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Mam, weet je nog





Voorwoord

Weet je nog, Maartje? Toen je mij bijna tien geleden de vraag stelde of promoveren
iets voor mij zou zijn? Het antwoord was destijds resoluut ‘Nee’. Ik dacht dat ik
mijzelf, tijdens het onderzoek voor mijn Master thesis, voldoende had uitgedaagd op
het gebied van onderzoek. Wetende dat ik hierna zou gaan werken in een academische
omgeving, namenlijk het Leids Universitair Medisch Centrum. Na het afronden van
mijn Master Technische Bedrijfskunde op de Universiteit Twente, had ik dan ook niet
verwacht ooit nog een carrièrestap te maken in het onderzoek. Tijdens mijn eerste
jaren als adviseur zorglogistiek binnen Divisie 2 in het LUMC, bleef ik literatuur lezen
over de onderwerpen die voor mijn werk actueel waren. Zodoende bleef ik op de hoogte
van recente ontwikkelingen binnen het onderzoeksgebied van, wat tegenwoordig beter
bekend is als, integraal capaciteitsmanagement en capaciteitsplanning.

Terugkijkend ben ik trots op dit proefschrift en wat ik heb bereikt. Zoals je in een
ziekenhuis nooit iets in isolement doet, geldt dit ook voor een proefschrift. Zonder de
ondersteuning en inzet van velen had ik dit nooit kunnen bereiken. Ik ben dankbaar
voor de kansen die mij geboden zijn de afgelopen 5 jaar, de ervaringen die ik op heb
kunnen doen en de samenwerkingen die heb ik kunnen opzetten. Zonder tekort te
doen aan mijn dankbaarheid voor anderen, wil ik een aantal mensen in het bijzonder
bedanken.

Allereerst wil ik mijn copromotor, Maartje, bedanken. Toen ik aan de vooravond
van mijn promotietraject nog twijfels had of dit wel iets voor mij was, heb je mij eerlijk
verteld wat jouw eigen promotie voor jou heeft betekend en wat het van een promo-
vendus vraagt. Jouw oprechte verhaal heeft bij mij uiteindelijk de doorslag gegeven.
Je hebt mij echt op weg geholpen en was altijd bereikbaar. Jouw nuchtere en rustige
persoonlijkheid, ervaring en kennis, en het oneindige vertrouwen in mij, hebben mij
hier nu gebracht. Ook tijdens ‘de pauze’ van mijn onderzoek vanwege de vroegge-
boorte van mijn tweeling, bleef je altijd contact houden. Waar de rode draad in mijn
onderzoek op sommige momenten lastig te vinden was, is deze bij onze samenwerking
duidelijk terug te zien. Je hebt mij begeleid tijdens mijn Master thesis en nu ook
tijdens mijn promotieonderzoek. Ik waardeer onze samenwerking en vriendschap zeer.
Ik weet dat we elkaar zullen blijven opzoeken.

Richard, mijn eerste ervaring met jou was tijdens het vak Stochastische Modellen
in Operations Management. Als TBK-er waren jouw colleges een nieuwe ervaring.
Onze eerste kennismaking ter voorbereiding op het promotietraject heeft wederom
een nieuwe ervaring opgeleverd. Aan het begin van het traject moesten wij beiden



wennen aan de parttime opzet. Gelukkig is er altijd vertrouwen geweest in een goede
afloop. Ik heb mij gewaardeerd gevoeld binnen de CHOIR groep en daar heb jij een
grote rol in gespeeld. Je directe communicatie past mij erg goed. Je kritische blik en
scherpe, maar duidelijke feedback vind ik uitermate prettig. Je hebt mij uitgedaagd en
richting gegeven om zodoende steeds een stapje verder in de juiste richting te zetten.
Ook je humor waardeer ik, ik heb vaak met je lachen!

Erwin, jouw colleges bevestigden mijn keuze om logistieke kennis in de zorg toe
te gaan passen. De ORAHS congressen die we samen hebben bezocht gaven ruimte
om gezamenlijk onze visie op ICM te vormen en jou en je gezin beter te leren kennen.
Onze samenwerking was aan het eind zeer intensief en je hebt mij toen ook meermaals
gevraagd of ik het nog wel zag zitten? En dat we toch echt stappen aan het maken
waren! Ik heb toen heel koeltjes aangeven dat ik wel voor grotere uitdagingen heb
gestaan. Je feedback op en gesprekken over ICM op onmogelijke tijdstippen van de
dag en dagen van de week hebben mij gepusht dit uitdagende onderwerp verder te
brengen. Dat je zelfs je vishengel weer opborg om met mij te discussieren over ICM
spreekt voor jou. Ik ben trots op onze samenwerking en de passie die we delen voor
ICM.

Ik wil hierbij ook mijn dank overbrengen naar mijn commissieleden, Nico van Dijk,
Johann Hurink, Martin Schalij, Jouke Tamsma en Taco van der Vaart, voor de tijd
die jullie genomen hebben voor de waardevolle feedback op mijn dissertatie en de ver-
dediging.

De samenwerkingen die hebben geleid tot de hoofdstukken van dit proefschrift, ben
ik ook dank verschuldigd. Ik zie samenwerkingen als versterking tussen twee partijen
en daar zijn de hoofdstukken van dit proefschrift een voorbeeld van.

Voor hoofdstuk 1 bedank ik Maartje, Erwin en Richard. Het was wat persen en
malen en schuiven met secties, maar het staat.

Hoofdstuk 2 is een mooie symbiose tussen ons geweest, Erwin. In het huidige
tijdperk van werken op de zolderkamers, door middel van korte intensieve sprints
en veel mooie discussies over uiteenlopende onderwerpen is dit hoofdstuk tot stand
gekomen. Uiteindelijk ligt er nu een goede basis voor verder onderzoek naar ICM. Je
bent nog lang niet van mij af.

MaartjeV, je had bij de start van ons eerste gezamenlijke boekhoofdstuk waar-
schijnlijk een andere werkverdeling in gedachte. Ik prijs je discipline en kennis. Ons
eerste boekhoofdstuk en het hoofdstuk voor het CHOIR boek, heeft gezamenlijk geleid
tot hoofdstuk 3 van mijn proefschrift. Onze samenwerking vond ik prettig en inspi-
rerend. Dat we ook nog korte tijd collega’s zijn geweest, heeft onze samenwerking en
vriendschap nog verder versterkt. Je mag trots zijn op de dappere strijd die je nu
aangaat.

Hoofdstuk 4 is mijn eerste publicatie. Hiervoor bedank ik Luuk, Paul, Jaap, Ton,
Job en Wilbert. Jullie input heeft een vliegende start gegeven aan mijn onderzoek.

Mijke, dankjewel voor de succesvolle samenwerking bij hoofdstuk 5. Jouw Master
thesis heeft geleid tot dit prachtige onderzoek. Ik ben ook trots dat je je kennis en
ervaring nog steeds inzet binnen de zorg. Rhythm was er dan ook als de kippen bij
om jou te werven. Theresia, ik wil jou uiteraard ook bedanken voor dit hoofdstuk. Te



midden van mijn prille vaderschap hebben we dit toch mooi samen gedaan. Verder
wil ik je ook bedanken voor de prettige samenwerking aan de verschillende opdrachten
voor studenten.

Zou je een keer met mij mee willen denken? Je haalde laatst nog deze vraag van
mij aan. Niet wetende dat dit het startschot zou zijn voor onze langdurige samenwer-
king. Maarten, wat een levenswerk is dit geworden en wat hebben we gehuild van het
lachen (of andersom?). Ik wil je bedanken voor je intellect, inzet, doorzettingsvermo-
gen, gezucht en de ellenlange discussies. Prachtig vond ik het, als je een uurtje met
rust gelaten moest worden, zodat je even rustig kon nadenken. Uiteindelijk zijn we
gekomen tot een fraaie oplossing van het THOMAS-probleem in hoodstuk 6. Richard,
ook in dit hoofdstuk heb jij een aanzienlijke rol gespeeld. Dank voor de scherpe the-
oretische discussies en je pragmatische sturing. Martin, je hebt mij het vertrouwen
gegeven dit prachtige probleem vanuit de praktijk te analyseren en ook echt voor jouw
polikliniek op te lossen. Dit is dan ook de inspiratie geweest voor dit hoofdstuk, dank
daarvoor.

Ook wil ik mijn collega’s binnen het LUMC bedanken. Ondanks dat ik elke dag
weer nieuwe collega’s leer kennen, en ken ik er inmiddels een heleboel, zijn er een
aantal die betrokken zijn geweest bij dit onderzoek. Allereerst het (ex-) bestuur van
divisie 2; Ton, Paul, Koos en Wouter. Dank voor jullie vertrouwen en ruimte om werk,
onderzoek en privé te kunnen combineren. Hierbij wil ik ook mijn waardering kenbaar
maken voor jullie steun rondom de geboorte van Vik en Len. Paul en Ton, ook jullie
bijdrage aan hoofdstuk 4 heeft gezorgd voor de vliegende start van mijn onderzoek.

Job, dank dat je mijn onderzoek mede gefaciliteerd hebt. Ik waardeer de discussies
over de verschillen en overeenkomsten tussen dit onderzoek en de medische praktijk.
Samen met Wilbert, is jullie input bij hoodstuk 3 en 4 zeer waardevol gebleken. Fred,
jij hebt het stokje van Job overgenomen. Ook jouw input en de ervaring van het
eerdere traject met Maartje was waardevol.

Guillaine, Martin en Wouter, om samen met jullie tijdens het laatste deel van
mijn promotie nu echt werk te maken van ICM in het LUMC, is tot nu toe het
mooiste hoofdstuk uit mijn carrière. De vorming van het LUMC Capaciteitscentrum
is hiervan een prachtig resultaat waar wij trots op mogen zijn. Dit heeft ook geleid
tot waardevolle input voor hoofdstuk 2. En nu weer gewoon aan het werk, er is nog
genoeg te doen.

Mijn team van het LUMC Capaciteitscentrum, Els, Fieke, Ilse, Iwona, Mirkan
en Viktor wil ik ook bedanken. Jullie enorme inzet tijdens de COVID-19 crisis be-
wonder ik. Dit gaf mij de energie voor de laatste loodjes. We zijn met iets unieks bezig!

Daarnaast wil ik mijn CHOIR collega’s en kamergenoten op de UT bedanken. Het
was mooi om onderdeel te zijn geweest van zo’n grote groep onderzoekers binnen dit
onderzoeksgebied. Dit heeft elkaars onderzoek versterkt en kenmerkt CHOIR mis-
schien wel het meest. Ook van de uitjes, barbecues, congressen, lunchwandelingen en
koffiemomentjes heb ik erg genoten. Verder wil ik ook de andere collega’s op de UT
van MOR bedanken. Thyra, we hebben elkaar sporadisch gezien en gesproken. Je
betrokkenheid rondom de geboorte van de jongens, het eerste welkomstbloemetje en
andere ondersteuning heb ik altijd gewaardeerd. Nico, wat een mooie discussies heb-



ben wij gehad en wat liepen die altijd uit. Ook de samenwerking tijdens de begeleiding
van een aantal studenten heb ik als prettig ervaren. Dank ook voor het meedenken bij
ons MDP probleem. Joost, Maarten, Jasper, Eline en Robin, heel veel succes met de
afronding van jullie promotie. Ook wil ik alle studenten die ik begeleid heb bedanken.
Chantal, Mijke, Laurien, Jitske, Ivan, Bjarty en Guusje, het was fantatisch om te zien
welke ontwikkeling we samen doormaakten en ik hoop dat jullie er met net zoveel
plezier op terugkijken als ik.

Tot slot wil ik mijn gezin, familie en vrienden bedanken. Jullie steun, ondersteuning
en afleiding was essentieel. Martijn, voor jou zijn de laatste twee typeringen in de
vorige zin van toepassing. Het is uniek hoe sterk onze band is, hoeveel overeenkomsten
er zich tussen ons leven voltrekken. We wonen nu weer vlak bij elkaar, dus dit houdt
nog wel even aan. Zonder jouw steun op alle vlakken, zouden wij niet gezamenlijk
mijn proefschrift verdedigen.

Mam, ik zal nooit vergeten toen je vroeg hoe lang ik nog moest promoveren en
ik je zag rekenen. Wat is het snel gegaan het laatste jaar. Het geeft rust, dat je nu
zo op je plek bent. Ook al weet je niet meer wie ik ben, je bent nog steeds bij mij.
Je hebt mij gevormd tot wie ik nu ben en ik herken veel terug in de manier hoe ik
nu zelf de opvoeding van mijn jongens invul. Ik weet dat je trots op mij bent. En ik
ook op jou. Hoe jij Willemien en mij hebt opgevoed toen papa ziek was geeft mij het
doorzettingsvermogen als ik het nu zwaar heb. Pap, dank voor de ritjes van en naar
het station. Dank ook voor de tips vanuit je eigen promotieonderzoek en hoe je werk
en promoveren kan combineren. Je hebt mij laten inzien dat je alles kan bereiken als
je iets echt wilt en doorzet. Wil, dank dat je nooit geklaagd hebt wanneer ik weereens
druk was met de jongens of mijn onderzoek. Hoe we samen de zorg voor mama hebben
opgepakt en ingevuld, zegt veel over ons. Ik kijk uit naar jullie kleine ‘Trix’, Kasper
en Wil. Peter en Nancy, Hotel Amstelstraat geef ik vijf sterren. Dank voor alle steun
en de rustige nachten. Nancy, ook bedankt voor je onvoorwaardelijke steun bij de
opvoeding van Vik en Len. Dit gaf mij net het beetje extra ruimte om dit proefschrift
af te ronden. Luuk en Nienke, zo ver weg en toch zo dichtbij. Het fijnst is toch wel
om jullie weer in ons midden te hebben.

Lieve Anne, jij verdient misschien nog wel meer lof voor dit proefschrift dan ik.
Die dagen, nachten, weekenden en weken dat ik niet thuis was of zat te werken aan
dit proefschrift of Leiden. Zonder jouw onvoorwaardelijke steun en begrip lag dit
proefschrift er nu niet. Hoe we samen, maar ook in dit geval vooral jij, rondom de
geboorte van onze tweeling alles hebben opgepakt, kunnen alleen de sterksten. Het
heeft ons geleerd het leven te nemen zoals het komt en altijd positief te blijven. Naast
je eigen fulltime baan, was je er altijd voor de jongens, vrienden en familie. Én was er
ook nog tijd voor een strikt sportschema. Ik snap niet waar jij deze energie vandaan
haalt.

Lieve Vik, lieve Len, wat ben ik trots op jullie. De start was pittig en het duurde
dan ook even voordat we samen alles op de rit hadden. Nu word ik uitgedaagd en
behendig uitgespeeld door twee doodnormale peuters. Als ik kijk naar wat jullie
allemaal in de eerste maanden van jullie leven te verduren hebben gekregen, mag ik
nooit meer klagen.
Thomas Ouderkerk aan de Amstel, 2020
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CHAPTER 1

Introduction

1.1 Motivation for this research

Good health contributes to quality of life, and therefore societies are willing to invest
an increasing amount of their gross domestic product in healthcare [182]. An improved
health status prolongs life expectancy [142]. Since healthcare costs are strongly age
dependent [9], with improved life expectancy comes a greater number of years dur-
ing which people are in need of care, leading to ever-increasing healthcare costs. In
addition, medical and technological innovations drive healthcare costs further as they
increase the number of treatment options.

If the current trend of growing demand for healthcare continues, by the end of
this decade 25% of the available workforce in the Netherlands should be working in
healthcare [235], putting society under pressure. While demand and thus costs are
increasing, Western countries are confronted with a shrinking workforce as a result of
an ageing society [44]. This unbalances healthcare demand and supply even further.

For half a century, the problem of an imbalance between healthcare demand and
supply was solved, to a large extent, by increasing capacity [180]. Innovations that
might have led to lower hospital demand were not scalable and therefore had marginal
impact [129]. Although a vast amount of research has generated multiple options for
changing course, there has been no ”game changer” to solve the healthcare productivity
challenge.

To bridge this productivity gap, six sources of waste should be eliminated [28]: 1)
failures of care delivery, 2) failures of care coordination, 3) overtreatment or low-value
care, 4) administrative complexity, 5) pricing failures and 6) fraud and abuse. Four
key steps can be identified to help eliminate waste sources 1 to 4 [35]: prevention, early
diagnostics, active treatment and care coordination. Currently health care costs can be
reduced 30% by optimizing capacity planning and management [74]. Therefore, care
coordination offers substantial potential for increasing productivity. This thesis focuses
on care coordination through optimizing hospital capacity planning and management.

1



2 Chapter 1. Introduction

1.2 Capacity Planning and Management in Hospi-
tals

Hospital are characterized by many dependencies between their departments and other
healthcare organizations as a result of the flows of patients and healthcare profession-
als. This complicates the organization of hospital processes, as the effects of pulling
one string may resonate in many different places inside and outside the organiza-
tion. Thus, optimization of a single resource is myopic by definition. Whereas new
medical treatments are strictly regulated and initially tested on patients in random-
ized controlled trials (RCTs), the implementation of new organizational designs is not
regulated and effects are rarely analyzed [150]. Using RCTs for testing new policies
would be unethical as (adverse) effects are difficult to predict and therefore it would
be difficult not to expose patients to negative and adverse effects during tests of orga-
nizational experiments. However, there are many other methodologies for analyzing
new organizational designs and policies.

Operations management is the field of expertise that studies the process of mak-
ing decisions about resources [215]. A design approach is one options for organizing
decision-making processes. Operations research (OR) supports decision-making about
new organizational designs [253] and encompasses many different methodologies, such
as queuing theory and discrete event simulation. With OR, the effects of interven-
tions on trade-offs between key performance indicators can be analyzed and optimized
in a safe environment, helping minimize counter productive interventions in health-
care delivery processes. For over 50 years, OR has been applied to healthcare related
problems [16], and during that time a vast amount of research has been published
this topic. However, the actual implementation in practice of solutions following from
these modelling efforts is rarely described in the literature [43]. This is striking, as
implementation is the final step in improvement and would be a valuable topic to
study. One explanation for this lack is that actual implementation requires a different
set of skills and expertise.

Working from both operations management and OR perspectives, this thesis fo-
cuses on improving decision-making processes related to hospital capacity.

1.3 Capacity Planning and Management in the Lei-
den University Medical Center

The research presented in this thesis is inspired by practices in the Leiden University
Medical Center (LUMC). Founded in 1636, the LUMC was the first Dutch academic
hospital and was part of the first Dutch university. At that time, the LUMC consisted
of an anatomical theater, a botanical garden and several beds in the Caecilia Gasthuis.
Currently, the main focus of the LUMC is top clinical care and highly specialized
care in oncology, regenerative medicine and cardiology, and population health. As
an academic center it fulfils three social responsibilities: patient care, training and
education for healthcare professionals and medical students, and research.

The LUMC is the smallest academic center in The Netherlands and is situated close



1.4. Recent Developments for Hospital Capacity Management and Planning 3

(< 50km from) two of the largest academic centers: Amsterdam University Medical
Center and Erasmus Medical Center. As quality standards in terms of minimum
volumes for clinical procedures increase, it becomes difficult for smaller hospitals to
meet these standards. The LUMC has therefore started to attain a clear strategic
patient care portfolio. To align strategy and operations and to improve both efficiency
and quality in healthcare delivery, the LUMC developed a program to design and
implement integral capacity management (ICM). ICM is now anchored within the
chain of command of the hospital and is widely adopted and accepted within the
organization. It is also being implemented in the hospital’s capacity center.

Since 2007 the LUMC has cooperated with the Center for Healthcare Operations
Improvement and Research of the University of Twente to improve capacity planning
and management both in practice and in research. In numerous projects, theory and
practice have been connected to improve capacity in various areas (e.g. outpatient
clinics, inpatient wards, operating rooms, emergency department,and more) evolving
from local to hospital-wide improvements and organizational designs. This research is
currently embedded in the LUMC Capacity Center and ICM program.

1.4 Recent Developments for Hospital Capacity Man-
agement and Planning

The recent SARS-CoV-2 (i.e. COVID-19) pandemic has disrupted healthcare like no
past outbreak [13]. Hospital capacity was completely given to patients recovering
from this virus. As a result, there was little capacity available for other patients. This
scarcity required hospital-wide (i.e. integral) decision-making for capacity planning,
as personal preferences and myopic decision-making were, to a large extent, no longer
valid. On the positive side, a vast majority of healthcare professionals did experience
the added value of alignment as convenient and are committed to integrally organizing
capacity management when this pandemic is over. On the negative side, apparently a
crisis of this size is necessary to enable integral capacity decision-making while steps
into this directions could be taken much earlier and without a crisis. Furthermore,
as most hospitals had to build up other treatments and diagnostics from scratch as
almost no patients other than COVID-19 patients were hospitalized and gave rise to
opportunities for redesign breaking stuck routines. This pandemic can therefore been
seen as ”game changer” for ICM implementation. Furthermore, this pandemic has
also resulted in compatibility improvements in information systems for data exchange
to analyze complete care pathways within the healthcare network.

Another development emerging from this pandemic, is the remote monitoring of
patients, which means patients are invited to the hospital only when necessary. Remote
monitoring, may raise interesting questions to analyze using OR methodologies as the
patient arrival rate will be more predictable. These new innovations will also reduce
waste from overtreatment and low-value care.
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1.5 Thesis outline
This thesis aims to connect theory and practice on integral capacity management and
planning by presenting several case studies for the presented theoretical results. In
fact, several of the theoretical results have actually been implemented in practice.
We elaborate on the challenges experienced when implementing research results, and
provide several factors for successful implementation. The thesis is organized in two
parts, briefly introduced below.

Part I concerns the integral management of hospital capacity. As mentioned in Section
1.2, capacity and process improvements in practice require two elements: (1) the (near)
optimal decision and (2) the organization of decision-making processes. Part I focuses
on the second element, and we refer this to as capacity management. In Chapter 2
we conceptualize ICM to initiate a research agenda on this topic. ICM aims to satisfy
hospital stakeholders requirements by integrally managing patient care pathways. This
means that for patients access and flow are maximized and for employees workload
variability is minimized. We present three organizational integration dimensions along
which hospitals can align capacities: (1) hierarchical, (2) patient-centered care and (3)
managerial domains. This research should be seen as a first step towards theoretical
understanding. We present directions for further research in the discussion. Chapter 3
starts with an overview of performance measures (Section 3.2) and OR methodologies
applied to hospital ward occupancy modelling. Next, literature on hospital ward
occupancy is reviewed (Section 3.4). Based on logistical characteristics and patient
flows, we distinguish the following ward types: intensive care, acute medical units,
obstetric wards, weekday wards, and general wards. We then derive typical trade-offs
between performance measures for each ward type and elaborate on managing ward-
related capacities: beds and workforce. We also discuss what kinds of models can be
used to analyze trade-offs in these decision-making processes (see Section 3.5). Finally,
we present three case studies that use OR to analyze practical decisions and discuss
the implementations in Section 3.7.

Part II presents three chapters that focus on integral capacity planning considering
multiple patient flows and multiple resources. Chapter 4 analyzes the flow of emer-
gency admissions. Patient flow involves beds in three departments: the emergency
department, the acute medical unit(AMU) and general wards. To improve the emer-
gency admission flow, some hospitals introduce AMUs. Without integral capacity
coordination, AMUs do not solve flow problems comparable to emergency depart-
ment overcrowding. We develop a discrete event simulation model to analyze different
capacity allocations related to the number beds in each ward type. We use two heuris-
tics to derive feasible solutions for the distribution of beds among each ward type.
This simulation model has been used repeatedly to support tactical capacity decisions
within the LUMC.

In Chapter 5, we analyze the surgical patient flow for operating rooms, inten-
sive care units and general wards. We combine multiple data analytics: we first use
clustering techniques to generate surgery groups consisting of comparable surgical pro-
cedures, and then optimally schedule surgery groups within a master surgery schedule
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using a mixed integer linear programming model. We demonstrate multiple variants
of our model with minor modifications for managerial insights.

The final chapter of this part, Chapter 6, analyzes the online multi-appointment
scheduling problem. When patients have multiple appointments during the same day,
appointment schedules become increasingly vulnerable to delays and are therefore more
fragile. We present a decomposition approach to deal with fragility and optimize both
patient waiting time and resource utilization. First, we analyze this problem using a
Markov decision process model to derive optimal policies for accepting or rejecting new
arrivals. Next, we develop an integer linear programming model to schedule patients.
Finally we compare performances of our approach and an heuristic. The results show
the great potential of online multi-appointment scheduling optimization.
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Integral Capacity
Management in Hospitals
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CHAPTER 2

Integral Capacity Management in
Hospitals1

In this chapter we introduce a systematic approach to integrally organize all capacities
involved in healthcare delivery at hospitals. Thus, this chapter focuses on one the main
research topics of this thesis: managing hospital capacity.

2.1 Introduction

Hospitals are continuously challenged to improve their healthcare delivery on both
outcomes and output. When demand for care increases, healthcare delivery workforce
becomes increasingly scarce, and therefore the gap between demand and supply grows
rapidly. Both trends are spurred by an ageing society, and by the increasing capabilities
and diversification of the healthcare system that result from innovations. In this risk-
averse sector, such challenges have long been addressed by increasing capacity and
expenditures, but this is not sustainable and is arguably largely ineffective. The
previously mentioned productivity challenge can be overcome by clinical innovation
(treating patients more efficiently, without affecting quality) or by organizing more
efficient capacity use. Our focus is on the latter.

Many hospitals organize capacity management (CM) as silos [148], or even as
single cost centers, with their own operations management systems. The operating
theater (OT) department is often considered to be the “most important” [100], as
there, the greatest costs are accrued, the most income is earned, and clinically, the
most interventions take place. However, from an operations point of view, and also
patient’s point of view, it is merely one step in the care pathway. Nevertheless, making
the OT department the leader (i.e. by making its utilization the foremost performance
indicator), and other departments followers causes bullwhip effects in the care chains.
This common practice is not patient centered, and offers to, in our opinion, the greatest
potential for productivity improvement. We aim to realize this potential by breaking
through the siloed system and optimizing flow, rather than myopically optimizing

1This chapter is based on A.J. Schneider and E.W.Hans. Integral Capacity Management in Hos-
pitals. Working paper.

9



10 Chapter 2. Integral Capacity Management in Hospitals

utilization by aligning capacity in care pathways. To this end, in this chapter we
propose ‘Integral Capacity Management‘ (ICM) as the successor to CM. ICM strives
to optimize integral care pathways for all stakeholders. ICM aims to improve equitable
access and flow, in terms of speed and variability, in care pathways by making capacity
agile. Implementation of ICM in hospitals is a comprehensive organizational change.
This requires a systems design approach, starting from strategy development. Systems
design is the process of defining elements of a system and their interfaces to satisfy
the specific needs and requirements of a business or organization [251].

Productivity can be further improved by optimizing operational processes using
an operational excellence approach (e.g. Lean, Six Sigma, Theory of Constraints).
Although there is much evidence of successful implementations of such programs in
hospitals, they rarely lead to comprehensive changes in organizational structures, and
instead focus on operational processes. By contrast, ICM focuses on flow at all levels
of control. An operational excellence program does not lead to systems redesign (such
as ICM), and it is difficult to get staff support for systems redesign when operational
processes are ailing. Therefore, ICM and operational excellence approaches reinforce
each other [115].

ICM is gaining increased attention in hospitals, despite the lack of literature about
what ICM is and how it works. Although CM has been used in hospitals for two
decades [216] and ICM for over 10 years, universal definition and theoretical under-
standing are lacking for both and hospitals having difficulties during implementation.
The contribution of this chapter is two fold: (1) we give a theoretical introduction of
ICM and challenge researchers to further conceptualize the concept and (2) to guide
hospitals how ICM may be approached for implementation.

This chapter is structured as follows. Section 2.2 discusses the problems of current
CM practices in hospitals. In Section 2.3, we present ICM as a systems design ap-
proach for optimizing patient flows through integration along three decision-making
dimensions for capacity. Finally, in Section 2.4 we discuss future options for research
and implementation based on our approach.

2.2 Capacity Management in Hospitals

CM encompasses decision-making related to the acquisition, use and allocation of three
types of renewable resources: workforce, equipment, and facilities. Its purpose is to
satisfy stakeholders’ (e.g. customer and staff) requirements [94, 106, 216]. Nonrenew-
able resources (e.g. materials) are relatively more flexible, whereas renewable resources
often require longer commitments and are therefore more difficult to manage. In litera-
ture, capacity planning and capacity management are used interchangeably. However,
they are not the same. Capacity planning concerns all planning activities, while ca-
pacity management focuses on organizing capacity. CM requires two elements: (1)
infrastructure consisting of non-renewable resources, facilities and layout and capabil-
ities, and (2) a management system to ensure an efficient care delivery process design,
equitable access, and financial stability.

Hospitals use top-down decision processes [208] over multiple hierarchical levels:
strategic, tactical and operational. Furthermore, staff (e.g. clinicians and nurses) are
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highly educated and trained and therefore have high degrees of autonomy to design
processes and their own schedule [122, 156]. From a CM view, this highly educated staff
is a result of labor division, specialization and standardization to improve productivity
[73, 183]. Therefore, many hospitals have their functional departments manage their
own budgets and planning. This top-down, decentralized decision process (e.g. siloed
management structure) often results in myopic optimization of resource utilization,
poor alignment of interdependent resources that are adjacent in care pathways and
large fluctuations in upstream and downstream departments [122]. In our opinion,
this is one of the main problems of CM one we elaborate on in Section 2.3.2.

Dealing with CM problems necessitates a management structure that aligns capac-
ity decision-making along multiple dimensions. We therefore coin the term Integral
Capacity Management (ICM) for hospitals, which we explain further in the following
section.

2.3 Integral Capacity Management in Hospitals

Since the 1960’s, well known concepts for CM in the field of manufacturing and ser-
vices are extensively covered. For example, the author of [11] decomposes CM decisions
through their hierarchical nature: strategic, tactical and operational. The author of
[263] combines the hierarchical decomposition with nonrenewable and renewable re-
source planning and technological planning. And the authors of [247] translate the
hierarchical decomposition approach of [11] into CM decisions in healthcare organi-
zations and [106] combines the hierarchical decomposition with four managerial areas
of healthcare organizations: clinical, nonrenewable resources, renewable resources and
financial. Thus, as mentioned in Section 2.2, CM literature focuses mainly on the hier-
archical dimension without integrating other dimensions and in hospitals it is mainly
executed top-down [208].

Since the nineties, it has been stated that the future challenges for CM will be
to integrally manage and plan capacity (i.e. the next step of CM is ICM) [46, 216]
to optimize flow, thereby ensuring equitable access and optimal waiting times for all
patients [122]. Organizational integration is defined as the extent to which distinct
and interdependent units, departments and management levels, including business
processes, people, and technology involved, share a unified purpose [18]. More specific
for ICM, integration is seen as the coordinated management of information, operations,
and logistics through a common set of principles, strategies, policies, and performance
metrics [55]. This is not limited by organizational boundaries and can also be formed
across organizations. As healthcare is organized within networks, integration should
also be sought between healthcare organizations. There is a considerable amount of
research available that analyzes the effects of integrally managing capacity to manage
process flows [124]. However, little research is available on the effects of integrally
managing capacity in hospitals [124].

ICM aims to operationalize patient-centered care by incorporating patient flow
optimization in capacity decisions. Therefore, ICM integrates existing dimensions for
CM decisions of manufacturing literature and translates these dimensions to a hospital
setting. ICM integrates the following three dimensions from existing manufacturing



12 Chapter 2. Integral Capacity Management in Hospitals

literature: (1) hierarchical alignment of strategy and operations, (2) patient-centered
care that considers care pathways and patient flows and (3) alignment of managerial
domains. To design and implement an ICM system is extremely difficult as it in-
volves many features of the organization and production. Many products and services
in hospitals are ’engineered-to-order’. This complicates the design and implementa-
tion of ICM, as it makes processes difficult to predict. Furthermore, implementing
ICM is also caused by unfulfilled preconditions needed for ICM, among others: miss-
ing management information, ambiguous decision-making, and inaccurate forecasts.
Therefore, ICM must consider the specific identity of a hospital in terms of value
proposition, available infrastructure, professional autonomy and its environment. No
“one size fits all” implementation approach exists.

We will further present each dimension in the following sections. We start by the
hierarchical alignment of strategy and operations in Section 2.3.1). We then present
the patient-centered care dimension in Section 2.3.2 and discuss in Section 2.3.3 the
alignment of managerial domains.

2.3.1 Hierarchical Integration
Integration in this dimension concerns the alignment of the hierarchical of nature of
decisions in manufacturing [11] and hospitals [106, 247] (see Figure 2.1. From an ICM
perspective, hospitals are characterized by multiple services, a wide variety of equip-
ment and operations in several departments and therefore capacity decisions affect
multiple resources and processes. To understand these decisions from the hierarchical
dimension, we use the decomposition approach based on early literature in manage-
ment control systems [11]: strategic decisions, tactical decisions and operational de-
cisions. The rationale behind this decomposition is that higher levels set boundaries,
targets and planning objectives (i.e. increasingly disaggregated information) for lower
levels. As higher hierarchical levels involve decision-making with larger horizons and
therefore larger portions of patient pathways, decision-making on higher levels spans
more capacities. Furthermore, care pathways are not bounded by an organization and
therefore ICM must encompass capacity decisions across multiple organizations.

Strategic capacity decisions. ICM addresses every step of the healthcare deliv-
ery process and starts with translating strategy to strategic ICM (e.g. operations
strategy). When an ICM strategy is incorporated in strategy development, it can ul-
timately be translated into operational capacity management by providing clear goals
for planning at all levels. ICM therefore supports strategy execution and will lead to
improved performance [156].

Strategic capacity decisions concern the structural design, dimensioning, and de-
velopment of the healthcare delivery process. Typical decisions on this level include
decisions about the service or case-mix (e.g. patient types and volumes) translated
into the required level infrastructure to realize goals and objectives. This can results in
the acquisition of new infrastructures. Information used for these type of decisions is
highly aggregated, drawn from many external sources and both demand (e.g. patient
case-mix) and supply are characterized by a high degree of uncertainty.

When mission statements and strategy are not translated to operational goals and
objectives and therefore are disconnected, staff often do not realize that they are bound
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Figure 2.1: Hierarchical Integration Dimension for Integral Capacity Management in Hos-
pitals
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and committed to corporate strategy. ICM facilitates translation of mission statements
into measurable and achievable goals [181], as it makes them normative and, to a large
extent, manageable. Such goals can then be used for strategic capacity planning (e.g.
case-mix planning and forecasting). Without key performance indicators (KPIs) (e.g.
measurable goals and objectives), goals and objectives can become ambiguous, and
therefore ICM can not be accomplished. In other words, ICM demands a mission
with a clear value proposition (e.g. desired patient case-mix and service levels). Fur-
thermore, these measurable goals can be operationalized and thus can ensure process
quality (ultimately supporting quality of care), process safety and equitable customer
access. In addition ensuring quality for customers, ICM also can ensure quality of
labor [207]. In short, ICM can deliver productivity and efficiency improvements for
all stakeholders [123]. We therefore challenge hospitals to think about making their
mission and strategy normative, measurable and manageable.

Tactical capacity decisions. These type of decisions concern the organization of
healthcare delivery at the highest level [5, 106]. Typical decisions on this level focus on
periodical capacity dimensioning through allocation of resources (e.g. blueprint/master
scheduling) and workforce. Information used is moderately aggregated, coming from
both external and internal sources and while most of resource levels are determined
at this level, demand is characterized by a moderate level of uncertainty as a re-
sult of emerging demand and/or increasing urgency driven by disease progression in
known patients. Other decisions typical for this level concern the expansion or reduc-
tion of overtime and temporary capacity. As the authors of [106, 200] already state,
we observe that these types of decisions are still not systematically managed leading
hospitals to jump from strategic decision-making to operational fire fighting almost
without considering tactical decision-making. This is increasingly time consuming as
direct alignment is difficult, for example, strategic horizons of at least one year have
to be directly translated to operational horizons of at most a couple of months).

Operational capacity decisions. This level encompasses day-to-day capacity match-
ing decisions. While for tactical decisions, capacity levels can be temporarily adjusted
(e.g. extra shifts, overtime, or capacity reallocation), for operational decisions capac-
ity levels are given. Inherently, capacity decisions on this level concern a short term
horizon and where both demand and capacity are known (e.g. low uncertainty) leaving
little flexibility. This level can be further disaggregated into offline (e.g. in advance)
and online (e.g. instant) decisions [106]. Typical decisions here are patient-to-nurse
scheduling at the beginning of a shift and rostering adjustments as a result of sickness.
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Summarizing, these levels can be uniquely defined by their extent of capacity flex-
ibility - high (strategic), moderate (tactical), or low (operational) - and further ex-
plained by the following aspects:

- Length of planning horizon.
- Detail level of information and type of sources (e.g. external and/or internal

sources of information).
- Authority and responsibility of involved management.
- Level of uncertainty in demand and/or supply.

Top-down and bottom-up

Top-down integration is important to translate strategy into operations as each level
sets resource levels, production targets and planning objectives for underlying lev-
els. Bottom-up integration is important to provide feedback to improve higher-level
aggregated information, and the quality of higher-level decision-making based on per-
formance monitoring, timely escalation, and structural problem solving. As mentioned
in the introduction, this dimension is already in place in most hospitals. However, most
CM decision-making processes in hospitals are focused on top-down deployment, while
bottom-up feedback loops are often lacking. This may be explained by the strongly de-
centralized autonomy of departments and healthcare professionals [122]. As a result,
problems are often not escalated to higher hierarchical levels and therefore are not
solved structurally. This leads to myopic optimization. A dysfunctional hierarchical
integration leads to mismatches between demand and supply, resulting in stop-and-go
operations, increased waiting times and inefficient resource utilization. We often ob-
serve such dysfunctional hierarchical integration in hospitals where tactical decisions
are rarely taken (e.g. institutions with infinitely repeating cyclical blueprints or mas-
ter schedules for capacity allocations). Moreover, inundated in operational problem
fighting, management is in a real-time problem engagement (e.g. managing solely de-
pends on the availability of real-time information), while problems can structurally be
solved on higher levels through adjusting master schedules. However, when problem
are escalated, which may occur periodically, they quickly plead for “more capacity”,
which requires a long-term (e.g. strategic) decision. Thus, hierarchical integration is
an iterative process, in which a hybrid adoption (e.g. top-down and bottom-up) forms
ICM on this dimension [133] as bottom-up integration feeds new strategy development
and top-down integration facilitates strategy execution. Furthermore, once bottom-up
capacity decision-making is in place, it may reduce healthcare professionals’ resistance
to increased coordination [208].

Performance management is a crucial part of the hierarchical dimension. Through
performance management, targets and objectives can be cascaded to other hierar-
chical levels and monitored as they are realized. Unfortunately, in both literature
and practice universal definitions and standardized sets of performance indicators for
ICM are missing [228]. The lack of ICM performance management facilitates the
aforementioned myopic optimization, as departments are not accountable for such in-
dicators. One cause for the lack of such indicators could be that most hospitals only
recently emerged from the digitization era, and are now discovering the value of pro-
cess information in improving ICM. Incompatibility of information systems hinders
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this progress.

2.3.2 Patient-Centered Care Integration
Patient-centered care integration is the coordination and alignment of capacity across
departments and organizations to optimize care pathways.. This integration dimension
considers the perspective of the patient. It is also referred to as horizontal integration.
The latter term is more ambiguous, as it is defined in the literature as ”concerted
practices between companies operating at the same level(s) in the market” [63].

A consequence of increasing clinical specialization is that patients will face an
increasing number of healthcare professionals involved in their care pathways. This
also means that patients may have to visit an increasing number of departments and
even organizations. From a clinical point of view and that of the patient, these are
all necessary steps in the care pathway. From an ICM point of view, this creates
increasing interdependencies between departments and therefore requires coordination
and integral capacity decisions and planning (e.g. multi-appointment scheduling).

From a hierarchical dimension, patient-centered care integration should be real-
ized on every level. On a strategic level, long-term collaborations are formed between
healthcare organizations that are adjacent in care pathways, to optimize transfers and
minimize blocking (i.e. creating flow). An example is the collaboration between hospi-
tals and nursing homes, or between hospitals and rehabilitation centers. This requires
strategic investments in information architectures to ensure optimal information shar-
ing, preventing work duplication or even loss of information.

Patient flows are managed on a tactical level. As in industry supply chains, demand
propagates through the hospital from outpatient clinic to diagnostics, to preoperative
screening, to operating room, to inpatient ward. It is well known from supply chain
management theory and from queuing theory, that myopic optimization of capacity
utilization leads to bullwhip effects [248]. This means that without coordination,
downstream departments observe fluctuations in demand. Trying to deal with these
fluctuations, these downstream departments try to increase capacity availability of
their downstream departments and so on with increasing variation of capacity down-
stream. Although, covered extensively in the literature [49], We observe this is still
the case in hospitals, where operating room scheduling “leads”‘ (i.e. where utilization
needs to be maximized), and downstream departments, for example the ICU and inpa-
tient wards, observe an increase in the number of admissions and therefore they try to
increase their bed capacity. The resulting bullwhip effects causes patients to wait and
staff to experience stop-and-go operations. ICM encompasses alignment to optimize
flow over all capacities involved (i.e. complete care pathways). This implies that fluc-
tuating demand is propagated along all capacities, by adjusting capacity levels (e.g.
flexible capacity sharing) so that capacity matches demand as closely as possible. This
results in minimal waiting for patients (i.e. optimal flow), stable workload and con-
siderable capacity utilization throughout the system. Stabilization has a limited and
to further balance demand and supply capacity may be flexibilized. Tactical planning
should improve downstream forecasts based on upstream information, which allows
for timely capacity adjustments. The difficulty of tactical decisions lies in determin-
ing the aggregation level of information that is required to make such decisions. For
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instance, which level of detail on care pathways should be considered? Management
should balance the trade-off between the information loss through aggregation and the
complexity of the decision. Carefully making such capacity decisions could improve
efficiency, as it will decrease costly operational fire-fighting [106].

On an operational level, inter-unit coordination of capacity should focus on both
online and offline multi-appointment scheduling, promoting one-stop-shopping to re-
duce the number of hospital visits. Patients can be offered a choice of preference to
further enhance patient-centeredness. News of a downstream blockage (i.e. one of
the patient’s appointments being delayed or cancelled) should be swiftly communi-
cated between involved capacities to prevent waiting and enable flexible scheduling
adjustments and capacity reallocations.

2.3.3 Domain Integration
Hospitals also have a fragmented management structure in which management deci-
sions are limited based on information from other managerial domains (e.g. financial
decisions are functionally dispersed from capacity decisions) and are often function-
ally dispersed [106]. This may lead to unbalanced capacity allocations, resulting in
unbalanced workloads, with an overloaded workforce in some departments, and an idle
workforce in others.

As explained in Section 2.2, there are three managerial domains related to capacity
decisions: clinical, nonrenewable resources and financial. Therefore, the last dimension
of ICM is managerial domain integration. This integration aims to align decision-
making processes between domains such that the impact on capacity is integrally
analyzed. For this, we build upon the framework presented in [106].

Clinical Domain

In hospitals, the role of technological planning in capacity planning is performed by
clinicians [106, 263] and is referred to as clinical planning. This role encompasses the
design of production processes (e.g. clinicians design treatment plans). ICM serves
clinical decision-making and therefore capacity should be aligned to clinical planning.
For instance, on a strategic level, designs of new treatment plans impact capacity
requirements. On a tactical level, the clinical decision of selecting treatment plans
impacts required capacity. And on an offline operational level, the selected anesthesia
and surgical protocols affect surgery durations. Lastly, an online operational decision
example is the triage of patients at an emergency department influence required ca-
pacity. However, also capacity decisions have influence on clinical decision making.
When demand exceeds available capacity, treatment plans may be adjusted such that
demand and supply are balanced.

In hospital governance, clinical leadership plays a crucial role in hospital decision-
making on all hierarchical levels [26]. Clinical leaders have to embrace and design ICM
in co-creation for successful implementation. This has been recognized for decades:
”Practitioners have to develop greater appreciation of the managerial processes, and
managers as well as community representatives have to reflect a deeper understand-
ing of the clinical operations” [90]. However, we observe that capacity and clinical
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decisions are still, to a large extent, functionally dispersed. This is striking, as, in the
end, capacity decisions are clinical decisions (e.g. matching capacity enables clinical
practice and clinical prioritization determines capacity usage). ICM serves clinical
decision making, as it can assign clear boundaries to what can be done within a de-
sired time interval (i.e. available capacity) and therefore creates realizable treatment
plans and planning objectives or what level of additional capacity is required to meet
treatment plans. This dispersed decision-making may be explained by the blind spots
that both clinicians and administrators have for the other’s practice. We are therefore
convinced that clinical and administrative leadership at all levels should embrace and
have knowledge of each other’s motives so they can understand each others behav-
ior in decision-making processes [34]. Ultimately, hospital leadership should facilitate
training of both disciplines to successfully implement ICM [40].

As both formal and informal clinical leaders are involved in the execution of ICM,
they should be aware how their clinical decisions impact capacity. The challenge for
clinical and nurse leadership dealing with ICM is that they constantly balance clinical
or nursing objectives (e.g. to negotiate for and represent the interests of clinical or
nurse staff) against organizational objectives to ensure both the quality and efficiency
of care [26, 205]. Therefore, ICM may give insights into KPI trade-offs for decision-
making. With these insights, clinical and nurse leadership can explain, from their
perspective, counter-intuitive decisions to their staff and thereby create support for
the realization of plans.

Financial Domain

Financial planning should align with clinical planning and as hospital expenditures
are, to a large extent, capacity related (e.g. workforce and facilities) it should also
be aligned with capacity decisions. For instance, a hospital’s desired patient case-
mix portfolio decisions should be aligned with financial and capacity decisions, such
that portfolio decisions can be translated to their financial and capacity impact (e.g.
negotiations with healthcare insurers, which involves financial decision-making, are
translated into case-mix portfolio planning and capacity levels). Furthermore, infor-
mation required for capacity decisions (e.g. durations of procedures) is also valuable
when making financial decisions, as costs can then be allocated to procedures (e.g.
workforce or material costs) and insights into operational spending become available.

Non-renewable Resources Domain

There are considerable dependencies between nonrenewable and renewable resources
for healthcare delivery. Without nonrenewable resources, many processes (e.g. sur-
gical sutures or diagnostic isotopes) cannot be executed. For efficient supply chain
management of equipment, it is essential to align nonrenewable resource planning to
capacity planning (e.g. patient scheduling and workforce rostering) such that required
equipment is available at the right time and in the right place. Therefore, renewable
and nonrenewable resource management should be aligned.
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2.4 Discussion

This research aims to theoretically introduce ICM and should therefore been seen as
a first step for theoretical conceptualization of the subject. Based on the literature
and our own observations, we have developed an approach to design ICM in hospi-
tals. The approach consists of decision integration in three dimensions: hierarchical,
patient-centered care and managerial domain. Integration is not unequivocally a good
thing as it complicates decision-making by increasing alignments and necessitates ad-
justed autonomies (beyond clinical specialties and departments). Increasing alignment
and coordination comes with characteristic problems, such as sharp dilemmas related
to process, commitment, empowerment, disclosure, and escalation. Therefore, inte-
gration should only be realized when there are strong interdependencies among the
aforementioned decision-making dimensions for capacity. Due to the multi-factorial
dimensions of our approach and the many involved features of a hospital organization,
it will be challenging to implement ICM.

In regulated healthcare markets, institutions and companies try to cap healthcare
expenditure by taking rigorous measurements [205], resulting in volatile reimburse-
ments levels and consequently less predictable income for hospitals. Hospitals have
great difficulties incorporating external dynamics into operational adjustments, as ca-
pacities are fragmentarily managed and hierarchical alignment is lacking [208]. ICM
creates agility in capacity decisions and thus allocations, such that changing environ-
ments can quickly be responded to on all levels. Systems design starts with strategy
development. Therefore it is important to incorporate ICM in strategy development.
Unfortunately, we often observe discrepancies between mission statement and capac-
ity related strategic decisions. As a result, hospitals must exert great effort to fulfill
strategic goals and to deal with external dynamics that affect capacity. The mission
statements and strategies of hospitals show us a broad scope of value propositions,
where everything should be achieved for nothing less than 100%. Hospitals often fail
to achieve the broad set of goals within their mission statement, as resources are scarce
and therefore the options for fulfilling mission statements are limited. This indicates
that hospitals do not consider ICM while developing new strategies and mission state-
ments. However, the development of a hospital strategy often results in a new course
with new products and/or services or the even disposal of existing ones. This means
that clinician practices may be impacted immediately (with new treatment options
or less treatment options) and could result in resistance against these new strategic
directions,making operationalization difficult. Hospital organizations are character-
ized by a decentralized governance structure and therefore coordination of strategy
development and strategy execution is challenging [89].

Healthcare is a labor- and knowledge-intensive service where available resources are,
to a large extent, defined by the level of available workforce. Workforce management,
therefore, has great impact on the strategic course and is an important condition for
ICM. Increased integration requires more centrally organized control and alignment
and often means a decrease in decentralized autonomy[89, 122, 156]. This decreasing
autonomy may raise resistance as the span of control of clinicians and nurses will be
reduced [122, 156]. For ICM to be successful in hospitals, one should be aware of this
potential resistance and should challenge clinical leadership to embrace ICM as this
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may minimize resistance and strengthen adoption of ICM [105].
Healthcare delivery is also characterized by a large degree of process uncertainty,

as treatment plans can differ by patient (i.e. engineer-to-order). With the imple-
mentation of electronic medical record systems, data becomes available to evaluate
the performance of realized plans from both a system and a local perspective. Data
availability and awareness are therefore important enablers of ICM. Observe that lo-
gistical performance is a proxy for quality performance. Performance management
therefore facilitates bottom-up decision-making as it gives clear targets and indicators
for monitoring performance. Analytics can give insight into implementations and can
be used to improve planning and forecasting (e.g. expected durations of procedures).
Furthermore, EMR data can be used to digitally monitor performance, allowing timely
detection of deviations, such that fire-fighting adjustments will decrease. Performance
management creates feedback loops to evaluate and continuously improve ICM and ca-
pacity planning. Combining analytics and EMRs may ultimately facilitate automated
clinical planning using patient characteristics and historical [88]. In the future, this
automated treatment planning may be used as input for automated capacity planning.

ICM implementation requires a starting point. The selection of this starting point
will depend on many contextual and situational factors. ICM is not a one-size-fits-
all approach and there are many ways to implement it (e.g. from strategic systems
design to operational excellence). Many hospitals approach ICM as tooling, as an
increasing number of software vendors claim that tooling will result in improvements.
As mentioned in Section 2.3, ICM is a management approach for which performance
management is an important condition and data availability and awareness (and thus
tooling) are enablers to implement performance management. A potential starting
point for implementation could be to follow the organizational sense of urgency that
focuses on a particular part of ICM. Another starting point could be to integrate the
annual budget planning with production and capacity planning. Once such a process
is in place, it may enable implementation of ICM at other hierarchical levels.

A relatively new organizational format for embedding ICM in hospitals, is the
establishment of a command center [126]. Command centers originate from mili-
tary, transport, and aerospace sectors and centralize previously local administrative
processes and performance initiatives. This systems view is essential to prioritize
projects, share best practices, and standardize work across the hospital [126]. The
center described in [126] focuses on operational capacity decisions. This may be ex-
tended by centralizing capacity decisions made by higher hierarchical levels such that
deployments (e.g. hierarchical integration) and alignments (e.g. patient centered care
integration) are easily formed. Furthermore, centralizing capacity management-related
activities and decisions creates corporate visibility of ICM, adds to ICM knowledge.
and prevents local initiatives that result in myopic optimizations.

Value-based healthcare (VBHC) operationalizes patient-centered care through in-
tegrated practice units (IPUs), where all healthcare providers involved are jointly
delivering care. The IPU concept goes beyond the fact that shared capacity will al-
ways be necessary and therefore it cannot be dedicated to specific IPUs. This makes
implementation of IPUs difficult. ICM may therefore enable successful implementation
of VBHC, as it integrates the patient-centered care dimensions into other dimensions
[136].
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Further research is needed to gather empirically evidence for the presented ICM
dimensions. To conduct such research, reliable and valid methods of assessing ICM
must to be developed. This can be achieved in at least two ways: (1) measures could be
obtained from observations of hospitals that are known for their management system
integration and/or ICM maturity or (2) ICM could be assessed by determining the
hospital’s ability to effectively respond to various external incentives.
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CHAPTER 3

Ward Capacity Planning & Management1

3.1 Introduction

During hospitalization, patients spend most of their time in wards. These wards are
also referred to as inpatient care facilities, and they provide care to hospitalized pa-
tients by offering a room, a bed and board [118]. Wards are strongly interrelated with
upstream hospital services such as the OT and the ED. Given this interrelation, it is
essential that hospital wards be readily available in order to achieve efficient patient
flows. Of course, hospital management desires that resources be used efficiently and
therefore they try to optimize the trade-off between availability (e.g. measured in
access time and refusal rate) and occupancy (e.g. measured in utilization). Hospi-
tal ward management often aims for the golden standard of 85% occupancy rates to
maximize the number of admissions. This simplified objective is often not optimal for
the availability-occupancy trade-off, and achieving it also depends on the definitions
of these measurements. An optimal bed occupancy rate depends on several factors
such as: inflow, number of beds available and length of stay. For wards with a small
number of beds (e.g. up to 12 beds), it will be difficult to attain an occupancy rate of
at least 85% given the fluctuations in the number of arrivals each day, and therefore
patients have to be refused, deferred or rescheduled. Targeting occupancy rates of
85% as a golden standard for all ward may thus be counterproductive.

This chapter aims to give an overview for both researchers and hospital manage-
ment of available literature on ward related OR models by discussing the KPIs for
wards, the type of ward and the models used to analyze these wards, the type of deci-
sion and the models used to analyze these decisions, and how these models can have
impact in practice. We open this chapter by discussing various concepts of logistical
KPIs for wards, how they are related, and how they, together, can give ward man-
agement realizable targets (Section 3.2). In Section 3.3, we introduce different types

1This chapter is based on N.M. van de Vrugt, A.J. Schneider, M.E. Zonderland, D.A. Stanford and
R.J. Boucherie. Operations Research for Occupancy Modeling at Hospital Wards and Its Integration
into Practice In C. Kahraman, Y. Topcu, editors, Operations Research Applications in Health Care
Management, chapter 5, Springer International Publishing, Cham, United States, 2018. 101-137
And A.J. Schneider and N.M. van de Vrugt. Applications of Hospital Bed Optimization. Working
paper.
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of wards based on these logistical KPIs. OR can provide managerial insights about
trade-offs between these KPIs and therefore in Section 3.4 we present OR models for
the types of wards we have defined. Next, in Section 3.5 we take a broader scope
and discuss ward-related capacity management decisions and how these decisions are
related to each other from a hospital perspective. We then, in Section 3.6 show how
OR models could support ward capacity management decisions making. In Section
3.7, we discuss illustrative cases in which OR models have had a practical impact on
ward capacity decisions. Finally, in Section 3.8, we discuss factors critical to having
an impact in practice.

3.2 Key Performance Indicators for Wards
The logistical performance of wards is generally assessed by three KPIs: throughput,
blocking probability and occupancy. Optimizing only one of these KPIs, will reduce
performance on the others. Therefore, each of these KPIs should be balanced with the
others. Based on the type of ward, these KPIs can be targeted differently. In general,
occupancy is the most important KPI for ward management. Therefore, we begin this
section with definitions of these performance indicators. Next, we define various ward
types from a logistical perspective and show how OR models are used to analyze these
types of wards. We also illustrate some OR models used for various ward types.

3.2.1 Terminology
Although the concept of occupancy may seem simple initially, researchers and health-
care practitioners use different definitions of it. This may result in false comparisons,
if the definitions used are not clearly stated. Therefore, we provide the frequently used
definitions in the following paragraphs. We first define different concepts of capacity
(based on [246]), then define throughput and blocking probability, and conclude this
section with the various definitions of occupancy.

Each ward has a certain capacity, which is expressed in terms of the number of
patients and the care intensity that the ward can accommodate. The capacity of a
ward is measured by the number of beds and nurses, and there are different types of
capacity. The physical capacity is the number of beds in the ward. Each nurse can
take care of a certain number of patients, determined by the nurse-to-patient ratio,
which determines the structural available capacity. Additionally, temporary capacity
changes can occur: for example, bed closures in holiday periods or beds that are used
during shortages but are not officially staffed. The structural capacity and temporary
changes together determine the realized available capacity.

Example:
Suppose, a hospital ward has 15 beds. There are always three nurses scheduled
to work on the ward, and each nurse can take care of at most four patients at the
same time. Each summer and during Christmas holidays, the ward experiences
decreased in numbers of patient, and decides to schedule only two nurses. The
holiday periods together last 8 weeks. Then, for this ward the physical capacity
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is 15 beds, and the structural capacity is 3 (nurses) ×4 (patients per nurse) = 12
beds. Due to the holidays, each year has 8 weeks during which only eight beds
are open, so the average realized capacity is:

8 (weeks)× 8 (beds) + (52− 8) (weeks)× 12 (beds)
52 (weeks) ≈ 11.4 beds.

As mentioned in the introduction of this section, the logistical performance of a
ward is assessed by three performance indicators: blocking probability (i.e. the opposite
of availability), occupancy, and throughput (which is a result of the first two KPIs).
The throughput of a ward can be measured as the number of admissions or discharges
per time unit. However, this KPI is subject to the variance in the LoS. When the LoS
is highly variable, the throughput of a ward is also. The blocking probability of a ward
is the percentage of patients who request a bed in the ward at a moment when there
are no available beds:

Pb = Number of patients not accommodated on ward
Total number of patients requesting a bed on ward × 100%. (3.1)

Blocked patients are either accommodated in a different ward, deferred to another
hospital or delayed if possible. Furthermore, this KPI can also be used as to estimate
the time a ward is fully occupied.

In contrast to throughput and blocking probability, bed occupancy can be quantified
by three definitions: based a on bed census at given time, based on real length of stay
(LoS) or based on the number of hospitalization days. Here we aim to give an overview
of the most commonly used definitions.

One of the definitions of bed occupancy includes the bed census measured once
a day at a specified point in time: for example, every morning. Then, dividing the
average of these measurements by the structural available capacity, the occupancy is:

Obc(t) = average bed census at time t
structural available capacity × 100%. (3.2)

Note that for the occupancy it also matters how the capacity of a ward is calculated;
in most hospitals the structural available capacity is used. A slightly different occu-
pancy measure is obtained by taking the average of multiple bed census measurements
throughout each day: for example, each hour. We denote this measure by Ōbc. The
advantage of taking more measurements is that the average better reflects actual bed
usage.

Hospitals may also define the occupancy of a ward as the ratio of the sum of all
patient LoSs combined to the total time available:

OLoS(T ) = sum of all LoSs for all admissions in time period T

structural available capacity× length T
× 100%. (3.3)

This measure is calculated using admission and discharge time stamps for a certain
period, or by multiplying the average LoS by the number of patients accommodated
on the ward. By taking the sum of all LoSs of admissions during time period T , a
fraction of these LoSs is not realized within this time period (e.g. for admissions at
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the end of T , the LoS exceeds T ). The opposite is in place at the start the period,
where a fraction of admissions is not considered as these admissions started before the
period. One remark, is that this occupancy measure reflects the actual time the beds
are used, but does not incorporate unavailability due to cleaning of beds.

Until recently, it was common in Dutch hospitals to determine the bed occupancy
using the hospitalization days declared to insurance companies:

Ohd(T ) = sum of hospitalization days for all admissions in T

structural available capacity× length T
× 100%. (3.4)

Again, by taking the sum of all hospitalization days of admissions in time period T , a
fraction of these hospitalization days is not realized within this time period (e.g. for
admissions at the end of T , hospitalizations days exceed T ). Therefore this approach
gives some over estimation of the actual occupancy. Financial hospitalization days
are counted in integers, and can be invoiced if the patient is in a bed before 8:00 pm
and discharged after 7:00 am the next day. This implies that the occupancy can be
over 100% as beds can be reused if patients are discharged early in the day and new
patients are admitted in the afternoon. A drawback of this measure is that it cannot
be used as a targeted occupancy for all ward types. For example, it cannot be used in
wards in which patients generally stay for only a part of a day so that multiple patients
can be served by the same bed on the same day (e.g. gynecology). In this system,
these wards can achieve occupancy targets over 100%, while wards in which patients
have much longer stays (e.g. geriatrics) suffer severe bed shortages if the occupancy
is over 90%.

Example:
Here we will illustrate the different definitions of occupancy. Consider a ward
with three beds that is empty at the start of our observation period. We choose
to observe the ward from 8:00 am on day 1, until 5:00 pm on day 4. In this period
the following patients arrive:

Figure 3.1: Occupancy Chart for Example

Table 3.1: Occupancy Data for Example
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Arrival Discharge
Day Time Day Time LoS Hosp. days

Patient 1 1 8:00 am 2 6:00 pm 1.42 2
Patient 2 1 10:00 am 4 8:00 am 2.92 4
Patient 3 1 3:00 pm 2 8:00 am 0.71 2
Patient 4 2 3:00 am Patient is blocked - -
Patient 5 2 9:00 am 3 8:00 am 0.96 2
Patient 6 3 9:00 am After day 4 1.33 2
Patient 7 4 10:00 am After day 4 0.29 1

In this example, patient 4 is blocked as patients 1, 2 and 3 fill all available
beds and the first patient discharged (patient 3) is not discharged before patient
4 arrives. Note that the LoS for patients 6 and 7 in the table is not their exact
LoS but only the part until the end of the observation period. The bed census for
this ward is depicted in Figure 3.1. The blocking probability for this time period
equals 1/7≈15%. The different occupancy measures are calculated as follows.

The bed census at 10:00 am for days 1 to 4 is 2, 3, 2, and 1, respectively, so
the average equals 2. Therefore Obc(10 am)= 2/3 ≈ 66.7%. The average hourly
bed census is 2.2, so Ōbc = 2.2/3 ≈ 74.8%.

The sum of the LoS for all patients on this ward in this observation period, T ,
equals 7.63 days. The length of the observation period is 3.38 days. Therefore,
OLoS(T ) = 7.63/(3× 3.38) ≈ 75.3%.

The sum of the hospitalization days declared for these patients is 13, and
the total number of days in this observation period is 4. Therefore, Ohd(T ) =
13/(3× 4) ≈ 108.3%.

Hospital management determines which of the aforementioned occupancy measures
is used and sets a seperate target throughput level for each ward. A high occupancy
usually results in a high blocking probability [16]. Therefore it is important for man-
agement to balance these three performance indicators. Adequate targets for the
performance indicators depend on many factors: for example, the capacity of a ward,
the fraction of admissions that is acute, the possibility of deferring admissions, the
cost per bed, and the ward layout. Large wards have economies of scale, so a higher
bed occupancy can be achieved with a lower blocking probability. If a ward has mostly
acute admissions, occupancy targets need to be set lower; elective admissions can be
rescheduled in the case of a bed shortage, while acute admissions cannot be. If the
deferral of an arriving patient could give rise to a life-threatening situation (e.g. in the
case of an intensive care unit), a ward has to lower the target occupancy to produce
a lower blocking probability. However, such wards usually have high costs per staffed
bed, driving the occupancy targets upwards. Finally, if a ward has many rooms with
multiple beds, the bed assignment is less flexible than in wards with many single-bed
rooms; for example, a patient with an infectious disease cannot share a room with
others. In conclusion, it can be said that determining adequate occupancy, blocking
probability and throughput targets is a challenging task.
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3.3 Ward Taxonomy
We distinguish different ward types based on logistical characteristics: the type of in-
fow and outflow, typical LoS, resources, equipment, and planning problems the wards
face. Based on the literature cited in this chapter and our own experience, we distin-
guish the following types of wards:

- Intensive care unit (ICU)
- Acute medical unit (AMU)
- Obstetrics ward (OBS)
- Weekday ward (WDW)
- General ward (GEN)

We describe each type of ward in terms its logistical characteristics in Table 3.2, in
which “0” denotes average occurrence, occupancy or costs, and “+” or “-” denotes
increase or decrease, respectively,compared to average.

Table 3.2: Summary of Characteristics per Ward Type

ICU AMU WDW OBS GEN
Long LoS + − − 0 +
Short LoS + + + + 0
Acute admissions + + − + +
Elective admissions + − + + +
Bed occupancy + − + − 0
Staff / bed ratio + + − 0 0
Equipment + 0 − 0 0

Intensive care unit For this category in our taxonomy we group several ward types
with similar logistical characteristics: traditional ICUs, specialized ICUs, and critical,
high- or medium-care units. Specialized ICUs included, for example, stroke units,
cardiac care units and neonatal ICUs. High care and medium care units are sometimes
combined and are often referred to as step-down units between ICUs and general
wards. In the United Kingdom and the United States these wards are also referred to
as ”Critical Care Units”. The difference between high and medium care is generally the
need for breathing support. The ICU of a hospital accommodates the most severely
ill patients who require constant close monitoring and support from advanced medical
equipment and staff (nurses mostly on a 1:1 basis, and intensivists, who are readily
available) [159]. In the remainder of this chapter we refer to the ward types discussed
in this section as ICUs.

Due to the used equipment and the available staff, the ICU has the highest costs
per bed of all hospital wards. An ICU preferably does not defer patients, as this would
imply serious mortality risks. However, the costs per bed do not allow for a large buffer
in the number of available beds. Therefore, ICUs tend to be fully occupied, and they
discharge the least-ill patient, although this patient may not be medically indicated
for transfer, when a bed needs to be freed for a newly arriving patient, or they cancel
an elective procedure in the OT which that would require ICU capacity afterwards.
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Patients typically have either a short LoS or a very long LoS, and they arrive from
the OT, ED, wards or surrounding hospitals.

Acute medical unit There is no universally accepted definition. We believe the
following definition best covers AMUs: “an AMU is a designated hospital ward specif-
ically staffed and equipped to receive medical inpatients presenting with acute medical
illness from EDs and outpatient clinics for expedited multidisciplinary and medical spe-
cialist assessment, care and treatment for up to a designated period (typically between
24 and 72 hours) prior to discharge or transfer to medical wards” [206]. Often, AMUs
serve as a buffer for both the ED and inpatient wards. Since an AMU treats only
urgent patients and should alleviate ED congestion, management is more focused on
throughput and LoS, and the target utilization of the AMU beds is typically lower than
for general wards. AMUs are also known as “emergency observation and assessment
ward”, “acute assessment unit” and “acute medical assessment units”. The systematic
reviews [60, 206] provide a comprehensive overview of definitions and concepts for
AMUs. The inflow mainly consists of acute patients from the ED, outpatient clinics,
surrounding hospitals, or general practitioners.

Weekday ward Weekday wards (WDWs) are wards admitting patients with an ex-
pected LoS between 2 and 5 days, and they usually open on weekdays [58]. WDW-type
hospitals are also sometimes referred to as “Monday to Friday clinic” or “Week Hos-
pital”. Most patients at WDWs are elective, and can be transferred to regular wards
without any health risks. Only patients with a highly predictable LoS may be admit-
ted, which is why WDWs mostly treat patients for whom strict treatment protocols
apply. Scheduling patients at a WDW is complicated by each patient’s different LoS
and urgency level, which implies a deadline by which the patient should be treated.
The requirement that the ward should be closed during weekends also complicates
patient scheduling. Most admissions arrive directly from home.

Obstetrics ward Obstetrics and gynecology wards (OBS) provide care for women
during pregnancy and during and after labor, and they also take care of their new-
borns [57]. Additionally, gynecology wards accommodate women who have problems
with their reproductive organs. These patients often require brief surgical interven-
tion, and typically a short hospitalization. Some hospitals group these types of wards
under names such as “birthing center”, “maternity clinic”, or “women’s and child’s
Center”. Most patients arrive from home, outpatient clinics or other hospitals.

General wards General wards in hospitals are often dedicated to a single medical
specialty such as neurology, geriatrics, or hematology. As these wards are generally
equipped with similar resources and accommodate both acute and elective admissions
which differ in LoS, we aggregate these ward types. General wards can be either
surgical or medical and certain wards, such as psychiatric or geriatric wards, are closed,
implying that patients cannot leave without approval. Other wards are equipped with
a specific type of resource, such as dialysis machines and heart monitors. The nurse-
to-patient ratio is often 1:5 to 1:6. Patients with a particular medical specialty are
typically not all accommodated in the same ward, but may also be admitted at, for
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example, a WDW or an ICU. Patient inflow is mainly from referrals of outpatient
clinics, ICUs, general practitioners or other hospitals.

3.4 Ward-related OR Models
In the previous section we distinguished different ward types and their logistical sim-
ilarities and differences. In this section, we review the OR literature for each ward
type, emphasizing the main questions or problems the literature tries to solve, the
context of the problems (e.g. ward type), and the type of models invoked for each
paper. Table 3.3 shows the number of papers found for each ward type along with
the OR model/method used. If a paper invoked multiple OR models, we categorized
the paper in all applicable categories. We review the literature related to the specific
ward types in Sections Sections 3.4.1 to 3.4.5.

Table 3.3: Literature Categorized by Applied Models and Ward Type.

OR model or method ICU AMU OBS General WDW Total
Algorithms 1 0 0 3 0 4
Dynamic Programming 1 0 0 0 1 2
Markov processes 4 0 2 11 0 17
Mathematical programming 3 2 3 5 1 15
Queueing theory 13 2 3 15 0 34
Regression 1 0 0 1 0 2
Simulation 21 1 2 21 0 45
Time series 1 0 0 2 0 3
Total 46 5 10 56 2 119

3.4.1 Intensive Care Unit
The ICU has both elective and emergency patient arrivals. Emergency patients mostly
come from the ED or surrounding hospitals and elective patients mainly arrive after
surgery. Since significant costs are involved, management tends to maximize utiliza-
tion. This has resulted in increasing numbers of refusals or severely ill patients being
transferred from the ICU to high, medium or regular care wards. This could lead to
situations in which quality of care is at stake and possibly to disruptions in the OT
schedule. These are also the main problems the literature of this section focuses on:
admission and discharge control.

In [33], a queueing model (M/G/s/s queue, see Appendix A for explanation) was
used to analyze the minimum number of ICU beds required for burn care for the state
of New York. The authors start by determining the number of beds at an aggregate
level given a maximum blocking probability of 5%, and then they apply a heuristic
allocating these ICU beds among several regional units, while trying to maintain the
same blocking probability. This model is extended to analyze an overflow model in
[154]. Here, each ICU reserves bed capacity for regional emergency patients, which may
be used as overflow beds in a given region. To approximate the blocking probability
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Table 3.4: Literature on ICUs Categorized by Applied Models.

OR model/method References
Algorithms [33]
Dynamic programming [54]
Markov processes [33, 45, 72, 85]
Mathematical programming [134, 159, 160]
Queueing theory [33, 69, 98, 131, 154, 160, 171, 210, 229, 252, 255, 264]
Regression [159]
Simulation [37, 38, 61, 66, 131, 132, 134, 135, 154, 159, 160, 164, 165,

167, 176, 177, 198, 209, 214, 221, 255]
Time series [85]

of this overflow model, the equivalent random method is used, whereas a simulation
model is used to validate the results of this queueing model with historical data.
Another modified M/M/s/s model is used to analyze different admission policies and
their relation to survival gains [210]. The following policies are analyzed: (1) the
standard first come first served (FCFS) discipline; (2) arrivals are served if and only
if a bed is available and the survival gain is greater than an arbitrary threshold value;
and (3) arrivals are served if and only if a bed is available and the survival gain
threshold value is met, with this policy the threshold value dependent on the number
of beds available. If fewer beds are available, the threshold value for survival gain is
increased. The results show significant increases for survival gain in both the second
and third policies compared to the first policy. The third policy demonstrates only
marginal survival gain compared to the second policy, while it significantly increases
the number of rejected patients. Another application of the M/M/s/s queue is used
to analyze an ICU [171]. This model is validated with observed data and it is proved
that the calculated blocking probabilities from the queueing model were accurate.

In addition to queueing models, discrete-time Markov chains are also applied to
ICUs. The authors in [72] develop a Markov chain to analyze so called bumping
(patient transfers from the ICU to free capacity for new arrivals who are more severely
ill). Another application of Markov chains by [54], is used to evaluate the effect of
ICU discharge strategies and bed census on patient mortality and total readmission
load.

Simulation is also often applied to analyze the required number of ICU beds. Sev-
eral scenarios are analyzed in which ICU beds are reserved for emergency arrivals
[134, 165, 198]. The authors of [131] simulate several ICU arrival processes and com-
pares these results with theoretical results using an M/M/s queue. Based on the
simulation model, the authors also determine the blocking probability for the current
capacity. Another study [132] analyzes several scenarios to minimize the number of
elective surgery patients refused at the ICU. The efficient frontier method is used to
plot the trade-off between the number of canceled surgeries and the average waiting
time per scenario.

In [159] multiple OR techniques are used to analyze the ICU: first, a regression
model is proposed for modeling the ICU LoS; second, a comprehensive simulation
model is developed for analyzing system behavior and blocking probabilities; and last,
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mathematical programming is used to model the triage problem (which current and
arriving patients are most in need of ICU capacity?) for early or delayed discharges
from the ICU that are based on high or low utilization of ICU capacity.

When patient logistics at the ICU are analyzed, there is a clear distinction be-
tween the type of models used and the type of problems solved. Because a significant
fraction of arrivals at the ICU are unscheduled, queueing theory gives accurate and
representative results. In analyzing ICU dynamics, this technique is typically used
to achieve general insights about blocking probability, occupancy, ICU capacity, and
the trade-offs among these. Markov chains are used to analyze bed census probabili-
ties and the probability of bumping. Simulation is generally used to analyze multiple
scenarios where particular details are involved or case-specific dynamics need to be
studied.

3.4.2 Acute Medical Unit
The systematic reviews on AMUs mentioned in Section 3.3 conclude that AMUs may
have many advantages but that evidence of economic effectiveness is not clear. One
review finds AMU “performance is dependent on good management and availability of
diagnostic services”, and asserts that there is no proof of cost-effectiveness of AMUs
[60]. An extensive list of success factors for AMUs is also available [206]. From an
OR perspective, if a hospital does not add beds or staff to its current capacity for
opening an AMU, the improved performance reported in the reviews is disputable.
The beds assigned to the AMU are taken from other wards, decreasing the benefits of
economies of scale and affecting other patients at those wards. Additionally, patients
who require inpatient care after their stay at the AMU encounter more process steps
than if they had been admitted directly. Therefore, the effects of opening an AMU
cannot be predicted beforehand without the use of appropriate mathematical models.
Perhaps partly because AMUs are a relatively new concept, the OR literature applied
to AMU is somewhat sparse. In this section, we review this available literature.

Depending on the performance measures of interest and the research goals, several
models can be applied to AMUs. We describe a goal programming approach used to
minimize the delay from moving a patient from the ED to AMU, and two different
queueing networks to evaluate blocking probability and bed censuses.

A goal programming approach is used to determine the required additional re-
sources (beds, doctors, and nurses) for each hour of the day to minimize the delay
patients experience on an AMU staffed with eight beds, two nurses and three doctors
[178]. Goal programming is an extension of mathematical programming in which for
each objective, a target (or goal) is set, and deviations from these targets are mini-
mized. In the model, each patient requires a bed, and a specific treatment by a nurse,
a doctor, or both. A patient is delayed if there are no beds available upon arrival or
if the doctors and nurses are seeing other patients at the moment the patient requires
care. For the case studied, the average LoS was 5 hours, and the run time of the model
equaled a day and a half. The conclusion is that only two doctors are required, and a
third nurse should be on standby in the afternoon and at midnight to cope with peak
demand.

In a follow-up study for a larger AMU (58 beds), a simulation is used to analyze
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14 scenarios with different numbers of beds [179]. Here, each resource type (beds,
nurses, and doctors) has its own queue, and patients wait in these queues until the
resource they require is available. Initial targets for each queue length are fed into
a goal programming model, together with targets for total LoS and the number of
beds. The authors minimize weighted positive deviations from these targets. The
model output comprises the resource levels that minimize patient’ delays at the AMU,
and a trade-off between higher utilization of resources and patient- and staff-related
objectives is provided.

Another study analyzes a network with one AMU and an aggregated regular ward,
in which patients are transferred between the wards if their care requirements change
[223]. The authors use an infinite server queueing network to determine the probability
that the bed occupancy on either ward exceeds a certain number of beds. Based on
this probability, they determine the optimal assignment of the available beds to either
the AMU or the regular ward. For the case in which total mean bed occupancy is
85%, and 91% of the patients require acute care, they conclude that 60% to 65% of
the available beds should be designated for acute care.

For a network comprising an ED, two aggregated wards, and an AMU, the study
reported in [265] determines the blocking probability by invoking a network of Er-
lang loss queues in which the AMU both has direct patient arrivals and serves as an
overflow ward. The authors consider both urgent patients (arriving from the ED)
and elective patients. The hospital is only allowed to reallocate existing beds from
the wards to the AMU. The equivalent random method is used to analyze the net-
work with overflows, since overflow traffic does not follow a Poisson distribution. This
method approximates the original network by truncating an infinite server network.
The authors conclude that opening an AMU is beneficial for accommodating urgent
patients, but the blocking probability for elective patients increases significantly.

The advantage of a simulation or goal programming approach over queueing net-
works is that time-dependent arrivals can be incorporated relatively easily. However,
the size of the state space in a goal programming model increases with the time horizon
considered and will explode when several departments of realistic sizes are considered.
The drawback of simulation models is that they are not easily applied to other hos-
pitals. The advantage of considering infinite server queues is that straightforward
formulas for the analysis exist in the literature.

3.4.3 Obstetrics Ward
The literature includes several OR models applied to OBS wards and maternity clinics.
We describe different queueing theory approaches, a simulation model, a discrete-time
conditional phase type model, and a discrete time Markov model.

In research conducted almost 40 years ago, the bed occupancy at an OBS ward
using an infinite server queue is modeled [170]. The ward may also admit gynecology
patients to achieve higher occupancy rates, but those patients are transferred to other
wards if an OBS patient has no available bed upon arrival. The gynecology patients
may only be admitted to the OBS ward when the bed census is lower than a certain
threshold. The authors use an infinite server queue to represent the situation in which
patients are placed in unstaffed beds as a temporary measure when no official beds are
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available upon arrival. The results are compared for multiple hospitals and incorporate
the national guidelines on the admittance of gynecology patients to OBS wards. The
authors state which thresholds are best for given ward sizes.

Another study calculates the probability of delay for example, the probability that
there is no bed available upon patient arrival, using an M/M/s queue [96]. Key to
this model is that arriving patients who find all beds occupied wait at the clinic until
a bed becomes available. During their waiting time, patients are not treated, as their
“service” commences as soon they are placed in a bed. Inputs are the average LoS
found in hospital data and different arrival rates. The authors compare the probability
of delay for different occupancy targets and different arrival rates.

For a maternity clinic consisting of different wards, including a neonatal ward and
ICU, the Queueing Network Analyzer is used (cf. [264]) to model the bed occupancy
[57]. The authors evaluate all possible bed arrangements among the wards for the
peak arrival rate of the clinic. The best arrangements are then evaluated in a system
with an inhomogeneous arrival rate in a discrete event simulation. The authors report
that the hospital has implemented some of their recommendations, but instead of
reassigning beds the hospital chose to add 15 beds to the ward with the greatest bed
shortage as identified by the simulation and the queueing model.

To model different types of wards in a network of multiple maternity clinics inde-
pendent M/M/s/s queues are also used [186]. The general Erlang loss formulas for
the blocking probability are then fed into a mixed integer linear program (MILP) to
determine strategic bed-assignment policies. Each year the clinic may reassign, open
and close beds at the wards and clinics, and each decision entails certain costs. The
authors incorporate long-term planning, since it is undesirable to have a ward close
beds and fire nursing staff one year, only to reopen these beds and recall staff the
following year. The objective of the optimization program is to minimize the costs
over the decision horizon. One of the authors’ conclusions is that efficiency could
be improved if resources were transferred among units that experience different de-
mographic changes (such as an increase or decrease in the number of women giving
birth).

In an attempt to improve the occupancy rate of an obstetric clinic, this next study
investigates different scenarios by means of discrete event simulation [97]. Inflow and
LoS of the model are based on hospital data; patients in the model follow one of
the predefined care pathways through the clinic. When they compare the results of
both approaches to hospital data, the authors conclude that the care pathway-based
approach reflects reality better than a transition probability-based approach. One of
the investigated scenarios includes “swing rooms”, which are rooms that can be used
by multiple wards of the clinic, but not at the same time. The clinic subsequently
implemented the swing rooms, which proved useful for balancing utilization throughout
the clinic during bed census peaks.

A discrete-time Markov model is developed to mimic a maternity clinic consisting
of four wards in [121]. Patients can flow among units, with the routes patients take
depent on their type. The authors define 11 patient types and six arrival streams (e.g.
natural birth or cesarean), and the LoS has an empirical discrete distribution. All
input is derived from hospital data. Since the model assumes infinite capacity, the
authors derive the mean and variance of the bed occupancy at the units in case no
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patients would be deferred to other clinics. These can be used to approximate the
bed census by fitting a normal distribution with the same mean and variance. The
normal approximation is included in an integer linear programming (ILP) optimization
model to optimize the scheduled arrivals at the clinic. Several of the assumptions are
validated by means of a discrete event simulation. One of the conclusions is that
scheduling some patients on Saturdays smooths the bed census significantly. The
authors report that their model has supported multiple clinics in the United States.

The next study focuses on predicting the LoS of women arriving at a maternity
clinic [109]. The authors define a phase-type distributed LoS for two labor types:
spontaneous and scheduled. For both types a decision tree based on patient charac-
teristics, such as age and weight, further specifies the LoS parameters. The prediction
of the LoS is then included in a simple continuous time Markov model to calculate
bed occupancy for the labor ward of the clinic, using a homogeneous arrival rate. The
model uses the LoS distribution and transition probabilities that women experience in
each phase of labor. The steady state of the model reflects the bed census at different
phases, which require the inclusion of different wards at the clinic.

In the literature on OBS wards we found two attempts at increasing bed occupancy,
either by admitting non-OBS patients or by using swing rooms. Interestingly,the
authors of [109] conclude that the hospital data they obtained does not show a specific
time-dependent arrival distribution, while other researchers [57, 97, 121] do model
time-dependent arrival rates. Arguably, scheduled arrivals (scheduled cesarean births)
likely occur only during office hours, which implies a time dependent arrival rate.
Queueing models are more difficult to use in a time dependent system, since the
simple formulas for waiting and blocking probability do not hold in a time dependent
system. The drawback of using simulation models is that most models are case-
specific, applicable only to the clinic they were designed for. However, the advantage
of a simulation model’s graphical visualization is that practitioners can easily see the
implications of different interventions, which often means that results of the research
are more easily implemented into practice. An advantage of the discrete time Markov
models is that these models are able to mimic reality better than queueing models can,
and are still more general than simulation models. However, a potential drawback
could be a rapidly increasing state space for average sized clinics consisting of multiple
wards. Others propose an approximation of the bed census by a Normal distribution,
and based on their simulation results this seems a reasonable proposition [121].

3.4.4 General Ward
In most of the literature included in this section, general concepts are analyzed that
are applicable to many types of wards, or the studies take multiple departments into
account. Given this breadth, most literature discussed here focuses on strategic or
tactical planning by evaluating capacity dimensioning decisions or predicting demand.

The models for analyzing general bed census concepts cover a wide range of OR
techniques and are applied on different levels. The techniques reviewed in this section
are listed in Table 3.5. We highlight these models and their conclusions below by
discussing a selection of the studies in Table3.5.

A queueing model is used to determine the bed demand at the community level,
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Table 3.5: Literature on General Wards Categorized by Applied Models.

OR model/method References
Algorithms [29, 113, 230]
Markov processes [8, 93, 128, 141, 197, 211, 217, 219, 224, 225, 244]
Mathematical programming [7, 21, 29, 152, 230]
Queueing theory [20, 21, 29, 69, 82, 86, 91–93, 96, 99, 111, 152, 243, 264]
Regression [139]
Simulation [8, 15, 75, 77, 78, 93, 102, 110, 111, 113, 128, 135, 139, 140,

143, 145, 236, 243, 244, 261, 262]
Time series [145, 158]

focusing on high occupancy rates, while keeping refusal rates for emergency patients
low and waiting lists short [211]. The bed census is modeled using an infinite server
queue incorporating two classes (elective and emergency) of arrival streams. This
model elaborates on earlier research applying an infinite server queue by adding a
threshold parameter (B). To balance the elective and emergency arrival streams,
the model blocks elective admissions if the occupancy rate is higher than or equal to
B. This model provides policy makers useful insights into the relationships between
bed census, length of the waiting list and emergency refusals. Another queueing model
incorporates predictable fluctuations in the average number of arrivals [20]. This time-
dependent queue, an M(t)/H/s/s model (in which M(t) indicates a time-dependent
Poisson process, see Appendix A for information on the notation), is evaluated by using
approximations based on the infinite server queue. It is shown that daily fluctuations
have limited impact on the bed census, whereas weekly patterns do have a significant
impact on both the bed census and the number of refused admissions. Finally, the
authors present a method to determine the required number of beds across the week.
In[91], an M/PH/s queue is used to determine the optimal bed census for a hospital, in
which the LoS is phase-type distributed (which is denoted by the abbreviation PH).
The authors in [69], employ the Erlang loss model (M/G/s/s queue) to relate the
blocking probability to the occupancy. Additionally, a broad introduction of various
applications of queueing networks in healthcare is also available [264].

Several studies use a discrete Markovian approach to predict the short-term bed
census. These predictions are mainly based on the current bed census at day t, the
expected elective and emergency admissions, and the expected discharges at day t+ j.
In these models the LoS is often empirically distributed. The census distribution
is approximated from their Markov model by a normal distribution [224], showing
that this relatively easy approximation performs satisfactory when applied to hospital
wards. Markov models are also applied to obtain the distribution of the number of
patients in each phase of a care pathway, for geriatric [93, 219] or stroke patients [244],
to determine the required resources in each phase of the pathway.

Simulation is used by [75] to analyze bed allocation and usage policies for all beds
in a hospital based on hospitalizations days (e.g. 24-hour bed occupancy) per specialty,
average daily bed census at a certain time, bed occupancy over a time period, patient
misplacements and annual misplaced patient-days. Another simulation analyzes the so
called “winter bed crisis”, a yearly bed shortage during mid winter [243]. The results
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show that discharge delays during mid winter were the main reason for high bed census
counts. The following study analyzes waiting times for surgical procedures by means
of simulation [236]. Another simulation study was performed to balance emergency
and elective admissions for the available bed capacity [143]. The last simulation study
focuses on the overflows between wards (in which patients are transferred to another
ward because the designated ward is fully occupied), and find that the occupancy of
wards is a good predictor for the frequency of overflows [128].

Time series models are also used to predict bed census demand. An hourly bed
census prediction is modeled with a time series model [145]. The results are used
to reallocate beds between ward types such as medical, surgical or obstetrics. A
different but related approach involves the use of mixed exponential equations to obtain
the probability distribution of patients in different phases of their care pathways.
In [157, 244] the model is applied to mimic the bed census, allocating emergency
admissions on both a regional and hospital level. Results show that this type of
model mimics the bed occupancy accurately. The first study analyzes the accuracy
of these mixed exponential equations based on a case study and compares equations
by evaluating the effect of adding more parameters [158]. The latter study relates
the blueprint schedule of the OT, in which each subspecialty gets a fraction of the
available OT time, to the hourly bed census distribution in the postoperative wards
[138].

A nonlinear mixed integer mathematical programming model is used to allocate
the number of available beds among hospital services over a finite planning horizon
[7]. The decisions are based on patients’ waiting time before admission and budget
limits. A similar technique is employed in [230], where integer programming assists
in clustering the clinical departments and assigning these clustered departments to
available wards. These assignments are such that capacity is sufficient to guarantee a
maximum blocking probability.

In conclusion, the choice of a modeling technique depends on the desired output.
Queueing theory is suitable for determining the capacity or census distribution of a
single ward, preferably with mostly unscheduled patient admissions, when a maxi-
mum blocking probability or target occupancy must be achieved. Markov models
and time series models are accurate for determining the census distribution or certain
percentiles, but might be tedious to analyze as the state space may become large. Sim-
ulation models can be developed as detailed or macro-level as desired but are generally
suitable for obtaining average performance measures. Mathematical programming can
be used to optimize the reallocation of beds to wards.

3.4.5 Weekday Ward
Although most Dutch hospitals have a WDW, and the optimization potential is sig-
nificant, we were able to find only two references that study WDWs. This may be
explained by the lack of capacity issues in this ward types. Since all patients are elec-
tive, they can be scheduled at a time when beds are available, and patients who cannot
be admitted can be accommodated on the general ward. Still, we are confident that
WDWs have a substantial logistical potential; large efficiency gains can be achieved if
the number of beds is adequate and patient scheduling is optimized.
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Due to the lack of modeling work on WDWs and the sparsity of scheduling work for
this type of ward, we describe below two models for optimizing the patient scheduling
that are relevant to the present discussion.

For a Monday-to-Friday rheumatology clinic, admissions from a waiting list are
optimized in this model [58]. An introductory meeting determines a patient’s med-
ical priority, resource requirements and LoS. LoS is maximally 5 days. The authors
develop an ILP model, in which they decide on a schedule time slot, if any, for each
resource the patient requires (e.g. beds or diagnostic tests). Patients are assigned a
weight according to their medical priority and time spent on the waiting list, and the
objective is to maximize the weighted number of admissions. The authors conclude
that the number of available beds is the bottleneck, and their optimized schedule can
accommodate twice as many patients as manually composed schedule.

The last study we found on WDWs considers an online appointment scheduling ver-
sion of the WDW patient scheduling problem: a patient’s request arrives and should be
assigned to a date and time immediately, without knowledge of future patient arrivals
[41]. The authors develop an approximate dynamic programming model to obtain the
optimal scheduling policy. This technique is often invoked when dynamic program-
ming models suffer from the curse of dimensionality, and encompasses aggregating the
state space and approximating the value function.

3.5 Ward Capacity Management

Thus far, we have elaborated on specific ward types and models. From this section on,
the focus is on hospital-wide ward capacity decisions. The term capacity management
is most often used for decisions on the acquisition and usage of renewable resources to
efficiently satisfy customer demands [94]. Efficient realization of organizational goals
(e.g., satisfied and healthy patients and employees) requires hospital-wide coordination
of capacity and flows, by continuously balancing demand and supply. OR can give
managerial insights for capacity management to improve the efficiency of capacity and
flows.

To demarcate the scope of capacity management decisions and optimization analy-
ses in wards, we use the four-by-four framework of [106]. The framework hierarchically
decomposes managerial levels on one axis: strategic, tactical and operational (offline
and online). It covers different managerial areas on the other axis: medical planning,
renewable resource planning, nonrenewable resource planning and financial planning.
An important step in planning and control is to set the length of the scheduling hori-
zon for the different hierarchical levels. Strategic planning encompasses the longest
horizon, while operational planning has the shortest horizon. On the other axis, the
framework integrates the managerial planning areas in healthcare: medical, resource
capacity, materials and financial planning. In this chapter we focus on resource capac-
ity planning for both planning and control and OR models for wards. Following this
framework, we use a top-down approach explaining all planning and control decisions
at the different hierarchical levels, as higher levels create capacity boundaries for lower
levels based on forecasts. Nevertheless, in practice bottom-up feedback from actual
planning realizations should also occur, so detected deviations and problems can be
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lifted one hierarchical level higher for problem solving.

3.5.1 Strategic Ward Capacity Management
At the strategic level, the hospital administration decides on the hospital’s long-term
mission and strategy - the areas on which the hospital aims to focus and excel. Impor-
tant strategic decisions included: the desired case-mix, hospital layout, performance
targets, bed capacity and workforce plan.

The desired case-mix of the hospital

Based on the hospital’s mission and strategy, the case-mix is formed: a case-mix is the
collection of patient groups a hospital treats. Some hospitals choose a very specific
patient group to treat - for example a breast cancer clinic - while general hospitals
have a more diverse case-mix. The case-mix of a hospital determines to a large extent
the required capacity.

The case-mix of a hospital can be adjusted by attracting certain patient groups
and defferring others. As healthcare organizations and their professionals have a duty
to care for their patients, a hospital is not allowed to defer a patient group until other
regional or national providers agree to treat this patient group. Furthermore, the
patient case-mix can also change when a new doctor with a different specialization is
hired. The same can happen when specialized doctors leave the hospital.

Adjusting a hospital’s case-mix is a complex process as many factors should be
taken into account. For example, case-mix decisions can affect not only the capacity
needed for care delivery, but also the education and research possibilities. Another
example is that patients are not often treated only by a single specialty. Thus, the
decision to stop treatment of a specific patient group by a medical specialty could
affect the case-mix of many other medical specialties.

Hospital layout planning

Based on the mission and strategy, a hospital board decides at the strategic level which
type of wards and rooms will be available in the hospital. One factor they consider is
the mix between single- and multi-person rooms. Single-person rooms ensure privacy
for patients and their families, but require more space and increase walking distance
for the staff, which may complicate the monitoring of patients. On the other hand,
multi-person rooms are inefficient when patients have infectious diseases and when all
rooms are same-sex.

Another aspect of strategic planning for wards is the decision to establish wards
for special types of care; AMUs, ICUs, CCUs, and surgical admission lounges are
examples of such dedicated wards. These wards serve specific patient groups based
on severity, urgency, treatment or flow (e.g. elective versus acute admissions) and are
mainly introduced to improve the quality of care, efficiency, or both. As such decisions
have high economic impact and a long time frame, they will affect the hospital logistics
for multiple years.

After the global lay-out of the hospital is determined, all patient groups in the
case-mix must be assigned to wards. An important decision at this level is how many



40 Chapter 3. Ward Capacity Planning & Management

staffed beds to assign to individual wards. From a logistical viewpoint, larger wards
will result in economies of scale, leading to a higher occupancy with an acceptable
blocking probability (see [226]). For this decision, the trade-off between medical and
logistical perspectives should be considered. Purely from a logistical perspective, if
all patient groups could be treated at any bed in the hospital, the bed census in this
single ward system could be optimally balanced. A result of this would be that nurses
in this hospital would have to be multi-skilled (which is impossible for highly complex
care), and doctors would spend more time visiting their patients at different areas of
the hospital. From a medical perspective, however, a more differentiated distribution
of patient groups over wards would be optimal, with patient types clustered according
to the skills required for their treatment. A balance between these two perspectives
should be found.

Setting performance targets

On a strategic level, the hospital board may set performance targets for the hospital.
In hospital wards, the logistical performance indicators used are often the bed census
or occupancy, with occupancy measurable in many different ways [226]. Setting high
occupancy targets for wards will, certainly for smaller wards, result in deferring more
patients to other wards or hospitals. Different performance targets would be remaining
below an upper-bound on the percentage of deferred patients, and achieving the desired
case-mix.

The number of beds

Once a hospital’s desired case-mix is determined, this information is used for strategic
planning to forecast the demand for care for the hospital. This forecast is based on
aggregated data, trends, and forecasts of the patient population. Using the forecasted
demand for care and the set performance targets, a hospital can determine the required
capacity to treat these patients. The required capacity is determined on an aggregated
scale, such as the total number of required OT hours, outpatient clinic hours and
ward hours for the upcoming years. Based on the aggregated data, the required ward
capacity is re-evaluated yearly.

Typically, the number of physical beds in a ward is higher than the average number
of used beds. Each ward should have buffer capacity, to accommodate unexpected
peaks in patient arrivals. Often, not all physical beds at a ward are staffed: there is
no nurse available to treat a patient in an unstaffed bed. These extra beds ensure, for
example, that patients with infection risks can be treated in isolation when the ward
has multi-person rooms. Moreover, these beds form a buffer of clean beds if the time
between one patient’s discharge and another patient’s admission is short.

A ward may also have over-capacity in the number of staffed beds, when the nurse-
to-patient ratios do not perfectly match the expected bed census. The ratio depends
on the average workload each patient represents, and denotes the number of patients
one nurse can take care of. For example, consider a ward with an expected bed census
of 17 beds and ratios for each shift that are as follows: day 1 : 3, afternoon 1 : 5
and night 1 : 8. As a result, the shifts requires at least six, four and three nurses,
respectively. On a strategic level this slack should be taken into account when the
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expected bed census is translated into the required number of full-time-equivalent
contracted nurses.

Workforce planning

Often, the number of nurses rather then the physical bed capacity determines the
available beds at wards. Once the demand for beds has been determined by the case-
mix plan, the workforce should be aligned to it. An important capacity management
decision that determines how many nurses are required, is the nurse-to-bed ratio. For
example, an ICU patient has a relatively high workload and the nurse-to-patient ratio
is 1:1, while for a general ward during a night shift the ratio may be 1:16. Workload
lacks a universally accepted definition but is generally considered to be the relation
between the demand (of patients) and the capacity available to fulfill this demand.
Workload can be divided into objective (e.g. patient acuity metrics) and subjective
(e.g. nurse workload perception) factors ([213, 234]). Patient acuity metrics are gen-
erally activities of daily living, cognitive support, communication support, emotional
support, safety management, patient assessment, injury or wound management, obser-
vational needs and medication preparation. Perceived workload is also not universally
accepted as a measurement for workload, but is mainly related to staff characteristics
such as age, experience and educational level. The total workload in a ward is based
on the patients’ acuity, the shift (day, afternoon or night), and the bed census.

Nurses are mostly assigned to a single ward, or to a few wards that accommodate
patients with the same care requirements. At a strategic level, a hospital can decide
to flexibly allocate a part of its capacity. For wards, this implies that not all beds
are assigned to a certain medical specialty or specific patient group (e.g. organ trans-
plantation patients), but part of the bed capacity will be assigned based on the actual
demand for care for each patient group. Flexibility may also imply that a hospital
creates a flex-pool of nurses; these nurses are often multiskilled and are allocated on
a short-term (for example each morning) to the busiest ward. The advantage of flex-
ible capacity is that a hospital can better adapt to stochastic patient demand. The
determination of the level of flexible capacity, and the selection of which KPIs the
allocation is based on, is a strategic capacity management decision.

A hospital’s desired case-mix also determines the quantity and capabilities of the
required staff, to a large extent. However, the translation from case-mix to the num-
ber of staff members is not the same for each hospital. Continuous technological
and medical innovations require greater specialization from practitioners. In general,
more specialization increases the number of specialists involved during diagnosis and
treatment, as all specialists are focused on a small part of a human body or spe-
cific diseases. Additionally, a hospital’s policy on education affect how the case-mix
is translated to number of required staff-members; junior residents usually decrease
the capacity by increasing supervision duties of the staff, while residents ending their
training often work with minimal supervision. Moreover, staff involved involved in
research projects, typically decreases the available capacity for treating patients. Ad-
ditionally, each hospital has differences in its workforce, which implies that strategic
workforce planning should incorporate these factors: influx (training, education and
immigrants) and outflux (retirement or retention) of staff, level of task differentiation
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(e.g. highly trained versus basic trained staff) and the in- or outsourcing of training
and education programs.

Strategic capacity management decisions are always long-term and often require
major monetary adjustments to accomplish. For economic value and employee satis-
faction, yearly changes to the ward layout of the hospital are not desirable. However,
small changes in the case-mix may make ward sizes inadequate over time. Here, both
under- and overcapacity are problems (see section 3.7.1). Strategic decisions define
the directions for tactical and operational planning, and are thus, to a large extent,
accountable for the performance of the hospital.

3.5.2 Tactical Ward Capacity Management
At the tactical level, capacity management decisions focus on organizing the desired
case-mix, controlling patient access times, and efficiently using capacity via generating
master schedules, allocation of flexible capacity and scheduling bounds, which we
explain in this section. As mentioned earlier, tactical capacity management decisions
concern the organization of operations and processes over the medium term.

Master Schedules

A major topic in tactical management is the division of the capacity among stake-
holders and over the weeks of the year, resulting in a master schedule. This is called
rough-cut capacity planning. Often a master schedule is set for an entire year, but
when the scheduling horizon is shorter, hospitals can gain flexibility to adjust capacity
to patient demand. For wards a master schedule may drive a weekly schedule in which
the capacity of each ward changes over time, and beds are divided among different
patient groups (e.g., elective and emergency admissions). Typically, a master schedule
handles each season differently. Temporary leaves of staff may also require alterations
to the master schedule. Holidays, training, education and internships are examples of
reasons for temporary leaves and should be planned on the tactical level.

The master schedule of a ward should be aligned with the master schedules of
other capacities, such as OTs and outpatient clinics, to create a stable flow of patients.
Especially for wards that accommodate surgical patients, aligning the master schedules
of the operating rooms and wards results in increased efficiency. This alignment is
twofold: aligning holiday weeks and balancing bed censuses. Typically, a hospital has
several holiday weeks per year in which elective patients and staff are not available and
capacity is reduced for elective (i.e. scheduled) care. To prevent a shortage or surplus
of beds, the holiday weeks of the OT and wards should be aligned. Additionally, by
optimizing the operating room master schedule, the post-operative bed census can
be improved [81]. Balancing the bed census implies that a ward requires less buffer
capacity, and thus it increases efficiency in a ward and reduces the risk that a surgery
will be canceled due to a lack of postoperative beds.

Flexible Allocation of Capacity

Hospital demand usually fluctuates, thus it may be beneficial to adjust part of the
capacity throughout the year. To create flow (e.g. minimize variation) in the hospital,
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admitting a similar number and type of patients each week is optimal. This is a difficult
to achieve, however, given staff holidays and the stochasticity in patient arrivals and
durations (i.e. LoSs). It is beneficial to periodically evaluate the available capacity,
for each patient group (or aggregated for each medical specialty) and make minor
adjustments where necessary and possible. For wards, this could mean asking nurses
to work on a different ward for several weeks, or asking doctors to, for example, help
on the ward instead of working in the outpatient clinic.

Hospital management can decide on the strategic level to reserve a portion of
capacity and allocate this on a regular basis - for example, monthly. At the tactical
level, this capacity may be allocated several weeks in advance. When applying flexible
capacity allocation it is important to have consensus among all stakeholders about the
parameters and performance indicators upon which the allocation will be based and on
the scheduling horizon for allocating the flexible capacity. For wards, flexible capacity
could imply that nurses from the flex-pool are assigned to a specific ward. Moreover,
downstream resources should be considered when allocating staff from a flex-pool to
align patient loads. For example, allocating flexible operating room time affects the
bed census in postoperative wards, thus these decisions may require additional nurses
in those wards.

In most hospitals, staff rosters are generated several months in advance, and thus
staff planning is performed on tactical level too. These rosters indicate only which
shifts and days an employee will work and do not specify the department, bed, or
patients. The scheduling of these details, is performed on the operational level. This
provides the departments additional flexibility in staff allocation.

Regulating the demand for care

Tactical capacity management decisions are crucial to efficiently organizing patient
care and flows, especially at the interface between different types of resources in a
hospital. From our own experience, this level is still underdeveloped in many hos-
pitals. To balance patient flow and optimize efficiency, at the tactical level hospital
management can decide to formulate rules for patient scheduling. Such rules may for
example state the minimum and maximum numbers of elective patients that may be
admitted to a ward per day within a week. Another example is a rule imposing a
maximum on the number of ICU bed-requiring surgeries that may be scheduled on
the same day. These rules can be ward-specific or medical specialty-specific, or they
may hold for the entire hospital.

3.5.3 Operational Ward Capacity Management

The operational level is, by definition, divided into offline (service at a later point in
time) and online (instant service) capacity management decisions [106]. Compared to
the strategic and tactical level, the operational level has very limited possibilities for
adjusting capacity based on patient demand. The online level comprises the actual
patient-(room and bed)-to -staff scheduling and ad hoc decisions, such as replacing ill
staff members and responding to admissions of emergency patients.
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Patient scheduling

Patient scheduling on the offline operational level consists of deciding each elective
patient’s admission date and ward. This scheduling should take into account that each
admission and discharge implies a workload peak for the nurses. Additionally, it is
important to consider the expected urgent patient admissions, as scheduling too many
elective patients results in deferral of emergency patients. Moreover, a patient schedule
should minimize the number of in-hospital patient transfers, as each transfer can be a
risk for the quality of care. Therefore, a patient schedule should, for example, account
that for wards that close beds on the weekends and thus do not accept admissions
expected to stay beyond Friday. This means accurate LoS predictions are crucial.
Some hospitals and wards adjust the patient schedule one week in advance, based on
the actual bed census and LoS predictions for the currently admitted patients.

On the online level, a ward manager may decide to transfer a patient in relatively
good health to a ward with a lower care-level or to another hospital, to reserve capacity
for high-care patients. In practice, patients are typically admitted to their medically
preferred ward when there is available capacity, and ward managers start to transfer
patients to ‘second-best’ alternative (also called ‘overflow’) wards when capacity runs
out. As a consequence, patients may wait for a long time in wards that are not med-
ically preferred before a bed is available, as another patient needs to be transferred
first. To decrease the time until a patient is assigned to a bed, ward managers may
transfer patients even when there is still available capacity, to reserve enough capacity
for new patients. Focusing on the expected discharge date at the moment of arrival
decreases the LoS (this is also called discharge management). Transfer decision are
often difficult, but optimizing this decision-making process may improve patient wait-
ing time, quality of care, and even hospital revenues significantly. Hospitals may also
apply admission control to ensure enough capacity is available for those patients that
need it the most or benefit from it the most, especially when there are other hospitals
nearby.

Staff scheduling

On the operational offline level, staff is assigned to a specific ward several weeks in
advance. When the hospital has a flex-pool of nurses, these nurses may be allocated
to specific wards at the operational level. Some hospitals allocate these nurses several
weeks in advance, based on long-term illness of staff, short-term staff leaves or fore-
casted patient demand. Hospitals may also decide to assign nurses from the flex-pool
in an online manner, with each a nurse assigned to a ward at the beginning of the
week or even of each shift.

On the online level, nurses are assigned to patients. This scheduling task is per-
formed before each shift starts. The number and type of patients assigned to each
nurse is optimized. As patients acuities and staff characteristics vary over time, nurse-
patient assignments should be optimized by distributing the workload among available
nurses on the operational level.

Although there is little room to adjust capacity to actual demand on the operational
level, we have shown many capacity management decisions on this level that can
further optimize patient care delivery. As improvement on this level require relatively
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small adjustments in terms of work routine or investments, change is relatively easily
to implement. Therefore, both management and staff can fulfill the potential of these
improvements at any time.

3.5.4 Feedback between the hierarchical levels
As is common in the literature, we have used a top-down approach for discussing all
hierarchical control levels in wards. As mentioned earlier, healthcare processes and
planning deal with stochasticity, and therefore unforeseen situations often occur. Mon-
itoring systems should be in place to detect deviations from scheduled care processes.
Using data from electronic health records, software can easily detect, present and even
predict these deviations. It is important to note that some data has to be entered man-
ually (e.g. the expected discharge date) to make accurately detect deviations. When
a deviation is detected or predicted, planners and ward management can pro-actively
make adjustments in capacity, demand, or both.

When detected deviations cannot be resolved within the managerial boundaries of
the level at which the unforeseen situation occurred, the deviations should be escalated.
Bottom-up feedback loops provide escalation channels to shift problem solving to
higher hierarchical levels. For each level, it must be clear when detected deviations
have to be escalated. An example of a situation that may require escalation would be
regularly occurring peaks in postoperative elective patient arrivals; the master schedule
of the OT should then be revisited to balance the postoperative arrivals in wards. In
general, recurring problems may require structural redesign of processes and may thus
require decision-making on a higher hierarchical level. As such, escalation channels
are an important component of the planning and control cycle for resource capacity
planning.

3.6 Ward Capacity Planning
In this section we reflect on OR models that can be used to analyze ward capacity
management decisions. We follow the same hierarchical approach as the previous
section and in Figure 3.2 we show the capacity management decisions covered in this
chapter and used OR techniques from literature to analyze these types of decisions.

One important optimization problem in wards is nurse staffing. Although the
physical capacity of a ward is determined by the number of beds that present, in most
hospitals the number of nurses present in the ward determines, to a large extent, the
number of patients that can be accommodated. Many departments schedule the same
number of nurses each shift or marginally adapt the nurse schedule to the bed demand.
In this chapter we focus on bed dimensioning and patient scheduling and do not cover
workforce scheduling.

3.6.1 Dimensioning wards
Finding the optimal capacity of a ward by allocating patient groups or types to wards
is a typical strategic decision. In the literature, dimensioning decisions are based on
queueing models, Markov chains, simulations, goal programming, or mixed integer
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Figure 3.2: Overview of Section 3.6.
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programming (MIP) models. Below we evaluate these approaches and provide some
examples from the literature.

Queueing theory

The Erlang loss and infinite server queuing models are by far the most-used models for
determining the best dimensioning of hospital wards. With easy-to-use tools available,
such as the Queuing Network Analyzer (see [264]), hospital practitioners are able to
analyze decisions with queueing models. The examples provided by [226] and in the
case study presented later in this chapter in Section 3.7.2 demonstrate the value of
these basic models for dimensioning hospital wards. An other advantage of the Er-
lang loss queue and infinite server queue is that these models are insensitive to the
distribution of the LoS; obtaining an average LoS from hospital data is enough for the
analysis. Sophisticated data analysis to generate input data is therefore not required
for these models. The basic queueing models do not include all hospital ward dy-
namics. For example, they do not encompass non-homogeneous arrival and discharge
rates, although in reality scheduled patients arrive and are discharged only during
the day. Another example of misrepresentation is that in practice patients are often
not ‘blocked and lost’ if all beds in their medically preferred ward are occupied upon
their arrival, which implies that queueing models underestimate the bed occupancy.
[82] demonstrate that for an infinite server queue with piecewise-stationary Poisson
arrivals, the resulting model is easy to analyze. However, most queueing models be-
come intractable with time-varying arrival or service rates. Additionally, feedback
and overflow are typically difficult to analyze, as shown by, for example, [229] for a
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small network of an OT and an ICU. To increase the predictive value of the model,
the authors of [252] consider an Erlang loss queue in which the arrival rate depends
on the number of occupied beds, to reflect that fewer patients are admitted to the
ward when it is almost full. In [20], the authors analyze an infinite server queue with
time-dependent arrival rate, and use the square-root staffing rule to dimension an ICU.
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Integer Programming

Queueing models require a trial-and-error approach to find optimal capacity. To over-
come this problem, queueing models can be incorporated into a MIP approach (e.g. a
MILP). The authors of [230] analyze three approaches assigning patient group clusters
to wards. The exact approach uses the Erlang loss model to determine bed capacity
given a blocking probability and an ILP model is used to determine which patient
groups should be clustered and assigned to a ward. The second approach uses an
approximation of the Erlang loss model by using a linear function for the required
number of beds followed by an ILP for the clustering process. This last approach uses
the exact formulation of the Erlang loss model for the number of required beds and
a local search heuristic to form the clusters. Another example of combining queue-
ing models with optimization models is given in [186], whose authors use approaches
similar to those use in [230] to determine the bed capacity for a network of maternity
clinics. The authors in [186] also linearize the blocking probability and bed census
of the Erlang loss model, and they analyze interactions between clinics with a math-
ematical model. The queueing model formulas can also be incorporated in a goal
programming approach, which is the method used in [152], to allocate a number of
beds in each ward and to ultimately optimize multiple objectives set by the hospital
management. Finally, the authors of [179] use simulation to relate the capacity (beds,
nurses and doctors) of a medical assessment unit to queue lengths for patients, and
they incorporate this into a goal programming model.

Markov chains

Predicting a bed census using Markov chains may result in higher accuracy than a
queueing approach, as time-varying arrival and discharge rates may be incorporated
in such models. The authors of [137] invoke a Markov chain to predict the hourly bed
census, which includes post-operative surgical patients, emergency admissions and
overflow patients to and from other wards. Using the steady-state distribution, the
authors obtain an expression for the 95th percentile of the bed census.

Markov chain models are also applicable in transient analyses; for example, the
authors in [45] predict the ICU bed census by invoking a transient Markov chain
analysis with maximum likelihood regression.

With Markov chains almost every desired detail can be modeled. However, adding
more details to the model can quickly make a Markov chain intractable.

Simulation

With simulations, all features of hospital wards imaginable can be incorporated, which
makes this type of modeling sometimes the best or only option for modeling a ward.
In [113], a simulation model is used to relate the ward capacity to the bed census for
several wards for all possible numbers of beds and to heuristically assign beds to the
wards using these relationships. The model is evaluated using data from a university
medical center. The authors of [236] analyze multiple scenarios to solve waiting list
issues, one of which is re-distributing beds among wards.
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Transient analyses are also possible while using simulation models: the authors of
[259] present a simulation model they use to obtain short-term predictions based on
the specific characteristics of the current patient population present in a ward.

Simulation models are labor-intensive, they require data analyses to generate input
parameters, developing time, often require complete enumeration and output analy-
ses. Furthermore, strategic analyses do not always require all details and therefore
simulation models are not an obvious first choice to analyzed optimal ward capacity
decisions. When using simulation techniques to analyze capacity management deci-
sions, both academics and professionals should keep in mind the trade-off between
required level of detail, the time needed to build and run a model, and the value of
the outcomes.

3.6.2 Chain logistics or flow optimization

Thus far we have highlighted research that mainly focuses on a particular step in the
patient care pathway: clinical treatment in inpatient wards. However, the inflow of
inpatients is often determined by other hospital departments. Especially for wards
that accommodate many surgical patients, the OT schedule determines, to a great
extent, the ward’s bed census. For wards that accommodate many urgent patients,
the ED and acute admission unit, influence the bed census. The authors of [237] sur-
vey health-care models that encompass multiple departments. Interestingly, achieving
optimal logistical flow through a hospital may result in suboptimal use of the capacity
of individual resources. In this section we highlight literature on queueing, simula-
tion, MIP, and Markov chain models that mimic the interaction between multiple
departments.

Queueing theory

Queueing networks are useful in relating capacity levels to certain performance mea-
sures such as blocking probability. For example, the authors of [265] analyze multiple
scenarios for a network with an ED, AMU and two wards, in which the acute admis-
sion unit may function as an overflow for the other three departments. They observe
that with the setting they use, the arrivals of urgent patients can be increased at the
cost of decreasing elective arrivals (the increase in emergency patients is greater than
the decrease in elective arrivals).

A problem involving the deferring of intensive care patients because of capacity
problems is also analyzed via queueing models [154]. They show that regional cooper-
ation between ICUs results in higher acceptance rates for these patients. The authors
approximate the blocking probabilities in an overflow network using the equivalent
random method and the Erlang loss queue. Setting a threshold for this blocking
probability they determine how many beds each ICU in a given region should reserve
(for regional patients) so that all acute intensive care patients in the region can be
accommodated promptly.
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Simulation

Simulation models are also used to analyze patient flows through multiple hospital
departments, and to determine the effect of changes in, for example, the capacity.
Optimizing patient flows of individual hospital departments may lead to disturbed
patient flows in other departments, as the bottleneck in the patient flow may shift to
another department [135].

The authors of [204] use simulation to analyze the flow of emergency patients among
three departments: the ED, the AMU and inpatient wards. The hospital in their case
study has great difficulty accommodating all emergency admissions. Using heuristics
they optimize the number of allocated beds per inpatient ward for emergency patients
who need to stay longer than was intended in the AMU.

Another example of a simulation study in this area is [176], which is an investigation
of strategies to keep patients from occupying high-care beds longer than necessary
because lower care beds are unavialable. The authors in [68] investigate the effects of
adding capacity and changing the discharge policy on the patient flow at a pediatric
surgical center.

Mixed Integer programming

MIP models are often developed to optimize the OT’s master surgery schedule (MSS).
The authors of [81] optimize the MSS while minimizing the probability that overca-
pacity will be necessary to accommodate all patients in the postoperative wards. They
analytically express the bed census distribution function for each ward based on which
surgical specialty is assigned to which time slot in the MSS.

An operational offline approach is taken in [87], which invokes an MIP model to
determine admission dates for patients who require care in multiple departments.

Markov chains

A Markov chain approach is invoked by [121] to model multiple patient pathways in an
obstetrics department with multiple wards. The expressions obtained are incorporated
into a MIP model to optimize the schedule of elective patients.

3.6.3 Admission planning
After the capacity dimensions are set for wards, demand and capacity can be optimized
on a medium-term horizon through admission planning and nurse rostering, respec-
tively. As mentioned in the introduction, admission planning generates a blueprint
schedule that schedules the different patient groups and not individual patients or
treatments. For this type of optimization, MIP models are preferred in the literature.
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Mixed Integer programming

The authors in [226] use a mixed integer programming approach to develop a tac-
tical schedule for a weekday ward. Weekday wards admit elective patients only on
weekdays and close on the weekends. All patient care is delivered according to strict
protocols, that result in highly accurate treatment times and LoS predictions. Typ-
ically, treatments with a longer LoS are scheduled at the beginning of a week and
shorter treatments later during the week, to ensure that all patients are discharged
before the weekend.

The authors of [112] develop two infinite-server queueing models (one for emergency
arrivals and one for elective arrivals) to determine the bed census that results from
any admission plan for regular wards. Based on these bed censuses, a MIP model
minimizes the blocking probability of emergency arrivals, the cancellation probability
of elective arrivals and the average number of boarders (patients who have to wait for
their preferred ward) in the tactical admission plan.

The authors of [21] use a quadratic program to obtain a daily quota for the number
of admissions to a ward to minimize the variability in the bed census (i.e. quota
planning). In the quadratic program, the bed census is modeled using a GI/G/∞
queue with a heavy traffic approximation, and the authors present an approximation
for the bed census of a ward that experiences a non-Poisson arrival process. The aim is
to generate rules of thumb for management and planners based on the model results.
They conclude that quota planning has the greatest impact on bed census variability
(e.g. smooth bed census during the planning horizon). Using quota planning makes
the admissions arrival process at wards more stable. A stable arrival process results in
a more stable bed census compared to highly variable arrival rates. An additional rule
of thumb is to schedule arrivals given the number of available (or closed beds) during
the planning horizon. Based on the absence of admissions during weekends, beds can
be closed or patients with a longer LoS can be scheduled on Friday to improve the bed
census on weekends.

Typically, during their hospitalization, patients require other types of resources,
such as the OT or diagnostic facilities. Thus, the patient schedules for these resources
affect each other. Incorporating many different capacity types and patients following
uncertain treatment paths, the authors of [119] invoke an MIP approach to optimize
the number of admitted patients per time period. The tractability of the MIP approach
appears insufficient for optimizing realistic scenarios and therefore the authors turn to
approximate dynamic programming [120].

Queueing theory

Queueing approaches may be used to determine the number of beds that should be
reserved for a given patient type. For example, the authors of [154] use the equivalent
random method to investigate a network of ICUs that all reserve some capacity to
admit emergency patients in the region. As ICU capacity is scarce and costly, it is
typically utilized maximally, which results in blocked emergency patients and cancel-
lations of scheduled patients. The analysis shows that when multiple regional ICUs
cooperate as a network, they can increase the acceptance level of emergency patients
with a smaller total number of beds compared to the setting of reserve capacity by



52 Chapter 3. Ward Capacity Planning & Management

individual ICUs. The authors of [163] present another application of queueing mod-
els to balance the bed censuses of wards with a similar level of care by considering
algorithms for routing patients from the ED to wards.

3.6.4 Patient scheduling and bed assignment
Tactical admission planning results mainly in a blueprint schedule for patient admis-
sions at wards. In the next planning phase (i.e. operational planning), actual patients
are scheduled and assigned to available beds. The tactical blueprint serves as a guide-
line for scheduling patients. In some circumstances (e.g. based on patients who have
been scheduled or on availability of staff), management and planners can deviate from
this blueprint. This is not ideal as downstream resources must also accommodate this
deviation. Using optimization, patient admission dates and bed assignments can be
chosen such that the number of beds required to treat all patients is minimized or
the variation in bed usage is minimized. Additionally or alternatively, the number
of patients who receive treatment within their preferred access time window can be
maximized.

Optimizing bed assignments has the greatest impact when the medically preferred
ward has multi-person rooms or when there are several wards offering an adequate
level of care. For multi-person rooms, for example, patients with infectious diseases
and same sex in one room-rules may complicate the room assignments. Basically there
are two types of decisions in this type of problem: (1) shifting admission dates and
(2) transferring patients between wards according to medical preferences.

Below, we highlight literature on patient admission scheduling, bed assignment
and admission control. Sets of benchmark instances for the offline optimization of bed
assignments2 and the patient admission scheduling problem3 are available online.

Mixed Integer programming

MIP models are incorporated in online decision support systems to optimize bed as-
signments. For example, [196] and [242] determine the optimal ward and/or bed as-
signment for each patient with respect to the bed censuses for all wards, the adequate
level of care for as many patients as possible, and the number of transfers required
during treatment. The authors in [24] also apply an MIP approach to assign patients
to beds. Elective patients request a time window in which they require treatment,
whereas for emergency patients this window starts at the current time and is equal to
the LoS.

Bed assignment decisions may also be optimized in an offline setting, in which all
patients scheduled for admission are assigned to beds in an optimal fashion. To solve
an operational offline patient scheduling and bed assignment problem for a weekday
ward, the authors of [41] use an MIP model to optimize a schedule over all medically
preferred patient access times. The authors of [101] present a heuristic based on an
MIP model to satisfy as many bed-assignment constraints as possible in an offline

2https://people.cs.kuleuven.be/ wim.vancroonenburg/pas/
3http://satt.diegm.uniud.it/index.php?page=pasu
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optimization model, while taking into account that some patients may require care
from multiple medical specialties.

Heuristics

The patient admission scheduling problem including all constraints on bed-assignments
and patient access times has been proven by [241] to be NP-hard. Therefore, recent
literature is more frequently applies heuristics to improve the admission schedule. The
authors in [130], for example, apply a “great deluge” algorithm to optimize admission
dates and bed assignments in an offline setting. These authors compare several heuris-
tics and conclude that their great deluge algorithm can compete with more familiar
heuristics such as simulated annealing.

Queueing theory

The authors of [98] investigate an operational admission control for an ICU using an
Erlang loss queue with both elective and emergency arrivals. In analyzing the bed
census they show that both the arrival streams and service rates can be combined into
a single queue with multiple servers (e.g. an M/G/c/c queue). The authors analyze
the system by controlling the elective patient admission dates based on the bed census
using Euler’s method to analyze the loss queue with time-dependent arrival rates.
Using historical data, they show that is possible to estimate the most probable level of
bed-occupancy several days in advance, given the bed occupancy on the current day.
In addition, the model is able to predict the expected split between emergency and
elective patients over the coming days. Based on the expected bed occupancy in the
near future, staffing levels can be adjusted.

Markov decision theory

Optimizing patient scheduling decisions using a Markov decision approach typically
results in complicated scheduling policies that are difficult to implement in practice.
For example, the authors of [19] model patients with a stochastic LoS for multiple
hospital resources (e.g. beds and operating rooms) such that emergency patients can
always be admitted and elective patients are delayed or deferred. Even the approx-
imate dynamic programming model was not solvable within the set time limits for
realistically-sized instances, and the authors evaluate some heuristics based upon the
results for small instances.

A Markov decision process approach is also used by [256] to decide which surgeries
have to be rescheduled so that the ICU capacity is not exceeded. The authors base
a heuristic solution approach on the obtained optimal policy and apply it to data on
cardiothoracic ICU surgery requests. It appears that the heuristic policy significantly
outperforms the current admission policy.

Markov decision models are also used to determine an optimal bed assignment
policy in an online setting. For example, in [220] a hospital is considered in which
patients should be admitted to a bed in their medically preferred ward or one of the
predetermined alternative wards. The authors in [64] approach a similar problem, and



54 Chapter 3. Ward Capacity Planning & Management

use approximate dynamic programming to optimize assignment of patients to their
medically preferred ward or to the “second-best” ward.

Transferring patients during their stay may optimize the bed assignments and
shorten the time between admission and bed assignment. These transfer decisions
are often optimized together with the assignment of newly admitted patients. Trans-
ferring patients during their stay could be optimal from a bed census perspective.
Other factors (e.g quality of care, patient condition and staff workload) should also be
considered when implementing such decision rules.

Simulation

Simulation models are used to investigate a number of bed assignment policies for
specific hospital case-studies. For example, in [42] policies are studied that reserve
beds for patients who are about to be brought to the OT. The authors of [144] evaluate
policies for reserving beds for patients admitted to the hospital through the ED.

In Section 3.7.1 we describe a simulation model to investigate how many beds
should be reserved for high-care patients, which implies that patients with lower care-
requirements should be admitted to a ward that is not their medically-preferred one.

3.6.5 Nurse-to-patient ratio
The physical beds in a ward are often not the limiting factor for the number of patients
that can be accommodated. Instead, the number and type of nurses and the specific
patients present in the ward determine whether there is capacity for new admissions.
The nurse-to-patient ratio indicates how many ‘average’ patients one nurse can take
care of; if there are five patients with high care demands a ward can be full, whereas
a ward with fifteen patients with low care demands may still have available capacity.
An acceptable workload is important for the well-being of nurses and the quality of
care.

Integer programming

Linear programming approaches are the primary methods used in the literature, to
balance the workload fairly among nurses. For example, in [2] patient acuity scores and
travel distances for the nurses are considered in optimizing nurse-patient assignments.
The authors of [41] also consider the continuity of care, education and patient or nurse
preferences in the optimization, while [189] applies a goal programming to optimize
nurse-patient assignments, extending an MIP approach from [213]. In the model de-
scribed in [213], patients have a nurse-dependent acuity, motivated by differences in
experience,or training or by the preferences of the nurses.

3.6.6 Length of stay and readmission forecast
The hospital LoS is typically not known with precision before the patient is admitted,
and sometimes it is not known exactly even the day before the patient may be dis-
charged. Moreover, when a patient is discharged, there is always a possibility that the
patient may be readmitted for further treatment. Knowing the time at which a patient
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is medically ready to be discharged and the patient’s readmission probability are useful
in the patient scheduling process, as these determine how many new patients may be
admitted. In recent literature, we see queueing theory, simulation, machine learning
and regression approaches to this problem, of which we provide examples below.

Heuristics

An example of a machine learning approach (random forest model) is used to forecast
the LoS of obstetric patients, using information from a patient’s medical history drawn
from electronic medical records ([84]). The authors of [201] forecast the readmission
probability for a cardiac ICU, comparing approaches to this problem that use a support
vector machine, decision trees, and a logistic regression. The results of these studies
may be implemented in a decision support tool, and provide guidelines to practitioners
on which clinical measurements indicate a relatively high risk of prolonged LoS or an
increased readmission probability.

Queueing theory

Queueing theory is used, for example, to investigate the effects of different discharge
policies at an ICU ([161]). These authors investigate the practical implications of the
best policies using a simulation. When a patient needs to be admitted to the ICU at a
time when all beds are occupied, typically the “most healthy” patient is discharged to
a ward with a lower level of care; optimizing such decisions may improve the quality
of care significantly.

For a general ward, the authors of [53] develop an infinite server queue in which
a server may only be released after an inspection, which mimics the final doctor visit
before a patient may be discharged. The results of the queueing analysis indicate
that inspections should be at equal time intervals and additional inspections have
decreasing marginal rewards.

Simulation

An example of a discrete event simulation model is given by [62], which analyzes the
effects of different discharge strategies on the readmission rate and ED crowding for
a complete hospital. The authors conclude that a more “aggressive” discharge policy
that discharges patients as early as possible increases the readmission rate significantly.

3.6.7 Conclusion
We have provided a broad overview of planning problems for which OR analyses can
benefit patients and staff in hospital wards. Obviously, each situation may require a
different modeling approach, but as we have demonstrated above, many models are
applicable for analyzing capacity decisions of these types. Queueing models can gener-
ate estimates quickly and are often applied to develop a first indicator of, for example,
the required capacity. Typically, Markov chain models are less ‘broadly applicable’
than queueing models, as they are more difficult to re-apply to other wards, but they
are easier than queueing models to model transient behavior and ward-specific patient
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admissions, discharges, and transfers. Similar to Markov chain analyses, MIP ap-
proaches are relatively case-study specific. Although, MIP approaches may be used to
optimized processes and schedules, a frequent complicating factor is often the stochas-
ticity in healthcare processes. Machine learning and regression approaches are useful
for analyzing large amounts of hospital data and are increasingly used to assist medical
decision-making in wards.

3.7 OR for Wards Illustrated Cases
In this section we, together with colleagues from CHOIR, present three illustrated
cases that are conducted at partnering hospitals. In all projects, the hospital has
implemented the results of the research. In these illustrative cases, we focus on the
practical approach that was taken to implemented results and insights from OR mod-
els and reflect on the implementation. Each case study gives unique insights into
success factors, pitfalls, and lessons learned. Although, these illustrations does not
have great methodological contributions to literature, we hope to challenge other OR
researchers to discuss implementations in their research. By doing this, we hope other
OR researchers use these insights for their implementations and so improve the impact
of OR in hospitals. In the following chapters, we will present more insights in our OR
modeling approaches.

3.7.1 Case study I: Balancing bed census4

Both over- and under-capacity are a problem for wards. In a ward with under-capacity,
patients cannot always be accommodated in the medically preferred ward. As a conse-
quence, patients needing treatment in one medical specialty are placed in many differ-
ent wards and doctors spend much time visiting their patients. Having over-capacity
is a problem for hospital staff as many patients from other medical specialties are
likely to be placed in the ward. As a consequence, nurses from the ward have to care
for patients for with conditions for which they were not fully trained, and may experi-
ence a high workload if they do not feel qualified to treat patients from other medical
specialties. In both scenarios, patients do not always receive the best possible care,
which increases the willingness of all stakeholders to solve this problem.

Two medical wards of the Jeroen Bosch Hospital (JBH) located in Den Bosch,
The Netherlands, experienced unbalanced bed occupancies during 2012 and the first
months of 2013. In the neurology department, patients’ LoS had been reduced sig-
nificantly, resulting in over-capacity. At the same time, the department of internal
medicine experienced increasing numbers of patients, resulting in crowded wards and
many patients being deferred to other wards (e.g. under-capacity).

Project organization

In accordance with the list of factors in [226], at the start of this project we commis-
sioned a steering group consisting of all stakeholders in this problem: a neurologist, an

4This case study was conducted, among others, by CHOIR-colleague N.M.(Maartje) van de Vrugt.
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internal medicine specialist, an administrator from the patient admission scheduling
office, and all involved ward managers. The hospital management made this steer-
ing group responsible for finding a solution for the over- and under-capacity of the
wards, and included one organizational advisor and a healthcare logistics advisor in
the steering group. A representative of the highest management level below the JBZ
board of directors was made chair of the steering group. The neurologist and internist
were selected based upon the trust and goodwill they had from their peers. These
representatives were not necessarily the heads of departments; since it was required
that these be doctors who spend time on the wards and experience the problems on a
daily basis.

The first meeting of the steering group started with all members of the group get-
ting to know one another; although all stakeholders work on closely related topics,
typically they do not often meet or talk to each other. The group discussed the extent
to which they experience a problem in the ward or during patient scheduling. Support-
ing this discussion, the logistical advisor presented the results of a data-analysis with
information on (1) the bed occupancy of all hospital wards, (2) the bed requirement
per medical specialty, and (3) the number of patients per medical specialty who were
not treated in their medically preferred ward. The data that was used for this anal-
ysis was routinely collected hospital data on admittance and discharge date, medical
specialty and ward. The data analysis objectified the discussion significantly. For ex-
ample, the neurology ward nurses experienced a high workload, and the hospital data
confirmed that the nurses had to take care of a relatively lager number of patients
from other medical specialties, which increased the experienced workload.

Analysis of possible interventions

The result of the first session was that the steering group wanted to investigate two
possible interventions:

1. Opening an AMU.

2. Reassigning medical specialties to wards.

Using an M/G/s/s queue, the required bed capacity to achieve at most a 5%
blocking probability was determined for each specialty. This analysis confirmed the
belief of the steering group that the distribution of beds among the specialties was
not adequate but it was not necessary to add overall capacity to the system. For
intervention 2, each of the possible scenarios required serious rebuilding of units or
splitting of medical specialties among multiple wards. Re-building several wards would
have been costly and would have taken several months. Therefore, the steering group
decided to discard this intervention option.

The effects of intervention 1 were analyzed for several scenarios using an
M(t)/M(t)/s/s queue [226]. The conclusion of this analysis was that the AMU would
not be beneficial for the hospital’s case-mix, and the steering group discarded this
intervention as well.

At this point in the project, the steering group was looking for new interventions,
and decided to investigate the possibility of creating an overflow ward for internal
medicine within the neurology ward. In the analysis of intervention 1, each doctor
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had to determine a list of diagnoses for their specialty that were eligible to be treated
at an acute medical unit. This list consisted of diagnoses that required a relatively low
care-level, and each acute patient with a diagnoses from the list would be admitted to
the AMU. With minor moderations made by the internist, the list was adequate for
identifying the eligible overflow patients.

Since the admission data had been anonymized, an exact analysis of the overflow
ward was not possible. Financial hospital data revealed what fraction of all internal
medicine patients had diagnoses from the list, and this was used to estimate the
total overflow bed requirements. This number of beds was sufficient to alleviate the
pressure on the internal medicine ward, and was low enough to be accommodated in
the neurology ward.

Choosing an intervention

Based on this promising result, the organizational advisor helped doctors and nurses
from internal medicine and neurology to investigate what would be required to imple-
ment the intervention, for example in terms of skills, education, and doctors’ rounds
at the wards. The most important decisions at this level were how often the internists
would visit the overflow patients, which medical decisions were the neurologists would
be allowed to make, and when an internist should be called for assistance. Based
on these discussions, nurses and doctors were confident that the quality of the care
provided to the overflow patients would be good.

Additionally, the logistical advisor conducted a simulation study in which historical
data was used to determine the best policy to start and stop the overflow of patients. In
this simulation, each patient was randomly eligible for the overflow ward. The steering
group requested this additional research, as the neurology ward manager feared that,
due to the overflow patients, not enough beds would be available for neurology patients.
Several overflow policies and their effects were presented to the steering group.

Based on all gathered results the steering group decided to implement the overflow
ward using the following policy: patients would be sent to the overflow ward only if
both (1) three or fewer beds are available at the internal medicine ward, and (2) two or
more beds were available at the neurology ward. In September 2013, the intervention
was implemented.

After intervention

In January 2014, data analysis and interviews with the staff showed that the interven-
tion had the desired effect: the neurology ward accommodated more internal medicine
patients (on average 2.5 beds) and fewer patients from other specialties. Both effects
were statistically significant. Additionally, the internists reported a reduction of the
time required for their rounds, and the neurology nurses experienced a reduction in
the fluctuations in the workload and were confident of their ability to deliver a high
quality of care. An apparent downside of the implementation was a higher workload
at the internal medicine ward, as many of the “easier” patients were admitted to the
neurology ward.
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Lessons learned

The success of this case study was a result of involving clinical leaders, proposing
interventions, and objectifying the effects of those interventions prospectively using
data. Based on these analyses, the steering group was able to choose the most promis-
ing intervention to implement. The higher management let the steering group choose
what interventions to investigate, but had set a clear target to find a solution for the
problem. This autonomy was greatly appreciated by the steering group.

Another important part of the project was checking all assumptions and data-
analyses with nurses and doctors working on the wards. The goal of many data
validation discussions was to come to agreement that the data indeed reflected what
happened in reality on the wards. Lengthy discussion about data or assumptions
during steering group meetings would be undesirable, as these would lead the group
away from finding a solution.

During the project there was an emphasis on finding a solution that all steering
group members and involved staff would consider a clear improvement over the current
situation. To this end, in addition to data-analysis, a thorough risk analysis was done
for every intervention the steering group suggested. It was important not to ignore
any of the concerns of the steering group, as this would decrease members’ willingness
to cooperate in implementing the intervention. For each of the concerns raised, data
analysis was performed, if possible, and the steering group took time to discuss all
concerns thoroughly, until either the issue was alleviated or the corresponding inter-
vention was discarded. One example is the neurologists’ concern that the internal
medicine patients would displace neurology patients. This concern was alleviated by
a simulation analysis with multiple scenarios, which eventually lead to a decision rule
for the patient admission planners.

Before the project started, higher management had emphasized with the steering
group members that the project had been initiated to improve both quality of care
and employee satisfaction. When discussions within the steering group focused on
competing interests of members, the chair of the meeting reminded everyone to stay
focused on the quality of care and employee satisfaction. In all discussions this re-
minder sufficed to lead memebers to find a common goal and, eventually, a solution
to the given problem. The autonomy of the steering group and the iterative process
of testing possible interventions resulted in an intervention supported by all involved
staff. This support was the primary key to the success of the intervention. Moreover,
the intervention proved to be effective in reality, which was the ultimate goal of the
project.

3.7.2 Case study II: Dimensioning wards

The LUMC dealt with multiple logistical problems in its wards. These problems
related to small wards in terms of the number of beds and a medically illogical dis-
tribution of patient groups among wards. These problems resulted in rising numbers
of refusals at the ED and growing waiting lists. Small wards have more difficulties
coping with variability such as the number of arrivals and LoS as it has relatively more
impact. Therefore small wards will often have over- or under-capacity.
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Project organization

In 2014 the hospital board of directors decided to redistribute patient groups among
wards and re-dimension wards. A project was initiated with a steering group consist-
ing of a management director (project lead), a project manager, all care managers, an
organizational consultant, a change management consultant, a human resource con-
sultant and a healthcare logistics consultant. Multiple topics for further analysis were
defined, and one working group for each topic was formed. To overcome the earlier
mentioned logistical problems, the project had to implement the following interven-
tions:

- Redistribute patient groups among wards for long stay patients (e.g. a LoS of
at least 5 days).

- Introduce a ward for short stay patients (e.g. LOS of less than 5 days).
- Introduce a ward for day treatments (e.g. LoS of at most 8 hours).
- Introduce a ward for acute admissions (e.g. an AMU).
- Merge ward staff and management that have medical affinity so that beds are

interchangeable at these wards (e.g. orthopedic surgery with traumatology or
nephrology with endocrinology wards).

- Introduce a new management consisting of a physician and nurse manager.
The hospital management decided that the total capacity should not be increased,
so all interventions should be achieved without increase in the number of beds and
nurses.

Analysis of possible interventions

As boarders are a risk to the quality of care, the hospital wanted to minimize the proba-
bility of refusals in the medically preferred ward. As presented in Section 3.6, queueing
models dominate strategic and tactical analyses. We therefore chose to model mul-
tiple scenarios of assignments of patient groups among wards as an M/G/s/s queue.
Based on [69], we analyzed each scenario (e.g. the patient load from selected medical
specialties in a ward or merged wards) on two performance measures: (1)the blocking
probability given an occupancy rate of 85% and (2) the occupancy rate given a block-
ing probability of 5%. Based on these measures we redistributed the patient groups.
Furthermore, we developed a simulation model to analyze the flow of acute admis-
sions via the AMU. Patients stay at the AMU for at most 2 days. If the need further
treatment, they are transferred to the inpatient ward of their medical specialty. From
this analysis it appeared that solely introducing an AMU would not solve the problem
of emergency admission refusals. We performed an analysis to determine the number
of allocated beds in each ward to minimize the number of refusals. We also showed
the effect of bed shortage in wards (e.g. finally resulting in an overcrowded AMU
and ED). To prevent flow congestion, we analyzed scenarios with different numbers of
beds dedicated for these transfers in each inpatient ward. We used two heuristics to
determine the best number of beds for each ward or for merged wards. This simulation
study was executed by a healthcare logistics consultant and ward management (nurse
manager and medical manager of the AMU).
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Choosing an intervention

The actual re-dimensioning of wards and re-distribution of medical specialties to these
wards was based entirely on the queuing model results. Significant effort was re-
quired to convince the stakeholders of the reliability of the model outcomes. We used
pseudonymized admission data from 2013 and 2014 as input for the model and invested
several weeks in discussing the assumptions of the model, results, and data. This is
an important step when using queueing models in practice. Although queueing mod-
els are based on straightforward formulas, it can be challenging for stakeholders to
interpret them. To ensure acceptance, the model should be thoroughly discussed and
not used as a “black box”. We planned sessions with each medical specialty to discuss
the data, showing first the current patient load for each ward. We showed individual
patients records to medical staff in terms of admission and discharge dates. Next, we
discussed the model assumptions the input used, and KPIs. Lastly, we showed the
proposed redistribution of patient groups and the effects on bed usage. Taking time to
present the model and answering questions from all stakeholders in both plenary and
individual settings, we finally convinced most stakeholders of the proposed benefits of
the redistribution and re-dimensioning.

After intervention

After the interventions had been completed, the hospital still struggled to create a
schedule for patients for the weekday ward so that this ward could be closed on the
weekends. Furthermore, at a later point in time some medical specialties were again
redistributed among wards based on new insights into organizing wards according to
a new hospital strategy that focused on more thematic care (e.g. oncology care and
transplantation care). Again, a queueing model was used for this new redistribution
of medical specialties.

Lessons learned

A pitfall in this type of analysis is the requests for more up-to-date data. Given the
size of the project, we needed 6 months to discuss the analyses with all stakeholders.
During 6 months, many things can change, and therefore some stakeholders requested
a new analysis with up-to-date input data such that the model would be more reliable
(e.g. real time hype). These requests delayed the project by a year. In the end, we did
not update the data and reasoned with stakeholders that we used highly aggregated
data over a long time horizon, which means that mainly trends and strategic decisions
would be detectable in the results. We also showed the added value of merging wards
given the performance measures. In practice merging wards in university hospitals has
major implications for nursing staff. As nursing staff are highly trained for specific
treatments and specialties, merging wards requires that they be trained in other fields
of medical expertise as well, as more patient types can be placed in merged wards.

Using a simulation model for the introduction of the AMU, we were able to show
stakeholders how the emergency admissions process would evolved over time ([204]).
This visual representation and the implementation of tailored process characteristics
significantly contributed to convince stakeholders. Therefore, achieving consensus was
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easier compared to the scenario in which queueing models had been used for the re-
dimensioning and re-distribution of wards and was also reflected in the time needed
to convince all stakeholders (2 months). The simulation model was used as a tactical
tool in the planning and control cycle; in the model we updated the distribution of
dedicated beds each quarter using data with a rolling horizon (i.e. adding the last
quarter and deleting the first quarter of the data).

The success of this project was a result of a clear sense throughout the organization
of the urgency of becoming future-proof. Care providers dealt with the consequences
of the suboptimal distribution of beds and small units on a daily basis. The determi-
nation of the board of directors and the persuasiveness of the management convinced
all stakeholders to let go of strict bed allocation policies, resulting in larger units.
Additionally, the use of OR models gave the management a safe environment in which
to experiment with new bed distribution and their KPIs.

3.7.3 Case study III: Bed assignment optimization 5

Massachusetts General Hospital (MGH, USA) deals with operational bed occupancies
between 95% and 100%. As a consequence, patients generally have a long wait upon
admission or transfer before an inpatient bed is available. This results in flow conges-
tion at the post-anesthesia care unit (PACU) and the ED. Particularly for emergency
patients long wait times increase risks. The state of Massachusetts therefore has a
“Code Help” policy, requiring hospitals to move all admitted inpatients out of the
ED within a 30-minute period after the ED’s maximum occupancy – adjusted for the
number of patients present and their acuity – is reached or exceeded. Activating Code
Help causes the hospital to prioritize moving patients out of the ED, which results
in delaying bed assignments for patients from other areas of the hospital, potentially
requiring cancellation of elective surgeries and other activities. The consequences of
Code Help require significant management attention and can affect hospital opera-
tions for several days. In 2015, notifications that the hospital was approaching or had
reached Code Help frequently occurred multiple times per week.

Project organization

The continuous lock down gave rise to a hospital-wide redesign of admission scheduling.
Under supervision of the CEO, a project was initiated with a team that consisted of
the head of the perioperative department, the head of and a bed manager from the
admitting department, the nurse managers and resource nurses from several clinical
units, a professor, a postdoctoral fellow, a graduate student in healthcare OR, and
two advisors from the department of process improvement at MGH.

Analysis of possible interventions

Before the intervention, elective surgical same-day admits were pre-assigned to beds
that were occupied with patients who were to be discharged on that day. This was done
to guarantee a continual patient flow from the PACU to inpatient units; by reserving

5This case study was conducted by, among others, our CHOIR-colleague Aleida Braaksma ([42]).
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a bed for a surgical patient, the bed could not be taken by a patient from the ED or
another department. However, the exact timing of discharges was unknown and uncer-
tain. As a consequence, patients were frequently waiting for their pre-assigned beds
while simultaneously other beds were waiting for their pre-assigned patients. Data
analysis showed that the average time patients waited for a bed ranged between 2.5
and 26.9 hours, while a subset of four surgical inpatient units (129 beds) experienced
a total bed-waiting-for-patient time of 11,2 hours, or 466 bed-days, in 2015.

To alleviate this problem, a simulation model was developed to investigate the
effects of multiple interventions, among which was a just-in-time (JIT) bed assignment
strategy. This strategy assigns patients to empty beds just before the patients are
medically ready, and therefore beds cannot be pre-assigned to patients. A second
intervention investigated was virtually pooling the capacity of two surgical wards,
as they were clinically similar. This intervention requires that patients not be pre-
assigned to wards, but that the ward be selected the moment a patient is assigned to
a bed.

The input for the simulation model was 1 year of hospital data, including times-
tamps for admission and discharge. From the data, empirical distributions were deter-
mined for, for example, bed cleaning duration and patient transportation time. The
model was made more realistic by implementing bed closures based on the hospital
data (for example due to staffing shortages) and the hospital’s policy with respect to
gender and infection precautions in semiprivate rooms. Additionally, the model im-
proved patient cohorting by occasionally swapping a patient from one room to another,
mimicking the policy that was used in practice.

After intervention

Based on the simulation results and two earlier projects by graduate students in health-
care OR, the hospital implemented the JIT bes assignment policy and pooling policy
in 12 surgical inpatient units. In the 5 months post-implementation, the average pa-
tient wait time for bed decreased by 18.1% for ED-to-floor transfers (P < 0.001),
by 30.5% for PACU-to-floor transfers (P < 0.001), and by 10.0% for ICU-to-floor
transfers (P < 0.05). As a consequence, patients receive their required care ear-
lier, which improved the quality of care. Additionally, the intervention resulted in a
smoothed workload for nurses and bed cleaners, and less congestion in the ED and
PACU. Another positive side-effect was an increased focus on patient flow: because
the JIT bed assignment policy, nurses wonder why a bed is empty for a long time,
which may speed up, for example, hand-offs and transportation.

Lessons learned

For physicians and nurses, simulation is relatively easy to understand compared to
mathematical modeling. Therefore the project team was convinced the intervention
would have a positive effect in practice. The determination of involved clinical lead-
ership (e.g. the head of the perioperative department) was also key to success. In
the first days of implementation, nurses were sometimes skeptical about the interven-
tion. The project team leaders showed empathy for the struggles related to the new
situation while simultaneously encouraging nurses to stay put. Daily short evaluation
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meetings were the opportunities to quickly react to unforeseen side-effects of or nega-
tive sentiments about the intervention, before these could evolve into larger problems.
The new policies resulted in more stable admission and discharge rates throughout the
day. These more stable rates were also noticed by the bed cleaning department, as
their peaks in workload were reduced. This was considered a positive but unforeseen
result of the project.

3.8 Impact in Practice

In this section we provide our views on how OR researchers can increase the likelihood
of results being implemented in practice based on the literature and the case studies in
Section 3.7. There exist many studies in which OR models have been used to analyze
wards. However, actual use of these models in practice seems scare; only a few of the
articles reviewed for this chapter reflect on actual implementation results or the use
of the models in practice. A widely used quote is: “the final test of a theory is its
capacity to solve the problems which originated it” [65]. In this section we report on
the problems faced while implementing research results, and the lessons learned from
the implemented research included in this chapter.

The most important contributions to a successful implementation, is the involve-
ment of clinical leadership, who are important medical stakeholders in the process and
have the respect of their colleagues. These leader should be able to speak on behalf of
his/her colleagues, and should discuss the project often with peers. Researchers should
earn the trust of these clinical leaders so that they are convinced of the soundness of
the the methodological approach and proposed interventions. Ultimately these clinical
leaders can (and should) convince other colleagues.

Model input determines, to a large extent, the outcome and the acceptance of
the results. On several occasions the already available hospital data appeared to
be insufficient to provide all necessary input for the models, or the database was
incomplete [141, 145]. Hospital data is often inconsistent or partly missing across
different databases; financial data does not always match raw admission and discharge
data. Depending on the goals of the research, different databases may be used. Even
in times of increasing use of technology, we cannot trust the data to reflect reality
completely. The entry of admission and discharge data, for example, is in many
hospitals still a manual task, often performed when nurses have relatively low workload
or at the end of a shift. Additionally, it is important to realize that all hospital data
is the realized process and most hospitals do not register deferred or denied patients,
so actual patient demand is often difficult to obtain. Knowing the ins and outs of the
healthcare process is also essential in reading the data; for example, for an ICU, the
LoS is affected by the bed occupancy since intensivists often transfer the healthiest
patient to make a bed available for a new patient when all beds are occupied. A careful
sensitivity analysis should be performed to ensure that the best possible scenario for
implementation is included in the analysis.

In any mathematical model, assumptions are necessary for tractability. Some as-
sumptions may be too unrealistic to be of practical relevance. Therefore, in all our
projects we start with one or several observation rounds, in which we study the pro-
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cess in reality, become familiar with the practitioners and their decisions, to determine
which assumptions it is important to maintain, and learn what flexibility and stochas-
ticity are present. Letting practitioners draw a typical patient process is often not
sufficiently accurate to provide all modeling assumptions. Moreover, seeing the out-
comes of the process in the data does not mean that the preferred medical process was
followed. The time that is invested in making the assumptions and relations in the
model more realistic will significantly reduce the time spent on data-analysis. Addi-
tionally, making the model more realistic will increase the likelihood it will be adopted
in practice.

To further increase the likelihood of implementation, a researcher should be able to
convey to healthcare practitioners how a model works, and thereby earning the trust
of practitioners. Expectation management is very important; practitioners should
know what the model can and cannot do. Often, when the mathematics behind
the modeling approach becomes less complex, practitioners find the results easier to
grasp and trust. A major advantage of simulation models is their ability provide a
visualization of the analyzed process. Visualization leads to an understanding of the
contributions, understanding leads to commitment by decision makers (e.g. clinical
leadership) and commitment leads to implementation. After the project is completed
for the practitioners, a researcher can continue thoroughly investigating the problem
or extending the model to make the approach interesting enough to publish in an
OR journal. Alternatively, or perhaps simultaneously, publishing together with the
practitioners in medical journals may be considered.

For adoption, an iterative process will be more effective; first mimic the current
process and let practitioners check it (and repeat this if necessary), and second itera-
tively investigate scenarios and discuss them with practitioners. The most promising
predictor of implementation is evidence that the stakeholders are actively participating
in the iterative process by proposing the interventions to be investigated. Additionally,
presenting the results in insightful graphics will increase their impact; checking the re-
sults with the involved clinical leader before presenting them to all practitioners allows
the researcher to adapt the presentation to the audience. One risk of this iterative
process is that the project never ends as more and more scenarios are investigated.
This risk can be avoided by setting clear performance targets early in the project, and
by keeping to strict project schedule.

Discussing possible interventions can be challenging because desired outcomes are
often based on extreme incidents. Exploring interventions mathematically and thus
rationally often simplifies the discussions significantly. Conveying the chosen interven-
tion to colleagues becomes easier for the clinical leaders, as the decision was based on
rational arguments.

In summary, the stakeholders play a significant role in increasing the likelihood
of implementation. Additionally, researchers should be thorough in their data col-
lection, sensitivity and robustness analyses, and implementation support. Additional
information on project life cycles for general healthcare applications is found in [108].
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CHAPTER 4

Allocating Emergency Beds Improves the
Emergency Admission Flow1

4.1 Introduction

To avoid overcrowded emergency departments (EDs), congestion and fluctuations in
downstream resources, sophisticated (process) analysis is required [114, 146]. Demo-
graphic changes and improved patient survival rates have contributed to the increas-
ing number of hospitalizations of complex and(or) chronic patients [10]. In addition,
society demands cost-effective healthcare delivery, which puts pressure on available
resources. This results in bed occupancy rates above 85 % in inpatient wards [47],
leaving marginal slack for admission flow fluctuations and resulting in refused patients
[15, 260]. A major side effect of a decreasing number of available beds is the increasing
number of so-called boarders. Boarders are emergency patients waiting for admission
or emergency patients placed outside of their designated specialty ward due to bed un-
availability [172]. In general, boarders have a significantly longer length of stay (LOS),
experience a decreased quality of care, are less satisfied, have increased mortality rates
and are associated with patient safety issues [27, 59, 172, 260].

To improve the emergency admission flow, some hospitals use acute medical units
(AMUs) [151]. ”An AMU is a designated hospital ward specifically staffed and equipped
to receive medical inpatients presenting with acute medical illness from EDs and out-
patient clinics for expedited multidisciplinary and medical specialist assessment, care
and treatment for up to a designated period (typically between 24 and 72 hours) prior
to discharge or transfer to medical wards” [206]. From an Operations Management
perspective an AMU operates as a buffer. A buffer can operate in two different con-
figurations: (1) as an inflow buffer and (2) as an outflow buffer. An inflow buffer
transforms a (highly) variable inflow into manageable outflow by accommodating all
arrivals in the buffer before they are transferred further downstream. With the second
configuration, the buffer is used only if a downstream inpatient ward is fully occupied.

1This chapter is based on A.J. Schneider, P.L. Besselink, M.E. Zonderland, R.J. Boucherie,
W.B. van den Hout, J. Kievit, P. Bilars, A.J. Fogteloo and T.J Rabelink. Allocating Emergency
Beds Improves the Emergency Admission Flow. INFORMS Journal on Applied Analytics, 48:4:384-
394, 2018.

69



70 Chapter 4. Allocating Emergency Beds Improves the Emergency Admission Flow

In this study we analyze an AMU operating as an inflow buffer, where the timing of
transfers can be managed (between 24 and 72 hours) so that inpatient wards have time
to make capacity available. As a result, downstream inpatient wards can attain higher
bed utilization without increasing the number of refused patients. An AMU initially
reduces pressure on the ED utilization. However, in the case of structural lack of co-
ordination between AMU and downstream hospital wards, the AMU cannot transfer
patients to the downstream hospital wards [1], again resulting in an overcrowded AMU
and ED [206]. Ultimately, this increases the number of the aforementioned boarders,
and will contribute to the downward spiral of more emergency admission refusals.

As discussed in Section 3.5, bed capacity management focuses on efficiently al-
locating beds (and thus staff) between patient types (i.e., emergency versus elective
patients between patients from different specialties) and OR can offer useful manage-
rial insights into trade-offs for capacity management, such as the relations between the
probability of refusals, bed occupancy and throughput. Using OR, possible interven-
tions can be safely evaluated and so reduce the risk of implementing an intervention
that may turn out to be counter-productive.

The remainder of this chapter is organized as follows. Section 4.2 explains the
objectives of this study. Section 4.3 presents the process of the emergency admission
flow in more detail. In Section 4.4, we discuss our modeling approach and key perfor-
mance indicators. The data analysis required for the input of the model is discussed
in the section 4.5, followed by a description of the model in Section 4.6. The results
are presented in Section 4.7 section and we discuss the implementation of our results
in practice in Section 4.8. Finally, further managerial implications, limitations, and
potential extensions of our study are discussed in the Section 4.9.

4.2 Objectives

The partnering hospital, Leiden University Medical Center, introduced an AMU in
2014. However, management of both the AMU and inpatient wards were still spending
significant time to transfer patients from the AMU to downstream inpatient wards,
due to a lack of beds and organizational guidelines and/or protocols. To simplify the
transfer process, the concept of allocated emergency beds was introduced, meaning
that each inpatient ward allocates a part of its bed capacity to accommodate patient
transfers from the AMU. The first objective of this study is thus to evaluate the effect of
allocating inpatient bed capacity for patients of the emergency admission flow. At the
same time, the board of directors of the partnering hospital also decided to restructure
its inpatient wards into care units, based on liaison specialties (i.e., pooling specialties
which cooperate with each other such as nephrology and endocrinology). Therefore,
we formulated a second objective for this study: evaluate the effect of pooling wards on
the required number of allocated emergency beds. The concept of pooling resources
is extensively studied [50, 162] and more specific in a hospital setting by [69] and
[238]. Ultimately we want to structurally improve the emergency admission flow by
implementing the model into the partnering hospital's planning and control cycle.
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4.3 Process Description
Figure 4.1 shows the basic patient flow we are analyzing. In this process there are
three types of hospital beds: (1) beds at the ED, (2) beds at the AMU and (3) beds at
the various downstream inpatient wards. There are two arrival streams: (1) from out-
side the hospital to the ED and (2) from the hospital outpatient clinic circumventing
the ED at the AMU. After a stay at the AMU, patients can either leave the hospital
(discharged) or transferred to an inpatient ward. After a stay at the inpatient ward,
patients leave the hospital.

Here, we describe this basic process in more detail, including its logistical charac-

Figure 4.1: A basic Flow Chart of the Emergency Admission Flow.

teristics and decision moments. Patients who need immediate medical care will visit
the ED. Therefore ED arrivals arrive from outside the hospital at unpredictable rates.
Arriving patients are seen and provisionally assessed, identifying those in need of a
bed (while those who do not need a bed are treated and leave the hospital). If a bed at
the ED is available, the patient is assigned a bed and a priority status is determined
by triage. Based on this priority status the patient is seen by an emergency-room
physician either immediately or at a later time. The attending physician determines
an initial diagnosis, and the ensuing main medical specialty that will be responsible
for the patient. If no bed is available at the ED, the patient will be refused hospital
admission and referred to a nearby hospital. ED arrivals who need an overnight stay
are admitted to the AMU and later, if needed, transferred to an inpatient ward. In
this study we focus on admitted emergency patients; so we only address admitted ED
arrivals.

After a random LOS at the ED, patients are admitted to the AMU once a bed
is available. Otherwise, patients wait in a bed at the ED. Admissions at the AMU
can also originate from the hospital's outpatient clinics, thus circumventing the ED,
when a physician at the outpatient clinic indicates that immediate hospitalization is
required. Also, patients from the outpatient clinics are refused and referred to nearby
hospitals when the AMU is fully occupied. At the AMU patients will be observed,
further diagnosed and, if necessary, given treatment. The LOS at the AMU is limited
to 48 hours. This limit is a management decision of the partnering hospital and
is applied with some flexibility. For instance, a patient who has already spent 48
hours at the AMU and is expected to be discharged within 24 hours, will remain
at the AMU. A transfer is time consuming for staff and stressful for patients, and
therefore these patients stay at the AMU. Additionally, patients will not be transferred
between 9 pm and 9 am, since staffing levels at the downstream inpatient wards are
minimal during these hours. If further treatment is necessary, patients are transferred
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to other inpatient wards depending on their treatment specialty and stay there for
a certain random LOS, also depending on the treatment specialty, after which they
are discharged. Patients can only transfer to their destination inpatient ward if an
allocated emergency bed is available at that ward. We assume beds which are allocated
for emergency admissions cannot be used by elective patients and vice versa.

The ED and AMU solely dedicate beds for emergency patients, while wards also
deal with elective patients. Given the objectives of our study, one could be tempted to
focus on the effect of the number of allocated emergency beds at inpatient wards and
model only the wards. This does not capture the patient flow through the AMU. In ad-
dition, for explanation to the stakeholders, we want to show the effects of the allocated
emergency beds on all departments involved. We therefore include the departments
types: ED, AMU and wards.

4.4 Methods
In this section we explain our modeling approach and key performance indicators
(KPIs) for analyzing scenarios.

4.4.1 Model Approach
We use discrete event simulation (DES) to analyze the emergency admission flow, since
analytical modeling of the non-homogeneous inter arrival times, the different LOS per
ward and specialty and the time interval in which patients can be transferred from
the AMU is analytically intractable. Further, DES provides a visual representation
of the process for implementation purposes. DES is widely used for decision support
and planning in healthcare; see for example the online reference database described in
[117] and the systematic reviews of [102, 118, 184].

4.4.2 Performance Indicators
We formulate the following KPIs as output for our simulation model: (1) the relative
LOS at the AMU, (2) the fraction of refused arrivals and (3) the utilization of the beds
allocated at the inpatient wards. The first KPI is an accurate parameter to measure the
level of throughput [257]. When patients cannot be transferred to an inpatient ward,
the LOS will increase immediately. The relative LOS is defined as the ratio between
the average LOS at the AMU divided by the average LOS at the AMU in the case
of unlimited capacity. We define the term relative LOS, so we can directly interpret
the factor that causes the scenario to improve or worsen and compare it to unlimited
capacity (which has only marginal waiting time when patients completed their LOS
between 9 pm and 9 am and therefore must wait until 9 am to be transferred). The
second KPI is the fraction of refused patients (related to the total number of arrived
patients) and is an accurate measure of a full system (i.e., no beds are available). The
third KPI is the average utilization of the allocated beds for each inpatient ward and
the beds at the AMU and gives information about potential bottlenecks.
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4.5 Data
The model requires the following input data:

- arrival rates at the ED and AMU per hour;
- LOS at the ED, AMU and hospital wards based on specialty;
- distribution of number of admissions per specialty;
- transfer rates per specialty from the AMU to the inpatient wards or for patients

leaving the system;
- number of allocated emergency beds at the ED, AMU and wards (of course at

the ED and AMU all bed capacity is available for emergency admissions).
We obtained patient data from the hospital's management information system. The
data set consists of 4,446 admissions at the AMU between 2012 and 2014. To overcome
the high diversity in specialties and patient flows, only the top 99 percent of admissions
were taken into account excluding the remaining 1 percent atypical cases in terms of
specialty and/or ward. This resulted in 7 hospital wards (67 percent reduction) and
6 specialties (50 percent reduction), simplifying calculations significantly.

4.5.1 Data Analysis
The data analysis serves the following purposes: (1)finding the distribution of spe-
cialties and patient flows (to which ward patients are transferred from the AMU),
(2) clustering of patient groups, (3) fitting clustered patient groups to probability
distributions for modeling the LOS and (4) determineing the arrival patterns. The
distribution of specialties and patients flows are based on the historical data using
frequency tables.

Patients from the same specialty can be transferred from the AMU to different
wards. This could increase the complexity of our model by means of specialty and
ward options. To keep our model as simple as possible in terms of options and increase
the statistical power of the samples for fitting the probability distributions, we cluster
patient groups from two perspectives: (1) the LOS of patients whose care is within
the same medical specialty on different wards and (2) the LOS of patients on the
same ward with different specialties. Patients cared for by the same specialty could
have a similar LOS because of the similar nature of their disease or injury, and(or)
because they are treated by the same staff. Our clustering process is based on the
logic in Figure 4.2. First, a Levene test [149] is executed to identify differences between
sample variances. If the results of the Levene test show unequal variances between
samples, an ANOVA F-test [39] with a Welch test statistic [249] is required; otherwise
a normal ANOVA F-test is performed to determine unequal means between samples.
If the ANOVA F-test shows significant unequal means, the final step in the clustering
process is a post hoc test to analyze which sample(s) is (are) significantly different
compared to the samples that share the same mean and variance. The post hoc used
test depends on the results of the Levene test. With unequal variances and unequal
means between samples a Games-Howell test [83] is required to determine significant
differences between samples. For samples with equal variances but unequal means
a Tukey range test [222] is performed. All tests are performed with SPSS, an IBM
statistical software package. The results of this clustering process showed that two
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Figure 4.2: Statistical Clustering Process of Patient Groups.

hospital wards have equal LOS independent of the specialties on these wards and one
specialty has the same LOS independent of its designated wards. All other wards and
specialties have significant different means.

Using the outcomes of the clustering process, we fit probability distributions to each
clustered patient group. For this we use Rockwell's ARENA Input Analyzer (version
11) based on goodness-of-fit tests (i.e., the Chi-squared test). The following probability
distributions are used for fitting: Gamma, Erlang, Exponential and Lognormal. Due
to the limit, the historical data of the LOS at the AMU displays a specific gradient,
where the probability mass is centered around 24 hours and 48 hours. Therefore, we
used the empirical distribution derived from the historical data to model the LOS at
the AMU.

Since emergency patients arrive unscheduled we want to find the arrival patterns.
One can see from Figure 4.1 that the process has two arrival streams: (1) arrival at the
ED and (2) arrival at the AMU from the hospital's outpatient clinics. Data analysis
shows that patients arrive according to a non-homogeneous process. For instance, peak
hours are between 3 pm and 8 pm. We therefore determine hourly arrival rates based
on the historical data and assume that arrivals occur according to a (non-homogeneous)
Poisson process, as is common practice in modeling unscheduled patient arrivals [218].
Seasonality or differences in weekdays and weekends are not taken into account in the
arrival rates. As an example, the daily ED arrival frequencies are given in Figure 4.3.
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Figure 4.3: Frequencies of Emergency Department Arrivals per Hour.

4.6 Model Implementation
The DES is implemented in Tecnomatix Plant Simulation Sofware (Siemens, version
9). The model has a generic setup, therefore, various configurations (e.g., the number
of wards and beds, medical specialties, patients flows, and LOS) can be analyzed
without changing the core design of the model.

Arrivals at the ED or AMU are assigned a specialty and a certain destination (e.g.,
after a stay at the AMU the patient will be discharged or transferred to a hospital ward
for further treatment) according to a single random Bernoulli trial, using probabilities
derived from the frequency tables mentioned in the Data Analysis section. The LOS at
each department is based on the department’s medical specialties. When new patients
arrive at the ED or AMU and all beds are occupied, they are refused and leave the
system. When patients are ready to transfer from the ED to the AMU or from the
AMU to an inpatient ward and the destination is occupied, they wait at their current
department.

4.6.1 Simulation Initialization
To obtain (statistically) reliable results from our simulation we need to initialize our
model. We start initializing the simulation with all parameters derived from the data
analysis: frequency tables for specialties and destinations, the probability distributions
for the LOS and the arrival patterns. We also need to dimension the ED, AMU and
wards according to the hospital’s practice. The ED and AMU have 8 and 24 allocated
beds, respectively and a patient can be transferred to one of seven wards (the number
of allocated beds at wards will vary for each scenario).

Since the simulation starts with an empty system (i.e., no patients are present),
a warm-up period is required to reach steady state. We therefore exclude all results
from the warm-up period. The length of the warm-up period is determined by means
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of the Welch method. This method plots moving averages of the means from the ith
observation for a number of replications and for an arbitrary long run length per KPI.
The mean of multiple replications of the ith observation smooths the variability over
individual observations and therefore gives insight into the dependency on the initial
state. We then use moving averages over these means to smooth out high-frequency
oscillations. The warm-up period is determined through graphical interpretation of
the plotted moving averages per KPI resulting in a length of 365 days.

We determine the run length using the convergence method of [199]. This method
implies convergence of the cumulative means of KPIs over multiple replications as the
run length increases. The convergence level is measured as the ratio of the positive
difference between the maximum and the minimum of the cumulative mean of all
replications until day t, divided by the same maximum of the cumulative mean of all
replications until day t. We set the convergence level to 0.01 resulting in a run length
of 3,250 days. We then rounded up the run length to 10 years (i.e., 3,650 days).

The final step is to determine the required number of replications. We use a
stopping criterion on the relative error of the aforementioned KPIs. The relative error
bound was set to 1 percent and five replications proved to be sufficient.

4.6.2 Heuristics
With the simulation model we analyze various distributions of allocated emergency
beds at inpatient wards. To locate a feasible solution, we developed one heuristic per
objective respectively (see Tables 4.1 and 4.2).

Table 4.1: Heuristic Locating Feasible Allocations of Emergency Beds at Inpatient Wards

1. Initialization phase Set allocated emergency bed capacity at 100 for each
ward (approximating unlimited capacity)

2. Base phase Set capacity to average occupied beds per ward from
step 1

3. Optimization phase Increase capacity of ward with highest utilization rate;
4. Iteration phase Repeat step 3 until outcomes of Initialization phase are

approached sufficiently (arbitrarily maximum deviation
of 3% from the relative LOS at AMU).

In the first heuristic we start with an unlimited bed capacity (the Initialization phase
of the heuristic and scenario Init in Table 4.3). As we mentioned above, this scenario
shows the best performance because patients only have marginal waiting time because
transfers to inpatient wards cannot take place between 9 pm and 9 am. With this
scenario we have found an upper bound of our solution space. The distribution of
beds among inpatient wards for the next phase of the heuristic (the base phase) is
based on the average utilization of the initialization phase. The base phase provides
a lower bound for our solution space. Using these averages we do not take into ac-
count the stochasticity of the process and therefore this scenario (Avg in Table 4.3)
is characterized by underperformance. In the following phase of the heuristic (the
optimization phase) we consequently analyze which ward is the bottleneck (i.e., the
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ward with the highest utilization rate) and increase the number of allocated beds in
this ward by one. The heuristic stops iterating when the stopping criterion is met. We
arbitrarily choose a maximum deviation of 0.03 from the relative LOS at the AMU of
the initialization phase as stopping criterion.

The second heuristic (see Table 4.2) starts again with an initialization phase, where
we use the solution of the first heuristic as input. Since we suspect that pooling
resources will improve performance (e.g., the required bed capacity will be lower),
we want to know which care unit has the lowest utilization rate. The heuristic now
decreases the capacity of the care unit with the lowest utilization rate (optimization
phase) and iterates until the stopping criterion is met (iteration phase).

Table 4.2: Heuristic 2 Locating a Feasible Allocation of Emergency Beds at Care Units (i.e.,
pooled inpatient wards)

1. Initialization phase Set allocated emergency bed capacity of care units equal
to capacity of pooled wards (see table 4.3)

2. Optimization phase Decrease capacity (i.e., number emergency beds) of care
unit with lowest utilization rate

3. Iteration phase Repeat step 2 until outcomes of separate wards are ap-
proached sufficiently (arbitrary percentage refused pa-
tients < 0.01)

4.7 Results
The first objective of this study is to evaluate the effect of allocating beds within
inpatient wards for patients of the emergency admissions flow. Using the simulation
model and heuristic for this objective we have analyzed 14 scenarios (see Table 4.3).
Table 4.3 lists these scenarios with their input parameters and output values for the
KPIs. Per scenario (i.e., a row in the table) the bed capacity of inpatient ward i with
the highest utilization is increased by one bed, graphically shown in bold numbers.

The last row in Table 4.3 shows that in total 33 allocated emergency beds are
required to achieve similar performance as in the Init scenario. However, the bed
utilization per ward does not exceed 70 percent, which is quite low.

To evaluate the second objective we pooled the wards and applied the second
heuristic. We pooled the wards according to the configuration of the partnering hos-
pital. The heuristic starts with the initialization phase (scenario Init in Table 4.4).
Per scenario (i.e., a row in the table) the bed capacity of the care unit with the lowest
utilization rate is decreased by one bed, graphically shown in bold numbers and stops
when the stopping criterion is met. Care Unit 1 consists of the pooled wards 1 and 2;
Care Unit 2 of wards 3 and 4; and Care Unit 3 of wards 5, 6, and 7.

The results given in Table 4.4 show that pooling resources in terms of allocated beds
between wards further improves outcomes. In the best performing scenario using the
first heuristic for separate inpatient wards, 33 allocated emergency beds are required.
When pooling inpatient wards, the required number of emergency beds decreases to
24 without significant decrease in performance (based on the KPIs).
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Table 4.3: Input Parameters and Results for Each Scenario for Allocated Emergency Beds
Within Individual Wards.
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Table 4.4: Input Parameters and Results for Each Scenario for Allocated Emergency Beds
Within Care Units.

Scenario B
AMU CU 1 CU 2 CU 3

Total bedsrel LOS ρ Beds ρ Beds ρ Beds ρ
Init 0.00 0.79 0.36 19 0.66 7 0.59 7 0.51 33
I 0.00 0.79 0.36 19 0.66 7 0.59 6 0.60 32
II 0.00 0.81 0.37 19 0.66 6 0.69 6 0.60 31
III 0.00 0.85 0.39 19 0.66 6 0.69 5 0.72 30
IV 0.00 0.86 0.39 18 0.69 6 0.69 5 0.72 29
V 0.00 0.87 0.40 17 0.73 6 0.69 5 0.72 28
VI 0.00 0.98 0.45 17 0.73 5 0.84 5 0.72 27
VII 0.01 1.26 0.57 17 0.72 5 0.83 4 0.89 26
VIII 0.01 1.27 0.58 16 0.77 5 0.83 4 0.89 25
IX 0.01 1.30 0.59 15 0.82 5 0.82 4 0.89 24
B = percentage of refused patients, ρ = bed utilization, rel LOS = relative LOS at AMU, CUi = care unit i

4.8 Implementation in Practice
This research started with a request from AMU management to analyze the bot-
tlenecks in the AMU's patient flows. Since these flows are multidepartmental, we
involved the management of the other departments as well (e.g., ED and inpatient
wards). After we reached consensus about the problem and potential solutions, we
started constructing the simulation model. In every step of the simulation study the
management was involved. We discussed the results with management and the board
of directors. We also discussed the structure, related to tactical decision making using
the outcomes of the simulation model, which is now embedded in the planning and
control cycle of the partnering hospital. This means that at the beginning of every
quarter the distribution of the allocated emergency beds at the wards is re-evaluated.
The outcomes of this re-evaluation are implemented at the start of the next quarter
and meaning that ward managers adjust the number of allocated emergency beds (at
the expense of beds available for elective patients). This allows management to adjust
other resources (mainly staffing levels) and adjust the planning for elective patients
to the new situation. For the evaluation process we use a one-year rolling horizon of
data. Our experience shows that an adjustment of zero to three beds per inpatient
ward is required every quarter.

As we mentioned above, ward management must work with and manage multiple
stakeholders. In practice management could prioritize elective patients and therefore
not completely adjust the number of allocated emergency beds as suggested by our
model. Overall, this model resulted in a 70 percent decrease in the number of patients
refused admission, while elective admissions also increased.

4.9 Discussion
This study shows the positive impact of allocating emergency beds on the emergency
admission flow in terms of emergency patients who are refused admission, AMUs LOS
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and utilization levels of these beds. This allocation strategy eliminates boarders and
therefore a positive contribution to the quality of care can be expected [212]. It
may also improve patient satisfaction, since crowding is associated with lower patient
satisfaction [190]. One of the primary objectives during the development phase was to
create a generalizable model. The model can easily be adopted to different settings,
such as extra wards or specialties, varying numbers of beds and different LOS. The
model could therefore be useful for other hospitals facing similar problems. It is a
user-friendly planning tool, granting (medical) management the power to determine
the optimal number of allocated emergency beds with respect to flow dynamics and
resource utilization. It provides immediate input for inter-departmental alignment
and the tool allows for evaluation of capacity decisions on the patient flow, simplifying
the real-life tactical capacity decisions management must make. Therefore this DES
model is a universal and powerful tool supporting the planning and control cycle. The
partnering hospital uses the tool on a regular basis for tactical decision making and
has completely integrated it into the hospital's practices.

Allocating a shared resource (e.g., beds) for specific populations could result in
suboptimal utilization since flexibility is reduced. This study addresses this problem
by analyzing the effect of pooling capacity (e.g., the pooling of inpatient wards). The
results show a significant improvement in bed utilization without decreased perfor-
mance in the fraction of refused patients and the LOS at the AMU. This supports
earlier research, showing that hospital wards can improve performance in terms of bed
utilization and refused patients by pooling [69, 238].

Including more case studies is necessary to determine the correlation between al-
located emergency beds, flow congestion and boarders. A limitation of the model is
the empirical distribution the LOS of the AMU. Substituting beds among emergency
patients and elective patients is complex since factors such as the length of the waiting
list and the seriousness of conditions of elective patients are important as well. Other
factors that influence performance such as staffing levels are currently also not in-
cluded. To improve both the accuracy of the results and the model validation, further
research should be done on the arrival patterns analyzing differences between days
and hours and predictors for the AMU LOS. Also, external outflow blockage (e.g.,
transfers to a nursing home) is a likely cause of significant longer LOS at inpatient
wards resulting in increased bed usage, with the potential risk of refusals at the ED
and AMU. Finally, different configurations of pooled wards could be analyzed since
we looked solely at the configuration of the partnering hospital.

Our model could also facilitate in capacity allocation decisions for emergency pa-
tients from a regional perspective. In addition, the visuality of the simulation model
adds to the intuition of the flow dynamics when dedicating beds for emergency patients
and so increases the likelihood of successful implementation.

This research shows not only that allocating beds for emergency patients at hospi-
tal wards improves the emergency admission flow, but its implementation into a tool
also helps elucidate the pros and cons of this allocation and thus facilitates implemen-
tation.



CHAPTER 5

Scheduling Surgery Groups Considering
Multiple Downstream Resources1

5.1 Introduction

The operating theater (OT) is one of the most expensive resources [100] and a central
hub in hospital patient flow. Therefore, the OT gets a lot of attention to improve
productivity. By focusing on OT improvements, other resources get out of sight and
are therefore easily forgotten. After surgery, patients are transferred to downstream
departments such as the intensive care unit and inpatient wards (hereafter referred to
as wards). Therefore, the performance of these downstream departments is directly
influenced by the OT [81]. Focusing solely on OT improvements results in large fluc-
tuations in downstream resources, and therefore, requires overcapacity. To optimize
all resources involved in the flow of surgical patients, a holistic approach is required.
In other words, while improving the productivity of the OT (e.g. optimizing surgery
planning), it is crucial to also consider the effect on downstream departments.

According to the organizational decision hierarchy described in [106] and [81],
surgery planning consists of three stages: (1) the strategic case mix planning, (2)
the tactical master surgery scheduling (MSS) and (3) the operational surgery plan-
ning. In the first stage of planning, OT capacity is roughly divided among surgical
specialties via blocks (e.g. a day or half a day). Then, the assigned OT blocks are
scheduled in a cyclic schedule, which means that the schedule is repeated (bi)weekly,
and this results in the tactical MSS. Finally, on an operational level, patients are
scheduled within the OT blocks of their surgical specialty.

In this chapter, we discuss the tactical MSS problem while optimizing the effect on
the downstream inpatient resources (e.g. bed usage in wards and the ICU). Although
counter-intuitive, we observe, from hospital data, that the fluctuations in bed occu-
pancy are mostly caused by artificial (e.g. self induced) variation, and are therefore a
result of planning. For this reason, we focus on elective surgery planning. We propose
a single step model where bed usage variation is minimized and the OT utilization is

1This chapter is based on A.J. Schneider, J.T. van Essen, M. Carlier and E.W. Hans. Schedul-
ing surgery groups considering multiple downstream resources. European Journal of Operational
Research, 280.2:741-752, 2020.
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maximized. We distinguish three concepts related to OT scheduling: (1) OT blocks
consisting of (half) a day in which a surgical specialty can perform surgeries in an OT,
(2) surgery groups are clusters of surgery types sharing comparable characteristics
and (3) surgery types that define a specific surgical procedure. Different from recent
research where surgical specialties are assigned to OT blocks in the MSS, we schedule
surgery groups within these OT blocks. Surgery groups are clusters of surgery types
that share comparable characteristics (e.g. duration, specialty, and/or expertise of
surgeons). As a result of the wide variety of surgery types, some surgery types are
not performed (bi-)weekly. Therefore, these surgery types cannot be taken into ac-
count individually, which makes is necessary to cluster several surgery types within a
surgery group. By scheduling surgery groups instead of OT blocks, we want to bridge
the gap between the tactical and operational level. Scheduling OT blocks on a tactical
level leaves many options for scheduling different surgery types with different expected
durations on the operational level, which increases the probability of variation in OT
utilization and bed usage. Therefore, we show that scheduling surgery groups reduces
the probability of overtime and variation in bed usage.

In the remainder of this chapter, we start with an overview of available literature
on OT scheduling and position our research (Section 5.2). In Section 5.3, we discuss
three elements of our model: (1) the constraints, (2) the probability distributions
of bed usage in the downstream departments for a given cyclic schedule of surgery
groups, and (3) the objective function. Section 5.4 describes our global and local
search approach, and Section 5.5 discusses the results of both approaches. We analyze
several variants of our model in Section 5.6. Finally, we discuss the implications of
our approach in Section 5.7.

5.2 Literature review & research positioning

OT planning and scheduling literature is broadly available. For an overview on general
OT scheduling literature, we refer to the systematic reviews of [49] and [100]. Here, we
solely consider OT planning and scheduling literature that take downstream resources
into account.

Two approaches are used by [22] to model bed occupancy of a single ward while
creating an MSS: (1) a mixed integer programming (MIP) based approach, linear as
well as quadratic, and (2) simulated annealing (SA). In [23], this model is extended
with multiple wards. Furthermore, [22] assume the number of patients per OT block
to be deterministically dependent on the type of surgery and fixed for each surgeon,
while [23] assume a multinomial distribution function for this. Two hierarchical goal
programming approaches are developed by [23], that both consist of two goal program-
ming models that are solved successively.

A MIP was developed by [202] using average values for the LoS (Length of Stay:
the sojourn time at wards). Their model has two objectives: maximizing daily bed
utilization and maximizing throughput and mix of patients. A mixed integer linear
programming (MILP) model by [254] levels the daily beds and nurse workload, while
considering surgeons preferences.

Elective surgical types that are frequently performed are cyclical scheduled in[233]
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. The solution approach consists of two steps: (1) an integer linear program (ILP)
which ignores the required number of beds and that is solved by an implicit column
generation approach and (2) a MILP with the objective to minimize the required
number of beds. They incorporate three types of beds which can be prioritized. Also
surgeries are assigned to a day in the cyclic schedule by [3] , as in [233]. However, [3]
use a stochastic LoS that outperforms a deterministic LoS. The extension of [233] in
[4] also accounts for emergency patients. They use simulation to create an operational
schedule based on the obtained tactical schedule with emergency patients.

Two other studies, [240] and [239], assign OT time to specialties, just as [22], by
computing the ward occupancy distributions, the patient admission/discharge distri-
butions, and the distributions for the ongoing interventions/treatments required by
recovering patients. In [240], they swap OT blocks and surgical specialty assignments
to find a good solution. This model is extended in other literature. The analytical
approach of [240] is used to determine the number of required beds [231]. Two solution
methods are used: (1) ILP and (2) SA. To be able to use an ILP, the objective function
is replaced by the maximum of the expected number of required beds. An extension of
the approach of [240] is made by taking multiple wards and the ICU into account and
consider several heuristic solution methods [81]. In [79], this is even further extended
by including multiple ICUs and outpatient flows in downstream resources. Another
extension by [80] includes outpatients and emergency surgeries during the weekends.

Simulation is used to investigate a stochastic surgery scheduling problem while
considering ICU beds [173]. Surgery durations and LoS on the ICU are assumed
stochastic with known distributions. Monte Carlo simulation is combined with a MIP
to predict the impact of an MSS on bed occupancy [56]. The simulation model predicts
the daily demand of beds and the MIP (based on [23]) optimizes the bed occupancy
by scheduling surgery blocks and patient types within each block. Also, a MIP model
to find an MSS was proposed by [17]. Their objective is to maximize the number of
surgeries planned while minimizing the violation of due dates. Next to the MIP model,
they also simulate the MIP solution for robustness.

The impact of variability in admissions and LoS on the required amount of bed
capacity with an approximation method is analyzed by [21]. Given an admission
pattern, their quadratic programming model determines the mean bed occupancy of
each day. The Markov Decision Process (MDP) model in [12] provides scheduling
policies for all surgeries, given an MSS, that minimize the time a patient spends on
the waiting list, OT overtime and ward congestion. They use approximate dynamic
programming to solve the MDP of a realistic problem.

We extend the previous work of [233] and [81] by scheduling surgery groups within
OT blocks and by developing an single step solution method instead of decomposition
approaches. Scheduling surgery groups complicates modeling the overtime constraint
and utilization of the OT, because there are multiple options for scheduling surgery
groups within an OT block. To cluster surgical procedure types into surgery groups, we
use techniques from data mining. Furthermore, we linearize the overtime constraint by
a piecewise linear function and the objective function by using the expected variation
in bed occupancy.
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5.3 Problem formulation
In this section, we formulate our problem of creating a schedule that specifies which
surgery groups should be scheduled in an OT block. First, we explain our clustering
approach for defining the surgery groups in Section 5.3.1. From Section 5.3.2 to 5.3.4,
we explain the mathematical model.

5.3.1 Clustering surgery types into surgery groups
As mentioned in the introduction, not every individual surgery type can be consid-
ered on the tactical level as some are not performed weekly. Thus, we need to cluster
surgery types into groups to model all surgery types. We cluster surgery types into
surgery groups using data mining techniques. Data mining improves the understand-
ing of the relations between predictor and response variables, underlying structures
and/or distributions of the input data. Therefore, data mining potentially improves
the results of the considered model. Data mining techniques can be split into two main
categories: supervised learning and unsupervised learning. Supervised learning makes
use of labeled training and predicts a response variable with predictor variables [227].
Unsupervised learning only uses unlabeled (e.g. predictor) variables and analyzes the
underlying structure or distribution of the data (e.g. clustering or association). For
our model, we want to use the predictor variables specialty and surgery type to predict
the response variables surgery duration (for OT utilization) and LoS (for bed usage)
as is done in supervised learning. The response variable could then be split into cer-
tain classes such as short LoS and short surgery duration. However, these labels are
dependent on the classification we would like to make, and are therefore not available.
The other category, unsupervised learning, assumes unlabeled data and does not split
the variables into response and predictor variables.

Clustering algorithms examine the data to find groups of similar instances. We
would like instances with the same specialty and surgery type to be in one clus-
ter, so they account for surgeon specialization. However, most clustering algorithms
(unsupervised learning) assume independent instances. Moreover, in most clustering
algorithms we cannot specify what type of clusters we want. This means that one
cluster could contain instances where the dispersion of LoS is small and the dispersion
of surgery duration is large, and vice versa in another cluster. Therefore, we combine
supervised and unsupervised learning techniques in our approach: first, we divide the
surgery types of a specialty into short and long stay clusters based on the median
LoS of the surgery type (e.g LoS groups). This means that the cut-off point between
short and long stay clusters depends on the specialty. The cut-off point is determined
by maximizing the precision, based on all instances, of both clusters. Precision is an
evaluation measure of the confusion matrix and is defined as the fraction of correct
positive predictions among the total number of positive predictions [227]. In our study,
this equals the number of instances in a cluster that were indeed lower (for short stay)
or higher (for long stay) than the cut-off point among all instances of a surgery type.
We tested the precision both on the median and mean of each surgery type and results
show that for clustering the LoS the median results in higher precision. Next, we fur-
ther divide each short and long stay cluster into three sub clusters based on the surgery
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duration. The clustering for the surgery duration is similar as for the LoS, although
now we take the mean of each surgery type. The cut-off points are again determined
by maximizing the precision of each cluster. This means that our clustering approach
results in six groups per surgical specialty. Here, we also tested the precision bases
on both the median and mean. Results show that for surgery durations, the means
results in a higher precision.

To ensure that the sizes of the resulting surgery groups do not become too small, we
set the cut-off point such that the number of instances assigned to a group is at least
20% of the number of instances that can be divided. In addition, we use a two-sample
t-test with a 5% significance level to determine whether two groups are significantly
different. When the two groups fail this test, i.e., when they are not significantly
different, we decrease the number of groups.

5.3.2 Conceptual model
In our approach, we assign surgery groups to OT blocks instead of surgical specialties.
See Figure 5.1 for a graphical example of scheduling surgery groups. Assigning a
surgery group to an OT block allows for a single surgery type of that group to be
scheduled during the next planning stage. Multiple surgery groups can be assigned
multiple times to the same OT on the same day as long as the surgery groups belong to
the same specialty of the allocated OT block. The order in which individual patients of
the surgery groups are scheduled on the operational level is undefined. For example,
our MSS specifies that surgery group X and Y are scheduled on the same day and
OT, but does not specify if surgery group X must be scheduled before or after surgery
group Y during that day. Hence, a variable amount of surgery groups can be scheduled
in an OT block of the MSS. The objective of our model is to find an optimal schedule
of surgery groups that maximizes OT utilization while minimizing the variance of bed
usage at the wards.

Figure 5.1: OT Schedule Example With Surgery Groups
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5.3.3 Constraints
Multiple constraints are taken into account for our model, e.g., the need for specific
OTs (e.g. thoracic surgeries require specific operating tables) , the need for specific
equipment, the total available OT time during opening hours and the number of
scheduled surgery groups. Let O be the set of given OTs and K the set of days in the
MSS. Then, an OT block (o, k) is defined as a combination of day k ∈ K of the MSS
and OT o ∈ O. The set of given surgery groups is denoted by set J .

The integer decision variable zokj specifies the number of surgeries from surgery
group j ∈ J that are scheduled in OT block (o, k). To ensure equitable access for
each surgery group, we set a lower bound βj on the number of scheduled surgeries per
surgery group j ∈ J and assume that waiting lists are inexhaustible. The following
constraints ensure that all groups j ∈ J are scheduled a minimum of βj times.∑

o∈O,k∈K

zokj ≥ βj , ∀j ∈ J . (5.1)

Let S be the set of specialties and Js ⊆ J the set of surgery groups belonging to
specialty s ∈ S . We introduce binary parameters εoks that are one when specialty s ∈ S
can be allocated to OT block (o, k) in the MSS, and zero otherwise. Furthermore,
we introduce binary decision variables uoks which are one when a surgery group of
specialty s ∈ S is scheduled in OT block (o, k) and zero otherwise. Now we can ensure
that only surgery groups of the specialty that is allocated to OT block (o, k) can be
scheduled:

uoks ≤ εoks, ∀o ∈ O, k ∈ K , s ∈ S , ε = 1. (5.2)

The relation between zokj and uoks is given by constraints (5.3), where Ms is the
maximum number of surgeries of a specialty s ∈ S that fit in one OT block:∑

j∈Js

zokj ≤Ms · uoks, ∀o ∈ O, k ∈ K , s ∈ S . (5.3)

To ensure that only one specialty s ∈ S can be assigned to each OT block, we introduce
the following constraints and binary parameters χok which are one when OT o ∈ O is
open on day k ∈ K and zero otherwise:∑

s∈S

uoks ≤ χok, ∀o ∈ O, k ∈ K . (5.4)

The total surgery duration of the surgery groups we assign to an OT block is limited
by the opening hours of the OT. The surgery duration ζj of surgery group j ∈ J is
a stochastic variable with mean µj and variance σ2

j . Let gok denote the stochastic
variable representing the total duration of the surgery groups that are scheduled in
OT block (o, k). The available OT time on day k ∈ K in OT o ∈ O is denoted by τok.
We introduce constraints (5.5) to ensure that the probability of overtime is below α
with 0 ≤ α ≤ 1. Overtime occurs when the total sum of the duration of the scheduled
groups exceeds the available time of that OT block:

P (gok ≤ τok) ≥ 1− α, ∀o ∈ O, k ∈ K . (5.5)
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Some surgery groups require specific equipment that is not available in every OT, and
therefore, have to be scheduled in specific OTs, while other surgery groups can be
scheduled in every OT. To model this, we define a set of OT types R and we denote
the subset of surgery groups that can be performed in OT type r ∈ R by Jr ⊆ J .
Binary parameters vokr are one when OT o ∈ O on day k ∈ K is of type r ∈ R and
zero otherwise. This leads to the following constraint:∑

j∈Jr

zokj ≤ Nrvokr, ∀o ∈ O, k ∈ K , r ∈ R , (5.6)

where Nr is the maximum number of surgeries belonging to OT type r in one OT
block.

5.3.4 Bed usage distributions
Next, we want to determine the bed usage distributions of the wards in three steps:
(1) we calculate the bed usage distribution for the wards per surgery group, (2) we
calculate the bed usage distribution for overlapping cycles, and (3) we calculate the
bed usage distribution for an entire OT block. This final step needs to be repeated
for every cyclic schedule. The first two steps can be done beforehand. Based on these
inputs, we will describe the objective function.

As mentioned before, we further extent the work of [239] and [81] by assuming that
patients from the same surgery group can be admitted at different wards (e.g. different
ICUs or different wards belonging to the same surgical specialty). This extension is
based on practice, where hospitals can have specific ICUs and wards for specific patient
types en thus surgery types such as thoracic surgery. Therefore, we take into account
all wards where patients of a certain surgical specialty can be admitted.

Figure 5.2: Main Hospital Flows for Surgical Patients

OT

ICU

Ward

We assume that patients can take two paths after surgery: (1) directly to a ward or
(2) first to the ICU followed by a transfer to a ward (see Figure 5.2). Finally, patients
are discharged and leave the system. Let set I denote all ICUs and let set W denote
all wards. For all j ∈ J , we define subsets Ji ⊆ J and Jw ⊆ J for the surgery groups
that are transferred to the ICU i ∈ I and ward w ∈ W , respectively. The LoS (in
days) in the ICU i ∈ I or ward w ∈ W of each surgery group is modeled by discrete
empirical distributions based on historical data. The empirical distribution of the LoS
is determined per surgery group, regardless of the ward they are transferred to. The
following input parameters are required for every surgery group j ∈ J :

- aij represents the probability that a patient of surgery group j ∈ J is transferred
to ICU i ∈ I after surgery.
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- bwj represents the probability that a patient from surgery group j ∈ J is trans-
ferred to ward w ∈ W after surgery or ICU.

- cIjn represents the probability that a patient from surgery group j ∈ J stays
exactly n days in the ICU after surgery.

- cWS
jn represents the probability that a patient from surgery group j ∈ J stays

exactly n days in the ward after surgery.
- cWI

jn represents the probability that a patient from surgery group j ∈ J stays
exactly n days in the ward after a stay in the ICU.

The probability that a patient from surgery group j ∈ J is transferred to the ICU is
given by

∑
i∈I aij and a transfer to the ward is given by 1−

∑
i∈I aij . The probabilities

cIjn, cWS
jn and cWI

jn are not given separately for every ward or ICU, because for every
surgery group j ∈ J , the probability of a patient staying exactly n days is independent
of the ward or ICU. We also assume a bed is occupied a whole day if a patient is
discharged on that day.

Single surgery group

The first step of our approach is similar to the approach presented in [81]. As [81],
we start by calculating conditional probabilities dIjn+1 that a patient from surgery
group j ∈ J is transferred from the ICU to a ward on day n + 1 (which is n days
after surgery). In a similar way, the conditional probabilities dWS

jn+1 that a patient
from surgery group j ∈ J , who is in the ward on day n, is discharged on day n can be
determined. Conditional probabilities dWI

jn+1 represent the probability that a patient
from surgery group j ∈ J , who is in the ward on day n after being transferred from
the ICU, is discharged on day n, where we assume that the patient is transferred from
the ICU on day 1.

As [81], we can now calculate probabilities eIjn that a patient from surgery group
j ∈ J , who had surgery on day 1, is still occupying a bed on day n. For n = 1 and
the ICU, this is simply the probability that the patient is transferred to the ICU after
surgery. We assume a patient stays at least one day in the ICU, otherwise, a patient
is transferred directly to the ward. Therefore, for n = 2, we have the same probability
as for n = 1. For n ∈ {3, ..., N I

j + 1}, where N I
j is the maximum number of days

that a patient from surgery group j ∈ J stays in the ICU after surgery, this is the
probability that the patient was not transferred to the ward the day before, i.e., day
n−1, multiplied by the probability that the patient was still in the ICU the day before.

Similarly, probabilities eWS
jn and eWI

jnm are determined, i.e., the probabilities that a
patient from surgery group j ∈ J who had surgery on day 1, is still occupying a bed
in the ward on day n and the probability that after an ICU stay of m days, a patient
from surgery group j ∈ J is still in the ward on day n, respectively. Probabilities eWS

jn

and eWI
jmn are combined to calculate the probability eWjn that a patient of surgery group

j ∈ J is in the ward on day n.
Different from [81], we consider multiple ICUs. Therefore, we also need to calculate

the probability that a patient from surgery group j ∈ J is in ICU i ∈ I , given that
this patient is in the ICU.

∑
i∈I aij is the probability that a patient of surgery group

j ∈ J is in the ICU. So, for all j ∈ J and i ∈ I , we have conditional probability
âij = aij∑

i∈I
aij

that a patient of surgery group j ∈ J is in ICU i ∈ I , given that this
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patient is in the ICU. For the wards, this probability is given by bwj . We do not need
to normalize this probability, since every patient in our model is transferred to the
ward. Patients who do not stay at the ward are represented using a ward LoS of zero
days.

The probability distributions of the number of patients from surgery group j ∈ J
in ICU i ∈ I or ward w ∈ W on day n are denoted by f Iijn and fWwjn. The discrete
stochastic variables that are associated with these probability distributions are given
by fIijn and fWwjn, respectively. Since different from [81], we schedule surgery groups
instead of OT blocks, the number of patients in an ICU or ward can only equal zero or
one. So, the probability that there is one patient in the ward or ICU is calculated by
multiplying the probability that a patient from surgery group j ∈ J goes to ICU i ∈ I
(ward w ∈ W ), given this patient is in the ICU (ward), with the probability that this
patient is in the ICU (ward) on day n. The probability that there are zero patients is
equal to one minus the probability that there is one patient.

P (fIijn = 0) = 1− âijeIjn, i ∈ I , j ∈ J , n ∈ {1, ..., N I
j }; (5.7)

P (fIijn = 1) = âije
I
jn, i ∈ I , j ∈ J , n ∈ {1, ..., N I

j }; (5.8)
P (fWwjn = 0) = 1− bwjeWjn, w ∈ W , j ∈ J , n ∈ {1, ..., NW

j }; (5.9)
P (fWwjn = 1) = bwje

W
jn, w ∈ W , j ∈ J , n ∈ {1, ..., NW

j }. (5.10)

Cyclical surgery group

Now that we have all probabilities for single surgery groups, we can calculate the
bed usage distribution for overlapping cycles using the approach of [239], since the
maximum LoS of a patient can exceed the cycle length. The distribution of the number
of patients in overlapping cycles is denoted by F Iijl and FWwjl for surgery group j ∈ J in
ICU i ∈ I and ward w ∈ W , respectively, on the lth day of a cycle, when the surgery
group is scheduled on day one of the cycle. The number of overlapping cycles depends
on the maximum LoS in the ICU and wards, N I

j and NW
j , respectively, and on the

cycle length L, which is the number of elements in L. Depending on the day l in the
cycle, we have b(N I

j − l)/Lc+ 1 overlapping cycles for the ICU and b(NW
j − l)/Lc+ 1

overlapping cycles for the ward.

Cyclic schedule

We now have all the elements for the final step: calculating the bed usage distributions
for a cyclic surgery group schedule. The calculations in this step differ from [239] and
[81], since we schedule surgery groups instead of OT blocks. This means that we
consider a variable amount of surgery groups and number of the same surgery group
within an OT block, where [81, 239] consider an average number of surgeries and
durations for an OT block. A cyclic schedule is given by the integer decision variables
zokj , which represent the total number of surgeries from surgery group j ∈ J that
are scheduled in OT o ∈ O on day k ∈ K . Let 1zokj

be an indicator function that
is equal to one if zokj is greater than zero and equal to zero if zokj is zero. The bed
usage distribution in ICU i ∈ I and ward w ∈ W on day l of a cyclic schedule when
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scheduling surgery group j ∈ J once in OT block (o, k) is given by GIiokjl and GWwokjl,
respectively.

Next, we shift both distributions F Iijl and FWwjl to the day on which the surgery
group is scheduled. Here, l is the day for which we are determining the bed usage
distribution and k is the day on which the surgery group is scheduled in the cyclic
schedule. If l ≥ k, we shift F Iijl and FWwjl by k − 1 days. If l < k, the bed usage
distribution on day l results only from surgery groups scheduled on day k of previous
cycles. Thus, we shift by k − 1 − L days. We multiply these distributions by 1zokj

,
which is only non-zero if the surgery group j ∈ J is assigned to OT block (o, k).

GIiokjl =
{
F Iijl−k+11zokj

, l ≥ k
F Iijl−k+1+L1zokj

, otherwise.
(5.11)

GWwokjl =
{
FWwjl−k+11zokj

, l ≥ k
FWwjl−k+1+L1zokj

, otherwise.
(5.12)

Next, we obtain the bed usage distributions for an OT block. We use the indicator
function 1zokj

to indicate that a surgery group j ∈ J is assigned at least once to OT
block (o, k). However, a surgery group might be assigned multiple times to one OT
block. To obtain the distribution of patients from an entire OT block, we need the
convolution of all distributions GIiokjl and GWwokjl of the surgery groups scheduled in
that OT block. If a surgery group is assigned n times to one OT block, we need to con-
volute the distribution n times with itself, before convolving it with the distributions
of other surgery groups assigned to that OT block. Therefore, we use the convolution
power, which is defined as the n-fold iteration of the convolution with itself. For h, a
function Z→ R and n ∈ N>0, we have:

h∗n = h ∗ h ∗ ... ∗ h ∗ h︸ ︷︷ ︸
n

, h∗0 = δ0, (5.13)

where δ0 is Dirac’s delta function. Dirac’s delta function focuses the mass of a function
around zero. When we convolve a distribution zero times, the probability of being zero
is equal to one.

The bed usage distribution in ICU i ∈ I and ward w ∈ W on day l of the cyclic
schedule per surgery group j ∈ J in OT block (o, k) is given by ĜIiokjl and ĜWwokjl:

ĜIiokjl = GIiokjl
∗zokj

, i ∈ I , o ∈ O, k ∈ K , j ∈ Ji , l ∈ L. (5.14)

ĜWwokjl = GWwokjl
∗zokj , w ∈ W , o ∈ O, k ∈ K , j ∈ Jw , l ∈ L. (5.15)

Now we can define distributions HI
iokl and HW

wokl, which represent the bed usage
distributions on day l at ICU i ∈ I and ward w ∈ W , resulting from all surgery groups
j1, j2, ..., jmax ∈ Ji and j1, j2, ..., jmax ∈ Jw , respectively.

HI
iokl = ĜIiokj1l ∗ Ĝ

I
iokj2l ∗ ... ∗ Ĝ

I
iokjmaxl, i ∈ I , o ∈ O, k ∈ K , l ∈ L, (5.16)

HW
wokl = ĜWwokj1l ∗ Ĝ

W
wokj2l ∗ ... ∗ Ĝ

W
wokjmaxl, w ∈ W , o ∈ O, k ∈ K , l ∈ L. (5.17)
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Following the approach of [239] and [81], we convolve the distributions of all the OT
blocks in the cyclic schedule to obtain the bed usage distributions resulting from the
complete cyclic schedule. ĤI

il denotes the distribution of patients in ICU i ∈ I on
day l of the cyclic schedule and ĤW

wl denotes the distribution of recovering patients
in ward w ∈ W on day l of the cyclic schedule. The last OT and the last day in the
cyclic schedule on which surgeries take place are denoted by max{O} and max{K }
respectively.

ĤI
il = HI

i11l ∗HI
i12l ∗ ... ∗HI

i1 max{K }l ∗H
I
i21l ∗HI

i22l ∗ ... ∗HI
imax{O}max{K }l,

i ∈ I , l ∈ L, (5.18)

ĤW
wl = HW

w11l ∗HW
w12l ∗ ... ∗HW

w1 max{K }l ∗H
W
w21l ∗HW

w22l ∗ ... ∗HW
wmax{O}max{K }l,

w ∈ W , l ∈ L. (5.19)

We define the probability of having n patients in ICU i ∈ I or ward w ∈ W on day l
by ĤI

il[n] and ĤW
wl [n].

For a given cyclic schedule ψ, we want to determine the variation in bed occupancy.
This means that we calculate for each day l and with probability p that there are at
most n patients, thus n required beds, by summing over the probabilities that there
are at most n patients in the ICU or ward. The required number of beds γil(ψ) on
day l in ICU i ∈ I for a given solution ψ ∈ Ψ is then given by:

γil(ψ) = min
{
n

∣∣∣∣ n∑
m=0

ĤI
il[m] ≥ p

}
. (5.20)

The required number of beds γwl(ψ) on day l in ward w ∈ W for a given solution ψ is
given similarly by:

γwl(ψ) = min
{
n

∣∣∣∣ n∑
m=0

ĤW
wl [m] ≥ p

}
. (5.21)

Peaks in bed occupancy occur during weekdays since new patients arrive to undergo
scheduled surgeries. These peaks may cause surgery cancellations, because not enough
beds are available. Therefore, we are interested in minimizing the variation in bed
occupancy during weekdays. As no surgeries are scheduled during the weekends, the
bed occupancy is lower. The variation in bed occupancy, denoted by γi(ψ) and γw(ψ),
in ICU i ∈ I and ward w ∈ W is given by the difference between the maximum and
minimum number of required beds during the week and are given by:

γi(ψ) = max
l∈K

γil(ψ)−min
l∈K

γil(ψ), (5.22)

γw(ψ) = max
l∈K

γwl(ψ)−min
l∈K

γwl(ψ), (5.23)

where K is the set of all workdays as defined in Section 5.3.3.
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Objective function

Our model has two main goals: (1) to maximize the OT utilization and (2) to minimize
the variation in bed occupancy. Because the available OT time is determined at the
strategical level, it is constant in our model. Hence, maximizing the OT utilization
is equal to maximizing the time allocated for scheduled surgery groups. The utilized
OT time is the sum of the mean surgery durations µj of the scheduled surgery groups.
Furthermore, we want to minimize the variation in bed occupancy, γi and γw. Finally,
we include weights θi and θw, so we can manage the balance between the variation in
bed occupancy and the OT utilization. The objective function is now given by:

max
∑
o∈O

∑
k∈K

∑
j∈J

µj · zokj −
∑
i∈I

θi · γi(ψ)−
∑
w∈W

θw · γw(ψ), (5.24)

where the objective function value for a given schedule ψ is denoted by OB(ψ).

5.4 Solution methods
The majority of calculations in Section 5.3.4 can be performed beforehand. However,
the calculations for a cyclic schedule still involve the convolution of several probabil-
ity distributions and have generated within the model. Moreover, the constraints in
(5.5) are nonlinear which makes the model nonlinear. Therefore, we use two different
approaches to solve our problem: (1) approximate our model using linearizations in
a MILP and (2) use an approximation approach, for this we use simulated annealing
(SA), to run our model. MILP and SA are widely used for solving the MSS prob-
lem and are also compared on the trade-off between the objective function value and
computational performances by [49].

5.4.1 Global approach
Our global approach uses an approximation of the objective function and a linearized
version of nonlinear constraints (5.5) in order to formulate a MILP which we can solve
with a commercial solver. In Section 5.4.1, we linearize the overtime constraints (5.5).
Because there is no direct relation between a given OT-schedule and the number of
required beds, we also linearize the objective function in Section 5.4.1.

Linearization of the surgery duration constraint

In the problem formulation introduced in Section 5.3.3, we have nonlinear constraints
that make the surgery schedule more robust against overtime. We linearize the over-
time constraint using the same approach as [36] and shown in equation 5.5.

The 3-parameter lognormal distribution is the best fit for surgery duration distri-
butions [169]. However, since there is no known exact result for the distribution of
the sum of 3-parameter lognormal distributed stochastic variables we approximate the
distribution of the sum of the surgery durations with a normal distribution as is done
by [107] and [233]. For this, we assume that the total duration of OT block (o, k) is
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normally distributed with mean µok and variance σ2
ok. Thus, gok(x) ∼ N (µok, σok).

Then, the overtime constraints can be written as:

P (gok ≤ τok) = Φ
(
τok − µok
σok

)
≥ 1− α, ∀o ∈ O, k ∈ K . (5.25)

Where Φ is the z-score of the normal distribution. Rewriting equation (5.25) gives:

µok + Φ−1(1− α)σok ≤ τok, ∀o ∈ O, k ∈ K . (5.26)

The mean and variance of the total surgery duration gok of OT block (o, k) can be
written as:

µok =
∑
j∈J

zokjµj and σ2
ok =

∑
j∈J

zokjσ
2
j . (5.27)

Substituting the latter two expressions into the overtime constraints (5.26) gives:∑
j∈J

zokjµj + Φ−1(1− α)
√∑

j∈J

zokjσ2
j ≤ τok, ∀o ∈ O, k ∈ K . (5.28)

To linearize this constraint, we approximate the square root function f(x) =
√
x by

a piecewise linear function. The square root function needs to be approximated on
the interval [xmin, xmax]. We do not want to underestimate the function f(x), so the
approximation function must be greater than or equal to f(x) for all x ∈ [xmin, xmax].
The intervals of the piecewise linear functions are determined by breakpoints n ∈ N ,
where N = {0, 1, ...,m}. Here, xn is the value on the x-axis of breakpoint n ∈ N . We
define x0 as the first x-value and xm as the last x-value for which we approximate the
square root function. The other x-values, xn for n = {1, ...,m − 1}, are intersection
points of the linear approximations. Let yn be the function value of the linear approx-
imation function at breakpoint n, so yn = √xn. See for more details the appendix in
the supplementary materials.

Once the breakpoints are known, we can use the λ-formulation by [32] to model
piecewise linear functions together. The function value of any point between two
breakpoints is the weighted sum of the function values of these two breakpoints. Let
λokn denote n nonnegative weights for each OT block (o, k) such that their sum equals
one. Then, the piecewise linear approximation of the overtime constraint can be
written as:∑

j∈J

zokjµj + Φ−1(1− α)
∑
n∈N

λoknyn ≤ τok, ∀o ∈ O, k ∈ K , (5.29)

∑
n∈N

λoknxn =
∑
j∈J

zokjσ
2
j , ∀o ∈ O, k ∈ K , (5.30)

∑
n∈N

λokn = 1, ∀o ∈ O, k ∈ K . (5.31)

Considering overtime constraints (5.28), we show that when scheduling surgery groups
instead of surgical specialties, we can at least assign the same number of surgeries to
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one OT block. Assuming that there exists a surgery group j ∈ Js with µj ≤ µs and
σ2
j ≤ σ2

s , where µs and σ2
s represent the mean and variance of the surgery duration

for surgical specialty s ∈ S , we have that

zµj + Φ−1(1− α)
√
zσ2

j ≤ zµs + Φ−1(1− α)
√
zσ2

s ≤ τ (5.32)

where z denotes the number of assigned surgeries to a given OT block. This means
that the cyclic schedule obtained when scheduling surgery groups instead of surgical
specialties allows us to schedule at least the same number of surgeries and possibly
more.

Linearization of the objective function

Our approach for linearizing the objective function is an extension of the approach of
[22]. Instead of using γi and γw, we use the expected number of beds at ward w ∈ W
and ICU i ∈ I on day l of the cycle. For a solution ψ, this is given by γ̄wl(ψ) and
γ̄il(ψ), respectively. We use the expected value of the distribution functions ĤI

il and
ĤW
wl , which are defined as the probability distributions of the bed usage in the ICU

and ward, respectively. The expected value of ĤI
il is given by:

γ̄il = E
(
ĤIil
)

(5.33)

=
∑
o∈O

∑
k∈K
l≥k

∑
j∈Ji

bDI
jkl/Lc∑
n=0

âije
I
j(l−k+1+nL) · zokj

+
∑
o∈O

∑
k∈K
l<k

∑
j∈Ji

b(DI
jkl−L)/Lc+1∑
n=1

âije
I
j(l−k+1+nL) · zokj

with bDL
jkl/Lc = b(N I

j − (l − k + 1))/Lc for the number of overlapping cycles on day
l ∈ L when a surgery group is scheduled on day k and l ≥ k and b(DI

jkl−L)/Lc+ 1 =
b(N I

j − (l − k + 1 + L))/Lc + 1 the number of overlapping cycles on day l ∈ L when
l < k. The expected number of required beds on day l is given by the sum over all
surgery groups of the probability that a patient from surgery group j ∈ J is in an
ICU on day l, accounting for all cycles, multiplied by the number of times this surgery
group is scheduled in all OT blocks (o, k). Similarly, we obtain:

γ̄wl = E
(
ĤW
wl

)
(5.34)

=
∑
o∈O

∑
k∈K
l≥k

∑
j∈Jw

bDW
jkl/Lc∑
n=0

bwje
W
j(l−k+1+nL) · zokj

+
∑
o∈O

∑
k∈K
l<k

∑
j∈Jw

b(DW
jkl−L)/Lc+1∑
n=1

bwje
W
j(l−k+1+nL) · zokj .
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Since
∑
n âije

I
j(l−k+1+nL) and

∑
n bwje

W
j(l−k+1+nL) are constant, the new objective

function is linear in the decision variables zokj . Again, we want to obtain the maximum
and minimum of both γ̄il(ψ) and γ̄wl(ψ) to determine the variation in bed occupancy
during the week. The maximum and minimum operator are not linear. Therefore, we
add the following constraints:

γ̄max
i ≥ γ̄il, ∀i ∈ I , l ∈ L, (5.35)
γ̄max
w ≥ γ̄wl, ∀w ∈ W , l ∈ L, (5.36)
γ̄min
i ≥ −γ̄il, ∀i ∈ I , l ∈ L, (5.37)
γ̄min
w ≥ −γ̄wl, ∀w ∈ W , l ∈ L. (5.38)

Additionally, let

γ̂i = γ̄max
i + γ̄min

i , ∀i ∈ I , (5.39)
γ̂w = γ̄max

w + γ̄min
w , ∀w ∈ W . (5.40)

The resulting MILP model is now given by:

max
∑
o∈O

∑
k∈K

∑
j∈J

µj · zokj −
∑
i∈I

θiγ̂i −
∑
w∈W

θwγ̂w (5.41)

s.t. (5.1)− (5.3), (5.4)− (5.6), (5.29)− (5.40)

We refer to this problem as the linear OT schedule problem, which is NP-hard as
proven by [231]. Note that a solution obtained by solving the linear OT schedule
problem will still be evaluated by using the original objective function (5.24).

5.4.2 Local search approach
Similarly to [23], [107], [22], and [231], we use SA as local search approach. First, we
explain how we define neighbor solutions, and then, we describe how we determine
the cooling scheme. To obtain feasible neighbor solutions, we set a generator function
that uses the current solution as input and produces a new solution. We consider four
strategies to generate a neighbor solution:

- Removing a surgery group
We find a neighbor solution by removing one surgery group from a certain OT-
day. To find a feasible new solution, it is important to only remove a surgery
group if it is scheduled more often than the required minimum amount.

- Adding a surgery group
Similarly, adding one surgery group to a certain OT-day leads also to a neighbor
solution. To find a feasible new solution, it is important to only add surgery
groups from the specialty assigned to the selected OT-day and to check if adding
this surgery group does not violate the overtime constraint.

- Swap two OT blocks
Similar to [23], [22], and [231], we define neighbor solutions by swapping two OT
blocks including their surgery groups. This can only be done if they have the
same available time for surgeries and the same specialty can operate in the OTs.
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We do not swap two OT blocks that take place on the same day, because this
leads to a symmetric solution.

- Swap two groups
Similar to [107], we define neighbor solutions by swapping two surgery groups
that have been scheduled in the current solution. They can only be swapped if
either the OT or the day on which they are scheduled is different. Furthermore,
the new solution is only feasible when surgery groups from the same specialty
are swapped and the overtime constraint is not violated.

Per iteration, one strategy is selected with equal probability
( 1

4 ,
1
4 ,

1
4 ,

1
4
)

to find the
next neighbor solution.

We follow a similar approach as [231] to select appropriate values for the initial
temperature Tin and final temperature Tf . In our preliminary tests, we used θ = θw =
θi, so each ward was given the same weight. The maximum possible decrease of the
objective function is given by maxj∈J µj + θ, which depends on the parameters θ and
the surgery groups J . At the start of the procedure, we want to accept this maximum
decrease with probability 0.5. Thus, the initial temperature is given by:

Tin = − (maxj∈J µj + θ)
ln(0.5) . (5.42)

We determine the final temperature using the same approach. Near the end of the
procedure, we want to accept negative changes in the objective function with a low
probability. This way, the procedure converges to a local minimum. Our minimum
negative change is given by removing the surgery group with the shortest surgery
duration, while not influencing the variation in bed occupancy. We set the probability
of accepting this change to 0.001 and this gives:

Tf = −minj∈J µj
ln(0.001) . (5.43)

Next to the initial and final temperature values, we also need to set the reduction
factor, the number of iterations per temperature and the maximum number of ac-
cepted solutions per temperature. We used sensitivity analysis to determine the best
combination of parameters considering both computational time and solution quality.
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5.5 Computational results
In this section, we present the results of our two approaches. To compare the perfor-
mance of the global approach and the SA approach, we use a real-life data set. This
data includes a master surgery schedule where each OT block is assigned to a specialty.
The cycle length is 14 days with 13 OTs where 9 surgical specialties operate. We have
11 wards and one ICU. Data was gathered from interviews with surgeons involved with
planning, OT management and the hospital data warehouse. As a result of missing
time stamps, 75% of the data set is used. For each surgery group obtained from the
data, the mean and variance in surgery duration and LoS are determined. Further-
more, we determine the probability of patients from a surgery group going to ICU
i ∈ I and ward w ∈ W . With the model described in Section 5.3.4, we determine the
bed usage distribution resulting from scheduling the surgery groups. The changeover
time between surgeries is set to 15 minutes.

In the global approach, we calculate the objective function value differently from
the SA approach. The objective function of the MILP is an approximation of the
original objective function and only depends on the expected number of beds, while
the SA approach considers the original objective function. In order to make a fair
comparison, we also determine the original objective function value for the solution
given by the MILP. We also combine both approaches by starting with the global
approach and then try to improve that solution with SA. Finally, we compare the
performance of the best solution of both approaches with the performance of the real-
life data set in Section 5.5.6. For analysis, we also consider computation time as a
performance indicator.

We start this section with the results of our clustering approach and parameter
settings for both the global and local approach. In Section 5.5.3, we compare the results
of both approaches and try to further improve the value of the objective function by
combining both approaches. In Section 5.5.5, we compare the result of our approach
with the commonly used block scheduling approach. Finally, we validate our model
using historical data in Section 5.5.6.

Solving the MILP model is done by using version 4.2.3 of AIMMS. For our MILP
model, we use CPLEX version 12.6.3. The SA procedure is implemented in MATLAB
R2016b. All computational experiments are performed on a PC with an Intel Core i7
6700K 4.20 GHz with 16 GB RAM.

5.5.1 Clustering
For each specialty, we use the clustering approach as described in Section 5.3.1. First,
we determine the threshold between the short stay group and the long stay group
per surgical specialty. The procedures with a median LoS of less than the threshold
are denoted as short stay, while the procedures with a median LoS higher than the
threshold are in the long stay group. Next, each LoS group is divided into three
surgery groups based on the surgery duration of the surgery types. Two thresholds
are determined and procedures are put into a short, medium or long surgery duration
group depending on the mean surgery duration. However, some LoS groups did not
contain enough procedures to be split into three significantly different surgery duration
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groups. In these cases, only two surgery duration groups are defined. This approach
leads to a total of 62 different surgery groups. Four medium surgery duration groups
have a precision of less than 0.6 and all belong to different specialties. For these
groups, the interval between the two thresholds defining the three surgery duration
groups is small (less than 30 minutes). Therefore, the mean surgery duration of certain
procedures may fall into the interval between the two thresholds, but many realized
instances are outside these bounds, which leads to a low precision. However, the three
surgery duration groups have significantly different means, and therefore, our method
does define three groups instead of two. Defining less thresholds would increase cluster
variance, and therefore, we decided not to adjust our clustering approach for groups
with low precision.

5.5.2 Parameter settings
In this section, we discuss the input parameters for both the global and SA approach.

Global approach

In our MILP model, we only have to define the input parameters based on managerial
decisions. These consist of parameter α that denotes the overtime probability and
parameters θw and θi to balance the OT utilization and the variation in bed usage at
the wards. Preliminary results indicate that setting θw = θi provides the best trade-
off between the variation in required number of beds and OT utilization. This means
that we would remove scheduled surgery groups with a total OT time of 500 minutes
if this would reduce the variation in required number of beds by one. The overtime
probability α is set to 0.3.

In Figure 5.3, the LP bound and current best solution are shown when increasing
the computation time. We see that the solution improves with longer computation
times, however, the speed of improvement decreases rapidly after 20 minutes. Since
we are creating a tactical schedule, which in theory should only be calculated a couple
of times per year, we decided to set the computation time to 90 minutes.

Figure 5.3: The Value of the LP Bound and Best Integer Solution With Increasing Com-
putation Time
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SA approach

As initial solution for SA, we use the incumbent solution obtained after solving our
MILP for 60 seconds. Furthermore, we have to set the following parameters: the
initial temperature, reduction factor, final temperature and the maximum number of
iterations within one temperature. As in Section 5.5.2, we use α = 0.3 and θw =
θi = 500. Table 5.1 gives an overview of the parameter settings for the SA approach.
Using our data, Tin ≈ 1000 and Tf ≈ 5. However, preliminary results showed that we
should set the stopping temperature to Tf < 1 to make sure SA converges to a local
optimum. Furthermore, the preliminary results showed that we should set the number
of iterations for one temperature, given by ω, to 450 and the maximum number of new
solutions accepted for one temperature, denoted by ωnew, to 150 to obtain acceptable
solutions.

Table 5.1: Parameter Setting for SA Approach

Symbol Value Description
Tin 1000 Initial temperature
Tf 1 Final temperature
ρ 0.97 Reduction factor
ω 450 Number of iterations for one temperature
ωnew 150 Maximum number of new solutions accepted for one temperature

5.5.3 Comparing the global and local approach
We compare the best solutions of both approaches to determine which approach per-
forms best, using five key performance indicators (KPIs): (1) objective value, (2) OT
utilization, (3) total number of used beds, (4) total difference in used beds during the
cycle, and (5) computation time. The objective function values for both the MILP
and SA are calculated using the 90-percentile and 85-percentile of the probability
distribution of the number of required beds.

Given the parametrization used in our SA procedure, SA is slower than the MILP
approach. The best obtained solution is shown in Table 5.2 and required seven hours
to compute. This can be explained by the large amount of convolutions needed to
calculate the objective function value. Recall that we set the computation time of the
MILP to 90 minutes.

Table 5.2: Results for The Best Solution of MILP and SA Procedure With 90-percentile

KPI MILP SA
Objective value 41778 38699
OT utilization 0.839 0.855
Number of beds 152 159
Difference in beds 12 20
Computation time (hr) 1.5 7
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The MILP also performs best compared to the SA approach for the 85-percentile
(see Table 5.3).

Table 5.3: Results for The Best Solution of MILP and SA With 85-percentile

KPI MILP SA
Objective value 41278 36518
OT utilization 0.839 0.843
Number of beds 146 149
Difference in beds 13 23
Computation time (hr) 1.5 6

5.5.4 Improving MILP solution with SA
We also test whether the MILP solution can be improved by the SA procedure. With
the initial temperature at Tin = 1000, we did not obtain better solutions. Therefore,
we analyzed different initial temperatures. Results improve slightly for Tin = 10: the
OT utilization improves with 0.66 percentage point to 84.57% and the variation in
required number of beds decreases by 1 bed to 11 beds. We need an additional 30
minutes of computation time to obtain this solution.

5.5.5 Scheduling surgical specialties instead of surgery groups
In our introduction, we state that scheduling surgery groups instead of surgical spe-
cialties reduces the OT overtime probability and variation in bed usage. In Section
5.4.1, we have already shown that under the assumption that there exists a surgery
group j ∈ Js with µj ≤ µs and σ2

j ≤ σ2
s , we can schedule at least the same number

of surgeries in one OT block when compared to scheduling surgical specialties. This
assumption holds for our data.

In addition, our results show that we can even schedule more surgeries when
scheduling surgery groups instead of surgical specialties. If we evaluate the solution
obtained by scheduling surgery groups on data on surgical specialty level, we see that
the OT utilization increases from 84.57% to 100.71%, which means that the obtained
solution is not feasible when aggregating the data on surgical specialty level. In ad-
dition, we see that the bed variation increases from 12 to 36 beds and the maximum
number of required beds increases from 152 to 192. This means that by scheduling
the same number and type of surgeries, we need to reserve more OT and bed capacity
when aggregating the data on surgical specialty.

Next to this, if we schedule surgical specialties, we see that we cannot meet the
restriction on the minimum number of surgeries that should be scheduled per surgical
specialty. By relaxing this constraint, i.e., by setting βs := 0.75βs, we do obtain a
feasible solution with an OT utilization of 61.53%, bed variation of 23 and maximum
number of required beds equal to 122. This means that this solution performs worse
in terms of maximizing OT utilization and minimizing bed variation and that it is not
feasible according to our original constraints.
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5.5.6 Historical versus model performance
The average OT utilization registered in the data set was 71%. The weekly variation
in bed occupancy over all wards was 53 beds. When we compare this with our best
solution, the variation in bed occupancy can be improved by 42 beds, while the OT
utilization can be improved to 84.57%. Given that the available OT capacity has not
changed, these results show that more surgeries can be performed while the variation
in the number of required beds decreases. In Table 5.4, we see the historical mean bed
variation and the bed variation resulting from our best solution for each ward and the
ICU. We also see that for each ward the variation in bed occupancy decreases, or in
case of long stay ward 8, stay the same.

Table 5.4: Comparison Between The Historical Mean Bed Variation and The Bed Variation
Results

Ward Bed variation historical Bed variation model
Day treatment 9 0
Weekday ward 13 2
Long stay 1 5 0
Long stay 2 4 2
Long stay 3 4 1
Long stay 4 5 2
Long stay 5 2 1
Long stay 6 1 0
Long stay 7 2 0
Long stay 8 4 4
ICU 4 1

5.6 Problem and model variants
To show the robustness and potential of our model, we analyze several variants of the
model using minor modifications. In the first variant of our model, discussed in Section
5.6.1, we try to avoid occupied beds during the weekends at the weekday ward, as this
ward closes during the weekends. In Section 5.6.2, we describe and test a variant of
our model that minimizes the total number of required beds instead of the variation
in number of required beds. In Section 5.6.3, we analyze a relaxation of the MILP.
Finally, we apply our MILP model to data from another hospital in Section 5.6.4.

5.6.1 Closure during the weekends
The weekday ward (WDW) is intended to be only used during weekdays. When there
are still patients admitted at this ward when the weekend starts, these patients have
to be transferred to other wards. This setting has not yet been included in our current
model. However, we could schedule the surgery groups in such a way that no patients
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are admitted at the weekday ward during the weekend. We do so by adding a penalty
Q for each patient admitted at the weekday ward during the weekend. We introduce
variable r which denotes the number of patients admitted at the weekday ward during
the weekend. The weekday ward is abbreviated by WDW and the Saturdays and
Sundays in the planning horizon are given by set Lr ⊂ L. The resulting MILP model
is given by

max
∑
o∈O

∑
k∈K

∑
j∈J

µj · zo,k,j −
∑
i∈I

θiγ̂i −
∑
w∈W

θwγ̂w −Q · r (5.44)

s.t. (5.1)− (5.3), (5.4)− (5.6), (5.29)− (5.40)
r ≥ γ̄WDW,l, ∀l ∈ Lr (5.45)

In Figure 5.4, the results of the model with Q = 10000 and a computation time of
90 minutes is compared to the best solution obtained by the initial MILP model.
We see that the expected number of beds during the weekend is reduced, but does
not reach zero. It also affects the OT utilization, which decreases by 7.5 percentage
point and the difference in beds, which increases by 12 beds. For higher values of Q,
the results for the weekday ward do not improve. These results can be explained by
the fact that each surgery group has to be scheduled a minimum number of times.
In the solution provided when Q = 10000, each surgery group for which patients are
admitted to the weekday ward are scheduled the minimum number of times. However,
the used surgery groups are not the best predictor for the ward the patients need to
be admitted, because every surgery group has some probability that a patient will be
admitted at the weekday ward. Therefore, always some patients will be admitted at
the weekday ward during the weekend given the used surgery groups.

Figure 5.4: The Expected Number of Beds at The Weekday Ward
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5.6.2 Minimize the number of beds
In our model, we minimize the variation in the number of required beds. However,
personnel to keep the beds open is expensive. Therefore, instead of minimizing the
variation in bed usage, we can also minimize the number of required beds. Even
though there might be more variation in bed usage, the number of required beds may
decrease.

To minimize the number of required beds, we modify our linear model described
in Section 5.4.1. In the modified model, we use the maximum values of γ̄i,l and γ̄w,l
instead of using the difference between the maximum and minimum values of γ̄i,l and
γ̄w,l. The resulting MILP is:

max
∑
o∈O

∑
k∈K

∑
j∈J

µjzo,k,j −
∑
i∈I

θiγ̂i −
∑
w∈W

θwγ̂w (5.46)

s.t. (5.1)− (5.3), (5.4)− (5.6), (5.29)− (5.34)
γ̂i ≥ γ̄i,l, ∀i ∈ I , l ∈ L
γ̂w ≥ γ̄w,l, ∀w ∈ W , l ∈ L.

The results for this variant of the model are shown in Table 5.5. We cannot compare
objective function values, since different objective functions are used for both methods.
The variation in number of required beds is a lot higher, as was to be expected.
However, the OT utilization is also higher while less beds are needed in total.

Table 5.5: Results for Two Variants of The Model: (1) Minimizing Variation in Bed Uti-
lization and (2) Minimizing The Number of Beds

KPI Minimize variation Minimize required beds
OT utilization 83.9% 85.2%
Number of beds 152 147
Difference in beds 12 26

5.6.3 Scheduling without blocks
Our model uses the OT blocks of the MSS as input. This means that surgery groups
can only be scheduled within the OT blocks that are allocated to this surgical specialty.
In this variant of the model, we relax our model by excluding the MSS, meaning that
every surgery group can be scheduled at any day within the cycle. In Table 5.6, we see
that the complexity of the problem increases when not using an MSS. After 90 minutes
of computation time, the optimality gap is still 46%. The solution has a lower objective
function value than the solution of the basic model, which has an objective function
value of 41778, an OT utilization of 83.9%, and a variation in number of required beds
of 12. After six hours, the found solution has a higher objective function value than
the solution of the basic model. The OT utilization has improved, but the variation
in the number of required beds has increased.

Scheduling without OT blocks shows advantages, but ignores many other factors
that affect the MSS, e.g. schedules of surgeons, staff and equipment availability, and
therefore, implementation is challenging.
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Table 5.6: Results of Telaxation Variant Disregarding The Blocks in the MSS

KPI 90 min 360 min
Objective value 40561 41847
OT utilization 87.0% 87.5%
Number of beds 163 162
Difference in beds 18 16
Optimality gap 45.8% 39.3%

5.6.4 Applying the model to different instances

To analyze whether our approach also works for other real-life instances, we obtained
a data set from another hospital. This data set contains 43 surgery groups for which
the minimum, mean and standard deviation and LoS probability distributions per
surgery group are given. Furthermore, one ward is taken into account. We use the
95-percentile to calculate the required number of beds. The results can be found in
Table 5.7 for different computation times. The same data set and overtime probability
are used as in [36]. Their decomposition approach consists of: (1) maximizing the OT
utilization and (2) minimizing the required number of beds. The best solution found
in [36] yields an OT utilization of 91% that needs 45 beds in total. Our solution has 1.4
percentage point lower OT utilization, however, the required number of beds decreases
by 6 beds. In [36], the OT blocks are formed beforehand, so there is no flexibility in
assigning surgery groups to OT blocks when minimizing the required number of beds.

Table 5.7: Results From Other Hospital Data Set

KPI 10 min 90 min
OT utilization 86.7% 89.6%
Number of beds 40 39
Difference in beds 3 3
Optimality gap 15.4% 12.2%

5.7 Discussion

In this chapter we show the positive impact of the holistic perspective on surgery
scheduling. We introduce two single step approaches for scheduling surgery groups
while taking into account the overtime constraint and maximizing the OT utilization
and minimizing variation of bed usage. Scheduling surgery groups instead of OT blocks
leaves fewer options on an operational level to schedule surgeries, and therefore, the
probability of overtime and variation in bed usage as a result of surgery scheduling
on an operational level decreases. We also added weights to the objective function, θi
and θw, to balance the managerial trade-off between variation of bed usage and OT
utilization.
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We compare two approaches for finding a good feasible solution for large real-life
instances. Both on computational results and on computation time, the MILP outper-
forms the SA approach. We also combine both approaches where we first optimize the
MSS with the MILP, and then try to further improve the objective function value with
SA. This combination leads to slightly better results. The MILP shows good results
for large real-life instances without long computation times and is therefore suitable
for practical applications. Comparing the results of the model with the historical per-
formance derived from the data set, the variation in beds is improved from 53 beds to
11 beds and the OT utilization can be improved from 71% to 85%.

With the use of the MILP, we also analyze some model variants that can give more
managerial insights. The first variant focuses on closing the weekday ward during the
weekend, as in practice, weekday wards are only opened during weekdays. Weekday
wards often struggle with patients that are still admitted during weekends. Without
changing the surgery planning, the ward management has two options to solve this
problem: (1) extend the opening hours of the weekday ward or (2) transfer these
patients to other wards on Friday. So, in the first variant of our model, we extended
the model by including a penalty in the objective function for patients being admitted
on a weekday ward during the weekend. The computational results show that it is
difficult to close such wards during weekends. The next variant of the model minimizes
the usage of beds instead of the variation of bed usage which can be achieved by
modifying the objective function. Results show that with this approach, the number
of required beds can be further reduced and OT utilization increased. However, this
also results in an increase in the variation of bed usage.

Furthermore, we relaxed our model such that every surgery group can be scheduled
in any OT block in the cycle. The results show that OT utilization can be improved at
the cost of an increase in bed variation and required number of beds. To analyze the
robustness of our model, we compare our model with another solution approach and
data set. Results show that our model has 1.4 percentage point lower OT utilization,
however, the required number of beds decreases by 6 beds.

An important step in our approach is the clustering of surgery types into surgery
groups. Our clustering approach has a major effect on the group variation, in terms of
surgery duration and length of stay, and possible destination wards. With the surgery
groups used for our model, we were not able to close the weekday ward during the
weekend, because too many surgery groups may use the weekday ward after surgery.
Therefore, we conclude that the groups at hand are still too aggregated for this model
variant. Further research on applying data mining on such instances could increase
the predictive value of clusters (in our case surgery groups), and therefore, improve
the robustness of planning.

When clusters are only based on specialty, we obtain a model which schedules OT
blocks similar as previous work ([81, 231, 239]). As shown here, our clustering approach
results in more precise predictions for surgery duration and LoS, and therefore, results
in a higher OT utilization and lower variation in bed usage. However, smaller clusters
(e.g. clustered surgery types versus clusters based on specialty) require more data to
attain similar precision levels. Therefore, our approach assumes no limitations in data
availability. Since most hospitals nowadays have advanced electronic health record
systems, this would be a fair assumption to make. Furthermore, this type of data is
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transient and thus the data and the model should be analyzed repeatedly (e.g every
year). Next to possible data limitations, our model assumes that the clusters also
account for the biweekly number of realizations of surgery types (e.g. at least once
every two weeks) such that each block can be filled with surgeries of that type on
the operational level. Furthermore, the dispersion of durations within surgery groups
should be limited. When this is not the case, it could result in under- or overutilization
of resources, since on the operational level, surgery types with significant shorter or
longer individual durations could be scheduled than was accounted for when scheduling
surgery groups on the tactical level.

The model can also be extended to optimize the schedule of surgeons. To achieve
this, the model should not only take the OT and its downstream resources into account,
but also its upstream resources such as the outpatient clinic given that surgeons also
work there. To realize this potential in practice is a difficult task, as this requires
discipline from specialists concerning their schedule. Another potential direction for
further research is optimizing break-in moments for OT cleaning.

Overall, this research provides a way to bridge the gap between tactical and op-
erational planning of surgeries. It reduces the variation in bed usage and improves
the robustness of the schedules. The use of surgery groups makes it possible to eas-
ily implement our model into practice, and for operational planners, it is instantly
clear where to schedule what type of surgery. With only minor model modifications,
we show that a broad range of variants on OT scheduling can be analyzed to obtain
valuable managerial insights.



CHAPTER 6

The Hospital Online Multi-Appointment
Scheduling Problem1

6.1 Introduction
The value-based healthcare (VBHC) paradigm has received increasing attention [95]
since the early 2000s [194]. Worldwide, healthcare organizations aim to implement
VBHC to attain better outcomes for their patients, with value defined as patient
health outcomes (e.g. mortality, or patient safety) per dollar spent [191]. This is
envisaged as a shift from volume to value and requires shared accountability among
involved healthcare providers. Process measurements and improvements are impor-
tant conditions for creating value. To operationalize the VBHC concept, integrated
practice units (IPUs) were proposed among other things, in [192]. In that study, an
IPU is defined as: “a dedicated team made up of both clinical and nonclinical per-
sonnel providing the full care cycle for the patient’s condition”. Implementing IPUs
requires redesign of the organizational structure, shifting from a focus on specialties or
interventions to an emphasis on total care pathways that encompass all services and
activities that jointly determine success in meeting a set of patient needs. The usual
minimal coordination between different schedules involved in the same care pathway
results in large fluctuations in downstream resources, last-minute adjustments or even
cancellations. Hospitals struggle to implement IPUs and therefore often fail to deliver
and measure value [193]. Designing and organizing IPUs and their care pathways
is challenging, as all appointments at different resources should be optimally sched-
uled for all pathways to guarantee equitable access and waiting times for all patients.
To overcome these problems, IPUs may organize integral coordination of appointment
planning (i.e. multi-appointment planning), to optimally align each step of the health-
care delivery process. Therefore, a single administrative and scheduling organization
for each IPU should be in place [192]. In this chapter we analyze the scheduling
problem of IPUs from an online multi-appointment scheduling perspective.

Appointment planning balances trade-offs between efficient resource utilization and
waiting time [155, 258]. Here, we describe the different phases of appointment plan-

1This chapter is based on A.J. Schneider, J.W.M. Otten, M.E. Zonderland, R.J. Boucherie and
M.J. Schalij. The Hospital Online Multi-Appointment Scheduling Problem. Working paper.
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Figure 6.1: Illustration of the Lack of Robustness of Multi-Appointment Scheduling: First
Appointment of Patient A is Extended and Affects All Subsequent Appointments and Sched-
ules.

Time Appointment type i
slot t 1 2 3 4 ... I

1 Patient A
2 Patient B Patient A
3 Patient C Patient A
4 Patient B Patient A
5 Patient D Patient B
6 Patient C

T Patient D
T+1

Initial Planning

−→

Time Appointment type i
slot t 1 2 3 4 ... I

1
2 Patient A

3 Patient B Patient A
4 Patient C Patient A
5 Patient B Patient A
6 Patient D Patient B

T Patient C
T+1 Patient D

Realization of Planning

ning based on the top-down organizational decision hierarchy illustrated in [106]: (1)
the strategic case-mix planning, (2) tactical master scheduling and (3) operational
appointment scheduling. In strategic case-mix planning, hospitals determine the re-
quired capacity levels for appointments (e.g. outpatient clinics and diagnostic facili-
ties) based on the desired patient case-mix. Furthermore, capacity is roughly divided
among medical specialties, including physicians, on this level. Next, capacity is cycli-
cally scheduled, meaning a schedule is repeated after a cycle length (e.g. weeks or
months) and results in a master schedule. In a master schedule the relations between
different types of capacity, as a result of patient flows, should be considered to balance
the load for each capacity. Therefore, multi-appointment scheduling is considered on
the tactical level. Third, operational appointment scheduling involves scheduling of
patients to appointment sessions. Sessions define the horizon in which an appointment
can be scheduled and typically have a length of a day or half a day. This final stage is
further divided into the offline (appointments are scheduled at a later point in time)
and online scheduling (appointment requests are instantly scheduled).

In this chapter we discuss a specific instance of the operational online multi- ap-
pointment scheduling problem in hospitals. During the day, all sorts of events may
occur that have an impact on the realization of appointment schedules. In our day-
to-day work, we observe that hospitals lack online coordination, which increases the
possibility of overtime. This lack of coordination has even greater impact on multi-
appointment schedules and therefore the possibility of overtime increases. Here, we
give an example of this impact on multi-appointment scheduling: a patient’s first
appointment takes longer than expected and thus the session is likely to run into over-
time. In a multi-appointment setting, this could also have an impact on the patient’
subsequent appointments in other sessions. This means that other sessions may also
run into overtime as this patient will not arrive on time for the next appointments.
Thus, the delay of a single appointment may result in overtime for all other sessions
related to this patient. The robustness of multi-appointment schedules is therefore
fragile. We graphically show this phenomenon in Figure 6.1. We assume appoint-
ments are optimally scheduled offline such that arrivals are equally distributed during
the day and available resources and demand are balanced. We analyze the problem
of online multi-appointment scheduling and rescheduling given the actual status of
the system and expected future arrivals during an appointment session. Incorporating
such system dynamics (see example in Figure 6.1) in our strategies and in line with
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other appointment scheduling problems, we aim to minimize both the patient’ sojourn
time and resource overtime. As mentioned, patients have a number of appointments
scheduled, and appointments can be arranged in a different order during the session.
To overcome model intractability, we propose a decomposition approach for two deci-
sions: (1) acceptance of arrivals and (2) scheduling of patients to appointments. Given
the lack of robustness of multi-appointment schedules, there there is a possibility that
new arrivals will not finish all appointments within the session and will have to come
back for a later session. We assume that it is preferable to reschedule all appoint-
ments of these arrivals and therefore take this acceptance decision into account. For
the acceptance decision, we developed a finite-horizon discrete-time Markov decision
process (MDP) model to analyze optimal online policies minimizing costs for rejecting
arrivals and for the “unfinished” patient at the end of the horizon. For the scheduling
decision, we developed an ILP that schedules patients one time slot ahead and there-
fore has maximum flexibility in sequencing the appointments of a patient. This means
that we will not consider the order of appointments scheduled offline. We combine
both decisions as follows: at each decision epoch we determine the optimal policy for
acceptance or rejection of arrivals and the ILP determines at each decision epoch the
optimal schedule for all accepted patients one decision epoch ahead.

We start this research by providing an overview of available literature on online
multi-appointment scheduling in healthcare and we position our research (Section 6.2).
In Section 6.3, we present the formal problem formulation of our approach. In Section
6.4, we present an implementation of our model for a real-life instances based on a
case study. We also show, in Section 6.4.4, a full implementation in practice of our
solution and analyze its impact. Finally, we discuss the implications of our approach
in Section 6.5.

6.2 Literature Review & Research Positioning

Literature on appointment scheduling problems in healthcare are broadly available.
Systematic reviews are given in [6, 25, 51, 103, 118]. Here, we solely consider research
analyzing online multi-appointment schedules. For this, we use the recently available
systematic reviews of [147] and [166]. We categorize the available literature based on
modeling approach, namely: markov decision process, integer linear programming and
simulation.

6.2.1 Markov Decision Process
To optimize online multi-appointment scheduling for a cardiac diagnostic testing cen-
ter, [67] developed a finite-horizon, discrete-time MDP. The authors use a heuris-
tics approach to develop a real-time decision support system as the MDP became
intractable. The authors of [203] formulated a discounted infinite-horizon MDP for
scheduling cancer treatments in radiation therapy units. The authors approximate the
optimal policy with approximate dynamic programming (ADP) and solve an equivalent
LP model with column generation. Another application of MDP is used to schedule
multidisciplinary, multistage appointments at a bariatric clinic in [71]. They also use
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an ADP approach to deal with intractability. Allocating capacity to patients at the
moment of their arrival at a rehabilitation clinic, to maximize the total number of re-
quests booked within their corresponding access time targets, is an approach analyzed
in [31]. The authors also use ADP to analyze real-life instances. In another study [30],
the same authors use a decomposition approach to develop a tractable MDP model to
analyze a radiation department appointment scheduling problem. In the first phase of
their decomposition approach, appointment dates and linacs are assigned to incoming
patients on the day they arrive (for treatment), taking into account future arrivals
using an MDP model. In the second phase, specific appointment times are assigned to
the patients on a weekly basis, taking into account time constraints and patient time
preferences using an ILP model.

Clearly, most of the MDP models discussed here become intractable for real-life
instances and therefore the authors use approximations. Our approach is in line with
that is used in [30]. However, we analyze decisions within the same session. Further-
more, instead of scheduling all patients over the whole scheduling horizon, we schedule
patients only one time slot ahead.

6.2.2 Integer Linear Programming
A MILP model is developed in [14], to optimize multi-appointment scheduling for
pathology laboratory tests, where arrival times are unknown and appointments have
partial precedence constraints. As the model becomes intractable, the authors develop
a genetic algorithm to analyze their problem. To optimize online multi-appointment
scheduling requests of a nuclear medicine clinic, the authors in [188] use an integer
programming method in combination with scheduling algorithms. Two scheduling
algorithms are assessed: (1) scheduling requests on arrival and (2) scheduling requests
on arrival taking into account possible future requests. They use simulation to compare
the performances of the two algorithms. The authors of [41] use an ILP approach to
optimize online multi-appointment scheduling of a rehabilitation clinic and they use
simulation to analyze solution performances.

The ILP models from the presented literature also become quickly intractable for
analyzing real-life instances and therefore approximations are used. Furthermore, the
ability to model uncertainty of arrivals and durations is limited using an ILP approach
compared to an MDP approach.

6.2.3 Simulation
Simulation is by far the most used modeling approach for analyzing online multi-
appointment scheduling problems. Multi-appointment schedules are complex. As
a result, analytical models quickly become intractable. This is one of the reasons
simulation is favored in this literature. The authors in [125] simulate different multi-
appointment scheduling rules and load smoothing strategies to minimize the patient
sojourn time at a breast cancer center. The authors of [48] use appointment type
sequencing in care pathways for an orthopedic consultation suite and test its impact
on patient waiting time and the percentage of consultations performed in overtime. For
a nuclear medicine department, the authors of [187] analyze several multi-appointment



6.3. Model Formulation 111

scheduling algorithms. In [70], researchers analyze multiple block schedules for multi-
appointment schedules where blocks between different schedules are aligned (i.e. do
not overlap). To analyze current bottlenecks in a radiotherapy department practice,
the authors in [127] use simulation to show that the number of linacs and physician
availability have a great impact on flow congestion in this practice. Another simulation
study on radiation therapy planning conducted in [250] shows that decreasing radiation
therapist capacity has the largest impact on extending delays, while improving the
oncologist processing time has the largest positive impact on reducing delays. The
authors of [153] and [168] both use simulation to analyze online multi-appointment
scheduling for oncology centers.

Agent-based approaches are also often applied to analyze online multi-appointment
scheduling systems. The authors of [185] use agent based modeling in which patient
agents minimize their sojourn time and resource agents maximize utilization. In [245],
a semi dynamic agent-based model is implemented in which appointments are initially
scheduled without complete information about all plans that have to be scheduled, and
a simulation model is used for online dynamic rescheduling to analyze plans with all
information available. The authors in [116] use timed Petri nets to define care pathways
and use simulation to find feasible schedules for these care pathways. Finally, in [174]
the authors analyze the outpatient clinic of an eye care hospital with open access
policy (solely unscheduled arrivals). They develop a hybrid ant agent algorithm to
find good feasible paths for an appointment in the care pathway.

Simulation results are difficult to generalize as endless features can be modelled
and therefore results present the performance of the specific instance that is analyzed.
However, we will use simulation to evaluate the performance of our approach compared
to a heuristic.

6.2.4 Conclusion
Online multi-appointment scheduling is a relatively new research topic and has received
increasing attention. As mentioned earlier, models become quickly intractable when
considering multiple features of real-life instances. For this reason, approximation
approaches are widely used in the literature. Most studies consider online appointment
systems in which requests for future sessions are instantly served. In this research,
we consider the instant handling of arrivals and appointments that are scheduled
within the same session. We use an MDP approach as it enables us to model the
uncertainty of future arrivals and durations. Although the technical contributions of
this research are limited, we present a novel decomposition approach for analyzing a
novel online multi-appointment scheduling type of problem using MDP. We test this
approach with real-life instances and compare our approach with a heuristic using
discrete event simulation.

6.3 Model Formulation

For the problem at hand, we aim to determine how to optimally respond to random
arrivals of new patients. Deriving such a policy involves sequential decision-making
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under uncertainty, and an MDP is particularly suited for this. We discretize the
scheduling horizon in equal time slots of 1 minute, where appointment durations have
a length of multiple time slots and a maximum of 1 patient can arrive during the length
of a time slot. In this section we formulate the problem as an MDP and propose a
method that enables us to determine the optimal policy efficiently.

6.3.1 Model Formulation
We consider the acceptance and scheduling of patients during a single session, hence
we use a finite horizon MDP. The session is divided into equal-length time slots. At
the start of each time slot two decisions are made: (1) accept or reject a newly arrived
patient and (2) which patient is assigned to which tests. All patients are given a type,
which is defined by the remaining tests a patient needs to visit. After completion of a
test, the patient will reenter the system as a different type of patient. As an example,
suppose that a patient who needs to visit tests A and B is assigned to test A. After
completion of this test, the patient reenters the system as a patient of the type that
needs to visit test B. Patients leave the system once all the required tests have been
performed. Costs are accrued for patients who are rejected and for patients who have
not completed all required tests at the end of the session. Tn both cases, the costs
increase with the number of required tests. We now formally describe the MDP.

Decision Epochs. Decisions are made at the start of each time slot t, t = 1, . . . , T .

State Space. The state space is denoted by
S = {(x1, . . . , xN , y1, . . . , yM , z)|0 ≤ xi ≤ Ci, i = 1, . . . n,

0 ≤ yj ≤ N, j = 1, . . . ,M, 1 ≤ z ≤ N} ,
(6.1)

where xi denotes the number of incumbent patients of type i, for i = 1, . . . , N ; yj
denotes the type of patient currently receiving test j, for j = 1, . . . ,M ; and z denotes
the type of patient arriving in the system.

Action Space. A(s) is the set of all possible actions when the system is in state
s ∈ S. As mentioned earlier, an action consists of two parts: (1) a decision is made
whether or not to accept an arrival and (2) a decision is made as to which of the
patients in the system are assigned to which tests. Whenever a test is available, a
patient of the appropriate type can be assigned to it.

Transition Probabilities. Between successive decision epochs t−1 and t, the state
of the system can change in three different ways. First, with probability pt,i, a new
patient of type i arrives. Second, a patient can complete a test, and then either leave
the system or remain in the system if there are remaining tests to be visited. We
assume the service time of test j to be geometrically distributed with mean 1

qj
. Thus

qj is the probability that a patient finishes test j between decision epochs t − 1 and
t. Third, there are transitions as result of the chosen actions, for example, an arriving
patient is accepted and added to the current patients and a patient already in the
system is assigned to a vacant test.
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Costs. The immediate cost of rejecting a new patient is defined as rt(s, Reject) =∑M
j=1 krljzj , where kr is a constant cost for rejecting a patient and lj is a cost based on

the service time of test j defined by the number of time slots. After the final decision
epoch, t = T , a cost is accrued for any patient who did not complete service. This is
denoted by rT (s) =

∑N
i=1 kexi+

∑M
j=1 ke1(yj), where ke denotes the cost for a patient’s

not completing a test and 1(yj) is 1 if patient of type j needs to visit more tests after
finishing the current test. The costs for not finishing a patient are independent of the
patient type, as we assume rescheduling is not preferable for patients regardless of the
number of appointments that need to be rescheduled.

Policy. A policy describes the decision that should be taken in state s at time t and
is denoted by πt(s).

Value Function. The value function is denoted by V πt (s) and gives the expected
total reward, from time t onward, when the system is in state s and policy π is followed.

The problem reduces to finding an optimal policy π∗ such that the following opti-
mality equations are satisfied:

V ∗t (s) = max
a∈A(s)

{
r(s, a) +

∑
s′∈S

P (s′|s)V ∗t+1(s′)
}

∀s ∈ S, t = 1, . . . , T − 1,

V ∗T (s) = rT (s), ∀s ∈ S,
(6.2)

where V ∗ is the optimal value function [195].

6.3.2 Solution Approach
To solve the described MDP we need to keep track of the number of patients in the
system for each patient type. As a result the problem becomes intractable. This is
caused by both the modeling approach (e.g MDP) and the definition of the patient
types. The set of types consists of every possible subset of tests that are available. As
an illustration, if there are six tests and we assume that at any given moment there are
no more than five patients per type in the system, the number of states already exceeds
1050. In this section, we describe a method to overcome this curse of dimensionality.
To this end we decouple the two decision-making processes of the MDP: namely,
the acceptance process of accepting and rejecting arriving patients, and the allocation
process of assigning patients already in the system to the different tests. Our approach
resembles that of [30], who also split a large scheduling problem into two subproblems,
whith the output of one is part of the input of the other subproblem. Our approach
differs in that we reject arriving patients and do not put them on a waiting list, and
our allocation model is less complex. Instead of scheduling all patients over the whole
time horizon we only assign patients to tests one time slot ahead. Alternatively, we
could use ADP approach. However, applying standard ADP methods to the described
MDP would not incorporate the specific two-decision-processes structure of our MDP.
By decoupling a large decision process into an into acceptance and allocation models
we aim to exploit this structure to obtain a good approximation of the MDP.
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Combined Decision Process

In the next sections, we describe the two separate models for the acceptance and
allocation of patients in the system. In this section we describe how these two models
interact when applied in practice. During the whole decision process the complete
state of the system, including the number of patients per type present in the system,
the type of patient currently in service for each test and the type of patient requesting
entry, should be tracked. At each decision epoch, this information is used as input
for the allocation model. This model determines which patients should be assigned
to which tests. Subsequently, the state space is aggregated by counting the number
of patients who require service of a certain test. The acceptance model provides an
optimal policy to either accept or reject an arriving patient based on this aggregated
state. This optimal decision for the reduced model, together with the possible arrival
and departure of patients leads to a new segregated state of the system for which
the whole decision cycle starts over. The interaction of the two models is depicted in
Figure 6.2.

Figure 6.2: Combination of the Acceptance and Allocation Decision Processes.

Acceptance Model

The goal of the acceptance part of the decision process is to determine an optimal
policy to accept and reject patients, given the current state of the system and proba-
bilistic knowledge about the future. For this we adjust the MDP described above in
the following way. First, we decouple the allocation process from the MDP and second
we aggregate the state space by keeping track of the number of patients requiring a
certain test instead of keeping track of the specific type of patients. The modified
MDP is described below.

Decision Epochs. Decisions are made at the start of each time slot t, t = 1, . . . , T .

State Space. The state space is denoted by

S = {(y1, . . . yM , z1, . . . , zM )|0 ≤ yj ≤ Cj , zj ∈ {0, 1} , j = 0, . . . ,M} , (6.3)

where yj denotes the number of patients in the system who require test j and zj is a
binary variable denoting whether an arriving patient requires test j or not.
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Action space. The patient that requests access can be accepted or rejected. How-
ever, when accepting would lead to a state with more patients than the capacity Cj
for a certain appointment, the patient must be rejected. Therefore, the action space
is

A(s) =
{
{Accept, Reject}, if maxj(yj + zj) ≤ Cj ,
{Reject}, otherwise.

Transition Probabilities. System transitions consist of three factors. First, we
assume patients arrive according to a Poisson arrival process. As mentioned earlier,
the length of a time slots t is small (e.g 1 minute), thus we can assume that at time t
a new patient of type i can request admission with probability pt,i. We assume that
there are N patient types, i = 1, . . . , N , and we characterize elements of vector z̄i by
the appointments required by a patient of type i, thus z̄i = (z̄1, . . . , z̄M ). Second, a
patient may finish service at test j, with probability qj . Third, if a patient is accepted
into the system, yj is increased by one for each of the tests j the new patient requires.

(y1, . . . yM , z1, . . . , zM )→ (ŷ1 + z1, . . . ŷM + zM , z̃1, . . . , z̃M ), if a = Accept,
(y1, . . . yM , z1, . . . , zM )→ (ŷ1, . . . ŷM , z̃1, . . . , z̃M ), if a = Reject,

where

ŷj =
{

yj − 1, with probability qj ,
yj , with probability 1− qj ,

and z̃j denotes the requirements of the next arriving patient.

Costs. The immediate cost of rejecting a new patient is defined as rt(s, Reject) =∑M
j=1 krljzj , where kr is a constant cost for rejecting a patient and lj is a cost based on

the service time of test j defined by the number of time slots. After the final decision
epoch, t = T , a cost is accrued for any patient who did not complete service. This is
denoted by rT (s) =

∑M
j=1 keyj , where ke denotes the cost for not completing a test.

Value Function. Now, inserting the described transition probabilities in Equation
6.2 reduces the problem to one to finding an optimal policy π∗ such that the following
optimality equations are satisfied:

V ∗t (s) =


max

{∑M
j=1 krljzj +

∑N
i=1 λpt,iV

∗
t+1(ŷ1, . . . ŷM , z̄

i),∑N
i=1 λpt,iV

∗
t+1(ŷ1 + z1, . . . ŷM + zM , z̄

i)
}

if maxj(yj + zj) ≤ Cj ,∑M
j=1 krljzj +

∑N
i=1 λpt,iV

∗
t+1(ŷ1, . . . ŷM , z̄

i),
otherwise, t = 1 . . . , T − 1,

(6.4)
V ∗T (s) =rT (s), ∀s ∈ S, (6.5)

where V ∗ is the optimal value function and λ ≤ 1 is a discount factor. We discount the
future costs by a factor λ in order to incorporate the effect of the allocation model on
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the acceptance model. At the beginning of a session there are more options to schedule
appointments than near the end. Furthermore, patients who require many tests are
more difficult to schedule than patients who require only a few tests. However, after
receiving partial service these difficult-to-schedule patients reduce to easier to schedule
patients making it easier to reshuffle patients when the time until the end of the session
is longer. These two observations together form the rationale behind the use of the
discount factor in this MDP. We emphasize that it is not a standard discount factor
and therefore we use the term scheduling factor.

Aggregating the state space reduces the number of states considerably. For in-
stance, for six different appointments and at most five patients per server at any given
time the number of states of the original MDP exceeds 1050. For the aggregated MDP,
this is reduced to 106, for which the MDP can be solved in reasonable time.

Allocation Model

The allocation part of the decision process consists of assigning patients to available
servers. Since we decoupled the allocation and admission processes, the arrival process
no longer plays a role in the allocation process. Therefore, the allocation problem
reduces to a scheduling problem. At each decision epoch, a given set of patients, with
appointments, are present in the system. To service as many patients as possible and
to minimize the number of patients who did not finish all appointments, we need to
maximize the occupancy of the servers and prioritize patients with more appointments
to be completed. Although there may be approaches that are more efficient for this
type of problem, we use the following ILP approach for allocating patients:

max
N∑
i=1

M∑
j=1

αiuij ,

s.t.
M∑
j=1

uij ≤ βijxi, 1 ≤ i ≤ N,

uij ∈ {0, 1},

where uij = 1 if a patient of type i is assigned to server j and is 0 otherwise, αi is a
cost parameter for patients of type i, that increases with the number of appointments
for a patient type, and βij is a parameter that is one if patients of type i require
appointment j and zero otherwise. Parameter βij can also be used for precedence
constraints between appointments (e.g. appointment A have to take place before
appointment B).

Policy Structure

To show the structure of the optimal policy of the admission model we introduce a
small example. Suppose there are three tests (A, B and C) and four types of patients.
Table 6.1 lists the required tests per patient type. We assume that arriving patients
are of either type with equal probability, that the expected duration of test A, B and
C are two, three and eight time slots, respectively; and that the cost factors are kr = 1
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Table 6.1: Required Tests per Patient Type.

Patient type Servers required
I A
II B
III C
IV A,C

and ke = 4. Furthermore, the session is divided into 20 time slots and the scheduling
factor is set at λ = 0.9. Figure 6.3 shows the optimal policy for patients of types I,

Figure 6.3: Optimal Acceptance Decision for Patients of Type I (left), type II (middle) and
type III(right).

II and III. We see that the policy is more restrictive if the expected workload of an
arriving patient is higher and that the threshold for accepting a patient decreases as
the decision process progresses, that is, toward the end of the session, more patients
are rejected than at the start. The cause for this monotone behavior of the optimal
policy is that toward the end of a session there is less capacity available to test all
present patients, making it more beneficial to reject a new patient.

Since an MDP considers the immediate rewards and the expected future rewards
the optimal policy will, to a large extent, depend on the cost factors kr and ke, and in
particular on the ratio of these factors. In Figure 6.4 the optimal policy for patients of
type I is shown for three cases of the cost factors. We see that an increase of the ratio
of kr and ke result in more rejections. Clearly, the increasing cost for not completing
a service makes it more profitable to reject an arriving patient.

6.4 Case study
In this section we demonstrate how we applied our approach to a real-life case. The
cardiology outpatient clinic at the LUMC is a preeminent IPU with many care path-
ways. The clinic consists of two units: (1) the heart laboratory for heart function tests
and (2) the outpatient clinic for cardiologist consultations. Since there is typically a
lunch break between sessions, the cardiology outpatient clinic has independent morning
and afternoon appointment sessions. The department was confronted with increasing
waiting times, resulting in overcrowded waiting rooms and unsatisfied patients.
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Figure 6.4: Optimal Acceptance Decision for Patients of Type I with ke
kr

= 2 (left), ke
kr

= 3
(middle) and ke

kr
= 4 (right).

Patients visiting the clinic have, on average, two appointments; in some cases, they
have up to five appointments. The clinic aims to schedule all appointments within the
same session. A regular clinic visit starts with the function tests, followed by the
consultation with the cardiologist, so that the results of the tests can be discussed.
Unfortunately, the clinic cannot always schedule all appointments of a patient in a
single session, and therefore some patients will have multiple visits distributed over
multiple appointment sessions. Afternoon sessions start quickly after the end of the
morning sessions, so for the morning sessions there is limited time to run in overtime.
This also applies for afternoon sessions, as staff work in strict shifts and working in
overtime is costly. Furthermore, cardiologists are scheduled for one session in the
outpatient clinic per day and will do other tasks during the other sessions of that
day. As the association between patient and cardiologist is strict, patients cannot be
rescheduled to a latter session on the same day. Furthermore, the department did not
have an online management system in place. As a result, waiting times increased and
the number of patients who had not completed all of their appointments by the time
a session ended increased. Given the overtime limitations, these appointments had
to be canceled and rescheduled to later sessions, resulting in more visits to the clinic.
More visits, as a result of cancellations, will lead to more dissatisfied patients. We
started analyzing the problem and decided to first implement a heuristic, to quickly
observe the impact in practice of an online multi-appointment scheduling approach
(for results see Section 6.4.4. In parallel we also started analyzing the problem with
our decomposition approach. The used heuristic is simple to understand and therefore
suitable for rapid implementation. The heuristic is described in Section 6.4.3.

6.4.1 Model Input

Here we define all input parameters to analyze the case study with our MDP model.

Scheduling Horizon As explained earlier, the cardiology outpatient clinic has in-
dependent morning and afternoon appointment sessions. Therefore, we set the model
horizon to half a day (i.e. 4 hours), which also reduces the solution space. Each slot
has a duration of 1 minutes, so the scheduling horizon consists of 240 slots.
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Table 6.2: Appointment Clusters and Explanations for each Cluster.

Appointment cluster Explanation of cluster
Consultation (C) Consultation with cardiologist
Echocardiogram (E) Sonogram of the heart
Electrocardiogram(Ec) Measuring the electrical activity of the heart
Cardiac stress test (ST) Testing the heart’s ability to respond to external stress
Holter check (H) Check of a mobile ECG monitoring device
ICD check (I) Check of an implantable cardiovascular device (ICD)

Table 6.3: Frequencies of Arriving Patient types at the Cardiology Outpatient Clinic of the
LUMC.

Patient type Frequency
C,Ec 0.350
E 0.143
I 0.127
C,E,Ec 0.119
C,I,Ec 0.063
Ec 0.046
H 0.042
C,E,Ec,I 0.031
E,H 0.030
C,E,Ec,H,ST 0.022
C,E,Ec,I,ST 0.021

Patient Types and Arrivals We define patient types according to the combination
of appointments that need to be scheduled within the same session for a patient.
Furthermore, we need to determine the arrival rate per patient type. Currently, the
cardiology outpatient clinic has over 30 different appointment types. To reduce the
number of possible appointment combinations and thus patient types, we cluster,
working with the department’s management team, the appointment types. See Table
6.2 for all clusters. Based on appointment data from 2018, we derive all possible
patient types and their frequencies. For computational tractability, we take the top
90% of patient types into account, resulting in 11 patient types, and we normalized
these frequencies. For example, 35% of the patients arriving in our model will have
a combination of appointments consisting of an electrocardiogram and a consultation
with the cardiologist. See Table 6.3 for all frequencies of arriving patient types. Next,
we define all the transitions between patient types (see Figure 6.5). Here, we consider
the precedence constraints that are also used during offline scheduling (E → ST → H),
meaning that, for example, the echo-cardiogram always must take place before the
cardiac stress test. The arrival rate is also based on historical data and we assume a
static arrival rate of 0.45 per slot (e.g. 0.45 per minute). With this arrival rate, we
cover 85% of the realized cases in 2018, where the mean arrival rate was 87 patients
per session.
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Figure 6.5: Transition Diagram of Patient Types When Starting a New Appointment.

C, E, Ec, ST, H

C, E, I, ST, Ec

C, Ec, ST, H

C, E, ST, H

C, I, ST, Ec

C, E, ST, Ec

C, I, E, ST

C, I, E, Ec

C, Ec, H

C, ST, H

C, ST, Ec

C, I, Ec

C, ST, I

C, E, ST

C, E, Ec

C, I, E

C, Ec

C, H

C, ST

C, I

C, E

E, H

C

H

I

E

Ec

∅

E = Echocardiogram, Ec = Electrocardiogram, H = Holter test, ST = Exercise Stress Test, I = ICD check and C =

Cardiologist consultation

Table 6.4: Clusters of Appointments, Expected Durations in Minutes, Number of Slots and
Number of Testing Stations.

Appointment cluster Expected Duration (min.) Expected No. of Slots No. of Testing stations
Consultation (C) 15 15 5
Echocardiogram (E) 35 35 5
Electrocardiogram(Ec) 5 5 4
Cardiac stress test (ST) 30 30 1
Holter check (H) 15 15 1
ICD check (I) 30 30 2

Appointment Durations We assume appointment durations are geometrically dis-
tributed and therefore define the durations by the expected number of slots (see Table
6.4).

Costs As described in Section 6.3, the cost for rejecting a patient increases with
the number of appointments (e.g. tests and consultation) a patient has scheduled in
a session. In addition, we want the cost to depend on the duration of each appoint-
ment and thus the rejection cost also increases with the duration of an appointment.
Otherwise, our MDP would prioritize appointments with short durations to maximize
the number of patients who finish all appointments. Hence, the cost of rejecting a
certain patient of type i is defined as the total capacity that a patient would need,
multiplied by a constant cost factor kr. Furthermore, we define the end cost (rT (s))
as penalty costs for the patients who have not completed their appointment(s) at time
T . This penalty is defined as the total number of tests not finished multiplied by a
constant cost factor ke. By giving a penalty for patients who still have appointments
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at time T , we want to find an optimal policy where a maximum number of patients
have finished all appointments at the end of the planning horizon. It follows that the
cost factor kr should be lower than the cost factor ke. If that were not the case, it
immediately follows that it would be optimal to reject all patients. The decision of kr
and ke mainly depend on how undesirable it is that a patient be unable to receive all
tests during a session compared to rejecting a patient. This trade-off is a managerial
decision. For this case study, we arbitrarily use the ratio ke

kr
= 3.6.

6.4.2 Results
Both the example and the case are implemented in MATLAB R2019b. In Section 6.3.2
we showed that for a small example the optimal policy has a monotone structure. This
is also the case for our case study. In Figure 6.6 the optimal policy for a newly arriving
patient requiring a Holter check is given. During the first 22 minutes of the session
these patients will be accepted whenever the system is not full. After that, the system
becomes increasingly more likely to reject patients even while there is capacity. In the
last 17 minutes, no patients will be accepted even when the system is empty.

Figure 6.6: Optimal Decision for Acceptance of Patients Requiring a Holter Check.

6.4.3 Simulation
To demonstrate the performance, we evaluate our approach against the implemented
heuristic. For this, we use a DES model. The simulation was carried out using
Python v3.8 and the Simulus v1.2.1 package. The simple heuristic implemented, is
based on the join shortest queue (JSQ) policy [104]. Under JSQ, available patients
(e.g. new arrivals or patients who just finished an appointment and still have other
appointments scheduled) are routed to the next appointment with the least number
of patients waiting for this appointment. Furthermore, the queuing discipline first
come first served (FCFS) is used. This differs from our approach for the allocation
decision (see Section 6.3.2), which is similar to a single queue with longest remaining
processing time first (LRPT) discipline. This means that waiting patients with more
appointments will be served first. Furthermore in the JSQ scenario no patients are
blocked. We have summarized the different settings in Table 6.5. For the scenario using
the MDP policy, the simulation model checks for every arrival the optimal decision
for the corresponding the state of the model. To evaluate the performance of both
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Table 6.5: Summary of System Settings per Simulation Scenario.

System setting MDP JSQ heuristic
Number of queues Single queue Different queues per test
Queuing discipline Longest remaining processing time First come first serve
Entry policy Blocking None

approaches, we defined the following KPIs:
- Number of patients who are not completely served (e.g. blocked and unfinished

patients).
- Average total waiting time of finished patients.
- Utilization of tests and consultation schedules.
Clearly, the simulation model is terminating as the start and end state are defined

by the outpatient clinic session length of one-half of a day (e.g. 240 minutes). It starts
with an empty system as at the start of the session no patients have arrived. Based on
historical data, we assume a static patient arrival rate defined by a Poisson distribution
with an arrival rate of 0.45 patients per minute, and time-dependent frequencies for
the types of patients arriving: every 30 minutes, different frequencies are used to
determine the patient type of arrivals. Based on data analysis, we fit all service times
to log-normal distributions as was done in [52]. For statistically accurate results, we
determine the required number of replications (i.e. number of appointment sessions)
using the convergence method [199] with α = .05. Results show that 1000 replications
proved to be sufficient.

Simulation Results

In Figure 6.7, we summarize the results of our simulation study to determine the
performance of the scheduling algorithms. Clearly, for this experiment, the MDP
policy outperforms the JSQ heuristic. We expect the timing of the decision on when
to allocate a patient to the next appointment may lead to these results. The JSQ
heuristic will allocate each patient instantly (i.e. on arrival or after completing an
appointment), while the MDP extends this decision by having a single queue and new
schedules will be made based on all waiting patients. This may explain both a lower
number of patients not served and a lower average waiting time for the MDP scenario.
Clearly, when serving more patients, the utilization increases for the MDP scenario.

6.4.4 Implementation in Practice
In this section, we describe the benefits for practice from using an approach for on-
line multi-appointment scheduling by evaluating the performance before and after
implementation. The results of the MDP policy were not available at the time of
implementation in practice. And as the problems of the department required rapid
improvement, the JSQ heuristic was implemented in a decision support tool. The tool
generated interesting data for use in analyzing the effects in practice of using an online
multi-appointment scheduling approach. In the online setting of our problem, such
a system should be able to continuously monitor system dynamics. Using solutions
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Figure 6.7: Kiviat Diagram of Simulation Results.
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from the aviation sector, the implementation embraced an advanced self-service sys-
tem. Patients use self-service kiosks upon arrival to register themselves. At the end of
this registration process, the decision support tool decides what the first appointment
is and patients sit in the waiting room until further notification. Using a real-time
data connection with the hospital’s electronic medical record system, the decision sup-
port tool derives the registering patient’s patient type (i.e. combination of scheduled
appointments) and shows the patient what the first appointment will be and the ex-
pected waiting time. Patients are further notified via monitors in the waiting room.
After each appointment patients are notified what the next appointment is and return
to the waiting room, or they leave the clinic if they have finished all appointments.
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More LUMC departments expressed their interest in the decision support tool. We
therefore analyzed the benefits in practice based on the following KPIs:

- Patient sojourn time
- Number of patients waiting in waiting room
- Number of patients waiting at registration desk
- Patient satisfaction with waiting time
- Patient satisfaction with the waiting time information
These KPIs were measured before and after implementation during comparably

busy weeks and gave us the opportunity to analyze the data and test for significant
differences between the samples using t-tests (see Figure 6.8). The data shows an 18%
improvement in patient sojourn time (i.e. the time between the arrival and departure
of a patient) (t(326) = −5, 34; p < 0.01). Starting with an average of 90 minutes, this
means a reduction of almost 20 minutes per visit. As expected, a comparable reduction
(17%) is seen in the number of patients waiting (t(68) = −2, 56; p < 0.01), and this
changes by the hour, ranging from a 40% reduction (e.g. > 66 patients) to an increase
of 3%. The data analysis similarly shows a 66% reduction (t(64) = −2, 44; p < 0.01)
in the number of patients waiting at the registration desk. Based on these results, the
management of the outpatient clinic decided to reduce the staff at the registration desk
by 50%. We also asked patients their opinion on the perceived waiting time and on
the provision of waiting time information, asking them to indicate their responses via
a 5-point Likert scale (i.e. from very dissatisfied to very satisfied). Although the data
analysis showed a significant reduction in the number of patients waiting, the waiting
time satisfaction of patients was not improved. We did find a significant improvement
in the patient satisfaction on the provision of waiting time information (i.e. showing
patients their expected waiting time).

The improved sojourn time is likely a result of waiting time reduction as the number
of waiting patients also was significantly reduced and appointment durations were not
adjusted during the project. Furthermore, we have analyzed data from comparable
weeks and are confident the improvements are a result of the implemented decision
support system. These conclusive results led to the hospital-wide implementation of
the self-service kiosks including the decision support tool.

6.5 Discussion

This research was inspired by the practical problem observed in the cardiology out-
patient clinic of the LUMC. We have shown the positive impact of online multi-
appointment scheduling incorporating real-time system dynamics. While most litera-
ture analyzes online multi-appointment scheduling for later sessions, we derive optimal
decisions for the same session.

We formulated the scheduling problem as an MDP model. By decomposing the
acceptance and scheduling decisions, we simplified the state space and were able to
define a tractable MDP for real-life instances. The acceptance decision, is inspired
by the conviction that it is better to not serve a patient when it is expected that the
patient cannot finish all appointments, rather than finishing a subset of the scheduled
appointments and reschedule the others. A major assumption influencing the result-
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Figure 6.8: Histograms and Line Charts of The Patient Sojourn Time and The Average
Number of Patients Waiting Before and After Implementation of The Decision Support Tool.
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ing policy derived from our MDP, are the geometrically distributed service times. For
tractability, memoryless distributions are required. We therefore expect that our MDP
model is over-fitting the expected durations of service times, resulting in an increasing
number of blocked patients as it is expected these arrivals will not finish their appoint-
ments within the session horizon. However, the MDP approach still outperforms the
JSQ heuristic on this KPI.

Using our model, healthcare management can easily balance the trade-off between
resource utilization, waiting time and blocking probability for complex appointments
systems incorporating multi-appointment scheduling. As shown in Section 6.4.4, im-
plementing a relatively simple heuristic already results in significant improvements
in waiting time and thus in overtime. Implementation of sophisticated algorithms,
requires advanced digitization of decision support systems. Although it is often said
that healthcare it is not suitable for digital transformations as it requires face-to-face
contact, solutions as presented here result in process information and efficiency gain
for both patients and healthcare professionals. In this way, such solutions could con-
tribute to keeping healthcare accessible. As mentioned in Section 6.1, another impor-
tant development is the increasing complexity of appointment systems incorporating
multi-appointment scheduling. These complex appointment systems balance many
conflicting objectives, and optimizing such scheduling problems requires sophisticated
analytics, as demonstrated here.

Our approach is also suitable for other types of appointment systems (e.g. advanced
access systems [175]), incorporating both scheduled and unscheduled arrivals, as we
optimize the decision of accepting or rejecting to ultimately balance demand and
supply. Furthermore, our approach can also be used to optimize specific appointment
schedules of future sessions. As all possible states defined are analyzed by our MDP,
a decision support system can decide based on the progression of that session and
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expected future arrivals whether it is still optimal to accept an arrival or to reschedule
the arrival given the managerial priorities as translated into the cost function of our
model. Future research could focus on multi-departmental or multi-location online
multi-appointment scheduling. This problem increases the state space significantly
as more patient types (e.g. combination of appointments) are possible and travelling
distances between appointment location could be analyzed.

An unique feature of this research was the opportunity to analyze the impact of
one of the algorithms in practice. We are therefore grateful for the trust and patience
of the management of the cardiology department. The department invested multiple
resources (both staff and monetary) to successfully implement the solution at hand
and analyze the impact. Whereas clinical innovations are tested extensively before
exposed to patients, the effects of organizational and process innovations are rarely
evaluated in healthcare, while the effects on both patients and healthcare professionals
can be tremendous. Of course, to analyze the impact of organizational innovations
is methodological and ethical challenging. Another reason for this lack of evaluation
could be that designing this kind of research is time consuming or that researchers are
not familiar with these types of research design. We hope to encourage researchers to
also focus on implementation and to analyze the impact in practice.

This research contributes to furthering online multi-appointment scheduling analy-
sis and implementation. From a methodological perspective, our research contributes
to analyzing complex appointment systems such as multi-appointment scheduling and
ultimately keeping healthcare accessible.
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[79] A. Fügener. An integrated strategic and tactical master surgery scheduling
approach with stochastic resource demand. Journal of Business Logistics, 36(4):
374–387, 2015. ISSN 0735-3766.
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Cormack. Stochastic online appointment scheduling of multi-step sequential pro-
cedures in nuclear medicine. Health Care Management Science, 16(4):281–299,
dec 2013. ISSN 13869620. doi: 10.1007/s10729-013-9224-4.

[189] Gilles Pesant. Balancing nursing workload by constraint programming. In
Claude-Guy Quimper, editor, Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), volume 9676, pages 294–302. Springer International Publishing, 2016.
ISBN 9783319339535. doi: 10.1007/978-3-319-33954-2 21.

[190] Jesse M Pines, Robert J Batt, Joshua a Hilton, and Christian Terwiesch. The
financial consequences of lost demand and reducing boarding in hospital emer-
gency departments. Annals of emergency medicine, 58(4):331–40, oct 2011. ISSN
1097-6760. doi: 10.1016/j.annemergmed.2011.03.004.

[191] Michael E Porter. What Is Value in Health Care? New England Journal of
Medicine, 363(26):2477–2481, 2010. doi: 10.1056/NEJMp1011024.

[192] Michael E Porter and Thomas H Lee. The strategy that will fix health care.
Harvard Business Review, 91(10):1–19, 2013.

[193] Michael E. Porter, Stefan Larsson, and Thomas H. Lee. Standardizing patient
outcomes measurement. New England Journal of Medicine, 374(6):504–506,
2016. doi: 10.1056/NEJMp1511701. PMID: 26863351.

[194] Micheal E. Porter and Elizabeth O. Teisberg. Redefining Health Care: Creating
Value-Based Competition on Results. Harvard Business School Press, Boston,
2006.

[195] Martin Puterman. Finite-horizon markov decision processes. In Markov Deci-
sion Processes, chapter 4, pages 74–118. John Wiley & Sons, Ltd, 2008. ISBN
9780470316887. doi: 10.1002/9780470316887.ch4.

[196] Schmidt R., Geisler S., and Spreckelsen C. Decision support for hospital bed
management using adaptable individual length of stay estimations and shared
resources. BMC medical informatics and decision making, 13(1):3, 2013. ISSN
14726947. doi: Article.

[197] M Ramakrishnan, D Sier, and PG Taylor. A two-time-scale model for hospital
patient flow. IMA Journal of Management Mathematics, 16(3):197–215, 2005.

[198] JC Ridge, SK Jones, MS Nielsen, and AK Shahani. Capacity planning for
intensive care units. European Journal of Operational Research, 105(2):346–355,
1998.



144 Bibliography

[199] Stewart Robinson. Simulation: the practice of model development and use, vol-
ume 50. Wiley Chichester, 2004.

[200] Aleda V. ROTH and Roland van DIERDONCK. Hospital resource planning:
Concepts, feasibility, and framework. Production and Operations Management,
4(1):2–29, 1995. doi: 10.1111/j.1937-5956.1995.tb00038.x.

[201] Yazan F. Roumani, Yaman Roumani, Joseph K. Nwankpa, and Mohan Tan-
niru. Classifying readmissions to a cardiac intensive care unit. Annals of
Operations Research, 263(1-2):429–451, 2018. ISSN 15729338. doi: 10.1007/
s10479-016-2350-x.

[202] P. Santibanez, M. Begen, and D. Atkins. Surgical block scheduling in a system
of hospitals: An application to resource and wait list management in a british
columbia health authority. Health Care Management Science, 10(3):269–282,
2007. ISSN 1386-9620.
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rel LOS relative Length of Stay
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Summary

Introduction

Care pathways in hospitals usually encompass multiple resources and healthcare pro-
fessionals. This makes managing hospital processes and capacities challenging. To
prevent myopic optimization, process improvements should consider multiple steps in
care pathways. This dissertation aims to improve complex decision-making that in-
tegrally manages capacity for care pathways. Operations research may play a crucial
role by analyzing such capacity decisions in a safe environment before actual imple-
mentation. However, despite the vast amount of available research and its potential,
it appears that the actual implementation of operations research models and results
in healthcare practice is rarely described in the literature. This is surprising, as imple-
mentation is the ultimate step in realizing improvement. We try to improve this final
step by distinguishing two approaches: (1) organizing the timing and alignment of the
optimal decisions among related capacities and (2) analyzing (near) optimal capacity
decisions considering multiple capacities.

Part I Integral Capacity Management in Hospitals

We start this thesis analyzing the organization of capacity decisions in hospitals in
Chapter 2. We observe that current capacity management (CM) in hospitals orga-
nizes departments as silos, or even as single cost centers, with their own operations
management systems and a top-down deployment of decision-making processes. We
aim to realize this potential by breaking through the siloed system, by optimizing
flow rather than myopically optimizing utilization. We do this by aligning capacity in
care pathways. We propose integral capacity management (ICM) as the successor to
CM. This is the first theoretical introduction of ICM. We distinguish three dimensions
for organizational integration: hierarchical, patient-centeredness, and domain. We
discuss alignments on and between these dimensions to integrally organize capacity
decisions. Hierarchical integration concerns top-down and bottom-up decision-making
processes, in which higher levels set boundaries, targets and planning objectives (i.e.
increasingly disaggregated information) for lower levels and lower levels provide input
for improvement of decision-making on higher levels. Patient-centeredness concerns
the coordination and alignment of capacity across departments and organizations to
optimize care pathways. Domain integration encompasses alignment of managerial
domains: clinical, financial and nonrenewable resources. This study is a first step
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for theoretical development of ICM. We therefore derive multiple directions for future
research.

In Chapter 3 we review operations research (OR) literature applied to hospital wards.
Based on logistical characteristics and patient flow problems, we distinguish the fol-
lowing particular ward types: intensive care, acute medical units, obstetric wards,
weekday wards, and general wards. We analyze typical trade-offs of performance in-
dicators for each ward type, review OR models commonly applied to it, and discuss
typical capacity management and planning decisions. Additionally, we provide three
illustrative cases, discuss both theoretical and practical challenges, and provide di-
rections for future research. With this review we aim to guide both researchers and
healthcare professionals dealing with hospital bed capacity and on which OR models
best suits each specific capacity decision and the type of ward.

Part II Integral Capacity Planning in Hospitals

In Chapter 4 we analyze the process of emergency admissions. The increasing number
of admissions to hospital emergency departments (EDs) during the past decade has
resulted in overcrowded EDs and decreased quality of care. The emergency admission
flow that we discuss in this study relates to three types of hospital departments: EDs,
acute medical unit (AMUs), and inpatient wards. The study in this chapter has two
objectives: (1) to evaluate the impact of allocating beds in inpatient wards to accom-
modate emergency admissions and (2) to analyze the impact of pooling the number of
beds allocated for emergency admissions in inpatient wards. To analyze the impact of
various allocations of emergency beds, we develop a discrete event simulation model.
We evaluate the bed allocation scenarios using three performance indicators: (1) the
length of stay in the AMU, (2) the fraction of patients refused admission, and (3) the
utilization of allocated beds. We develop two heuristics to allocate beds to wards and
show that pooling beds improves performance. The partnering hospital has embedded
a decision support tool based on our simulation model into its planning and control
cycle. The hospital uses it every quarter and updates it with data on a 1-year rolling
horizon. This strategy has substantially reduced the number of patients who are re-
fused emergency admission.

Chapter 5 analyzes optimal surgery schedules considering multiple resources. Surgery
groups are clustered surgery procedure types that share comparable characteristics
(e.g. expected duration). Scheduling operating theater (OT) blocks leaves many op-
tions for operational surgery scheduling and this increases the variation in usage of both
the OT and downstream beds. Therefore, we schedule surgery groups to reduce the
options for operational scheduling, ultimately bridging the gap between tactical and
operational scheduling. We propose a single step mixed integer linear programming
(MILP) approach that approximates the bed and OR usage along with a simulated
annealing approach. Both approaches are compared on a real-life data set and results
show that the MILP performs best in terms of solution quality and computation time.
Furthermore, the results show that our model may improve the OR utilization from
71% to 85% and decrease the bed usage variation from 53 beds to 11 beds compared to
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historical data. To show the potential and robustness of our model, we discuss several
variants of the model requiring minor modifications. The use of surgery groups makes
it easier to implement our model in practice as, for operational planners, it is instantly
clear where to schedule different types of surgery.

Chapter 6 presents an innovative methodology to overcome Markov decision process
(MDP) intractability for online multi-appointment scheduling problems. As a result of
increasing treatment options and far-reaching specialization, the number of appoint-
ments for patients has increased. This makes appointment schedules fragile as depen-
dencies between schedules increase. Decomposing the decisions (e.g. accept/reject and
allocation decisions) allows us to analytically solve practical online multi-appointment
scheduling problems. We use an MDP to derive optimal decisions for accepting or re-
jecting new arrivals based on capacity availability and future arrivals. Once accepted,
we developed an ILP to allocate patients to their next appointment. Based on a case
study at the Leiden University Medical Center cardiology outpatient clinic, we then
present the implementation of our model for a real-life instance. We compare the per-
formance of our approach with a heuristic and show that our approach outperforms
that of the heuristic. Furthermore, we show a full implementation and analyze the
impact in practice.

Future developments for Hospital Capacity Management & Planning

We see multiple future directions for ICM and planning in hospitals. In Western coun-
tries, most hospitals have emerged from the digitization era and are now discovering
the value of the newly available information. This will explode the number of research
opportunities for all types of analytics (i.e. descriptive, predictive and prescriptive).
To increase their impact in practice, researchers should embrace data-driven optimiza-
tion. For example, both descriptive and predictive analytics may be used to improve
the input data for prescriptive analytics and therefore improve the results of prescrip-
tive analytics. Prescriptive analytics quickly become intractable when the number
of decisions increases. Therefore, the number of decisions resulting from descriptive
and predictive analytics should be balanced to ensure tractable prescriptive analyt-
ics. This may result in decreasing quality of both descriptive and predictive analytics.
Analyzing trade-offs between quality measures of different types of analytics could be
an interesting research topic. Capacity planning and management software systems
that in real-time automate all steps of capacity planning and management may be
developed using data-driven optimization. Ultimately, this may further reduce the
waste caused by failures in care coordination.

Currently, regulation of data is organized well. As the aforementioned scalability
of innovations is finally taking place, the exchange of data and information has proven
to be difficult as there are still compatibility and data ownership problems. ”Data is
the new oil” [76]. First and foremost, health data will increase the quality of care as
information availability improves. For operations research this will raise opportunities
as more data about the total care pathways of patients becomes, to some extent,
available through, for example, wearables.

In the coming years, clinical practice will become more technical as a result of the
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digitization era, technical medicine and the introduction of health analytics. The first
small steps are currently being taken. For example, predictive medicine already sup-
ports medical decision-making on antibiotic dosage in sepsis for intensive care patients
[232]. This also has an impact on capacity planning and management. Therefore, both
analytical and medical scholars should further embrace each other’s field of expertise.
Together, they can integrally shape the hospital of the future.



Samenvatting

Introductie

Zorgpaden in ziekenhuizen bestaan in toenemende mate uit verschillende capaciteiten
(zoals bedden, diagnostiek en operatiekamers) en zorgprofessionals. Dit maakt het
managen van ziekenhuisprocessen en -capaciteiten uitdagend. Om eenzijdige optima-
lisatie van zorgpaden te voorkomen (bijvoorbeeld uitsluitend het optimaliseren van
de operatieplanning), moet er in procesverbeteringen rekening gehouden worden met
meerdere stappen (integrale aansturing) in een zorgpad. Dit proefschrift is gericht
op het verbeteren van complexe besluitvorming op integrale capaciteitsplanning en
-management. Operations research kan een cruciale rol spelen bij het analyseren van
capaciteitsbeslissingen in een veilige omgeving voordat deze worden geimplementeerd
in de praktijk. Ondanks de enorme hoeveelheid aan onderzoek en het potentieel ervan,
lijkt het erop dat de daadwerkelijke implementatie van operations research modellen
en/of resultaten in de gezondheidszorgpraktijk zelden wordt beschreven in de litera-
tuur. Dit is verrassend, omdat implementatie van uitkomsten de ultieme stap is om
procesverbetering te realiseren. We proberen deze laatste stap te verbeteren door twee
benaderingen onderscheiden: (1) het organiseren van besluitvorming en afstemming
van de optimale beslissingen tussen gerelateerde capaciteiten en (2) het analyseren van
optimale capaciteitsbeslissingen rekening houdend met verschillende capaciteiten.

Deel I Integraal Capaciteitsmanagement in Ziekenhuizen

We starten dit proefschrift met het analyseren van de organisatie rondom capaciteits-
beslissingen in ziekenhuizen in Hoofdstuk 2. We observeren dat capaciteitsmanagement
(CM) in ziekenhuizen momenteel georganiseerd is in silo’s, of zelfs als afzonderlijke
resultaatverantwoordelijke eenheden, met hun eigen managementsystemen. Optima-
lisatie van patiëntdoorstroming vraagt de verschillende capaciteiten in zorgpaden op
elkaar af te stemmen en daardoor dient het silo-systeem doorbroken te worden. Wij
stellen daarom dat integraal capaciteitsmanagement (ICM) de opvolger van CM is.
In dit proefschrift wordt ICM voor het eerst theoretisch onderbouwd. We onderschei-
den drie dimensies voor integratie op capaciteitsbesluitvorming: hiërarchisch niveau,
patiëntgerichtheid en managementdomein. Hierbij richten wij ons op de afstemmingen
binnen en tussen deze dimensies om capaciteitsbeslissingen integraal te organiseren.
Hiërarchische integratie heeft betrekking op zowel top-down als bottom-up besluit-
vormingsprocessen, waarbij hogere niveaus kaders, doelen en planningsdoelen stellen
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voor lagere niveaus (bijvoorbeeld het detailniveau van informatie neemt toe) en la-
gere niveaus input leveren voor het verbeteren van besluitvorming op hogere niveaus.
Hierin onderscheiden we de volgende niveaus: strategisch, tactisch en operationeel.
Patiëntgerichtheid betreft de coördinatie en afstemming van capaciteiten tussen af-
delingen en organisaties om zorgpaden te optimaliseren. Met andere woorden, het
creëren van flow. Domeinintegratie omvat afstemming van managementdomeinen:
klinisch, financieel en supply chain. Deze studie is een eerste stap voor verdere the-
oretische ontwikkeling van ICM. We hebben daarom meerdere richtingen beschreven
voor toekomstig onderzoek.

In Hoofdstuk 3 beschrijven we systematisch OR-literatuur waarvan modellen worden
toegepast op ziekenhuisafdelingen. Op basis van logistieke kenmerken en problemen in
patiëntenstromen onderscheiden we de volgende specifieke typen verpleegafdelingen:
intensive care afdeling, acute opname afdeling, verloskunde afdeling, kortverblijfafde-
ling en algemene verpleegafdeling. We analyseren typische afwegingen van prestatiein-
dicatoren voor elk type verpleegafdeling en de OR-modellen die erop worden toegepast
en bespreken typische capaciteits- en planningsbeslissingen. Daarnaast presenteren we
drie casestudy’s, bespreken we zowel theoretische als praktische uitdagingen en geven
we aanwijzingen voor toekomstig onderzoek. Met deze review willen we zowel onder-
zoekers als zorgprofessionals die zich richten op verpleegafdelingen ondersteunen met
capaciteitsvraagstukken en hoe en welke OR-technieken / modellen toepasbaar zijn.

Part II Integraal Capaciteitsplanning in Ziekenhuizen

In Hoofdstuk 4 analyseren we het proces van acute opnames. Het toenemende aantal
opnames vanaf spoedeisende hulpafdelingen (SEH’s) van ziekenhuizen in het afgelopen
decennium heeft geresulteerd in overvolle SEH’s en verminderde kwaliteit van de zorg.
Het proces van spoedopnames in dit onderzoek heeft betrekking op drie soorten zie-
kenhuisafdelingen: SEH, acute opname afdeling (AOA) en verpleegafdelingen. Deze
studie heeft twee doelstellingen: (1) het evalueren van de impact van het toewijzen
van bedden op verpleegafdelingen voor spoedopnames en (2) het analyseren van de
impact van het bundelen van het aantal bedden dat is toegewezen voor spoedopnames
op verpleegafdelingen. Om de impact van verschillende toewijzingen van spoedbedden
te analyseren hebben we een simulatiemodel ontwikkeld. We evalueren de scenario’s
voor bedtoewijzing met behulp van drie prestatie-indicatoren: (1) de verblijfsduur op
de AOA, (2) het aantal geweigerde opnames en (3) de bezettingsgraad van toegewezen
spoedbedden. We hebben twee heuristieken ontwikkeld om spoedbedden aan afdelin-
gen toe te wijzen en prestaties te verbeteren door het bundelen van spoedbedden. Het
LUMC heeft het simulatiemodel gebruikt binnen de planning- en controlcyclus door
elk kwartaal met voortschrijdende horizon van 1 jaar opnieuw te bekijken welke verde-
ling van bedden wenselijk is. Deze strategie heeft het aantal geweigerde spoedopnames
aanzienlijk verminderd.

Hoofdstuk 5 worden optimale operatieschema’s geanalyseerd rekening houdend met
meerdere capaciteiten. Operatiegroepen zijn geclusterde typen operatieve ingrepen
met vergelijkbare kenmerken (bijvoorbeeld de verwachte duur van de ingreep). Het
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plannen van OK-blokken laat veel opties over voor het operationeel plannen van opera-
ties en dit vergroot de variatie in gebruik van zowel de OK als bedden. Daarom plannen
we operatiegroepen om de mogelijkheden voor operationele planning te verkleinen en
uiteindelijk de kloof tussen tactische en operationele planning te overbruggen. We
stellen een mixed integer linear programming (MILP) -benadering voor die zowel OK-
als bedbezetting optimaliseert. Daarnaast vergelijken we deze benadering met een
simulated annealing-benadering. Beide benaderingen worden vergeleken op een data-
set vanuit het LUMC en de resultaten tonen aan dat de MILP het beste presteert in
termen van oplossingskwaliteit en rekentijd. Bovendien laten de resultaten zien dat
ons model het gebruik van de operatiekamer kan verbeteren van 71% tot 85% en de
variatie in bedgebruik kan verminderen van 53 bedden tot 11 bedden in vergelijking
met de historische data. Om het potentieel en de robuustheid van ons model te laten
zien, bespreken we daarnaast verschillende varianten van het model die kleine aan-
passingen vereisen. Het gebruik van operatiegroepen maakt het eenvoudiger om ons
model in de praktijk toe te passen, omdat het voor operationele planners duidelijk is
waar verschillende soorten operaties moeten worden gepland.

Hoofdstuk 6 presenteert een innovatieve methodologie om voor online planningspro-
blemen met meerdere afspraken een oplosbaar Markov beslissingsproces (MDP) model
te realiseren. Door toenemende behandelmogelijkheden en verregaande specialisatie
neemt het aantal afspraken voor patiënten toe. Dit maakt afspraakschema’s kwets-
baar naarmate de afhankelijkheden tussen schema’s toenemen. Door de beslissingen
te ontleden (bijvoorbeeld acceptatie / afwijzing en planningsbeslissing) kunnen we
praktische online planningsproblemen met meerdere afspraken analytisch oplossen.
We gebruiken een MDP om optimale beslissingen te analyseren voor het accepteren of
weigeren van nieuwe patiënten op basis van capaciteitsbeschikbaarheid en toekomstige
aankomsten. Na acceptatie hebben we een ILP ontwikkeld om patiënten toe te wijzen
aan hun volgende afspraak. Op basis van een casestudy op de polikliniek Cardiologie
van het LUMC presenteren we vervolgens de implementatie van ons model op deze
situatie. We vergelijken de prestaties van onze aanpak met een heuristiek en laten
zien dat onze aanpak beter presteert. Verder tonen we een volledige implementatie in
de praktijk en analyseren we de impact ervan.

Toekomst van Integraal Capaciteitsmanagement & -planning

We zien meerdere toekomstige onderzoeksrichtingen voor ICM en integrale planning
in ziekenhuizen. In westerse landen zijn de meeste ziekenhuizen uit het digitaliserings-
tijdperk gekomen en ontdekken nu de waarde van de nieuw beschikbare informatie.
Hiermee zal het aantal onderzoeksmogelijkheden voor alle soorten analytics (bijv. be-
schrijvende, voorspellende en optimalisatie analytics) toenemen. Om de impact in de
praktijk te vergroten, moeten onderzoekers datagedreven optimalisatie omarmen. Zo
kunnen zowel beschrijvende als voorspellende analyses worden gebruikt als input voor
optimalisatie analyses waardoor de resultaten van optimalisatie analyses verbeterd
kunnen worden. De uitkomsten van voorspellende analyses worden snel onoplosbaar
voor optimalisatie modellen wanneer het aantal beslissingen toeneemt. Daarom moet
het aantal beslissingen welke voortvloeien uit beschrijvende en voorspellende analy-
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ses in evenwicht zijn om te komen tot oplosbare optimalisatie modellen. Dit kan
resulteren in een afnemende kwaliteit van zowel beschrijvende als voorspellende ana-
lyses. Het onderzoeken van de kwaliteit van de verschillende soorten analyses wanneer
deze elkaar dienen kan een interessant onderzoeksthema zijn. Verder kan software
voor capaciteitsplanning en managementsoftware die real-time alle stappen van capa-
citeitsplanning en -beheer automatiseert worden bereikt met behulp van datagestuurde
optimalisatie. Uiteindelijk kan hiermee de verspilling als gevolg van zorgcoördinatie
verminderd worden.

Momenteel is de regulering van data goed georganiseerd in wet- en regelgeving. On-
danks dat de eerder beschreven schaalbaarheid van innovaties eindelijk plaatsvindt,
blijkt de uitwisseling van data en informatie moeilijk te zijn, aangezien er nog steeds
problemen zijn met de compatibiliteit en het eigendom van data en informatie. ”Data
is the new oil” [76], en dit geldt ook voor zorgdata. Gezondheidsdata verhogen in
de eerste plaats de kwaliteit van de zorg, aangezien de beschikbaarheid van informa-
tie zal verbeteren. Voor operations research biedt dit ook kansen omdat meer data
over de totale zorgpaden van patiënten tot op zekere hoogte beschikbaar komen via
bijvoorbeeld wearables.

Door de digitalisering, technische geneeskunde en de introductie van analytics
wordt de klinische praktijk de komende jaren technischer. Momenteel worden de
eerste kleine stappen gezet. Zo ondersteunen voorspellende analytics al de klinische
besluitvorming over de dosering van antibiotica bij sepsis voor patiënten op de in-
tensive care [232]. Zulke toepassingen hebben ook gevolgen voor capaciteitsplanning
en -management. Daarom moeten zowel analytische als geneeskundewetenschappers
elkaars vakgebied verder omarmen. Samen kunnen ze het ziekenhuis van de toekomst
integraal vormgeven.
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