30 research outputs found

    Temporal learning in the cerebellum: The microcircuit model

    Get PDF
    The cerebellum is that part of the brain which coordinates motor reflex behavior. To perform effectively, it must learn to generate specific motor commands at the proper times. We propose a fundamental circuit, called the MicroCircuit, which is the minimal ensemble of neurons both necessary and sufficient to learn timing. We describe how learning takes place in the MicroCircuit, which then explains the global behavior of the cerebellum as coordinated MicroCircuit behavior

    Cognitive perspectives on SLA: The Associative-Cognitive CREED.

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/139755/1/AILACREED.pd

    Analysis of Linsker's simulations of Hebbian rules

    Get PDF
    Linsker has reported the development of center-surround receptive fields and oriented receptive fields in simulations of a Hebb-type equation in a linear network. The dynamics of the learning rule are analyzed in terms of the eigenvectors of the covariance matrix of cell activities. Analytic and computational results for Linsker's covariance matrices, and some general theorems, lead to an explanation of the emergence of center-surround and certain oriented structures. We estimate criteria for the parameter regime in which center-surround structures emerge

    What Is Cognitive Psychology?

    Get PDF
    What Is Cognitive Psychology? identifies the theoretical foundations of cognitive psychology—foundations which have received very little attention in modern textbooks. Beginning with the basics of information processing, Michael R. W. Dawson explores what experimental psychologists infer about these processes and considers what scientific explanations are required when we assume cognition is rule-governed symbol manipulation. From these foundations, psychologists can identify the architecture of cognition and better understand its role in debates about its true nature. This volume offers a deeper understanding of cognitive psychology and presents ideas for integrating traditional cognitive psychology with more modern fields like cognitive neuroscience.Publishe

    Localist representation can improve efficiency for detection and counting

    Get PDF
    Almost all representations have both distributed and localist aspects, depending upon what properties of the data are being considered. With noisy data, features represented in a localist way can be detected very efficiently, and in binary representations they can be counted more efficiently than those represented in a distributed way. Brains operate in noisy environments, so the localist representation of behaviourally important events is advantageous, and fits what has been found experimentally. Distributed representations require more neurons to perform as efficiently, but they do have greater versatility

    A Forward-Looking Theory of Content

    Get PDF
    In this essay, I provide a forward-looking naturalized theory of mental content designed to accommodate predictive processing approaches to the mind, which are growing in popularity in philosophy and cognitive science. The view is introduced by relating it to one of the most popular backward-looking teleosemantic theories of mental content, Fred Dretske’s informational teleosemantics. It is argued that such backward-looking views (which locate the grounds of mental content in the agent’s evolutionary or learning history) face a persistent tension between ascribing determinate contents and allowing for the possibility of misrepresentation. A way to address this tension is proposed by grounding content attributions in the agent’s own ability to detect when it has represented the world incorrectly through the assessment of prediction errors—which in turn allows the organism to more successfully represent those contents in the future. This opens up space for misrepresentation, but that space is constrained by the forward-directed epistemic capacities that the agent uses to evaluate and shape its own representational strategies. The payoff of the theory is illustrated by showing how it can be applied to interpretive disagreements over content ascriptions amongst scientists in comparative psychology and ethology. This theory thus provides a framework in which to make content attributions to representations posited by an exciting new family of predictive approaches to cognition, and in so doing addresses persistent tensions with the previous generation of naturalized theories of content

    Mind out of matter: topics in the physical foundations of consciousness and cognition

    Get PDF
    This dissertation begins with an exploration of a brand of dual aspect monism and some problems deriving from the distinction between a first person and third person point of view. I continue with an outline of one way in which the conscious experience of the subject might arise from organisational properties of a material substrate. With this picture to hand, I first examine theoretical features at the level of brain organisation which may be required to support conscious experience and then discuss what bearing some actual attributes of biological brains might have on such experience. I conclude the first half of the dissertation with comments on information processing and with artificial neural networks meant to display simple varieties of the organisational features initially described abstractly.While the first half begins with a view of conscious experience and infers downwards in the organisational hierarchy to explore neural features suggested by the view, attention in the second half shifts towards analysing low level dynamical features of material substrates and inferring upwards to possible effects on experience. There is particular emphasis on clarifying the role of chaotic dynamics, and I discuss relationships between levels of description of a cognitive system and comment on issues of complexity, computability, and predictability before returning to the topic of representation which earlier played a central part in isolating features of brain organisation which may underlie conscious experience.Some themes run throughout the dissertation, including an emphasis on understanding experience from both the first person and the third person points of view and on analysing the latter at different levels of description. Other themes include a sustained effort to integrate the picture offered here with existing empirical data and to situate current problems in the philosophy of mind within the new framework, as well as an appeal to tools from mathematics, computer science, and cognitive science to complement the more standard philosophical repertoire

    Implicit Learning in Science: Activating and Suppressing Scientific Intuitions to Enhance Conceptual Change

    Get PDF
    University of Minnesota Ph.D. dissertation. February 2018. Major: Educational Psychology. Advisors: Keisha Varma, Mark Davison. 1 computer file (PDF); vii, 161 pages.This dissertation examines the thesis that implicit learning plays a role in learning about scientific phenomena, and subsequently, in conceptual change. Decades of research in learning science demonstrate that a primary challenge of science education is overcoming prior, naïve knowledge of natural phenomena in order to gain scientific understanding. Until recently, a key assumption of this research has been that to develop scientific understanding, learners must abandon their prior scientific intuitions and replace them with scientific concepts. However, a growing body of research shows that scientific intuitions persist, even among science experts. This suggests that naïve intuitions are suppressed, not supplanted, as learners gain scientific understanding. The current study examines two potential roles of implicit learning processes in the development of scientific knowledge. First, implicit learning is a source of cognitive structures that impede science learning. Second, tasks that engage implicit learning processes can be employed to activate and suppress prior intuitions, enhancing the likelihood that scientific concepts are adopted and applied. This second proposal is tested in two experiments that measure training-induced changes in intuitive and conceptual knowledge related to sinking and floating objects in water. In Experiment 1, an implicit learning task was developed to examine whether implicit learning can induce changes in performance on near and far transfer tasks. The results of this experiment provide evidence that implicit learning tasks activate and suppress scientific intuitions. Experiment 2 examined the effects of combining implicit learning with traditional, direct instruction to enhance explicit learning of science concepts. This experiment demonstrates that sequencing implicit learning task before and after direct instruction has different effects on intuitive and conceptual knowledge. Together, these results suggest a novel approach for enhancing learning for conceptual change in science education
    corecore