This paper presents a Lie-Trotter splitting for inertial Langevin equations
(Geometric Langevin Algorithm) and analyzes its long-time statistical
properties. The splitting is defined as a composition of a variational
integrator with an Ornstein-Uhlenbeck flow. Assuming the exact solution and the
splitting are geometrically ergodic, the paper proves the discrete invariant
measure of the splitting approximates the invariant measure of inertial
Langevin to within the accuracy of the variational integrator in representing
the Hamiltonian. In particular, if the variational integrator admits no energy
error, then the method samples the invariant measure of inertial Langevin
without error. Numerical validation is provided using explicit variational
integrators with first, second, and fourth order accuracy.Comment: 30 page