116,026 research outputs found

    Microplastic pollution in marine environment

    Get PDF
    Plastic is constructed from linking of hydrocarbon monomers and produced synthetic polymers. Plastic production reported is growing up steadily each year due to its demand based on Figure 2.1. Current production reported to be up to 348 million tonnes in 2017 (Plastic Europe, 2018)

    Perceptions of the Maltese public towards local Marine Protected Areas

    Get PDF
    The marine environment represents a central component of Malta's local environment, and its ecosystem services play a vital role in supporting the economy as well as human well-being. Plans have been made to protect the unique ecology found within Maltese waters through the institution of five marine protected areas (MPAs). This quantitative study assessed the environmental knowledge and attitudes of the Maltese public towards the local marine environment, MPAs and education for sustainable development (ESD). A questionnaire was administered to members of the public (n = 200) at three different locations. The study found that although the Maltese public strongly appreciates the beauty of Malta's marine environment, the level of knowledge surrounding the marine environment is low. Furthermore, the research indicates that while the public agrees that the marine environment should be protected, there is a notable lack of awareness of the five local MPAs. Based on the research findings, a model linking ESD to MPAs and aiming to foster a sense of ownership among the public by encouraging their involvement in the management of local MPAs is proposed.peer-reviewe

    American Eels : Restoring a Vanishing Resource in the Gulf of Maine

    Get PDF
    https://digitalmaine.com/gulf_of_maine_council_docs/1005/thumbnail.jp

    Distributed sensing devices for monitoring marine environment

    Get PDF
    The lack of affordable, self-sustaining platforms for monitoring marine water quality means that measurements are done primarily through grab sampling at a limited number of locations and time, followed by analysis back at a centralised facility. This has resulted in huge gaps in our knowledge of water quality. This project aims to develop platforms capable of remote sampling and analysis over extended periods of time. This would provide the building blocks for establishing an 'environmental nervous system' comprised of many distributed sensing devices that share their data in near real-time on the web. The envisaged 'environmental nervous system’ allows marine environment to be closely monitored, enabling the early detection of pollution events to minimise the danger to people and contamination of distribution systems

    Marine Biodiversity and Ecosystem Health of Ilhas Selvagens, Portugal

    Get PDF
    In September 2015, National Geographic's Pristine Seas project, in conjunction with the Instituto Universitário-Portugal, The Waitt Institute, the University of Western Australia, and partners conducted a comprehensive assessment of the rarely surveyed Ilhas Selvagens to explore the marine environment, especially the poorly understood deep sea and open ocean areas, and quantify the biodiversity of the nearshore marine environment

    The parameterisation of turbulence in the marine environment

    Get PDF
    There are many problems in the fields of flow modelling around structures and tidal stream energy yield analysis which require a thorough understanding of the turbulent and time-averaged flow speeds in marine environments. In this paper we examine the relationship between the turbulence intensity and mean tidal flow speed at a potential tidal stream power site. We report data from the Humber Estuary wherein an Acoustic Doppler Current Profiler were used to capture vertical profiles of the high frequency and mean tidal flow speeds throughout Spring and Neap, Flood and Ebb cycles. We show not only that our results extend earlier work but also suggest that the turbulence intensity, IT, can be described parametrically in terms of the mean flow, U, by an inverse power function IT = α Uᵖ where the coefficient appears to be dependent upon the anisotropic nature of the turbulence. For the data reported here, the coefficient has value of about 17–18 and the exponent lies between −0.6 and −1.0. Confirmation of this relationship should not only improve engineering design work and energy yield analyses in turbulent tidal flows but also be applicable to other problems such as the prediction of sediment mass transport and pollution dispersal in estuarine management studies

    Biodiversity and Ecosystem Health of the Aldabra Group, Southern Seychelles: Scientific Report to the Government of Seychelles.

    Get PDF
    National Geographic's Pristine Seas project, in collaboration with the government of the Seychelles, the Island Conservation Society (ICS), the Seychelles Islands Foundation (SIF), and the Waitt Foundation, conducted an expedition to explore the poorly known marine environment around these islands. The goals were to assess the biodiversity of the nearshore marine environment and to survey the largely unknown deep sea realm. The data collected contribute to the marine spatial planning of the Seychelles, in particular the creation of large marine reserves

    Management of the marine environment: Integrating ecosystem services and societal benefits with the DPSIR framework in a systems approach

    Get PDF
    Ever increasing and diverse use of the marine environment is leading to human-induced changes in marine life, habitats and landscapes, making necessary the development of marine policy that considers all members of the user community and addresses current, multiple, interacting uses. Taking a systems approach incorporating an understanding of The Ecosystem Approach, we integrate the DPSIR framework with ecosystem services and societal benefits, and the focus this gives allows us to create a specific framework for supporting decision making in the marine environment. Based on a linking of these three concepts, we present a set of basic postulates for the management of the marine environment and emphasise that these postulates should hold for marine management to be achieved. We illustrate these concepts using two case studies: the management of marine aggregates extraction in UK waters and the management of marine biodiversity at Flamborough Head, UK. (C) 2010 Elsevier Ltd. All rights reserved
    corecore