44,922 research outputs found

    Markov Random Field Models: A Bayesian Approach to Computer Vision Problems

    Get PDF
    The object of our study is the Bayesian approach in solving computer vision problems. We examine in particular: (i) applications of Markov random field (MRF) models to modeling spatial images; (ii) MRF based statistical methods for image restoration, segmentation, texture modeling and integration of different visual cues

    Conditional Random Fields for Image Labeling

    Get PDF
    With the rapid development and application of CRFs (Conditional Random Fields) in computer vision, many researchers have made some outstanding progress in this domain because CRFs solve the classical version of the label bias problem with respect to MEMMs (maximum entropy Markov models) and HMMs (hidden Markov models). This paper reviews the research development and status of object recognition with CRFs and especially introduces two main discrete optimization methods for image labeling with CRFs: graph cut and mean field approximation. This paper describes graph cut briefly while it introduces mean field approximation more detailedly which has a substantial speed of inference and is researched popularly in recent years

    Quantum Annealing for Computer Vision Minimization Problems

    Full text link
    Computer Vision (CV) labelling algorithms play a pivotal role in the domain of low-level vision. For decades, it has been known that these problems can be elegantly formulated as discrete energy minimization problems derived from probabilistic graphical models (such as Markov Random Fields). Despite recent advances in inference algorithms (such as graph-cut and message-passing algorithms), the resulting energy minimization problems are generally viewed as intractable. The emergence of quantum computations, which offer the potential for faster solutions to certain problems than classical methods, has led to an increased interest in utilizing quantum properties to overcome intractable problems. Recently, there has also been a growing interest in Quantum Computer Vision (QCV), with the hope of providing a credible alternative or assistant to deep learning solutions in the field. This study investigates a new Quantum Annealing based inference algorithm for CV discrete energy minimization problems. Our contribution is focused on Stereo Matching as a significant CV labeling problem. As a proof of concept, we also use a hybrid quantum-classical solver provided by D-Wave System to compare our results with the best classical inference algorithms in the literature

    Deep Markov Random Field for Image Modeling

    Full text link
    Markov Random Fields (MRFs), a formulation widely used in generative image modeling, have long been plagued by the lack of expressive power. This issue is primarily due to the fact that conventional MRFs formulations tend to use simplistic factors to capture local patterns. In this paper, we move beyond such limitations, and propose a novel MRF model that uses fully-connected neurons to express the complex interactions among pixels. Through theoretical analysis, we reveal an inherent connection between this model and recurrent neural networks, and thereon derive an approximated feed-forward network that couples multiple RNNs along opposite directions. This formulation combines the expressive power of deep neural networks and the cyclic dependency structure of MRF in a unified model, bringing the modeling capability to a new level. The feed-forward approximation also allows it to be efficiently learned from data. Experimental results on a variety of low-level vision tasks show notable improvement over state-of-the-arts.Comment: Accepted at ECCV 201

    Investigation of commuting Hamiltonian in quantum Markov network

    Full text link
    Graphical Models have various applications in science and engineering which include physics, bioinformatics, telecommunication and etc. Usage of graphical models needs complex computations in order to evaluation of marginal functions,so there are some powerful methods including mean field approximation, belief propagation algorithm and etc. Quantum graphical models have been recently developed in context of quantum information and computation, and quantum statistical physics, which is possible by generalization of classical probability theory to quantum theory. The main goal of this paper is preparing a primary generalization of Markov network, as a type of graphical models, to quantum case and applying in quantum statistical physics.We have investigated the Markov network and the role of commuting Hamiltonian terms in conditional independence with simple examples of quantum statistical physics.Comment: 11 pages, 8 figure
    corecore