In this paper we propose a new class of coupling methods for the sensitivity
analysis of high dimensional stochastic systems and in particular for lattice
Kinetic Monte Carlo. Sensitivity analysis for stochastic systems is typically
based on approximating continuous derivatives with respect to model parameters
by the mean value of samples from a finite difference scheme. Instead of using
independent samples the proposed algorithm reduces the variance of the
estimator by developing a strongly correlated-"coupled"- stochastic process for
both the perturbed and unperturbed stochastic processes, defined in a common
state space. The novelty of our construction is that the new coupled process
depends on the targeted observables, e.g. coverage, Hamiltonian, spatial
correlations, surface roughness, etc., hence we refer to the proposed method as
em goal-oriented sensitivity analysis. In particular, the rates of the coupled
Continuous Time Markov Chain are obtained as solutions to a goal-oriented
optimization problem, depending on the observable of interest, by considering
the minimization functional of the corresponding variance. We show that this
functional can be used as a diagnostic tool for the design and evaluation of
different classes of couplings. Furthermore the resulting KMC sensitivity
algorithm has an easy implementation that is based on the Bortz-Kalos-Lebowitz
algorithm's philosophy, where here events are divided in classes depending on
level sets of the observable of interest. Finally, we demonstrate in several
examples including adsorption, desorption and diffusion Kinetic Monte Carlo
that for the same confidence interval and observable, the proposed
goal-oriented algorithm can be two orders of magnitude faster than existing
coupling algorithms for spatial KMC such as the Common Random Number approach