695 research outputs found

    Facial feature representation and recognition

    Get PDF
    Facial expression provides an important behavioral measure for studies of emotion, cognitive processes, and social interaction. Facial expression representation and recognition have become a promising research area during recent years. Its applications include human-computer interfaces, human emotion analysis, and medical care and cure. In this dissertation, the fundamental techniques will be first reviewed, and the developments of the novel algorithms and theorems will be presented later. The objective of the proposed algorithm is to provide a reliable, fast, and integrated procedure to recognize either seven prototypical, emotion-specified expressions (e.g., happy, neutral, angry, disgust, fear, sad, and surprise in JAFFE database) or the action units in CohnKanade AU-coded facial expression image database. A new application area developed by the Infant COPE project is the recognition of neonatal facial expressions of pain (e.g., air puff, cry, friction, pain, and rest in Infant COPE database). It has been reported in medical literature that health care professionals have difficulty in distinguishing newborn\u27s facial expressions of pain from facial reactions of other stimuli. Since pain is a major indicator of medical problems and the quality of patient care depends on the quality of pain management, it is vital that the methods to be developed should accurately distinguish an infant\u27s signal of pain from a host of minor distress signal. The evaluation protocol used in the Infant COPE project considers two conditions: person-dependent and person-independent. The person-dependent means that some data of a subject are used for training and other data of the subject for testing. The person-independent means that the data of all subjects except one are used for training and this left-out one subject is used for testing. In this dissertation, both evaluation protocols are experimented. The Infant COPE research of neonatal pain classification is a first attempt at applying the state-of-the-art face recognition technologies to actual medical problems. The objective of Infant COPE project is to bypass these observational problems by developing a machine classification system to diagnose neonatal facial expressions of pain. Since assessment of pain by machine is based on pixel states, a machine classification system of pain will remain objective and will exploit the full spectrum of information available in a neonate\u27s facial expressions. Furthermore, it will be capable of monitoring neonate\u27s facial expressions when he/she is left unattended. Experimental results using the Infant COPE database and evaluation protocols indicate that the application of face classification techniques in pain assessment and management is a promising area of investigation. One of the challenging problems for building an automatic facial expression recognition system is how to automatically locate the principal facial parts since most existing algorithms capture the necessary face parts by cropping images manually. In this dissertation, two systems are developed to detect facial features, especially for eyes. The purpose is to develop a fast and reliable system to detect facial features automatically and correctly. By combining the proposed facial feature detection, the facial expression and neonatal pain recognition systems can be robust and efficient

    Pattern recognition to detect fetal alchohol syndrome using stereo facial images

    Get PDF
    Fetal alcohol syndrome (FAS) is a condition which is caused by excessive consumption of alcohol by the mother during pregnancy. A FAS diagnosis depends on the presence of growth retardation, central nervous system and neurodevelopment abnormalities together with facial malformations. The main facial features which best distinguish children with and without FAS are smooth philtrum, thin upper lip and short palpebral fissures. Diagnosis of the facial phenotype associated with FAS can be done using methods such as direct facial anthropometry and photogrammetry. The project described here used information obtained from stereo facial images and applied facial shape analysis and pattern recognition to distinguish between children with FAS and control children. Other researches have reported on identifying FAS through the classification of 2D landmark coordinates and 3D landmark information in the form of Procrustes residuals. This project built on this previous work with the use of 3D information combined with texture as features for facial classification. Stereo facial images of children were used to obtain the 3D coordinates of those facial landmarks which play a role in defining the FAS facial phenotype. Two datasets were used: the first consisted of facial images of 34 children whose facial shapes had previously been analysed with respect to FAS. The second dataset consisted of a new set of images from 40 subjects. Elastic bunch graph matching was used on the frontal facial images of the study populaiii tion to obtain texture information, in the form of jets, around selected landmarks. Their 2D coordinates were also extracted during the process. Faces were classified using knearest neighbor (kNN), linear discriminant analysis (LDA) and support vector machine (SVM) classifiers. Principal component analysis was used for dimensionality reduction while classification accuracy was assessed using leave-one-out cross-validation. For dataset 1, using 2D coordinates together with texture information as features during classification produced a best classification accuracy of 72.7% with kNN, 75.8% with LDA and 78.8% with SVM. When the 2D coordinates were replaced by Procrustes residuals (which encode 3D facial shape information), the best classification accuracies were 69.7% with kNN, 81.8% with LDA and 78.6% with SVM. LDA produced the most consistent classification results. The classification accuracies for dataset 2 were lower than for dataset 1. The different conditions during data collection and the possible differences in the ethnic composition of the datasets were identified as likely causes for this decrease in classification accuracy

    Performance Comparison of Hybrid CNN-SVM and CNN-XGBoost models in Concrete Crack Detection

    Get PDF
    Detection of cracks mainly has been a sort of essential step in visual inspection involved in construction engineering as it is the commonly used building material and cracks in them is an early sign of de-basement. It is hard to find cracks by a visual check for the massive structures. So, the development of crack detecting systems generally has been a critical issue. The utilization of contextual image processing in crack detection is constrained, as image data usually taken under real-world situations vary widely and also includes the complex modelling of cracks and the extraction of handcrafted features. Therefore the intent of this study is to address the above problem using two-hybrid machine learning models and classify the concrete digital images into having cracks or non-cracks. The Convolutional Neural Network is used in this study to extract features from concrete pictures and use the extracted features as inputs for other machine learning models, namely Support Vector Machines (SVMs) and Extreme Gradient Boosting (XGBoost). The proposed method is evaluated on a collection of 40000 real concrete images, and the experimental results show that application of XGBoost classifier to CNN extracted image features include an advantage over SVM approach in accuracy and achieve a relatively better performance than a few existing methods

    Face Recognition with Attention Mechanisms

    Get PDF
    Face recognition has been widely used in people’s daily lives due to its contactless process and high accuracy. Existing works can be divided into two categories: global and local approaches. The mainstream global approaches usually extract features on whole faces. However, global faces tend to suffer from dramatic appearance changes under the scenarios of large pose variations, heavy occlusions, and so on. On the other hand, since some local patches may remain similar, they can play an important role in such scenarios. Existing local approaches mainly rely on cropping local patches around facial landmarks and then extracting corresponding local representations. However, facial landmark detection may be inaccurate or even fail, which would limit their applications. To address this issue, attention mechanisms are applied to automatically locate discriminative facial parts, while suppressing noisy parts. Following this motivation, several models are proposed, including: the Local multi-Scale Convolutional Neural Networks (LS-CNN), Hierarchical Pyramid Diverse Attention (HPDA) networks, Contrastive Quality-aware Attentions (CQA-Face), Diverse and Sparse Attentions (DSA-Face), and Attention Augmented Networks (AAN-Face). Firstly, a novel spatial attention (local aggregation networks, LANet) is proposed to adaptively locate useful facial parts. Meanwhile, different facial parts may appear at different scales due to pose variations and expression changes. In order to solve this issue, LS-CNN are proposed to extract discriminative local information at different scales. Secondly, it is observed that some important facial parts may be neglected, if without a proper guidance. Besides, hierarchical features from different layers are not fully exploited which can contain rich low-level and high-level information. To overcome these two issues, HPDA are proposed. Specifically, a diverse learning is proposed to enlarge the Euclidean distances between each two spatial attention maps, locating diverse facial parts. Besides, hierarchical bilinear pooling is adopted to effectively combine features from different layers. Thirdly, despite the decent performance of the HPDA, the Euclidean distance may not be flexible enough to control the distances between each two attention maps. Further, it is also important to assign different quality scores for various local patches because various facial parts contain information with various importance, especially for faces with heavy occlusions, large pose variations, or quality changes. The CQA-Face is proposed which mainly consists of the contrastive attention learning and quality-aware networks where the former proposes a better distance function to enlarge the distances between each two attention maps and the latter applies a graph convolutional network to effectively learn the relations among different facial parts, assigning higher quality scores for important patches and smaller values for less useful ones. Fourthly, the attention subset problem may occur where some attention maps are subsets of other attention maps. Consequently, the learned facial parts are not diverse enough to cover every facial detail, leading to inferior results. In our DSA-Face model, a new pairwise self-constrastive attention is proposed which considers the complement of subset attention maps in the loss function to address the aforementioned attention subset problem. Moreover, a attention sparsity loss is proposed to suppress the responses around noisy image regions, especially for masked faces. Lastly, in existing popular face datasets, some characteristics of facial images (e.g. frontal faces) are over-represented, while some characteristics (e.g. profile faces) are under-represented. In AAN-Face model, attention erasing is proposed to simulate various occlusion levels. Besides, attention center loss is proposed to control the responses on each attention map, guiding it to focus on the similar facial part. Our works have greatly improved the performance of cross-pose, cross-quality, cross-age, cross-modality, and masked face matching tasks

    Palmprint Recognition in Uncontrolled and Uncooperative Environment

    Full text link
    Online palmprint recognition and latent palmprint identification are two branches of palmprint studies. The former uses middle-resolution images collected by a digital camera in a well-controlled or contact-based environment with user cooperation for commercial applications and the latter uses high-resolution latent palmprints collected in crime scenes for forensic investigation. However, these two branches do not cover some palmprint images which have the potential for forensic investigation. Due to the prevalence of smartphone and consumer camera, more evidence is in the form of digital images taken in uncontrolled and uncooperative environment, e.g., child pornographic images and terrorist images, where the criminals commonly hide or cover their face. However, their palms can be observable. To study palmprint identification on images collected in uncontrolled and uncooperative environment, a new palmprint database is established and an end-to-end deep learning algorithm is proposed. The new database named NTU Palmprints from the Internet (NTU-PI-v1) contains 7881 images from 2035 palms collected from the Internet. The proposed algorithm consists of an alignment network and a feature extraction network and is end-to-end trainable. The proposed algorithm is compared with the state-of-the-art online palmprint recognition methods and evaluated on three public contactless palmprint databases, IITD, CASIA, and PolyU and two new databases, NTU-PI-v1 and NTU contactless palmprint database. The experimental results showed that the proposed algorithm outperforms the existing palmprint recognition methods.Comment: Accepted in the IEEE Transactions on Information Forensics and Securit

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition
    • …
    corecore