1,032 research outputs found

    An Optimal Control Derivation of Nonlinear Smoothing Equations

    Full text link
    The purpose of this paper is to review and highlight some connections between the problem of nonlinear smoothing and optimal control of the Liouville equation. The latter has been an active area of recent research interest owing to work in mean-field games and optimal transportation theory. The nonlinear smoothing problem is considered here for continuous-time Markov processes. The observation process is modeled as a nonlinear function of a hidden state with an additive Gaussian measurement noise. A variational formulation is described based upon the relative entropy formula introduced by Newton and Mitter. The resulting optimal control problem is formulated on the space of probability distributions. The Hamilton's equation of the optimal control are related to the Zakai equation of nonlinear smoothing via the log transformation. The overall procedure is shown to generalize the classical Mortensen's minimum energy estimator for the linear Gaussian problem.Comment: 7 pages, 0 figures, under peer reviewin

    Long-Run Accuracy of Variational Integrators in the Stochastic Context

    Get PDF
    This paper presents a Lie-Trotter splitting for inertial Langevin equations (Geometric Langevin Algorithm) and analyzes its long-time statistical properties. The splitting is defined as a composition of a variational integrator with an Ornstein-Uhlenbeck flow. Assuming the exact solution and the splitting are geometrically ergodic, the paper proves the discrete invariant measure of the splitting approximates the invariant measure of inertial Langevin to within the accuracy of the variational integrator in representing the Hamiltonian. In particular, if the variational integrator admits no energy error, then the method samples the invariant measure of inertial Langevin without error. Numerical validation is provided using explicit variational integrators with first, second, and fourth order accuracy.Comment: 30 page

    Pathwise Accuracy and Ergodicity of Metropolized Integrators for SDEs

    Full text link
    Metropolized integrators for ergodic stochastic differential equations (SDE) are proposed which (i) are ergodic with respect to the (known) equilibrium distribution of the SDE and (ii) approximate pathwise the solutions of the SDE on finite time intervals. Both these properties are demonstrated in the paper and precise strong error estimates are obtained. It is also shown that the Metropolized integrator retains these properties even in situations where the drift in the SDE is nonglobally Lipschitz, and vanilla explicit integrators for SDEs typically become unstable and fail to be ergodic.Comment: 46 pages, 5 figure

    Goal-oriented sensitivity analysis for lattice kinetic Monte Carlo simulations

    Full text link
    In this paper we propose a new class of coupling methods for the sensitivity analysis of high dimensional stochastic systems and in particular for lattice Kinetic Monte Carlo. Sensitivity analysis for stochastic systems is typically based on approximating continuous derivatives with respect to model parameters by the mean value of samples from a finite difference scheme. Instead of using independent samples the proposed algorithm reduces the variance of the estimator by developing a strongly correlated-"coupled"- stochastic process for both the perturbed and unperturbed stochastic processes, defined in a common state space. The novelty of our construction is that the new coupled process depends on the targeted observables, e.g. coverage, Hamiltonian, spatial correlations, surface roughness, etc., hence we refer to the proposed method as em goal-oriented sensitivity analysis. In particular, the rates of the coupled Continuous Time Markov Chain are obtained as solutions to a goal-oriented optimization problem, depending on the observable of interest, by considering the minimization functional of the corresponding variance. We show that this functional can be used as a diagnostic tool for the design and evaluation of different classes of couplings. Furthermore the resulting KMC sensitivity algorithm has an easy implementation that is based on the Bortz-Kalos-Lebowitz algorithm's philosophy, where here events are divided in classes depending on level sets of the observable of interest. Finally, we demonstrate in several examples including adsorption, desorption and diffusion Kinetic Monte Carlo that for the same confidence interval and observable, the proposed goal-oriented algorithm can be two orders of magnitude faster than existing coupling algorithms for spatial KMC such as the Common Random Number approach

    A probabilistic representation for the value of zero-sum differential games with incomplete information on both sides

    Get PDF
    We prove that for a class of zero-sum differential games with incomplete information on both sides, the value admits a probabilistic representation as the value of a zero-sum stochastic differential game with complete information, where both players control a continuous martingale. A similar representation as a control problem over discontinuous martingales was known for games with incomplete information on one side (see Cardaliaguet-Rainer [8]), and our result is a continuous-time analog of the so called splitting-game introduced in Laraki [20] and Sorin [27] in order to analyze discrete-time models. It was proved by Cardaliaguet [4, 5] that the value of the games we consider is the unique solution of some Hamilton-Jacobi equation with convexity constraints. Our result provides therefore a new probabilistic representation for solutions of Hamilton-Jacobi equations with convexity constraints as values of stochastic differential games with unbounded control spaces and unbounded volatility

    The maximum maximum of a martingale with given nn marginals

    Full text link
    We obtain bounds on the distribution of the maximum of a martingale with fixed marginals at finitely many intermediate times. The bounds are sharp and attained by a solution to nn-marginal Skorokhod embedding problem in Ob{\l}\'oj and Spoida [An iterated Az\'ema-Yor type embedding for finitely many marginals (2013) Preprint]. It follows that their embedding maximizes the maximum among all other embeddings. Our motivating problem is superhedging lookback options under volatility uncertainty for an investor allowed to dynamically trade the underlying asset and statically trade European call options for all possible strikes and finitely-many maturities. We derive a pathwise inequality which induces the cheapest superhedging value, which extends the two-marginals pathwise inequality of Brown, Hobson and Rogers [Probab. Theory Related Fields 119 (2001) 558-578]. This inequality, proved by elementary arguments, is derived by following the stochastic control approach of Galichon, Henry-Labord\`ere and Touzi [Ann. Appl. Probab. 24 (2014) 312-336].Comment: Published at http://dx.doi.org/10.1214/14-AAP1084 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore