioners or other
hospitals.

5.2.2 Terminology

In healthcare a concept such as ‘occupancy’, which may seem simple at first sight,
has several different definitions. Different researchers and healthcare practitioners
use different definitions of occupancy, which may result in false comparisons when
the used definitions are not clearly stated. Therefore, we define the frequently used
concepts in the following paragraphs. We first define different concepts of capacity
(based on Vissers and Beech 2005), then define the throughput and blocking
probability, and conclude this section with the different concepts of occupancy.

Each ward has a certain capacity, which is expressed in terms of the number of
patients and their care intensity that the ward can accommodate. The capacity of a
ward is measured by the number of beds and nurses, and there are different types
of capacity. The physical capacity is the number of beds at the ward. Each nurse
can take care of a certain number of patients in parallel (determined by the nurse
to patient ratio), which determines the structural available capacity. Additionally,
temporary capacity changes can occur; for example bed closures in holiday periods,
or beds that are used which are officially not staffed in case of bed shortage. The
structural capacity and temporary changes together determine the (average) realized
available capacity.
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Suppose, in a highly stylized example, that a hospital ward has 15 beds
in a certain area. There are always three nurses scheduled to work at the
ward, and each nurse can take care of at most four patients at the same
time. Each summer and Christmas holidays the ward experiences decreasing
patient numbers, and decides to only schedule two nurses. The holiday periods
together last 8 weeks. Then, for this ward the physical capacity is 15 beds, and
the structural capacity is 3 (nurses) �4 (patients per nurse) D 12 beds. Due to
the holidays, each year has 8 weeks in which only eight beds are open, so the
average realized capacity is:

8.weeks/ � 8.beds/ C .52 � 8/.weeks/ � 12.beds/

52.weeks/
� 11:4 beds:

As mentioned in the introduction of this section, the logistical performance of a
ward is assessed by three performance indicators: throughput, blocking probability
and occupancy. These indicators are all related to each other. The throughput of a
ward can be measured as the number of admissions or discharges per time unit. The
blocking probability of a ward is the percentage of patients that request a bed at the
ward at an instance that there are no available beds:

Pb D
Number of patients not accommodated at ward

Total number of patients requesting a bed at ward
� 100%: (5.1)

Blocked patients are either accommodated in a different ward, or deferred to another
hospital.

In contrast to throughput and blocking probability, bed occupancy can be
quantified by three definitions: based a on bed census at certain time, based on
real LoS or based on the number of hospitalization days. Here we aim to give an
overview of the most commonly used definitions.

One of the definitions of bed occupancy includes the bed census measured once
a day at a specified point in time, for example every morning at 10:00 am. Then,
dividing the average of these measurements by the structural available capacity, the
occupancy is:

Obc.t/ D
average bed census at time t

structural available capacity
� 100%: (5.2)

Note that for the occupancy it also matters how the capacity of a ward is calculated;
in most hospitals the structural available capacity is used. A slightly different
occupancy measure is obtained by taking the average of multiple bed census
measurements throughout each day, for example each hour; we denote this measure
by NObc. The advantage of taking more measurements is that it will better reflect
actual bed usage.
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Hospitals may also define the occupancy of a ward as the ratio between the total
time patients were in beds at the ward and the total time available:

OLoS.T/ D
sum of all LoSs for all patients in time period T

structural available capacity � time period T
� 100%: (5.3)

This measure is calculated using admittance and discharge time stamps for a certain
measurement period, or by multiplying the average LoS with the number of patients
accommodated at the ward. This occupancy measure reflects the actual time the
beds are used, but does not incorporate unavailability due to cleaning of beds.

Until recently, it was common in Dutch hospitals to determine the bed occupancy
using the hospitalization days declared to the insurance companies:

Ohd.T/ D
sum of hospitalization days for all patients in T

structural available capacity � length T
� 100%: (5.4)

Financial hospitalization days were counted in integers, and could be declared if the
patient is in a bed before 8:00 pm and discharged after 7:00 am the next day. This
implied that the occupancy could be over 100% as beds can be reused if patients
are discharged early in the day and new patients are admitted in the afternoon. A
drawback of this measure is that it cannot be used as a targeted occupancy for all
ward types. Such a situation would arise in wards in which patients generally stay
for only a part of a day so that multiple patients can be served by the same bed on
the same day (e.g. gynecology). In this system, these wards should therefore achieve
occupancy targets over 100%, while wards at which patients stay much longer (e.g.
geriatrics) will suffer severe bed shortages if the occupancy is over 90%.

This is an example of an arrival and discharge process at a ward, in order
to illustrate the different concepts of occupancy. Consider a ward with three
beds that is empty at the start of our observation period. We choose to observe
the ward from 8:00 am on day 1, until 5:00 pm on day 4. In this period the
following patients arrive:

Arrival Discharge

Day Time Day Time LoS Hosp. days

Patient 1 1 8:00 am 2 6:00 pm 1.42 2

Patient 2 1 10:00 am 4 8:00 am 2.92 4

Patient 3 1 3:00 pm 2 8:00 am 0.71 2

Patient 4 2 3:00 am Patient is blocked – –

Patient 5 2 9:00 am 3 8:00 am 0.96 2

Patient 6 3 9:00 am After day 4 1.33 2

Patient 7 4 10:00 am After day 4 0.29 1

(continued)



108 N.M. van de Vrugt et al.

In this example, patient 4 is blocked as patients 1, 2 and 3 fill up all
available beds and the first patient that is discharged (patient 3) is not
discharged before patient 4 arrives. Note that the LoS for patients 6 and 7 in
the table is not their exact LoS but only the part until the end of the observation
period. The bed census for this ward is depicted in Fig. 5.1. The blocking
probability for this time period equals 1/7�15%. The different occupancy
measures are calculated as follows.

The bed census at 10:00 am for day 1 to 4 is 2, 3, 2, and 1, respectively,
so the average equals 2. Therefore Obc(10 am)D 2=3 � 66:7%. The average
hourly bed census is 2.2, so NObc D 2:2=3 � 74.8%.

The sum of the LoS for all patients at this ward in this observation period,
T , equals 7.63 days. The length of the observation period is 3.38 days.
Therefore, OLoS.T/ D 7:63=.3 � 3:38/ � 75:3%.

The sum of the hospitalization days declared for these patients is 13,
and the total number of days in this observation period is four. Therefore,
Ohd.T/ D 13=.3 � 4/ � 108:3%.

The occupancy measure with hospitalization days is always higher than the other
occupancy measures. The ordering of the remaining concepts of occupancy depends
on the ward studied.

Hospital management determines which of the aforementioned occupancy mea-
sures is used, and sets the target throughput level for each ward separately. A high
occupancy usually results in a high blocking probability (Bailey 1952). Therefore
it is important for management to balance these three performance indicators.
Adequate targets for the performance indicators depend on many factors, for
example: the capacity of a ward, the fraction of admissions that is acute, the
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Fig. 5.1 Bed census for example
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possibility of deferring admissions, the cost per bed, and the ward layout. Large
wards have economies of scale, so a higher bed occupancy can be achieved with a
lower blocking probability. If a ward has mostly acute admissions, occupancy targets
need to be set lower; elective admissions can be rescheduled in case of bed shortage,
while acute admissions cannot. If the deferral of an arriving patient could give rise to
life threatening situations (e.g. in case of an intensive care unit), a ward has to lower
the target occupancy to produce a lower blocking probability. However, such wards
usually have high costs per staffed bed, driving the occupancy targets upwards.
Finally, if a ward has many rooms with multiple beds, the bed assignment is less
flexible compared to wards with many single bed rooms; if, for example, a patient
has an infectious disease he cannot share a room with others. Concluding, it can
be said that determining adequate occupancy, blocking probability and throughput
targets is a challenging task.

5.3 Ward-Related OR Models

In the previous sections we distinguished different ward types and their logistical
similarities and differences. In this section we will review the OR literature for
each ward type, emphasizing the main questions or problems the literature tries
to solve, the context of problems (e.g. ward type) and the type of models invoked
for each paper. An overview and brief explanation of each OR method is given in
the Appendix. In Table 5.2 the number of papers found for each ward type and OR
model/method is displayed. If a paper invoked multiple OR models, we categorized
this paper in all applicable categories. For each ward type, we review the related
literature in the following subsections.

Table 5.2 Literature categorized by applied models and ward type

OR model/method IC AMU WDW OBS General Total

Algorithms 1 0 0 0 3 4
Dynamic Programming 1 0 1 0 0 2
Markov processes 4 0 0 2 11 17
Mathematical programming 4 2 1 3 6 16
Queueing theory 15 2 0 3 16 36
Regression 1 0 0 0 1 2
Simulation 22 1 0 2 21 46
Stochastic models 1 1 0 0 3 5
Time series 1 0 0 0 2 3
Total 50 6 2 10 63 131
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5.3.1 Intensive Care Unit

At the ICU both elective and emergency patients arrive. Emergency patients mostly
come from the ED or surrounding hospitals and elective patients mainly arrive
after surgery. Since significant costs are involved, management tends to maximize
utilization. This results in an increasing number of refusals and/or severe ill patients
being transferred from the ICU to high, medium or regular care wards which could
lead to situations where quality of care is at stake, and possibly to disruptions in the
operating theater schedule. These are also the main problems the literature of this
section focuses on: admission and discharge control. See Table 5.3 for an overview
of the cited literature in this section.

A queueing model (M=G=s=s queue, see the Appendix for explanation) was used
to analyze the total minimum of required ICU beds for burn care for the state of
New York (Blair and Lawrence 1981). The authors start by finding the number
of beds at an aggregate level given a maximum blocking probability of 5%, and
then apply a heuristic allocating these ICU beds among several regional units,
while trying to maintain the same blocking probability. This model is extended
to analyze an overflow model (Litvak et al. 2008). Here each ICU reserves bed
capacity for regional emergency patients, which may be used as overflow beds in a
certain region. To approximate the blocking probability of this overflow model the
Equivalent Random Method is used, while a simulation model is used to validate
the results of this queueing model with historical data. Another modified M=M=s=s
model is used to analyze different admission policies and their relation to survival
gains (Shmueli et al. 2003). The policies consisted of: (1) the standard first come
first served (FCFS) discipline; (2) arrivals are served if and only if a bed is available
and the survival gain is greater than an arbitrary threshold value; and (3) arrivals
are served if and only if a bed is available and the survival gain threshold value
is met, where in this policy the threshold value is depending on the number of
beds available. (If fewer beds are available, the threshold value for survival gain
will increase.) The results show significant increase in survival gain in both the
second and third policy compared to the first policy. The third policy showed only
marginal survival gain compared to the second policy, while the number of rejected
patients increased significantly. Another application of the M=M=s=s queue is used
for analyzing an ICU (McManus et al. 2004). This model is validated with observed
data and it is proved that the calculated blocking probabilities from the queueing
model were accurate.

Next to queueing, discrete time Markov chains are also applied to ICUs. The
authors developed a Markov chain in order to analyze so called bumping (patient
transfers from the ICU to free capacity for new arrivals which are more severely
ill) (Dobson et al. 2010). Another application is used for the effect of ICU
discharge strategies and bed census on patient mortality and total readmission load
(patients that are hospitalized shortly after their last admission for the same medical
condition) (Chan et al. 2012).
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Table 5.3 Literature on ICUs categorized by applied models

OR model/method References

Algorithms Blair and Lawrence (1981)

Dynamic programming Chan et al. (2012)

Markov processes Blair and Lawrence (1981), Broyles et al. (2010), Dobson
et al. (2010), Garg et al. (2010)

Mathematical programming Kokangul (2008), Mallor and Azcarate (2014), Mallor et al.
(2016)

Queueing theory Blair and Lawrence (1981), de Bruin et al. (2007); De Bruin
et al. (2010), Griffiths et al. (2013a), Kim et al. (1999),
Litvak et al. (2008), Mallor et al. (2016), McManus et al.
(2004), Shmueli et al. (2003), van Dijk and Kortbeek (2009),
Williams et al. (2015), Yang et al. (2013), Zonderland and
Boucherie (2012)

Regression Mallor and Azcarate (2014)

Simulation Bountourelis et al. (2011, 2013), Costa et al. (2003), Davies
(1994), Kim et al. (1999), Kim et al. (2000), Kokangul
(2008), Kolker (2013), Litvak et al. (2008), Mallor and
Azcarate (2014), Mallor et al. (2016), Marcon et al. (2003),
Marmor et al. (2013), Masterson et al. (2004), Mustafee
et al. (2012), Nguyen et al. (2003), Ridge et al. (1998),
Shahani et al. (2008), Sissouras and Moores (1976), Troy
and Rosenberg (2009), Yang et al. (2013)

Time series Garg et al. (2010)

Simulation is also often applied to analyze the required number of ICU beds. In
Ridge et al. (1998), Kokangul (2008) and Marmor et al. (2013) they analyze several
scenarios, for instance reserving ICU beds for emergency arrivals using simulation.
Kim et al. (1999) simulate several ICU arrival processes and compare these results
with theoretical results using an M=M=s queue. Based on the simulation model, the
authors also determine the blocking probability for the current capacity. Another
study (Kim et al. 2000) analyzes several scenarios to minimize the number of
elective surgery patients refused at the ICU. The efficient frontier method is used to
plot the trade-off between the number of canceled surgeries and the average waiting
time per scenario.

Some studies combine several OR techniques to analyze the ICU (Mallor and
Azcarate 2014): first, a regression model is proposed for modeling the ICU LoS;
second, a comprehensive simulation model is developed for analyzing system
behavior and blocking probabilities; and last mathematical programming is used to
model the triage problem (which current and arriving patients require ICU capacity
the most?) for early or delayed discharges from the ICU depending on high or low
utilization of ICU capacity.

When analyzing patient logistics at the ICU, there is a clear distinction between
the type of models used and the type of problems solved. Because a significant
part of the arrivals at the ICU is unscheduled, queueing theory gives accurate and
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representative results. To analyze ICU dynamics, this technique is typically used to
achieve general insights about blocking probability, occupancy, ICU capacity, and
their mutual trade-offs. Markov chains are used to analyze bed census probabilities
and the probability of bumping. Simulation is generally used to analyze multiple
scenarios where particular details are involved and/or case-specific dynamics need
to be studied.

5.3.2 Acute Medical Unit

The reviews on AMUs mentioned in Sect. 5.2.1 conclude that AMUs may have
many advantages, but also that the evidence of economic effectiveness is thin.
The AMU ‘performance is dependent on good management and availability of
diagnostic services’, and asserted that there is no proof of cost-effectiveness of
AMUs (Cooke et al. 2003). An extensive list of success factors for AMUs is also
available (Scott et al. 2009). From an OR perspective, if a hospital does not add
beds or staff to its current capacity for opening an AMU, the improved performance
reported in the reviews is disputable. The beds assigned to the AMU are taken
from other wards, decreasing the benefits of economies of scale and affecting
other patients at those wards, and additionally, patients that require inpatient care
after their stay at the AMU encounter more process steps than if they would
have been admitted directly. Therefore, the effects of opening an AMU cannot be
predicted beforehand without the use of appropriate mathematical models. Perhaps
partly since AMUs are a relatively new concept, the OR literature with an AMU
application is somewhat sparse. In this section, we review this available literature.

Depending on the performance measures of interest and research goals, several
models could be applied to AMUs. We describe a goal programming approach used
to minimize the delay from ED to AMU, and two different queueing networks to
evaluate blocking probability and bed census.

A goal programming approach to determine the required additional resources
(beds, doctors and nurses) for each hour of the day to minimize the delay patients
experience on an AMU staffed with eight beds, two nurses and three doctors is
used (Oddoye et al. 2007). Goal programming is an extension to mathematical
programming, in which for each, typically conflicting, objective a target (or goal)
is set and deviations from these targets are minimized. In the model, each patient
requires a bed, and a specific treatment by a nurse, doctor, or both. A patient is
delayed if there are no beds available upon arrival, or if the doctors and nurses are
seeing other patients at the moment the patient requires care. For the case studied,
the average LoS is 5 h, and the run time of the model equals a day and a half. The
conclusion is that only two doctors are required, and a third nurse should be standby
in the afternoon and at midnight to cope with peak demand.

In a follow-up study for a larger AMU (currently 58 beds), a simulation study
analyzes 14 scenarios with different numbers of beds (Oddoye et al. 2009). Here,
each resource type (beds, nurses, and doctors) has its own queue, and patients wait
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in these queues until the resource they require is available. Initial targets for each
queue length are fed into a goal programming model, together with targets for total
LoS and the number of beds. The authors minimize weighted positive deviations
from these targets. The model output comprises the resource levels that minimize
patients’ delay at the AMU, and a trade-off between economic objectives, i.e. higher
utilization of resources, and patient- and staff-related objectives is provided.

Another study analyzes a network with one AMU and an aggregated regular
ward, in which patients are transferred between the wards if their care requirements
change (Utley et al. 2003b). The authors use an infinite server queueing network to
determine the probability that the bed occupancy on either ward exceeds a certain
number of beds. Based on this probability, they determine the optimal assignment
of the available beds to either the AMU or the regular ward. In case the total mean
bed occupancy is 85%, and 91% of the patients require acute care, they conclude
that 60–65% of the available beds should be designated for acute care.

For a network comprising an ED, two aggregated wards, and an AMU, one
study determines the blocking probability by invoking a network of Erlang loss
queues in which the AMU both has direct patient arrivals and serves as an overflow
ward (Zonderland et al. 2015). They consider both urgent patients (arriving from
the ED) and elective patients. The hospital is only allowed to reallocate existing
beds from the wards to the AMU. The equivalent random method is used to
analyze the network with overflows, since overflow traffic does not follow a Poisson
distribution. This method approximates the original network by truncating an
infinite server network. The authors conclude that opening an AMU is beneficial
for accommodating urgent patients, but the blocking probability for elective patients
increases significantly.

The advantage of a simulation or goal programming approach over queueing
networks, is that time-dependent arrivals can be incorporated relatively easy.
However, the size of the state space in a goal programming model increases with
the time horizon considered, and will explode when several departments of realistic
sizes are considered. The drawback of simulation models is that they are not easily
applied to other hospitals. The advantage of considering infinite server queues is
that straightforward formulas for the analysis exist in the literature.

5.3.3 Obstetrics Ward

There are several OR models that have been applied to OBS wards and maternity
clinics in the literature. We describe different queueing theory approaches, a
simulation model, a discrete time conditional phase type model, and a discrete time
Markov model.

In research conducted almost 40 years ago, the bed occupancy at an OBS ward
using an infinite server queue is modelled (McClain 1978). The ward may also
admit gynecology patients to achieve higher occupancy rates, but those patients are
transferred to other wards if an OBS patient has no available bed upon arrival. The
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gynecology patients may only be admitted to the OBS ward when the bed census
is lower than a certain threshold. They use an infinite server queue to represent
the situation where patients are placed in unstaffed beds as a temporary measure
when no official beds are available upon arrival. The results are compared for
multiple hospitals when including the national guidelines regarding the admittance
of gynecology patients to OBS wards, and state which thresholds are best for certain
ward sizes.

Another study calculates the probability of delay, e.g. the probability that there
is no bed available upon arrival, using an M=M=s queue (Green and Nguyen 2001).
Key to this model is that arriving patients who find all beds occupied wait at the
clinic until a bed becomes available. During their waiting time, patients are not
treated, as their ‘service’ commences as soon they are placed in a bed. Inputs are the
average LoS found in hospital data and different arrival rates. The authors compare
the probability of delay for different occupancy targets and different arrival rates.

For a maternity clinic consisting of different wards, including a neonatal ward
and ICU, the Queueing Network Analyzer is used (cf. Zonderland and Boucherie
2012, Sect. 2.4.4) to model the bed occupancy (Cochran and Bharti 2006). The
authors evaluate all possible bed arrangements among the wards for the peak arrival
rate of the clinic. The best arrangements are then evaluated in a system with an
inhomogeneous arrival rate in a Discrete Event Simulation. The authors report
that the hospital has implemented some of their recommendations, but instead of
reassigning beds the hospital chose to add 15 beds to the ward with the highest bed
shortage according to the simulation and the queueing model.

To model different types of wards in a network of multiple maternity clinics
independent M=M=s=s queues are also used (Pehlivan et al. 2012). The general
Erlang loss formulas for the blocking probability are then fed into a Mixed Integer
Linear Program to determine strategic bed assignment policies. Each year the clinic
may reassign, open and close beds at the wards and clinics, and each decision entails
certain costs. The authors incorporate long term planning, since it is undesirable that
one year, a ward closes beds and fires nursing staff, while the next year, these beds
are reopened and staff are recalled. The objective of the optimization program is
to minimize the costs over the decision horizon. One of their conclusions is that
efficiency could be gained if resources are transferred among units that experience
different demographic changes (increase or decrease in the number of women
giving birth).

In an attempt to improve the occupancy rate of an obstetric clinic, one study
investigates different scenarios by means of Discrete Event Simulation (Griffin et al.
2012). Inflow and LoS of the model are based on hospital data; patients in the
model follow one of the predefined care pathways through the clinic. The authors
conclude that the care pathway based approach reflects reality better than a transition
probability based approach when they compare the results of both approaches to
hospital data. One of the investigated scenarios includes ‘swing rooms’, which are
rooms that can be used by multiple wards of the clinic, but not at the same time. The
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clinic implemented the swing rooms, which proved useful for balancing utilization
throughout the clinic during bed census peaks.

A discrete time Markov model is developed to mimic a maternity clinic consist-
ing of four wards (Isken et al. 2011). Patients can flow among units, with the routes
patients take depending on their type. The authors define eleven patient types and six
arrival streams (e.g. natural birth or cesarean), and the LoS has an empirical discrete
distribution. All input is derived from hospital data. Since the model assumes infinite
capacity, the authors derive the mean and variance of the bed occupancy at the
units in case no patients would be deferred to other clinics. These can be used to
approximate the bed census by fitting a normal distribution with the same mean and
variance. The normal approximation is included in an Integer Linear Programming
(ILP) optimization model to optimize the scheduled arrivals at the clinic. Several of
the assumptions are validated by means of a Discrete Event Simulation. One of the
conclusions is that scheduling some patients on Saturdays smooths the bed census
significantly. The authors report that their model has supported multiple clinics in
the United States.

The next study focuses more on predicting the LoS of women arriving at a
maternity clinic (Harper et al. 2012). The authors define a phase-type distributed
LoS for two labor types: spontaneous and scheduled. For both types a decision
tree based on patient characteristics, e.g. age and weight, further specifies the LoS
parameters. The prediction of the LoS is then included in a simple continuous time
Markov model to calculate bed occupancy for the labor ward of the clinic, using
a homogeneous arrival rate. The model uses the LoS distribution and transition
probabilities that women experience in each phase of labor. The steady state of the
model reflects the bed census at different phases, which require different wards at
the clinic.

In the literature on OBS wards we found two attempts at increasing bed
occupancy, by either admitting non-OBS patients or by using ‘swing rooms’.
Interestingly, Harper et al. (2012) conclude that the hospital data they obtained does
not show a specific time dependent arrival distribution, while others (Cochran and
Bharti 2006; Griffin et al. 2012; Isken et al. 2011) do model time dependent arrival
rates. Arguably, scheduled arrivals (scheduled cesarean births) likely occur only
during office hours, which implies a time dependent arrival rate. Queueing models
are more difficult to use in a time dependent system, since the simple formulas
for waiting and blocking probability do not hold in a time dependent system.
The drawback of using simulation models is that most models are case-specific,
applicable only to the clinic they were designed for. However, the advantage of a
graphical simulation is that practitioners can easily see the implications of different
interventions, which often implies that results of the research are more easily
implemented into practice. An advantage of the discrete time Markov models is
that these models have the potential to mimic reality better than queueing models,
and are still more general than simulation models. However, a drawback could be a
rapidly increasing state space for average sized clinics consisting of multiple wards.
Others propose an approximation of the bed census by a Normal distribution, and
from their simulation results this seems a reasonable assumption (Isken et al. 2011).
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5.3.4 Weekday Ward

Although most Dutch hospitals have a WDW and the optimization potential is
significant, we were able to find only two references. This may be explained by
the lack of capacity issues in these type of wards. Since all patients are elective,
they can be scheduled at a time that beds are available, and patients that cannot be
admitted will be accommodated on the general ward. Still, we feel that WDWs have
a large logistical potential; large efficiency gains can be achieved if the number of
beds is adequate and patient scheduling is optimized.

Due to the lack of modeling work on WDWs and the sparsity of scheduling work
for this type of ward, we describe below two models for optimizing the patient
scheduling that are relevant to the present discussion.

For a ‘Monday to Friday’ rheumatology clinic, admissions from a waiting list
are optimized (Conforti et al. 2011). An introductory meeting determines a patient’s
medical priority, resource requirement and LoS. LoS is maximally 5 days. Others
develop an ILP, in which they decide for each resource the patient requires (e.g.
beds, diagnostic tests) at which time slot it should be scheduled, if any (Conforti
et al. 2011). Each patient is assigned a weight according to his medical priority
and time spend on the waiting list, while the objective is to maximize the weighted
number of admissions. The authors conclude that the number of available beds is
the bottleneck, and the optimized schedule can accommodate twice the number of
patients compared to the schedule which was composed manually.

The last study on WDWs we found considers an online appointment scheduling
version of the WDW patient scheduling problem: a patient’s request arrives and
should be assigned to a date and time immediately, without knowing future patient
arrivals (Braaksma et al. 2015). The authors develop an Approximate Dynamic
Programming model to obtain the optimal scheduling policy. This technique is
often invoked when Dynamic programming models suffer from ‘the curse of
dimensionality’, and includes aggregating the state space and approximating the
value function.

5.3.5 General Ward

This section discusses models which are not applied to a specific type of ward. In
most of the literature included in this section, general concepts are analyzed that
are applicable to many types of wards, or the studies take multiple departments into
account. Due to this generalization, most literature discussed in this section focuses
on strategic or tactical planning by evaluating capacity dimensioning decisions or
predicting demand.

The models for analyzing general concepts of bed census cover a wide range
of OR techniques and are applied on different levels. The techniques used in the
literature included in this subsection are given in Table 5.4. We will highlight
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Table 5.4 Literature on general wards categorized by applied models

OR model/method References

Algorithms Best et al. (2015), Holm et al. (2013), van Essen et al. (2015)

Markov processes Akkerman and Knip (2004), Gorunescu et al. (2002c),
Keepers and Harrison (2009), Kusters and Groot (1996),
Ramakrishnan et al. (2005), Shonick and Jackson (1973),
Swain et al. (1977), Taylor et al. (2000), Utley et al. (2003a,
2005), Vasilakis et al. (2008)

Mathematical programming Akcali et al. (2006), Bekker and Koeleman (2011), Best
et al. (2015), Li et al. (2009), van Essen et al. (2015)

Queueing theory Bekker and de Bruin (2010), Bekker and Koeleman (2011),
Best et al. (2015), De Bruin et al. (2010), Gallivan and Utley
(2011), Garrison and Pecina (2015), Gorunescu et al.
(2002a,b,c), Green and Nguyen (2001), Griffiths et al.
(2013b), Harrison et al. (2005), Li et al. (2009), Vasilakis
and El-Darzi (2001), Zonderland and Boucherie (2012)

Regression Kumar and Mo (2010)

Simulation Akkerman and Knip (2004), Bagust et al. (1999), Dumas
(1985), El-Darzi et al. (1998), Ferreira et al. (2008),
Gorunescu et al. (2002c), Gunal and Pidd (2010), Harris
(1986), Harrison et al. (2005), Holm et al. (2013), Keepers
and Harrison (2009), Kolker (2013), Kumar (2011), Kumar
and Mo (2010), Landa et al. (2014), Lapierre et al. (1999),
Vanberkel and Blake (2007), Vasilakis and El-Darzi (2001),
Vasilakis et al. (2008), Zhu (2011, 2014)

Stochastic models Kortbeek et al. (2015), Mackay (2001), Vanberkel et al.
(2011), Vasilakis et al. (2008)

Time series Lapierre et al. (1999), Mackay and Lee (2005)

these models and their conclusions below by discussing a selection of the papers
in Table 5.4.

A queueing model is used to determine the bed demand at community level,
focusing on high occupancy rates, while keeping refusal rates of emergency
patients low and waiting lists short (Shonick and Jackson 1973). The bed census
is modeled using an infinite server queue incorporating two classes (elective and
emergency) of arrival streams. This model elaborates on earlier research applying
the infinite server queue by adding a threshold parameter .B/ that blocks elective
admissions if the occupancy rate is higher than or equal to B, in order to balance
the elective and emergency arrival streams. This model provides policy makers
useful insights in the relation between bed census, length of the waiting list and
emergency refusals. Another queueing model incorporates predictable fluctuations
in the average number of arrivals (Bekker and de Bruin 2010). This time-dependent
queue, an M.t/=H=s=s model (where M.t/ indicates a time-dependent Poisson
process, see the Appendix for information on the notation), is evaluated by using
approximations based on the infinite server queue. It is shown that daily fluctuations
have limited impact on the bed census, whereas weekly patterns do have a significant
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impact on both the bed census and the number of refused admissions. Finally, the
authors present a method to determine the required number of beds across the week.
An M=PH=s queue is used to determine the optimal bed census for a hospital, in
which the LoS is phase-type distributed (which is denoted by the abbreviation PH)
(Gorunescu et al. 2002a). De Bruin et al. (2010) employ the Erlang loss model
(M=G=s=s queue) to relate the blocking probability to the occupancy. Additionally,
a broad introduction of various applications of queueing networks in healthcare is
also available (Zonderland and Boucherie 2012).

Several papers use a discrete Markovian approach to predict the short term bed
census. These predictions are mainly based on the current bed census at day t, the
expected elective and emergency admissions, and the expected discharges at day
tCj. In these models the LoS is often empirically distributed. The census distribution
is approximated from their Markov model by a Normal distribution (Utley et al.
2003a), and shows that this relatively easy approximation performs satisfactory
when applied to hospital wards. Markov models are also applied to obtain the distri-
bution of the number of patients in each phase of a care pathway, for geriatric (Taylor
et al. 2000; Gorunescu et al. 2002c) or stroke patients (Vasilakis et al. 2008), in order
to determine the required resources in each phase of the pathway.

Simulation is used by Dumas (1985) to analyze bed allocation and usage policies
for all beds in a hospital based on hospitalizations days (e.g. 24 h bed occupancy)
per specialty, average daily bed census at a certain time, bed occupancy over a
time period, patient misplacements and annual misplaced patient-days. Another
simulation analyzes the so called ‘winter bed crisis’, a yearly bed shortage during
mid winter (Vasilakis and El-Darzi 2001). The results show that discharge delays
during mid winter were the main reason for high bed census. The following study
analyzes waiting times for surgical procedures by means of simulation (Vanberkel
and Blake 2007). To balance emergency and elective admissions for the available
bed capacity another simulation study was performed (Landa et al. 2014). The last
simulation study focusses on the overflows between wards (in which patients are
transferred to another ward because the designated ward is fully occupied), and
find that the occupancy of wards is a good predictor for the frequency of overflows
(Keepers and Harrison 2009).

Time series models are also used to predict bed census demand. An hourly bed
sensus prediction was modelled with a time series model (Lapierre et al. 1999). The
results are used to reallocate beds between different ward types such as medical,
surgical or obstetric. A different but related approach involves the use of mixed
exponential equations to obtain the probability distribution of patients being in
different phases of their care pathways. In Mackay (2001) and Vasilakis et al. (2008)
the model is applied to mimic bed census, allocating emergency admissions on
both a regional and hospital level. Results show that this type of model mimics
the bed occupancy accurately. The first study analyzes the accuracy of these mixed
exponential equations based on a case study, and compare different equations by
evaluating the effect of adding more parameters (Mackay and Lee 2005). And the
latter study relates the blueprint schedule of the OT, in which each subspecialty



5 OR for Occupancy Modeling at Hospital Wards and Its Integration into Practice 119

gets a fraction of the available OT time, to the hourly bed census distribution at the
postoperative wards (Kortbeek et al. 2015).

A nonlinear mixed integer mathematical programming model is used to
(re)allocate the number of available beds among different hospital services over
a finite planning horizon (Akcali et al. 2006). The decisions are based on patients’
waiting time before admission and budget limits. A similar technique is employed,
where integer programming assists in clustering the clinical departments and
assigning these clustered departments to available wards (van Essen et al. 2015).
These assignments are such that capacity is sufficient to guarantee a maximum
blocking probability.

Concluding, the choice for a certain modeling technique depends on the desired
output. Queueing theory is suitable for determining the capacity or census distribu-
tion of a single ward, preferably with mostly unscheduled patient admissions, when
a maximum blocking probability or target occupancy must be achieved. Markov
models and time series models are accurate for determining the census distribution
or certain percentiles, but might be tedious to analyze as the state space may become
large. Simulation models can be developed as detailed or macro-leveled as desired,
but are generally suitable for obtaining average performance measures. Mathemati-
cal programming can be used to optimize the reallocation of beds to wards.

5.4 Illustrations of OR Model Use

In the previous section we reviewed several OR models applied to different types of
wards. In this section we provide several detailed examples of OR models applied
to an ICU, OBS, AMU and WDW. All examples are based on hospital data, and
illustrate the effectiveness of OR models for certain ward types. The anonymized
data used for the examples is obtained from our affiliated hospitals.

5.4.1 ICU Case Study

In this case study we model the bed census of an ICU of a medium-sized Dutch
teaching hospital (700 beds in total). The performance measures of interest are the
bed occupancy and the probability that the bed census exceeds 40 beds (the current
ICU capacity). Queueing models are therefore appropriate to apply to this case
study. Hospital data shows that the number of arriving patients per day is Poisson
distributed, which was expected as most patients at an ICU are urgent.

Since patients at an ICU require intensive care, deferring patients or letting them
wait for a bed is not a viable solution. We therefore model the ICU with the M=G=1

queue, an infinity capacity queue, so we model the system if all patients would be
accepted at the ICU. For tractability, we assume that admissions arrive according to
a Poisson process.
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Fig. 5.2 Bed census distribution for the ICU case study

Let � denote the arrival rate per day, 1=� the average LoS in days, and � D ��

the load of the system. In an infinite server model the number of patients at the ward
at any point in time has a Poisson distribution with parameter � (c.f. Winston 2003).
Therefore, the probability that n beds are occupied is given by:

pn D
�n

nŠ
e��: (5.5)

These probabilities are independent of the shape of the LoS distribution of patients,
which is convenient for modeling an ICU as the LoS distribution at ICUs typically
has a long tail, so the LoS has a high variance. In this case study the variance of the
LoS is larger than the average LoS squared.

For the ICU of this case study we find from the data that the average daily arrival
rate is 2.18 patients per day, and the average LoS is 14.41 days. Therefore, � D 31:4.
Comparing the bed census from hospital data and the queueing model, see Fig. 5.2,
we conclude that the model underestimates the probability of an ‘average census’
(around 32 beds) and overestimates the probability of most other census values.
From the hospital data the probability that the bed census exceeds 40 equals 4.1%,
while from the model this is 5.6%.

Note that in the hospital data, the bed census should not exceed the actual
capacity, as this represents the realized occupancy. The fact that the census does
exceed the capacity at some points in time, might be due to registration errors, for
example when a nurse fills out all discharges at the end of the shift instead of the
actual time of discharge or only the first ward where a patient is admitted throughout
his entire stay is registered in the data (which was the case in this data). Additionally,
the actual demand for beds is hard to obtain, since intensivists typically transfer a
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relatively healthy patient to another ward in case of bed shortages. This complicates
the validity of the model for situations close to full capacity.

With the results of this model, hospital management can gain insight about the
current performance of the ICU regarding the probability that bed census exceeds
capacity and occupancy. Also, the effect of management decisions can be analyzed
with this model, for instance the effects of bed expansion and downscaling, or an
increasing average LoS through a different patient mix.

5.4.2 OBS Case Study

In this case study we model the bed census of an OBS with 24 beds. The
performance measures of interest are the bed occupancy and the probability that
arriving patients have to be deferred because all beds are occupied. A queueing
model is therefore an appropriate choice. Hospital data shows that the number
of arriving patients per day is Poisson distributed, which was expected as most
patients at an OBS are unscheduled. The hospital data shows that the arrival rate
is homogeneous over the hours, except for 8:00 am; at that time most of the elective
patients at the ward are admitted. For ease of modeling, we assume the arrival rate
to be constant throughout the day and week. Again, we assume that admissions
arrive according to a Poisson process. The performance measures of interest are
best obtained by using a queue with finite capacity: an M=G=s=s queue, also known
as the ‘(Erlang) loss queue’.

Let � denote the arrival rate per day, 1=� the average LoS in days, and � D �=�

the average load. In the loss queue the probability that there are n patients present at
a ward with capacity s beds, is given by:

pn D
�n=nŠ

Ps
iD0 �i=iŠ

: (5.6)

These probabilities are independent of the LoS distribution of patients, which is in
this case convenient as the LoS distribution at this OBS has a long tail.

For the OBS of this case study we find from the data that the average daily
arrival rate is 9.64 patients, and the average LoS is 1.14 days. Therefore, � D 10:96.
Comparing the bed census from hospital data and the queueing model, see Fig. 5.3,
we conclude that the model predicts the occupancy quite accurately. The expected
number of occupied beds is 10.9 according to the model, and 11.0 according to the
hospital data. From the model we can determine that the probability the ward is fully
occupied equals 0.025%. As the hospital does not register the number of deferred
patients, we cannot verify this result.

The probability of a full ward is useful management information, since then
hospital management can determine if the available capacity is still sufficient. Also
this model can be used to analyze the effects on blocking probability and occupancy
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Fig. 5.3 Bed census distribution for the OBS case study

by changing the capacity of the ward. This is in fact easy to do, as there is a simple
recursion between the Erlang loss probability for wards differing by one bed (i.e,
server).

5.4.3 AMU Case Study

In this case study we consider a medium-sized Dutch teaching hospital (700 beds)
that experiences difficulties with allocating urgent medical patients to inpatient beds,
especially outside office hours. Typically, medical patients experience a longer ED
LoS than surgical patients, partly due to a more complex diagnostic trajectory which
involves observation of the patient and waiting until test results are available. As a
result, EDs may become congested with this kind of medical patients that are under
observation. Therefore, hospital management is considering opening an AMU to
support the ED and medical departments. The purpose of the AMU would be faster
admittance of ED patients that require observation or short hospitalization.

In preparation of the analysis, the doctors of the hospital have provided a list of
diagnoses that can be admitted to the AMU. With this list the number of patients
that would be admitted to the AMU if it were opened, can be estimated. Upon
AMU discharge, patients either leave the hospital, or are admitted to an appropriate
inpatient ward. The doctors agreed that discharges from the AMU would only occur
during extended office hours (8:00 am–8:00 pm).

The performance measures of interest are the bed occupancy and blocking
probability. Queueing models are therefore appropriate to apply to this case study.



5 OR for Occupancy Modeling at Hospital Wards and Its Integration into Practice 123

As all patients are urgent and arrival rates at an ED are strongly time-dependent, we
model the AMU by means of an Erlang queueing model with time-dependent arrival
and service rates: an M.t/=M.t/=s=s queue. Here, Mt denotes a time-dependent
Poisson distribution, and s denotes the number of beds at the AMU. In a non-
stationary loss queue, the limiting distribution for the number of patients in the
system is time-dependent and can only be approximated. Several approximation
methods exists, for example the Modified Offered Load (MOL) algorithm (Massey
and Whitt 1994). Also in this case for tractability, we assume a Poisson arrival
process.

The MOL algorithm approximates the load of the M.t/=M.t/=s=s queue by
truncating the state space of an equivalent system with infinite number of servers.
Therefore the probability of having n beds occupied at time t at a ward with s beds
in total, is given by:

Pn.t/ �
�.t/n=nŠ

Ps
iD0 �.t/i=iŠ

; (5.7)

with Pn.t/ the limiting probability of n patients in the system at time t, and �.t/ the
time-dependent equivalent of � D �=� satisfying

d

dt
�.t/ D �.t/ � �.t/�.t/:

Here �.t/ is the time-dependent arrival rate, and �.t/ is the time dependent
departure rate of the AMU. The MOL approximation provides good results when
the system load is moderate. In systems with high load the blocking probability is
underestimated.

We obtain the time-dependent limiting probabilities of the number of occupied
beds for the hospital by employing the MOL algorithm, and use these probabilities
to obtain the expected bed occupancy and blocking probability. We investigate two
scenarios: admitting new patients 24 h per day, or only during night time. Input for
the model are the time-dependent arrival rate obtained from hospital data, depicted
in Fig. 5.4, and time-dependent service rate found in hospital data. The arrival rates
are adjusted to reflect the investigated scenarios. Doctors defined the patient types
eligible for admitting to the AMU, and data showed that this concerned 26% of the
urgent medical patients. For the hospital that commissioned this case study, opening
an AMU is not warranted, as the bed occupancy would be low while the blocking
probability would be high, as seen in Table 5.5. The number of patients that can
be admitted to the AMU is not enough to achieve an acceptable bed occupancy and
blocking probability simultaneously. Based on this results, the managers and doctors
of this hospital decided not to open an AMU, and investigated other ways to reduce
the ED crowding.
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Fig. 5.4 Arrival rate per hour for urgent medical patients

Table 5.5 Results MOL algorithm, ‘Occupancy’ is average hourly occupancy

24 h/day admissions Only admissions during nights

#beds Occupancy Block. prob. #beds Occupancy Block. prob.

5 82% 46% 3 61% 37%

8 73% 20% 4 55% 21%

10 66% 9% 6 43% 5%

12 58% 3%

5.4.4 WDW Case Study

In this case study we optimize patient admissions to a WDW, aiming to minimize
the number of beds necessary to accommodate all patients at the ward. The desired
model output is both the minimum number of beds required, and a cyclic blueprint
patient admission schedule. This blueprint schedule specifies for each day of the
week how many of each patient type may be admitted to the ward, and there should
be at least enough capacity to accommodate the average number of arriving patients.

The WDW of this case study primarily accommodates outpatients (91%), who
do not stay overnight, but typically sleep off their anesthetics after a simple surgery.
We assume that the cycle length is 110 h, from Monday 7:30 am until Friday 9:30
pm, as the ward closes in the weekend. Note that in this hospital, patients may be
discharged after office hours. We aggregate the possible diagnoses at the WDW
according to their LoS, and obtain the patient types from hospital data as given in
Table 5.6.
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Table 5.6 Patient types at
WDW case study

Type description LoS (h) Av.no. patients/week

LoS < 0:5 day 5 72

0.5 day < LoS < 1 day 24 47

1 day < LoS < 1.5 day 36 8

1.5 day < LoS < 2 days 48 3

Table 5.7 Possible admission patterns WDW case study, with per LoS type the number of patients
in each pattern

Pattern ! 1 2 3 4 5 6 7 8 9 10

LoS #

5 2 2 2 15 5 10 6 8 5

24 1 4 1 1 3

36 2 1 1 2 1

48 2 1 1 1

Sum LoS 106 106 106 75 108 109 98 102 100 97

We use an integer linear mathematical programming (ILP) model to solve this
problem, which is known as the ‘Cutting stock problem’ (Roelofs and Bisschop
2012). We assume each bed at the WDW is available for 110 h. We define possible
‘admission patterns’: a combination of patients that could be placed consecutively
in one bed within the opening hours of the WDW. For this case study we manually
defined these patterns (see Table 5.7) as implementing too many patterns would not
be practical. Note that for patterns 4, 7, 9, and 10, more patients with LoSs of 5 h
could be added; we assumed the maximum number of admissions per bed per day
is three, to avoid admitting patients outside office hours. The mathematical program
determines the minimum number of beds necessary to accommodate all patients.

For the ILP model we need to define sets, parameters, variables, constraints, and
an objective. Let p D 1; : : : ; 11 be the set of patterns, and t D 1; 2; 3; 4 the set of
patient types. The parameters of the model are the demand for each patient type,
Dt, and the number of patients of each type in each pattern, Atp. Dt is defined in
the last column of Table 5.6, and Atp in Table 5.7. Define the decision variables of
the ILP by xp, the number of beds with admission pattern p. The objective is to
minimize the sum of all xp, while the constraints should reflect that all patients can
be accommodated. The ILP is given by:

min
X

p

xp

subject to W

(5.8)

X

p

Atpxp � Dt for all t (5.9)

xp integer for all p: (5.10)
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Table 5.8 Solution of the
ILP for the WDW case study

Pattern 2 3 5 9 10 11

No. beds 2 6 3 1 3 4

The ILP can be solved with many commercially available solvers, and we chose
to use Microsoft Excel®. The patterns that should be used at least once and the total
number of required beds are given in Table 5.8. Using this schedule the department
has slots for 87 patients with LoS maximally 5 h, and precisely enough slots for
the average number of the other patient types. In total 19 beds should be enough to
accommodate all patients at the WDW.

The patterns are quite flexible to use in practice as the exact sequence of the
patients is not specified. During admission scheduling, the WDW has to take into
account that the patients should be discharged before the ward closes on Fridays.

5.5 Implemented OR Results

There exist many papers on OR models relating to different types of wards. It
appears that the bed census and/or occupancy can be modeled quite accurately.
However, actual use of the models in practice seems scarce; only a few of the
articles reviewed for this chapter report on actual implementation results, or use
of the models in practice. A widely used quote is: ‘the final test of a theory is its
capacity to solve the problems which originated it’ (Dantzig 1963). In this section
we report on the problems faced with while implementing research results, and the
lessons learned from the implemented research included in this chapter.

The most important lesson from the literature is that all stakeholders (not
necessarily only the problem owners) should be involved throughout the entire
process to increase the likelihood of implementation (Harper and Pitt 2004; Cochran
and Bharti 2006; Dumas 1985; Harper and Shahani 2002; Harris 1986; Troy
and Rosenberg 2009). In the phase of defining the problem, the stakeholders
determine the scope of the research, relevant performance measures, and the type
of output desired, for example a new admission schedule or a decision support
system. When data needs to be collected for the project, stakeholders are important
for retrieving data, defining the in- and exclusion criteria, and the validation of
the data. Throughout the modeling phase of the project, the stakeholders are
involved in several iterations of presenting and discussing preliminary results. In
the last research phase, stakeholders and/or hospital management have to decide
on the recommendations they want to implement, before the actual implementation
can begin.

Model input determines to a large extent the outcome and the acceptance of
the results. On several occasions the already available hospital data appeared to
be insufficient to provide all necessary input for the models, or the database was
incomplete (Kusters and Groot 1996; Lapierre et al. 1999). Hospital data is often
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inconsistent or partly missing across different databases; financial data does not
always match (raw) admission and discharge data. Depending on the goals of
the research, different databases may be used. Even in times of increasing use
of technology, we cannot trust the data to reflect reality completely. The entry of
admission and discharge data, for example, is in many hospitals still a manual task,
often performed when nurses have relatively low workload or at the end of a shift.
Additionally, it is important to realize that all hospital data is the realized process
and most hospitals do not register deferred or denied patients, so actual patient
demand is often hard to obtain. Knowing the ins and outs of the healthcare process
is also essential in reading the data; for example, for an ICU, the LoS is affected
by the bed occupancy since intensivists often transfer the healthiest patient to free
a bed for a new patient in case all beds are occupied. A careful sensitivity analysis
should be performed to ensure that the best possible scenario for implementation is
included in the analysis.

Even when the analysis shows that one of the investigated scenarios is clearly
superior to the others, a hospital may decide to implement (slightly) different
interventions than those recommended. Discussions during projects often stimulate
hospital staff and management to search for further possibilities for improve-
ments (Dumas 1985; Griffin et al. 2012). During the project, a thorough robustness
analysis should be performed to ensure that modified recommendations also
improve the hospital’s processes, and to avoid undesired outcomes and side-effects
of the interventions. If possible, the interventions the hospital chooses to implement
should be evaluated using the developed models.

There are two types in the implementation of research results: some hospitals
implement the model, and some implement the management decision based on the
results of the model. When a hospital is using the actual model, a researcher or third
party develops a decision support tool that can either be included in the hospital’s
current software or used separately. The tool should match its user specific settings,
or be flexible enough to be adapted to them (Kusters and Groot 1996; Swain et al.
1977). Additionally, users should be trained and supported in working with the
model to ensure the continuation of the model’s use (Harper and Shahani 2002;
Swain et al. 1977).

In some projects measuring the effects of the implementations may be difficult.
Hospitals may decide to implement many different interventions at the same
time (Griffin et al. 2012; Kusters and Groot 1996), making it impossible to
distinguish the precise impact of a particular intervention. The environment in
which a ward operates may change, for example when two hospitals merge or the
hospital districts are redefined (Holm et al. 2013). For prospective studies it may
be unethical to measure the effect of the intervention via a randomized controlled
trial, for instance: if opening an AMU appears to be the best scenario for patients,
a hospital cannot set up an experiment in which one group is treated in an AMU
and a control group is not. Additionally, it may also be too costly or complicated
to operate a process in two different ways in parallel. Another difficulty analyzing
the practical effects of an implementation is the implication of default behavior by
stakeholders in models. Analyzing a system or a population, models optimize the
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overall performance, while, for instance, care professionals do not act on a system
level but act on individual patients. So the best option for an individual patient
could be suboptimal (or even worse) for the system. Therefore the results of a
modeling exercise should always be accompanied by its implications for practice.
When measuring the interventions’ practical effects, one should take the behavior
of individuals into account.

In summary, the stakeholders play a significant role in the likelihood of imple-
mentation. Additionally, researchers should be thorough in their data collection,
sensitivity and robustness analyses, and implementation support. Additional infor-
mation on project life cycles for general healthcare applications is found in Harper
and Pitt (2004).

5.6 Challenges and Directions for Further Research

In this chapter we have discussed various OR techniques applied to different types of
wards. We elaborated on to what extent these models are implemented into practice.
Some models can be applied to more than one ward type and are often used in
literature. We will summarize these general models, and discuss implementation
and opportunities for future research.

The most commonly applied OR techniques are queueing theory and simulation.
The strength of queueing models is that straightforward formulas provide quick
insights in the trade-off between occupancy and blocking probability, delay, or over-
flow. Simulation models can incorporate more details, but require more development
time and the results are often difficult to generalize to other wards or hospitals.
Using optimization models, like dynamic or mathematical programming, to analyze
and optimize hospital wards seems a promising direction for future research, as
literature in this direction is relatively sparse.

When it comes down to integrating the OR models into practice there is little
research available. Also, the literature reviewed in this chapter does not provide
much insight to what extent these models are actually implemented and/or still used
in practice. This may be explained by the fact that implementation requires different
competences and techniques than solely OR. We are convinced that this final and for
practitioners most important phase of an OR project should receive more attention
both during OR projects and in OR literature. From our own experience we know it
can be challenging to make the transition from model to practice, just as doing so the
other way around. Focusing on factors for successful implementation we composed
the following, non-inexhaustible, list:

– Stakeholders perceive a problem
– Stakeholders are willing to and prepared for change
– The chain of command is involved
– Stakeholders are involved with every phase of the analysis
– The team defines a clear set of key performance indicators
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– The team thoroughly executes data collection, model verification and validation
– The team explains practical implications of model to stakeholders
– The team takes pre and post outcome samples on the key performance indicators

in order to objectively compare the effects of the implemented model in practice.

Based on the number of references per type of ward, it is also clear where the
opportunities lie for OR research on wards: AMUs, OBS, and WDWs. We are
confidently optimistic that this contribution guides both researchers and health care
professionals through the possibilities and opportunities OR offers for wards taking
trade-offs between outcomes into account.
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Appendix: OR Model Types

As background we introduce here the commonly used OR models for analyzing the
performance of hospital wards. The model categories are based on the ones applied
in the ORchestra database (Hulshof et al. 2011). The ORchestra database, which
distinguishes the following categories: algorithms, mathematical programming,
dynamic programming, regression, time series, Markov models, stochastic models,
queueing theory, and simulation. We define each of the OR techniques on a basic
level, and provide introductory examples.

In this section we describe the more commonly used OR models in the context of
a hospital ward setting: whereas OR researchers address ‘servers’ we use the term
‘beds’, and the ‘customers’ are referred to as ‘patients’.

Algorithms Any procedure that follows predefined steps may be called an algo-
rithm. Algorithms are often used for solving optimization problems, and are either
based upon an exact mathematical analysis, or upon some heuristic rationale. Exact
algorithms return an optimal solution but have significant long runtime, while
heuristics approximate the optimal solution to decrease the runtime.

Algorithms are often applied to scheduling problems. The most simple illustra-
tion of a scheduling heuristic is the ‘greedy algorithm’, which prescribes that we
schedule every patient at the earliest available bed or appointment slot. The ‘earliest
due date first’ heuristic schedules the patients from the waiting list at the first
available resource according to ascending maximum access times. Exact algorithms
are typically more complicated than heuristics, so heuristics are often preferred
for practical implementations. For more information on scheduling algorithms, the
reader is referred to the book of Pinedo (2015).

Mathematical Programming Mathematical programming is the name given to
a variety of related fields with a common form: the optimization of one or more
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objectives subject to a set of limitations, called constraints. These fields include
(non-)linear (integer) programming, stochastic programming, and network flow
problems. The most commonly used of these is the field of linear programming,
in which the objective function and the constraints are all linear functions of the
decision variables, which can be stated as follows. One seeks to optimize (that is,
maximize or minimize) a single objective, which is a linear function of a vector x
of decision variables (that is, variables whose values we have some control over).
The solution space of x is subject to a series of linear constraints, which state the
operational limitations under which the system must operate. In matrix form, a linear
program to maximize the objective can be stated as:

max z D cx

subject to W Ax � b

x � 0:

Here, c is a row vector containing the reward rates per unit increase in a particular
decision variable, A is the matrix whose rows contain the coefficients for the
decision variables in the various constraints, and b is the column vector of right
hand sides representing the limits for these various constraints.

A more practical example of this model is given in Sect. 5.4.4. For more
information, see Winston (2003). A related yet distinct area frequently used in health
care applications is the field of dynamic programming, which we consider next.

Dynamic Programming All sequential decision making problems are aggregated
in the dynamic programming category. This type of models break the overall
decision problem into a series of more easily solved sequential problems, consisting
of the different phases at which a decision maker should choose one of the available
actions. In each phase the ‘system’ under consideration is in a certain state, where
the state contains enough information to decide which action would result in the
best possible outcome for the system. The chosen action may result in direct costs,
and determines the state of the system in the next phase, either with certainty or
known likelihood. This can be stated more formally as follows: denote the phases
by t, the states by i, the possible actions by a, the direct costs associated with action
a when in state i by c.i; a/, the probability to go from state i to j when action a is
chosen by p.i; jja/, and the value function Vn.i/. A dynamic programming model
may minimize costs, or maximize rewards. A dynamic programming model (here
stated with the first objective) is optimized backwards by the recursion:

Vn.i/ D min
a

8
<

:
c.i; a/ C

X

j

p.j; ija/VnC1.j/

9
=

;
:

Markov decision models are related to dynamic programming models. However,
whereas dynamic programming works backwards in time (from phase n C 1 to n),
Markov decision problems are solved forwards in time (from phase n to n C 1).
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Dynamic programming models are therefore more suitable for problems with a
given deadline, where Markov decision theory is often applied to problems with
infinite horizon. For more information, see Winston (2003).

Regression and Time Series Forecasting methods are used to forecast future
values of a certain variable (or variables) based on historical data. Time series
models such as ‘moving average’ and ‘exponential smoothing’ take a certain number
of measurements as input for the forecast. Suppose we want to estimate xt, the
average occupancy of a ward on day t. We have data on the average occupancy
for each day 1; 2; : : : ; t � 1. The moving average model and exponential smoothing
models are given by:

xt D

Pt�1
iDt�N xi

N
; At D ˛xt C .1 � ˛/At�1

with N the number of days used to calculate the moving average, to be determined
by the user, At be the smoothed average of the average occupancy at day t, with
A0 D x0 as starting value, and 0 < ˛ < 1 the smoothing factor.

Regression analysis estimates the relationship between the dependent variable
that we wish to forecast, xt, and (multiple) independent variables (yt). The linear
regression model is the most simple, and is described by:

xt D ˇ0 C ˇ1yt C �t:

Here, ˇ0; ˇ1 are coefficients that set the relationship between x and y, and �t is an
error term. The coefficients ˇ0 and ˇ1 should be estimated to best fit the historic
occupancy, and may be determined through the least squares method.

Statistics packages such as SPSS® and Minitab® contain most forecasting tools,
and also Microsoft Excel® contains formulas for forecasting. For more information,
see Winston (2003) and Hamilton (1994).

Markov and Stochastic Models A stochastic model is a description of the relation
between random variables, whose values are not known with certainty beforehand.
A random variable measured at discrete time points, e.g. each day at 10:00, is called
a discrete-time random variable. A continuous time random variable is measured
continuously, for example a patient’s heart rate or temperature.

Markov models are a specific type of stochastic model, and have the property that
the next value in the stochastic process is independent of its past, given its current
value. An example of a Markov model is the outcome of a coin toss. We use the
term ‘stochastic model’ for all stochastic models that do not have this property and
do not fall into one of the other model categories. For more information, see Ross
(2007) and Winston (2003).

Queueing Theory Queueing theory is the study of waiting lines in production
systems. These systems consist of a waiting line and one or multiple servers, and
are defined by an arrival and service process, see Fig. 5.5.
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Fig. 5.5 A simple queue

DepartureArrival Service

Waiting line

A short way of referring to queues is by Kendall’s notation: A=B=s.=c/, where A
and B denote the arrival and service process, respectively, s is the number of servers,
and c is an optional argument that denotes the number of places in the waiting line
if this number is limited. Most queueing models assume Poisson arrivals, for which
A D M. The service time distribution may be deterministic (D), exponential (E) or
general (G). Typical performance measures that may be evaluated using queueing
models are blocking probabilities, occupancy, throughput, patient waiting times, and
bed idle times. Section 5.4 contains several examples of queueing models.

The QTS tool developed by Gross et al. (2008) is convenient for obtaining
performance measures for most queueing (network) models with homogeneous
arrival and service rates. For additional basic information on the queueing models
described in this section, see Zonderland and Boucherie (2012) and Winston (2003).

Simulation Simulation models are used to mimic the evolution of a system over
time, and consist of a list of what-if rules and procedures. We distinguish among
discrete event simulation, Monte Carlo simulation, and system dynamics models.
Discrete event simulations are event-driven routines, in which an event list is
kept that contains the time stamps and types of events that will occur on those
time stamps. With Monte Carlo simulation, repeated sampling from a probability
distribution is carried out to obtain information on relevant performance measures.
System dynamics models focus on the way different entities of the model influence
each other, which relations are captured in a system of coupled, often non-linear
differential equations.

Different simulation software packages exist, with different requirements regard-
ing the user’s programming abilities. Graphical simulation tools can often support
the model validation process as the practitioners can see how the patients for
example walk through the clinic. A drawback of graphical simulation models is
that computation speed is reduced compared to non-graphical simulation packages.

For more information on simulation models, see Law (2007) and Winston (2003).
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