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ABSTRACT 

During the past years, the industry has shifted position and moved towards “the luxury 

universe” whose customers are demanding, treating individuals as unique and valued 

customer for the business, offering vehicles produced with the state of the art technologies 

and implementing the highest finishing standards. Due to the competitive level in the 

market, car makers enable processes which equalizes customer services to E.R. 

management, being dealt with the maximum urgency that allows the comparison between 

both, car workshops and emergency rooms, where workshop bays or ramps will be equal 

to emergency boxes and skilled technicians are equivalent to the health care specialist, 

who will carry out tests and checks prior to afford any final operation, keeping the “patient” 

under control before it is back to normal utilization. 

This paper establishes a valid model for the automotive industry to estimate customer 

service demand forecasting under variable demand conditions using analogies with patient 

demand models used for the medical ER. 
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INTRODUCTION 

All car makers experience product-related requests from customers. These requests help 

align the product with customer’s needs, shed light on how they use the product and 

generally improve the attractiveness of the product to its target market.  

However, sometimes, these requests become disruptive. This can happen when providing 

a solution is done outside the product roadmap. Many product organizations do this 

because the “request” includes a threat that unless the feature is added, changed, fixed 

etc., the customer will not buy the product, will stop servicing it or sell it. 

Although many car manufacturers increase their efforts to build strong service networks, a 

gap still remains between customer real demands and Authorized Service retailer’s 

workload. Formerly, premium brands were being focused on reaching high service 

standards to match their customer expectations on service and maintenance, placing price 

on a secondary option, while volume car maker’s acts basically on pricing and service 

times. According to premium brands point of view, a car entering the workshop is treated 

as a matter of urgency; it is like a patient entering an emergency room of a hospital and 

needs to be diagnosed with regards to the symptoms present in this moment, to offer the 

best solution for this particular case. 

Car makers estimate their facilities capacity with simple methods with various restrictions, 

but typically arrivals occurs under uncertain conditions and variable demand that were not 

included in the calculations, producing work overloads, stocks backorders and customer 

dissatisfaction and complaints. Opposite to that, health services used different techniques 

to dimension hospital facilities according to the demographic distribution of the area to be 

serviced. Estimations are compared with a computer model simulation result and validated 

to create a model to be applied in future health services. 

This article study the process to accommodate the existing models used for medical 

facilities to the service needs of a car manufacturer network. 

The seminal references founded for the present document are based on the works of B. 

Liu, who, in 1976, established an input-output approach for regional hospital needs 

projection. Later, in 1982, R. D. Kamenetzky, L. J. Shuman and H. Wolfe studied a how to 

estimate needs and demands for prehospital care. Subsequently in 1989, D. M. Rhyne 

reviewed the applicability and a measure of forecasting systems in managing hospital 

services demand. In 1993, M. A. Badri and J. Hollingsworth published a simulation model 

for scheduling in the emergency room. Also, in 1996, Y. Gerchak, D. Gupta and M. studied 

a reservation planning under uncertain demand for emergency surgery.  

Other authors afford the case from an operational research point of view, such as: A. 



Bagust, M. Place and J. W. Posnett studied in 1999 a dynamic model to be used for 

accommodating emergency admissions applying stochastic simulation. Later in 2004, S. 

C. Brailsford, V. A. Lattimer, P. Tarnaras and J. C. S. Turnbull studied an emergency and 

on-demand health care model for large complex systems. Then in 2006, L. V. Green, S. 

Savin and B. Wang studied a model to manage patient service in a diagnostic medical 

facility. 

Inclusion of more ad more electronic devices interacting together in the car makes requires 

a better understanding of vehicle electrical architecture and has an impact on training 

needs, modern facilities with nice and clean workshops and, of course, a good 

management to ensure the required productivity and efficiency. Opposite to that, generally, 

low salaries still offered to the workshop technicians enabling a high personnel rotation. 

The former statement supposes any skilled technician will act as experienced doctor to 

diagnose a critical patient in an emergency box. The service receptionist will therefore 

assign jobs and times to the workshop according to pre-established priorities rivalling the 

medical ER. Customer requests can be a double-edged sword. On the one hand they can 

help point the way of where the market wants a company to go. On the other, requests can 

become disruptive and distracting. By understating the factors behind customer requests, 

the dynamics of the relationship and how these requests impact the process, companies 

can channel the “request energy” into positive channels leading to a better product that 

customers are excited about and willing to pay for.  

 

1. THE GENERAL SERVICE MODEL 

This paper explores experimental procedures used in ER management for comparing the 

capabilities of complex discrete event service systems. Instead of measuring system 

capability by analyzing or simulating the system with a constant rate of arriving work, 

system capability is measured as the maximum rate of work arrival for which the system 

has a steady state. Hence, we seek the arrival rate which causes the system to be at full 

capacity. This rate is arguably the best indication of the service system’s capability. 

The service systems considered all have the following features: 

• centralized, controllable, processes which does not generate tasks at a rate A per 

unit time 

• tasks are admitted upon generation and processed by the system 

• completed task is ejected from the system 

• the system has the capability to process as many tasks per unit time on average 

 



Work-conserving queuing models do not allow: 

• tasks to expire while in service 

• tasks to create other tasks while in service 

• tasks to be split or combined 

• tasks which never finish service 

Work-conserving queuing system models are common in both the practice and literature of 

applied probability. In a typical experiment, we generate input to the system at a constant 

rate; monitor the performance of the system either at fixed intervals or upon departure 

from the system, and employ well known methods of steady-state analysis to estimate the 

steady-state average of the performance measure. 

A maxim of the analysis of service systems is that the system will have stationary long-run 

behaviour if and only if the number of arriving tasks are, on average, less than the number 

of tasks the system is capable of processing. If our overall system can work at a maximum 

of p tasks per unit time, we can input as many as p per unit time and the system will 

remain stationary. If A is our arrival rate for the system, we wish to manipulate A to expose 

p. 

 

2. THE GEOMETRIC BROWNIAN MOTION (GBM) PROCESS 

A Markov process is a particular type of stochastic process where only the present value 

of a variable is relevant for predicting the future. The past history of the variable and the 

way that the present has emerged from the past are irrelevant.  

A Wiener process is a type of Markov stochastic process in which the mean change in the 

value of the variable is zero with the variance of change equal to one per unit time. The 

Wiener process was first applied in physics to describe the motion of a particle that is 

subject to a large number of small molecular shocks and was called Brownian motion 

(Hull, 2000). The mathematical description of the process was later developed by Wiener. 

To understand the equation, each of the components is considered separately. 

Using this model, the service provider can optimize the parameters of the expansion policy 

according to numerical values of the model parameters observed in the industry in which 

the service provider operates. Relaxing the assumptions of the model suggests new 

directions in which this base model can be extended.  

One of the most important assumptions made was that the demand process follows the 

GBM process, as it is also been used to represent future demand in capacity studies. 

Although this may be true for some industries, some bumpy demand processes may be 



more closely represented by a probability distribution that incorporates sudden changes in 

demand values, for example a GBM process with jumps. Market saturation could be 

modelled by a process with nonhomogeneous drift. In the current model, only capacity 

expansions were considered. 

The formulation of the service level constraint in this paper allows for expansion policies 

that either anticipates demand reaching the capacity position or react to demand having 

exceeded it. Its evaluation by using barrier option pricing tools is exact, and therefore the 

numerical results in this paper supersede those where timing and size decisions were 

made sequentially and evaluation of the service level constraint could err on the side of 

caution. We found that the optimal expansion parameters nearly always increased or 

decreased together. The delayed and infrequent expansion strategy that corresponds to 

large values of both parameters is optimal when greater shortages are permissible, lead 

times are short, economies of scale are significant, average demand growth is small, 

and/or demand volatility is low.   

The opposite strategy, of small and frequent expansions that are initiated proactively, is 

optimal when the problem parameters reacts a more stringent service level, smaller 

economies of scale, and greater risk of shortage from the combination of long lead times 

and faster or more volatile demand growth.  

Lastly, a deterministic lead time was considered for expansion. A probability distribution 

could be considered for the lead time to make it more realistic and the e act of stochastic 

lead time on the capacity expansion problem could be analyzed. 

 

3. GENERATING DATA 

There are two ways to generate data from a work-conserving system which will reveal the 

maximum processing rate in the system. They are: 

• input tasks to the system at a rate known to be much higher than the system can 

handle 

• fill the system, then input a new task every time that a task completes 

In the former, the rate of outgoing jobs eventually converges to p. Instead of choosing a 

very high input rate and dealing with the problems of exploding buffer contents and a no 

recurrent system, we will simply close off the system and recalculate the tasks which 

finish. Hence, we take the second approach. 

Hospitals reserve capacity to meet stochastic demand. This production response to 

demand uncertainty aids the specification of optimal capacity, which incorporates costly 

reserve capacity. Few estimates of hospital cost structures have taken account of this 



aspect of hospital production and none have been applied, as undertaken below, to a 

heavily capacity constrained setting such as exists in the UK. Freidman and Pauly (1983), 

Gaynor and Anderson (1995), and Carey (1996), have all incorporated the impact of 

stochastic demand on hospital cost structures, while also recognising that hospitals control 

the output decisions, in response to such demand. In these studies the emphasis has 

been on estimating the cost of maintaining reserve capacity.  

Running at full capacity also imposes a cost, however, in the form of production 

inflexibility, leading to patients being queued or turned away. There is therefore a trade-off 

between the cost of holding unused capacity in order to service stochastic demand, and 

operating at full capacity and turning patients away. This trade-off defines the optimal level 

of reserve capacity compatible with economically efficient utilisation. As Gaynor and Vogt 

(2000) note in any case, failure to take account of stochastic demand and the consequent 

production responses, leads to misspecification of hospital cost-output relations. 

The determination of optimal capacity itself depends on an appropriate specification of 

output. One limitation of previous studies is that they have used an aggregate measure of 

hospital in-patient care, total admissions, to define in-patient output. The precise stochastic 

nature of demand will vary according to the type of case being serviced. A second 

limitation of previous studies is the reliance on annual or quarterly fluctuations in demand 

to model hospital responses to stochastic demand. It seems more realistic to model 

shorter-term fluctuations in demand to capture such responses. Use of aggregate 

measures, for both hospital output and demand fluctuation, will lead to a loss of 

information on the form and structure of the demand uncertainty. 

In order to further explore the production responses to demand uncertainty, it is noted that 

hospitals distinguish between elective and emergency admissions.  

Demand for emergency services is assumed randomly distributed with a known probability 

density function, while there is an assumed excess demand for elective treatments. This 

situation is readily observed in health care systems similar to that found in the UK where 

National Health Service (NHS) hospital capacity is limited through a budget constraint 

imposed on expenditure with total health care funding raised through general taxation. 

Patients are fully covered for all care within the NHS and treatment costs are not charged 

to the individual patient (see Cullis et al., 2000). NHS hospital referrals are designated to 

be emergency or elective cases with waiting lists used to explicitly ration the capacity 

allocated to elective treatments. Simultaneously each individual hospital retains some 

capacity to meet stochastic emergency demand, while also maintaining a waiting list for 

elective demand. 

Within this system individual hospitals make a decision to allocate their fixed capacity 

based on their expectations of emergency demand turning into effective demand, 



recognising that these expectations may not be realised ex post. In order to produce at 

any given level of output the hospital commits resources ex ante based on a forecast of 

emergency demand. Given seasonal fluctuations and the short-term nature of hospital 

planning such forecasts are based on within-year variations, even although budget 

allocations are tied to a yearly cycle. 

 

4. FORECASTING WITH LIMITED DATA USING ARIMA MODELS 

In statistics, an autoregressive integrated moving average (ARIMA) model is a 

generalisation of an autoregressive moving average or (ARMA) model.  

These models are fitted to time series data either to better understand the data or to 

predict future points in the series. The model is generally referred to as an ARIMA(p,d,q) 

model where p, d, and q are integers greater than or equal to zero and refer to the order of 

the autoregressive, integrated, and moving average parts of the model respectively. 

Given a time series of data Xt where t is an integer index and the Xt are real numbers, 

then an ARMA(p,q) model is given by 

 

where L is the lag operator, the φi are the parameters of the autoregressive part of the 

model, the θi are the parameters of the moving average part and the are error terms. The 

error terms are generally assumed to be independent, identically distributed variables 

sampled from a normal distribution with zero mean. 

An ARIMA(p,d,q) process is obtained by integrating an ARMA(p,q) process. That is, 

 

where d is a positive integer that controls the level of differencing (or, if d = 0, this model is 

equivalent to an ARMA model). Conversely, applying term-by-term differencing d times to 

an ARMA(p,q) process gives an ARIMA(p,d,q) process. Note that it is only necessary to 

difference the AR side of the ARMA representation, because the MA component is always 

I(0). 

It should be noted that not all choices of parameters produce well-behaved models. In 

particular, if the model is required to be stationary then conditions on these parameters 



must be met. 

Some well-known special cases arise naturally. For example, an ARIMA(0,1,0) model is 

given by: 

 

which is simply a random walk. 

A number of variations on the ARIMA model are commonly used. For example, if multiple 

time series are used then the Xt can be thought of as vectors and a VARIMA model may 

be appropriate. Sometimes a seasonal effect is suspected in the model. For example, 

consider a model of daily road traffic volumes. Weekends clearly exhibit different 

behaviour from weekdays. In this case it is often considered better to use a SARIMA 

(seasonal ARIMA) model than to increase the order of the AR or MA parts of the model. If 

the time-series is suspected to exhibit long-range dependence then the d parameter may 

be replaced by certain non-integer values in a Fractional ARIMA (FARIMA also sometimes 

called ARFIMA) model. 

The conceptual motivation for the empirical variable cost model estimated below follows 

that of Freidman and Pauly (1983) and Gaynor and Anderson (1995).  

Following the latter a short-run cost model is estimated with attention focussed on how 

hospitals use existing fixed capacity to service unexpected demand. Variable hospital 

costs are specified as a function of the in-patient output, disaggregated into emergency 

and elective outputs, as well as other dimensions of output such as day case, accident and 

emergency and outpatient activity, and other characteristics of the hospital such as 

teaching status. An estimate of  the level of fixed resource use, measuring the extent of 

excess capacity is incorporated through the inverse occupancy rate, which also controls 

for length of stay.  

All these cost elements are conditioned on the hospital’s estimate of unexpected demand 

as it relates to the probability of the hospital being full. This is controlled for through an 

estimate of unexpected emergency demand that enables empirical testing of whether or 

not uncertainty impacts hospital costs. It is hypothesised that if the coefficient on this 

variable is positive and significant, then demand uncertainty imposes a real cost on 

hospital production. It is this variable that differentiates the approach from the traditional 

cost function.  

The small number of studies which have estimated such a variable have used different 

estimates of demand uncertainty as proxies for the standby capacity required to service 

unexpected demand. Gaynor and Anderson (1995) use the first two moments of the 

distribution of annual demand to proxy the relationship between unexpected demand and 

standby capacity. Of course the annual level of data smoothes within period fluctuations 



while the focus on the described distribution emphasises the predictive content of the 

information used. Freidman and Pauly (1983) employ a measure of the ratio of expected to 

actual demand analysed on a quarterly basis.  

Given that a ratio is estimated, the level of uncertainty is not captured. Indeed such 

measures of demand uncertainty reflect the expected fluctuations in demand, i.e. the ones 

the hospitals can predict. If hospitals do accurately predict the fluctuations then there is no 

reason to expect this to impact on costs. In the model estimated below demand 

uncertainty is based on a residual estimate of forecast monthly emergency demand.  

The level of uncertainty faced by a hospital is thus defined as the difference between 

realised and forecast emergency demand. Such a measure captures the shocks imposed 

by stochastic excess demand while simultaneously avoiding possible multicollinearity 

between these demands. 

Following Freidman and Pauly (1983), a simple autoregressive process was modelled 

assuming demand expectations are related to prior demand experience. Panel data were 

used to estimate the demand-forecast equation for emergency admissions, and the 

performance criteria rest on their ability to forecast, rather than explain behavioural 

relationships. An AR1 process was adopted specified as follows: 

Eq. (1) Dt = αDVt + βDVi + ρ(Dt−1 − αDVt−1) 

where Dt is emergency demand in period t, DVt represents a monthly dummy variable, DVi 

represents a hospital dummy variable, ρ represents the autocorrelation between periods, 

and α and β are constants. The variable representing unpredictable demand is specified 

as the differences between actual emergency demand and the forecast demand gained 

from Eq. (1). 

The specified cost model relates total variable cost to the following explanatory variables: 

Eq. (2) TVC = f(ADMel, ADMem, RESem, VacSem, VacSel, INVOCC, OPATT, 

DAYATT, AEATT, WAGE, TD) 

Where TVC is total variable costs, ADMel and ADMem are total in-patient elective and 

emergency admissions, respectively, representing the two major dimensions of output. 

RESem is the variable that captures demand uncertainty, and represents the level of 

unexpected emergency arrivals, which is the difference between actual emergency 

demand and expected emergency demand (gained from the forecasting Eq. (1) above).  

In the short-run, while the overall capacity is fixed, there is still a choice over the level of 

different outputs. Maintaining consistency with the theoretical specification, beds are 

separated into those allocated to the elective sector and those to the emergency sector. 

These are calculated on the basis that, under conditions of excess demand, occupancy 



rate in the elective sector is assumed to be 100%, which is consistent with the existence of 

substantial hospital waiting lists for elective treatments as observed in the NHS. The level 

of staffed elective beds is therefore based on elective admissions and length of stay in that 

sector.  

The remaining service availability is assumed to be used for urgent admissions, including 

an element of reserve capacity. This enables the staffed beds allocated to each sector and 

the level of reserve capacity in the emergency sector to be determined.  

Eq. (2) includes the following independent output variables for ER – Hospital management 

where: 

• VacSem is the total number of staffed beds allocated to the emergency 

• VacSel is the total number of elective sectors 

• INVOCC is the inverse of the occupancy rate, refers to the specific sector and 

relates to the fixed capacity servicing stochastic demand 

• OPATT is the amount of outpatient visits 

• DAYATT is the number of day attendances 

• AEATT are the accident and emergency outpatient visits 

• WAGE is the index for the NHS which represents a proxy for prices 

• TD is a dummy variable for teaching hospitals 

These variables can be easily accommodated to service applications: 

• VacSem Is the total number of work bays allocated to the Service Workshop 

• VacSel Is the total number of elective sectors 

• INVOCC Is the inverse of the occupancy rate, refers to the specific sector and 

relates to the fixed capacity servicing stochastic demand 

• OPATT Total of vehicles entering the workshop 

• DAYATT Number of day services 

• AEATT Non scheduled vehicles entering the workshop 

• WAGE Equal to 1; as every service will have the same internal cost 

• TD variable for training technicians 

There is no theoretically accepted functional form for hospital cost functions consequently 

to determine an appropriate functional form a Box–Cox transformation applied to both 

dependent and explanatory variables was initially estimated. The results suggested a 

square root transformation on the dependent variable would fit the data with reasonable  



Subsequent mapping of the two main output variables against this square root 

transformation of hospital variable costs are given in Fig. 1 and suggest a reasonable 

mapping, with some possible curvature indicated for the emergency cases variable.5 The 

final estimated specification is as follows: 

Eq. (3) SNFCOST = α + β1ADMem + β2ADM2em + β3ADMel + β4RESem + 

β5VacSem +β6VacSel + β7INVOCC + β8OPATT + β9DAYATT 

+β10AEATT + β11WAGE + β12TD + ε 

where the variables are defined as in Eq. (1) with the addition of a quadratic term applied 

to the emergency admissions (ADM2em) and the total variable costs transformed by 0.5 

(SNFCOST). 

The coefficient on unexpected demand is both positive and significant supporting the 

hypothesis that production responses to uncertain demand do impact on hospital costs: 

the higher the extent of the uncertainty, the higher these costs will be. The implication 

being that even after the hospital has chosen an optimal level of standby capacity shocks 

to the production process caused by unexpected emergency demand impose costs. The 

level of such costs are quantified below. 

All other coefficients have expected a priori signs. The wage index is insignificant, which 

may not be surprising as the NHS is characterised by collective wage bargaining and thus 

may vary little between hospitals. The coefficients on emergency admissions, emergency 

admissions squared and occupancy rate do not attain conventional levels of statistical 

significance.  

This could arise as a result of possible contamination from the inclusion of emergency bed 

levels, emergency occupancy rate and emergency admissions. It is clearly difficult to 

separate out the truly variable from the fixed cost elements associated with provision as 

Keeler and Ying (1996) note and if this is the case collinearity may be introduced. Indeed 

as Gaynor and Anderson (1995) discuss there may even be quasi-fixed elements within a 

hospital cost function reflecting rigidities in utilising existing capital structures.  

As an alternative specification a transcendental logarithmic (translog) function was also 

estimated, but the results (which again can be obtained from the authors) were poor, with 

counterintuitive signs on the coefficients and insignificant t-statistics on almost all the 

independent variables. 

The marginal costs of emergency and elective admissions are based on the variable cost 

element, which is taken from the estimated coefficient on the admission variables in the 

cost equation, and the quasi-fixed element taken from the beds variables. The quasi-fixed 

element is adjusted for length of stay in the emergency and elective sectors, respectively.  

Aletras et al. (1997) review the literature with regards to economies of scale finding that 



economies of scale are exploited at a relatively low level. As they point out, however, this 

conclusion is premised on the assumption that hospitals are operating on their efficiency 

frontier. Gaynor and Vogt (2000) note such conclusions are based on inconsistent 

estimates, and scale economies have to be related to demand uncertainty and production 

responses.  

This is calculated in a manner similar to Gaynor and Anderson (1995) through the 

following formula: 

Eq. (4) S = (1−_(δ ln TVC/δ ln Bi))/[output cost elasticities] 

with the Bi representing elective and emergency beds and where the estimate is based on 

observed rather than optimal values.  

 

5. CONCLUSIONS 

This paper extends earlier work on production and cost responses to demand uncertainty. 

Therefore, the data used allows a more detailed specification of hospital output can be 

applied to the automotive service industry to forecast service needs.  

The cost function also incorporates high informational content on demand uncertainty 

through the use of within-year fluctuations in demand and applies this to a sample of 

services. 

The results are supportive of the earlier conclusions suggested by Gaynor and Anderson 

that hospitals do respond to demand uncertainty. Recently, Keeler and Ying (1996) 

interpreted the bias arising from demand uncertainty to be related to the regression fallacy 

problem. While this may be the case, adjustment at the individual hospital level is quite 

appropriate if interest is in the individual hospital responses to demand uncertainty.  

In this application the various measures of marginal cost and scale economies seemed 

plausible and consistent with our conceptual arguments relating to production responses 

to demand uncertainty. 

The results suggest that services do incur costs in holding reserve capacity to service 

stochastic demand. By separating out this stochastic demand from the excess elective 

demand it has been possible to quantify this cost. The rise in service needs is therefore of 

some concern, if only from a purely budgetary perspective. Moreover the marginal cost of 

treating an non scheduled admission includes an element of cost, directly attributable to 

the holding of reserve capacity to service this stochastic demand. The holding of reserve 

capacity in response to shocks experienced within the service system is also consistent 

with the finding of increasing returns to scale found.  

These general findings are themselves consistent with the conclusions drawn by earlier 



studies that an appropriate specification of service cost function will reflect the 

incorporation of production responses, in the form of holding reserve capacity, to 

unexpected demand.  

If brand regulatory policies are to be guided by analysis of service costs such 

considerations are of paramount importance. The setting of labour fees and service levels 

depends on the accurate demand forecasting, cost of service and understanding of their 

influence. 

In turn, fees should be set at a level that provides the appropriate incentives to workshops 

to hold reserve capacity where this is an efficient response to demand uncertainty.  

Furthermore, apparent inefficiencies resulting from services operating within production 

possibility frontiers may be explained by the existence of uncertain demand, therefore, 

care should be taken in the interpretation of efficiency rankings without adequate 

adjustment for demand uncertainty and its impact on cost structures. 

  

10. REFERENCES  

1. Al, M. M. C., Claude Coray, Carol J Cuccaro, William K Green, & Et. (1972). The 

distribution system simulator. Management Science (pre-1986), 18(8), B425.  

2. Alexander, M. (2003). 'The focus is on patients' clinical needs and distress'. British 

medical journal, 326(7402), 1332.  

3. Alfredsson, P., & Verrijdt, J. (1999). Modelling emergency supply flexibility in a two-

echelon inventory system. Management Science, 45(10), 1416.  

4. Andrews, K. (2000). Factors that affect the demand for medical care services: A 

micro-macro econometric analysis. (Ph.D., Clemson University).  

5. Arda,G Barbaroso[gcaron ]lu and Y. (2004). A two-stage stochastic programming 

framework for transportation planning in disaster response. The Journal of the Operational 

Research Society, 55(1), 43.  

6. Badri, M. A., & Hollingsworth, J. (1993). A simulation model for scheduling in the 

emergency room. International Journal of Operations & Production Management, 13(3), 

13.  

7. Bagust, A., Place, M., & Posnett, J. W. (1999). Dynamics of bed use in 

accommodating emergency admissions: Stochastic simulation model. British medical 

journal, 319(7203), 155.  

8. Ball, M. O., & Lin, F. L. (1993). A reliability model applied to emergency service 

vehicle location. Operations research, 41(1), 18.  



9. Bazargan, M., Bazargan, S., & Baker, R. S. (1998). Emergency department 

utilization, hospital admissions, and physician visits among elderly African American 

persons. The Gerontologist, 38(1), 25.  

10. Champion, R., Kinsman, L. D., Lee, G. A., & Masman, K. A. (2007). Forecasting 

emergency department presentations. Australian Health Review, 31(1), 83.  

11. Dawson, D., Jacobs, R., Martin, S., & Smith, P. (2006). The impact of patient choice 

and waiting time on the demand for health care: Results from the London patient choice 

project. Applied Economics, 38(12), 5.  

12. Duclos, L. K. (1993). Hospital inventory management for emergency demand. 

International Journal of Purchasing and Materials Management, 29(4), 30.  

13. Gerchak, Y., Gupta, D., & Henig, M. (1996). Reservation planning for elective 

surgery under uncertain demand for emergency surgery. Management Science, 42(3), 

321.  

14. Green, L. V., Savin, S., & Wang, B. (2006). Managing patient service in a diagnostic 

medical facility. Operations research, 54(1), 11.  

15. Jones, S. A., Joy, M. P., & Pearson, J. (2002). Forecasting demand of emergency 

care. Health care management science, 5(4), 297.  

16. Kamenetzky, R. D., Shuman, L. J., & Wolfe, H. (1982). Estimating need and 

demand for prehospital care. Operations research, 30(6), 1148.  

17. Khadem, R., & Schultzki, A. (1983). Planning and forecasting using a corporate 

model. Managerial Planning, 31(4), 37.  

18. Liu, B. (1976). Regional hospital needs projection: An input-output approach. Socio-

Economic Planning Sciences, 10(1), 37-42.  

19. Melnick, G. A., Nawathe, A. C., Bamezai, A., & Green, L. (2004). Emergency 

department capacity and access in California, 1990-2001: An economic analysis. Health 

affairs, , W136.  

20. Minner, S., Silver, E. A., & Robb, D. J. (2003). An improved heuristic for deciding on 

emergency trans-shipments. European Journal of Operational Research, 148(2), 384.  

21. New skills for capacity planners.(1994). Capacity Management Review, 22(5), 9.  

22. Perkins, W. J. (1996). An analysis of the demand for emergency medical service in 

a medium sized city. (M.P.H., New York Medical College).  

23. Powell, S. (1999). Using linear programming to simulate service engineers. The 

Journal of the Operational Research Society, 50(12), 1252-1255.  



24. Rhyne, D. M. (1989). Forecasting systems in managing hospital services demand: 

A review of applicability and a measure of utility. Socio-Economic Planning Sciences, 

23(3), 115-123.  

25. Turnbull,S C Brailsford and V A Lattimer and P Tarnaras and J C. (2004). 

Emergency and on-demand health care: Modelling a large complex system. The Journal of 

the Operational Research Society, 55(1), 34.  

26. Urbanos-Garrido, R. M. (2001). Explaining inequality in the use of public health care 

services: Evidence from Spain. Health care management science, 4(2), 143.  

27. Utley, M., Gallivan, S., Treasure, T., & Valencia, O. (2003). Analytical methods for 

calculating the capacity required to operate an effective booked admissions policy for 

elective inpatient services. Health care management science, 6(2), 97.  

28. Wasserman, G. S. (1992). An application of dynamic linear models for predicting 

warranty claims. Computers & Industrial Engineering, 22(1), 37-47.  

29. Weerahandi, S., Hisiger, R. S., & Chien, V. (1994). A framework for forecasting 

demand for new services and their cross effects on existing services. Information 

Economics and Policy, 6(2), 143-162.  

30. White, S. L. D. (1995). Algorithm-directed deferred paediatric care and reported 

parent/caretaker response: An exploratory study. (Ph.D., The George Washington 

University) 


