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Abstract

In this paper, we present an efficient framework to cognitively detect and track salient objects from videos. In general, colored
visible image in red-green-blue (RGB) has better distinguishability in human visual perception, yet it suffers from the effect of
illumination noise and shadows. On the contrary, the thermal image is less sensitive to these noise effects though its distinguish-
ability varies according to environmental settings. To this end, cognitive fusion of these two modalities provides an effective
solution to tackle this problem. First, a background model is extracted followed by a two-stage background subtraction for
foreground detection in visible and thermal images. To deal with cases of occlusion or overlap, knowledge-based forward
tracking and backward tracking are employed to identify separate objects even the foreground detection fails. To evaluate the
proposed method, a publicly available color-thermal benchmark dataset Object Tracking and Classification in and Beyond the
Visible Spectrum is employed here. For our foreground detection evaluation, objective and subjective analysis against several
state-of-the-art methods have been done on our manually segmented ground truth. For our object tracking evaluation, compre-
hensive qualitative experiments have also been done on all video sequences. Promising results have shown that the proposed
fusion-based approach can successfully detect and track multiple human objects in most scenes regardless of any light change or
occlusion problem.

Keywords Multiple object detection . Pedestrian detection/tracking . Cognitive fusion . Visible image . Thermal image

Introduction

In the past decades, detection and tracking of video objects has
always been a major task in the computer vision field [1–3]. As
one subset of video object tracking, pedestrian detection and
tracking has drawn massive research attention and been applied
to many applications such as visual surveillance [4–8], driver-
assistance systems [9–11], human activity recognition [12–14],
and others [15, 16]. For pedestrian detection and tracking, visible
camera and thermal imagery are two popularly used sources of
image modalities, though not necessarily in a combined solution
[17–19]. However, either visible image or thermal image has
their advantages and disadvantages. Visible image can show de-
tailed color information; however, it really suffer from lighting
variations, cluttered backgrounds, artificial appearances, i.e.,
shadows, and etc. Since the object is detected by its temperature
and radiated heat, thermal image can eliminate the influence of
color and illumination changes on the objects’ appearance [20] in
anyweather conditions and at both day and night time. However,
in some cases, e.g., occlusions, the thermal camera may fail to
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detect the object properly. In Fig. 1, there are three pedestrian
templates; for the one with a yellow rectangle, both visible and
thermal image can detect it very well since it has high contrast to
the background in the visible domain and human temperature in
the thermal domain. For the template in the red rectangle, it has a
compact shape in the thermal image. However, in the visible
image, we can just identify it coarsely due to the similar appear-
ance in color of the background and the person’s cloth. The one
in green rectangle can be seen in the visible image but hardly
observed in the corresponding thermal image. This is because
thermography is only able to directly detect surface temperatures,
and it cannot work well when the object is (partially) occluded.
Moreover, it will detect any objects (e.g., windows and cars in
Fig. 1) with surface temperature.

For the purpose of object detection, background subtraction
plays an important role in it. Due to its significance, a large
number of background subtraction algorithms have been pro-
posed in recent years. Andrew et al. [21] proposed a single-
camera statistical segmentation algorithm where a combination
of statistical background image estimation and Bayesian-based
segmentation is used to achieve foreground detection. Domenico
and Luca [22] proposed a fast background subtraction method
based on a clustering algorithm with a condition-based mecha-
nism. Zhao et al. [23] proposed a background modeling method
for motion detection in dynamic scenes based on type-2 fuzzy
Gaussian mixture model [24] and Markov random field (MRF)
[25]. In [26], authors introduced a background subtraction frame-
work based on texture feature. Furthermore, color cues are clus-
tered by the codebook scheme in order to refine the texture-based
detection. Pierre-Luc points out in [27] that most background
subtraction methods do not pay attention to the spatial or spatio-
temporal relationship of each analyzed pixel, and also suffer in
complexity, computation cost, and versatility. Therefore, he pro-
posed a spatiotemporal-based background subtraction algorithm
which has been proved low-cost and highly efficient. In addition,
he also proposed another one using spatiotemporal feature de-
scriptors in [28] in order to build an adaptive and flexible model
rather than tuning parameters in different scenarios for optimal
performance. In [29], a background subtraction model based on
independent component analysis and principal component

analysis is proposed to detect multiple moving objects under
complex outdoor scenes such as bad weather or dynamic back-
ground. In [30], based on the assumption that moving objects are
usually small and sparse, a collaborative low-rank and sparse
separation model is proposed to robustly detect moving objects
with different sizes. However, background regions which have
the similar color/intensity as the foreground may be detected as
foreground by mistake. In Wang et al. [31], a coarse-to-fine pe-
destrian detection method is proposed for visual surveillance,
which can solve the problem in detecting small pedestrians. By
using pan-tilt-zoom control, it also helps to achieve real-time
tracking, though the performance depends on specified sensor
settings.

However, due to lack of cognitive knowledge, some of their
methods have good objective performance; their subjective per-
formance is not satisfied (detailed in BExperimental Results^).
Besides, existing approaches mainly rely on color image for
pedestrians’ detection and tracking, using different features such
as color and texture for modeling. In our paper, thermal images
are also used, which have neither color nor texture information
but just intensity instead. Unlike color images, thermal images
are robust to any weather or illumination conditions though they
are sensitive to surface temperature. As a result, it is necessary to
find a new path to process both visible and thermal image based
on their characteristics. Inspired by several multi-modality image
fusion approaches [32–34], where color and infrared images are
integrated for saliency-based image fusion [32, 34] and image
registration [33], the fusion of the two image modalities (RGB
and thermal) offers new insights for the supplementary informa-
tion they can provide. This has proven to be a success in deter-
mining the refined foreground map by the fusion of both visible
and thermal binary maps. By combining cognitive models from
different levels and aspects, we have proposed a generic model
for effective detection and tracking of pedestrians from color and
thermal videos.

In our proposed approach, different levels of cognitivemodels
are integrated together for effective detection and tracking of
pedestrians from color and thermal videos. These include color-
and intensity-based cognitivemodels of human visual perception
for robust background estimation and foreground detection,

Fig. 1 Visible image of a scene
(left) and thermal image of the
same scene (right)
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cognitive models of object priors for shape-constrained morpho-
logical filtering in determining the refined foreground maps, and
cognitive model of motion for motion consistency-constrained
mean shift in extracting single persons from a group. By system-
atically integrating these cognitive models together, an effective
model is developed and proven to be the best when
benchmarking with several state-of-the-art techniques. It is be-
lieved the proposed approach can be also applied in other areas of
object detection and tracking, e.g., medical imaging for improved
performance.

The main contributions in this paper can be highlighted in the
following three aspects:

& As color and intensity information plays important roles in
the cognitive models of our human visual perception, an
adaptive Gaussian mixture model is proposed to measure
the distribution of such information in multi-modality im-
ages (color and thermal) before deriving the estimated
background for foreground detection.

& Based on the prior knowledge of the human objects to be
detected, shape constraints are fused in combination with
morphological filtering for determining the refined fore-
ground maps.

& Inspired by cognitive model of motion, motion consisten-
cy is applied in a constrained mean-shift scheme for the
extraction of single persons from a group.

The rest of the paper is organized as follows: The BOverview
of the Proposed System^ illustrates the framework of the pro-
posed method. The BForeground Detection^ describes the fore-
ground detection approach. The BObject Tracking^ elaborates
the object tracking method. Experimental results are presented
and discussed in the BExperimental Results.^ Finally, some con-
cluding remarks and future work are summarized in the
BConclusion.^

Overview of the Proposed System

In this paper, we proposed a two-stage background subtraction
procedure based on human cognition knowledge on both visible
and thermal images for fusion-based pedestrian detection, and
four modules are included in Fig. 2. In the first stage, we predict
the background model by computing the median value of ran-
domly selected frames in the videos (module 1), and apply an
adaptive threshold to detect binary foreground map along with
knowledge-based morphological refinement (module 2). In the
second stage, we use the results from module 1 as prior frames
and employ learning-based adaptive Gaussian mixture model to
estimate the background model and generate the binary fore-
ground map (module 3). Then the initial and Gaussian-based
foreground maps of both visible and thermal images will be
refined by shape-constrained morphological filtering and further

fused together to get the final foreground map (module 4). In the
performance evaluation (module 5), the proposed background
subtraction method is compared against a number of state-of-
the-art methods on a widely used publicly available video se-
quences. Some widely used evaluation criteria such as precision,
recall, and F measure are used for quantitative assessment. In
addition,we also proposed constrainedmean-shift trackingmeth-
od to have a capability of scale change and identify the individual
pedestrian template from a pedestrian group more efficiently
(detailed in BObject Tracking^). Furthermore, the performance
of object tracking is also evaluated by qualitative assessment.
Detailed results are reported in the BExperimental Results.^

Foreground Detection

In this section, a two-stage foreground detection method is ap-
plied for both visible and thermal images. Eventually, the desired
foreground map is fused by the foreground detection results of
two types of images with cognition-based morphological
process.

Random Median Background Subtraction

To capture the initial region of pedestrians in visible and thermal
image, we first estimate the background model by computing a
median map (Fig. 2 module 1) of N frames randomly selected
from the video sequence. And initial background subtraction
process for each visible or thermal frame is defined as:

BSini x; yð Þ ¼ I x; yð Þ−Imed x; yð Þj j ð1Þ

After that, we binarize the BSiniwith an adaptive threshold,
i.e., OTSU [35] to get a binary image Ibi with coarse human
body region (Fig. 2 module 2). However, Ibi contains many
ambiguous contents and some objects that should be detected
as a whole are fractured. Therefore, a cognitive-based mor-
phology refinement is applied here to filter the insignificant
region and integrate the potential objects. Since the object that
we want to detect is pedestrian, and we can assume the shape
of the pedestrians is an ellipse or a rectangle based on our
cognition, so that its major axis length is usually larger than
minor axis length. Therefore, in our morphology refinement,
we define a rectangle-shaped structuring element to connect
separated regions together to be a whole object. The width and
height of the rectangle is defined as 2n + 1 and
2nþ 3 n∈Zþ

0

� �

, respect ively. Here, we set n as 1.
Furthermore, as the size of the pedestrian in the video will
not be small, we filter those noise regions by an empirical
threshold T. From Fig. 3, we can see in the refinement result
Ir, the noise regions with the small area have been removed
and every object has been integrated.

Cogn Comput



Adaptive Mixture Background Subtraction

Although the random median background subtraction
module can detect some potential objects, it still

contains many false alarms due to lack of the analysis
of the scene changes, lighting changes, moving object,
and etc. Therefore, a learning-based background mixture
model is employed here to estimate the foreground map

Fig. 3 The refined initial
background subtraction results of
visible (left) and thermal (right)
images

Fig. 2 Proposed framework within five modules
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under a real scene. For a particular surface under par-
ticular lighting, a single Gaussian per pixel is sufficient
to represent the pixel value. However, in practice, there
are multiple surfaces due to the lighting condition
change. Thus, in order to fit the real world situation
and our human cognition, multiple adaptive Gaussians
are necessary. In this paper, we model each pixel by a
mixture of K Gaussian distributions. The probability of
observed pixel Xt at time t can be written as:

P X tð Þ ¼ ∑
K

i¼1
ωi;t*η X t;μi;t;Σi;t

� �

ð2Þ

where ωi, t is the weight parameter of the ith Gaussian
in the mixture at time t, μi, t and Σi;t ¼ σ2

i Ι are the
mean and covariance value of the ith Gaussian in the
mixture at time t. η(∗) is the normal distribution of the
ith Gaussian component.

η X t;μi;t;Σi;t

� �

¼
1

2πð Þ
D
2 Σi;t

�

�

�

�

1
2

e−
1
2 X t−μi;tð Þ

T
Σi;t

−1 X t−μi;tð Þ ð3Þ

The first B distributions are chosen as the background
model

B ¼ argminb ∑
b

i¼1
ωi > T

� �

ð4Þ

T is the minimum portion of the data that should be counted
as background. For any new observed pixel value, Xt will be
considered as foreground if it is more than 2.5 standard devi-
ations away from existing B distributions. And the first
Gaussian component that matches the new observed pixel
value will be updated by the following progress:

ωi;t ¼ 1−αð Þωi;t−1 þ α
^

p
^ ̂

ωi;tjX t

� �

ð5Þ

μi;t ¼ 1−αð Þμi;t−1 þ ρX t

�

ð6Þ

Σi;t ¼ 1−αð ÞΣi;t−1 þ ρ X t−μi;t

� �

X t−μi;t

� �T
ð7Þ

ρ ¼ αη X t;μi;t;Σi;t

� �

ð8Þ

p
^ ̂

ωi;tjX t

� �

¼
1 ; if ωi;tmatches first Gaussian component

0 ; otherwise

�

ð9Þ

where α is the learning rate.
In addition, we use ten random median background sub-

traction results to predict the initial value of the parameters ωi,

t, μi, t, and Σi, t for better performance. After the adaptive
background mixture model is done, we can get the foreground
map Ia

vis and Ia
thm of visible and thermal images (Fig. 2

module 3).

Fusion Strategy

In order to generate the final foreground map and make the
fusion result close to human perception, we put a shape-
constrained morphological refinement to the results from the
previous stage and integrate them together. For Ir

vis, Ia
vis, Ir

thm,
and Ia

thm, we define a function D(∙) that can dilate all the
potential objects with a shape-based structuring element.
And we set n = 0 because we just want to smooth the edge
for each object and connect the small gap between some ob-
ject pieces. By doing so, the shape of the object will have
continuity, which matches human perceptions. Then the final
foreground map (Fig. 2 module 5) can be built by fusion
strategy as follows:

I vis ¼ Ia
vis∩D I r

vis
� �� �

∪ I r
vis∩D Ia

vis
� �� �

ð10Þ

I thm ¼ Ia
thm∩D I r

thm
� �� �

∪ I r
thm∩D Ia

thm
� �� �

ð11Þ

I final ¼ I vis∩D I thmð Þð Þ∪ I thm∩D I visð Þð Þ ð12Þ

Object Tracking

For any continuous frames, if the later frame has fewer objects
than the former frame, there will be only two situations. The
first situation is one or more objects in the former frame have
been out of the later frame, and the other situation is some
individual objects in the later frame are detected as a whole in
the foreground detection stage due to the inevitable overlap
and occlusion problem. Figure 4 (right and middle) shows the
detection detail of two adjacent frames where there should be
three pedestrian patterns detected in both frames, but for the
frame in the middle, the object detection method considers the
left two patterns as one object because they are close to each
other. Therefore, in this section, an improvedmean-shift meth-
od is proposed to track the individual objects in the second
situation.

Conventional mean-shift method [36] mainly has two
drawbacks. The first one is that it tracks the object mostly
based on the color and texture feature, but does not take too
much account of the spatial relationship of the object.
Therefore, if the object has the similar color with surrounding
background, the tracker will probably locate the object at the
background region in the following frame. The second one is
the similarity computation for two probability density func-
tions (PDFs). In [36], it defines the distance between two
PDFs as

d yð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−ρ
^

p
^ ̂

yð Þ;
^
q
^ ̂
�

"

v

u

u

t ð13Þ

Cogn Comput



ρ
^

p
^ ̂

yð Þ;
^
q
^ ̂
� ¼ ∑

m

u¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

^
p
^ ̂

u yð Þ
^
q
^ ̂

u

r

2

4 ð14Þ

where ρ[∙] is the Bhattacharyya coefficient, q̂ ¼ q̂uf gu¼1…m

(with ∑
m

u¼1
q̂u ¼ 1 ) is the discrete density from the m-bin his-

togram of the object model, p̂ yð Þ ¼ p̂u yð Þf gu¼1…m (with ∑
m

u¼1p̂u yð Þ ¼ 1 ) is estimated as a given location y from the m-bin
histogram of the object candidate. However, q̂ does not
change with time which is not fit with human cognition be-
cause the surrounding of the object cannot be always the same
in the real scene. On the other hand, unchangeable q̂ will also
increase the convergence cost because it will takemore time to
match object candidate and object model within difference
background.

To overcome two problems mentioned above, we propose
constrained mean-shift method where two improvements are
introduced in the following. Firstly, the object model is up-
dated in each frame in order to get the real-time q̂. Thus, the
size of the q̂ will change with the scale changing of the object.
Meanwhile, the pedestrians usually move slowly which
means their surrounding background in adjacent frames will
not be changed too much. In this case, p̂ yð Þ can be quickly
matched with q̂ in each frame. Secondly, we limit the shift
range with the spatial information of the objects in adjacent
frames. We define Fn − 1 and Fnd are frame n-1 and frame n,

Ri
n−1 is the region i in Fn − 1, and R

j
n is the region j in Fn, X

i;1
n−1

;Xi;2
n−1;Y

i;1
n−1; and Yi;2

n−1 which are the location elements of

Ri
n−1, and X j;1

n ;X j;2
n ;Y j;1

n ; and Y j;2
n are the location elements

of R j
n. After the location of R

i
n−1 candidate in Fn (expressed as

Xi;1
n ;Xi;2

n ;Yi;1
n ; and Yi;2

n ) is determined by conventional
mean-shift algorithm in every iteration, we further refine this
location by a displacement term represented as λx, λy.

L e t λi;1x ¼ X j;1
n −Xi;1

n ; λi;2x ¼ X j;2
n −Xi;2

n ; λi;1y ¼ Y j;1
n −Yi;1

n ;

and λi;2y ¼ Y j;2
n −Yi;2

n be the displacement terms, the new po-

sition of the object can be determined by using these displace-
ment terms as follows:

Xi
n ¼ Xi

n þ λi;1x ; if λi;1x > 0
Xi

n ¼ Xi
n þ λi;2x ; if λi;2x < 0

�

ð15Þ

Yi
n ¼ Yi

n þ λi;1y ; if λi;1y > 0

Yi
n ¼ Yi

n þ λi;2y ; if λi;2y < 0

(

ð16Þ

As can be seen from Fig. 4, region 1 and region 2 in frame 1
are two individual object models, the corresponding object
candidate should be limited in region 3 in frame 2. In this case,
the object group in frame can be tracked separately in regions
4 and 5 (shown in the right image in Fig. 4).

Experimental Results

Dataset Description and Evaluation Criteria

To evaluate the performance of our foreground detection and
object tracking methods, a publicly available database 03
OSU Color-Thermal Database from OTCBVS are employed
here. Thermal sequences are captured by Raytheon PalmIR
250D thermal sensor and color sequence are captured by Sony
TRV87 Handycam color sensor. All the frames in both se-
quences have a spatial resolution of 320 × 240 pixels. The
number of frames in each video sequence is Sequence-
1:2107, Sequence-2:1201, Sequence-3:3399, Sequence-
4:3011, Sequence-5:4061, and Sequence-6:3303, respective-
ly. Figure 5 shows some visible and thermal frames and the
results of our foreground detection method. For our fore-
ground detection method, we do both qualitative (Fig. 6) and
quantitative (Table 4) analysis against six state-of-the-art
methods, i.e., GMG [21], IMBS [22], LOBSTER [27],
MultiCue [26], SuBSENSE [28], and T2FMRF [23] on some
manually segmented silhouettes. For our object trackingmeth-
od, we do comprehensive qualitative experiments on all video
sequences (Fig. 7).

For quantitative performance assessment of the proposed
foreground detection algorithm, several commonly used met-
rics are adopted in our experiments, which include the preci-
sion, recall, and F measure. The precision value P and recall

value R are determined by P ¼
Tp

TpþFp
;R ¼

Tp

TpþFp
, where Tp,

Fp, and Fn, respectively, refer to the number of correctly de-
tected foreground pixels of the pedestrians, incorrectly

Fig. 4 Initial detection result of frame 1 (left) and frame 2 (middle), and updated detection result of frame 2 (right) after mean-shift tracking progress
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detected foreground pixels (false alarms), and incorrectly de-
tected background pixels (or missing pixels from the object).
Specifically, these three numbers can be calculated by com-
paring the binary masks of the detected image and the ground
truth. Furthermore, since the database does not have ground
truth, we obtain a manual segmentation of the pedestrian re-
gions in 53 frames from Sequence-1. The F measure is de-
fined by Fmeasure ¼

2∙P∙R
PþR

.

Key Parameter Selection

In this paper, we carefully choose the key parameter by inves-
tigating their changes on the performance. The effect of sev-
eral key parameters in the proposed approach is discussed as
follows. For adaptive Gaussianmixture model, the key param-
eters are the learning rate α, the threshold of background por-
tion T, and the Gaussian distribution number K. Tables 1, 2,
and 3 summarize the performance by changing these three
parameters, respectively. From Table 1, we can see that the
precision will slightly increase with the rising learning rate

while the recall shows the inverse trend against the precision.
As the learning rate decides how many recent frames are used
for training, the larger the learning rate is, the less the recent
number of frames is used. Generally, with less recent frames
used to predict the background, the local information will be
more detailed. On the contrary, more recent frames will make
the background to have more global property and robust to
local inconsistency. To this end, the learning rate can be nei-
ther too large nor too small, which is set to 0.002 (500 recent
frames) in this paper based on our practical measurement [37].
From Table 2, we can find that the precision grows with the
increasing T, yet the recall has the opposite tendency against
the precision again. The reason for this is when the portion of
background is increased some foreground regions or noise
may be considered as background. Although it somehow
makes the precision increase, the recall will reduce sharply.
However, if the portion of background is too small, many
noised regions can be considered as foreground. As a result,
it will significantly degrade the precision rate due to the
growth of the false alarm while the recall will not increase
much. Though Twas set to 0.6 in [37], we empirically choose

(a) (b) (c)

(d) (f) (e)

Fig. 5 Visual results of proposed foreground detection algorithm. a Sequence-1. b Sequence-2. c Sequence-3. d Sequence-4. e Sequence-5. f Sequence-6
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T = 0.7 for its better performance. Table 3 shows that the num-
ber of Gaussian distributions does not affect the performance
much as long as it is larger than 2. Therefore, we set K = 5 as
suggested in [38].

Assessment of Foreground Detection Method

To evaluate the quality of the extracted foreground map, we
compare our proposed method with six state-of-the-art
methods in terms of precision, recall, and F measure as the
performancemetrics with the results shown in Table 4. For fair
comparison, instead of just comparing our fusion result with
others’ results on visible images, we do the same fusion strat-
egy for each method where Ivis and Ithm are generated by those

methods on visible and thermal images, respectively. From
Table 1, we can see the precision of proposed foreground
detection is comparable with GMG [21] and LOBSTER
[27], and both recall and Fmeasure of our method outperform
other methods. IMBS, MultiCue, and T2FMRF yield bad per-
formance due to their algorithms does not take too much ac-
count of the scene change. Although their methods work
well in some indoor and outdoor data, those data do not
have too much light change. However, in the 03 OSU
Color-Thermal Database from OCTBVS, the clouds
make the big shadow on the ground and the light of
the scene changes as time goes by. GMG, LOBSTER,
and SuBSENSE almost have similar performance and
very comparable with our proposed method.

(a)

Visible

(b)

Thermal

(c)

GT

(d)

GMG[1]

(e)

IMBS[2]

(f)

LOBSTER[3]

(g)

Mul�Cue[15]

(h)

SuBSENSE[24]

(i)

T2FMRF[25]

(j)

Proposed

Fig. 6 Visual comparison. a Original images. b Ground truth. c–j Saliency maps generated by different methods
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However, these methods are mainly designed for the object
detection in the small scene. And the objects in the small scene
usually have large size than the pedestrians in a surveillance
system. Therefore, thesemethods can detect the pedestrianswith-
in close or middle range but not long range from the camera. In
addition, affected by light change and weather condition, some
details have been lost. As can be seen in the visible image in Fig.
6, some pedestrians’ shapes in GMG are not integrated; some
pedestrians’ shapes in GMG are fractured, e.g., left person in the
first image is split into two regions; some pedestrians that are far
away from the camera cannot be detected in SuBSENSE, e.g.,
the fifth and sixth images. Hence, these methods have good
quantitative results but their qualitative results do not fit human’s

cognition. However, our foreground detection result is generated
by a two-stage background subtraction procedure and fusion
strategy where cognition-based knowledge is applied in to refine
the procedure and guide the fusion strategy.

Although our proposedmethod yields the best performance in
terms of F measure, there are still rooms for further improve-
ments. As seen, our proposed method has produced high recall
value but relative low precision value just like other methods.
There are twomain reasons, i.e., missing detection and inaccurate
ground truth mapping. For the cases of missing detection, this is
mainly due to the failure in detecting objects dressing in similar

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 7 Visual tracking results of the proposed approach across different images and scenarios. a–f Sequence-1–6

Table 2 Key parameter T analysis

Threshold T Precision Recall F measure

0.4 68.8 89.21 77.69

0.5 68.83 89.2 77.7

0.6 69.06 89.05 77.79

0.7 70.16 87.97 78.06

0.8 72.32 82.49 77.07

0.9 76.26 59.33 66.74

The best results in term of F measure is highlighted in italic

Table 1 Key parameter α analysis

Learning rate Precision Recall F measure

0.001 69.59 88.72 78

0.002 70.16 87.97 78.06

0.003 71.06 84.97 77.39

0.004 71.03 81.09 75.73

The best results in term of F measure is highlighted in italic
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color to the background and behind obstacles. This can be pos-
sibly improved by introducing certain post-processing such as
back-tracking. However, it can still be challenging in dealing
with small objects which are frequently grouped together. This
also explains the low accuracy of ground truth as in some cases
and the silhouettes of the pedestrians can be hardly defined ac-
curately even in a manual way.

Assessment of Object Tracking Method

To validate the performance of the proposed object tracking ap-
proach, all video sequences are used in our experiments. In Fig.
7, detection and tracking results from these sequences are given
to illustrate the extracted/tracked objects using their bounding
boxes. As can be seen, the proposed method can give reliable
pedestrian detection and tracking results under various condi-
tions, including occlusion and light changes in terms of illumi-
nation and scale. When the pedestrians are independent, we can
detect them very well with proper scale bounding box. We can
also identify the people even they are overlapped such as the first
and third images in Fig. 7d. In addition, when there are some
occlusions appear like tree or wall such as the second and third
images in Fig. 7d, first image in Fig. 7e, second and third images
in Fig. 7f, sixth image in Fig. 7b, and sixth image in Fig. 7c, etc.
For the object is getting out of the screen, such as the third image
in Fig. 7e, fourth and sixth images in Fig. 7f, we can still locate
the objects and track their motion.

However, some failure cases, such as third and fourth images
in Fig. 7a, the second image in Fig. 7c still exist in our tracking
results. There are twomain reasons, and the first one is that some
pedestrians always walk together as a group from the beginning
to the end in the sequence; therefore, our tracking system always
consider the pedestrian group as a single object. The second
reason is that if one pedestrian leaves a group of pedestrians
and join in another group, the tracking system cannot extract its
own color, texture, and spatial features. As a result, the mean-
shift method may fail to track in such a context.

Conclusion

In this paper, we proposed a cognitive model by fusing visible
and thermal images for pedestrian detection, along with an im-
proved mean-shift method proposed for tracking the pedestrians
in the videos. There are three key components in this model, i.e.,
foreground detection, fusion based object refinement, and object
tracking. By estimating the background model followed by a
two-stage background subtraction, foreground objects can be
successfully detected. Shape-constrained morphological
filtering-based fusion strategy helps to further refine the detected
foreground objects. Finally, prediction-based forward and back-
ward tracking is found particularly useful to separate overlapped
or occluded objects, and robust to the scale change. However, if
one certain pedestrian in a group cannot be detected individually
from the beginning to the end, the tracking system will fail to
estimate its own track and just estimate the track of its group
instead. In future work, we will put deep learning model to fur-
ther enhance the foreground detection performance and improve
the tracking procedure in order to precisely estimate the objects’
track even with some challenging situations.
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Table 4 Comparison of precision, recall, and F measure values

Methods Precision Recall F measure

GMG [21] 70.45 70.17 70.31

IMBS [22] 37.03 74.44 49.46

LOBSTER [27] 72.95 72.19 72.57

MultiCue [26] 26.02 88.78 40.25

SuBSENSE [28] 69.31 76.87 72.89

T2FMRF [23] 50.78 29.93 37.66

Proposed 70.16 87.97 78.06

The best results in term of F measure is highlighted in italic

Table 3 Key parameter K analysis

Number of K Precision Recall F measure

2 68.82 89.21 77.7

3 69.56 88.86 78.03

4 70.14 88.04 78.08

5 70.16 87.97 78.06

6 70.16 87.97 78.06

7 70.16 87.97 78.06

The best results in term of F measure is highlighted in italic
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