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ABSTRACT

FACIAL FEATURE REPRESENTATION AND RECOGNITION

by
Chao-fa Chuang

Facial expression provides an important behavioral measure for studies of emotion,

cognitive processes, and social interaction. Facial expression representation and

recognition have become a promising research area during recent years. Its applications

include human-computer interfaces, human emotion analysis, and medical care and cure.

In this dissertation, the fundamental techniques will be first reviewed, and the

developments of the novel algorithms and theorems will be presented later. The objective

of the proposed algorithm is to provide a reliable, fast, and integrated procedure to

recognize either seven prototypical, emotion-specified expressions (e.g., happy, neutral,

angry, disgust, fear, sad, and surprise in JAFFE database) or the action units in Cohn-

Kanade AU-coded facial expression image database.

A new application area developed by the Infant COPE project is the recognition

of neonatal facial expressions of pain (e.g., air puff, cry, friction, pain, and rest in Infant

COPE database). It has been reported in medical literature that health care professionals

have difficulty in distinguishing newborn's facial expressions of pain from facial

reactions of other stimuli. Since pain is a major indicator of medical problems and the

quality of patient care depends on the quality of pain management, it is vital that the

methods to be developed should accurately distinguish an infant's signal of pain from a

host of minor distress signal. The evaluation protocol used in the Infant COPE project

considers two conditions: person-dependent and person-independent. The person-



dependent means that some data of a subject are used for training and other data of the

subject for testing. The person-independent means that the data of all subjects except one

are used for training and this left-out one subject is used for testing. In this dissertation,

both evaluation protocols are experimented.

The Infant COPE research of neonatal pain classification is a first attempt at

applying the state-of-the-art face recognition technologies to actual medical problems.

The objective of Infant COPE project is to bypass these observational problems by

developing a machine classification system to diagnose neonatal facial expressions of

pain. Since assessment of pain by machine is based on pixel states, a machine

classification system of pain will remain objective and will exploit the full spectrum of

information available in a neonate's facial expressions. Furthermore, it will be capable of

monitoring neonate's facial expressions when he/she is left unattended. Experimental

results using the Infant COPE database and evaluation protocols indicate that the

application of face classification techniques in pain assessment and management is a

promising area of investigation.

One of the challenging problems for building an automatic facial expression

recognition system is how to automatically locate the principal facial parts since most

existing algorithms capture the necessary face parts by cropping images manually. In this

dissertation, two systems are developed to detect facial features, especially for eyes. The

purpose is to develop a fast and reliable system to detect facial features automatically and

correctly. By combining the proposed facial feature detection, the facial expression and

neonatal pain recognition systems can be robust and efficient.
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CHAPTER 1

INTRODUCTION

1.1 Objectives

Facial expression provides an important behavioral measure for studies of emotion,

cognitive processes, and social interaction. Facial expression representation and

recognition have become a promising research area during recent years. Its applications

include human-computer interfaces, human emotion analysis, and medical care and cure.

A variety of systems have been developed to perform facial expression

recognition. Most systems conduct two stages: feature extraction representation and

expression classification. For feature extraction representation, Gabor filter, principal

component analysis, and independent component analysis are used. For expression

classification, linear discriminant analysis, support vector machine, two-layer perceptron,

and Hidden Markov Model are applied. In this dissertation, the fundamental techniques

will be first reviewed, and the developments of the novel algorithms and theorems will be

presented later. The objective of the proposed algorithm is to provide a reliable, fast, and

integrated procedure to recognize either seven prototypical, emotion-specified

expressions (such as happy, neutral, angry, disgust, fear, sad, and surprise in JAFFE

database) or action units in Cohn-Kanade AU-coded face expression image database.

A new application area developed by the Infant COPE project is the recognition

of neonatal facial expressions of pain (e.g., air puff, cry, friction, pain, and rest in Infant

COPE database). It has been reported in medical literature that health care professionals

have difficulty in distinguishing newborn's facial expressions of pain from facial

reactions of other stimuli. Since pain is a major indicator of medical problems and the

1
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quality of patient care depends on the quality of pain management, it is vital that the

methods to be developed should accurately distinguish an infant's signal of pain from a

host of minor distress signal. In this dissertation, neonate pain classification problems is

tackled by applying three different state-of-the-art face classification techniques (e.g.,

PCA, LDA, and SVM) to the task of distinguishing a newborn's facial expressions of

pain. The evaluation protocol used in the Infant COPE project considers two conditions:

person-dependent and person-independent. The person-dependent means that some data

of a subject are used for training and other data of the subject for testing. The person-

independent means that the data of all subjects except one are used for training and this

left-out one subject for testing. In this dissertation, both evaluation protocols are

experimented.

The Infant COPE research of neonatal pain classification is a first attempt at

applying the state-of-the-art face recognition technologies to actual medical problems.

Medical applications of face recognition technologies have been suggested but not tried

with actual medical data. The objective of Infant COPE project is to bypass these

observational problems by developing a machine classification system to diagnose

neonatal facial expressions of pain. Since assessment of pain by machine is based on

pixel states, a machine classification system of pain will remain objective and will exploit

the full spectrum of information available in a neonate's facial expressions. Furthermore,

it will be capable of monitoring neonate's facial expressions when he/she is left

unattended. Experimental results using the Infant COPE database and evaluation

protocols indicate that the application of face classification techniques in pain assessment

and management is a promising area of investigation.
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A robust automatic facial expression recognition system includes face detection,

facial feature extraction and representation, and facial expression recognition. One of the

challenging problems for building an automatic facial expression recognition system is

how to automatically locate the principal facial parts since most existing algorithms

capture the necessary face parts by cropping images manually. In this dissertation, two

systems are developed to detect facial features, especially for eyes. The objective is to

develop a fast and reliable system to detect facial features automatically and correctly. By

combining the proposed facial feature detection system, the facial expression and

neonatal pain recognition systems can be robust and efficient.

1.2	 Organization of This Dissertation

The organization of this dissertation will be described as follows.

Chapter 1 Introduction

Chapter 2 Facial Expression Recognition-emotion specified case

Chapter 3 Facial Expression Recognition-Action Units case

Chapter 4 Neonatal Pain Classification

Chapter 5 Facial Features Detection

Chapter 6 Conclusions and Further Research

The brief statements of each chapter are given as follows.

In Chapter 2, various feature representation and classification schemes are

investigated to distinguish seven different facial expressions such as happy, neutral, angry,

disgust, sad, fear, and surprise, in homogeneous database, JAFFE database. Experimental

results show that the method of using 2D-LDA (Linear Discriminant Analysis) and SVM
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(Support Vector Machine) outperforms others. The recognition rate of the method is

95.71% by using leave-one-out strategy and 94.13% by using cross-validation strategy. It

takes only 0.0357 second for processing one input image of size 256 x 256. The proposed

system is fast, reliable, and can be applied to real time applications.

In Chapter 3, more complicated and heterogeneous facial database, Cohn-Kanade

Facial Expression Database, is tackled. Instead of recognizing prototypical, emotional-

specified expressions, action units which describe the subtle changes of face are

classified. A technique using ICA (Independent Component Analysis) as feature

extraction and representation method and SVM (Support Vector Machine) as

classification technique is proposed. Experimental results are promising and comparable

to published systems. The recognition rate of the proposed method is 97.06% for

recognizing the upper part of face, 97.13% for lower part of face, and 100% for the whole

face. The proposed system is fast and can be applied to real-time applications. It takes

only 1.8 ms for processing one test image of size 40 x 90. It is interesting to explore the

gender effect on recognizing the action units. From the experimental results of Chapter 3,

the male can express the action units more accurately than female do.

In Chapter 4, a machine recognition and assessment system of neonatal

expressions of pain is developed to assist clinicians in diagnosing pain. The experiments

reported in this chapter use the Infant COPE database. This database containing 204

facial expressions of 26 neonates (age 18-36 hours) was photographed experiencing the

acute pain of a heel lance and three non-pain stressors including transport from one crib

to another (a disturbance that can provoke crying that is not in response to pain), an air

stimulus on the nose, and friction on the external lateral surface of the heel.. Three
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algorithms were evaluated: PCA, LDA, and SVM. Experimental results indicate a high

potential for developing a decision support system for diagnosing neonatal pain from

images of neonatal facial displays.

In Chapter 5, a novel approach for the extraction of human head, face and facial

features is presented. In the double-threshold method, the high-thresholded image is used

to trace head boundary and the low-thresholded image is used to scan face boundary.

After obtaining facial features candidates and eliminate noises, apply x- and y-projections

is applied to extract facial features such as eyes, nostrils and mouth. Since low contrast of

chin occurs in some face images, its boundary cannot be completely detected. An elliptic

model is used to repair it. Because of noises or clustered facial features candidates, a

geometric face model to locate facial features and an elliptic model to trace face

boundary are adopted. FERET face database is tested and experimental results show that

the proposed algorithm can perform the extraction of human head, face and facial

features successfully.

In Chapter 6, summary of this dissertation and the further works are provided.

The direction of the future research is to increase the recognition rate and decrease

computational time simultaneously.



CHAPTER 2

FACIAL EXPRESSION RECOGNITION-EMOTION SPECIFIED CASE

Facial expression provides an important behavioral measure for studies of emotion,

cognitive processes, and social interaction. Facial expression recognition has become a

promising research area during recent years. Its applications include human-computer

interfaces, human emotion analysis, and medical care and cure. In this chapter, various

feature representation and classification schemes are investigated to recognize seven

prototypical and emotion-specified facial expressions such as happy, neutral, angry,

disgust, sad, fear, and surprise, in JAFFE database.

2.1	 Introduction

Facial expression plays a principal role in human interaction and communication since it

contains critical and necessary information regarding emotion. The task of automatically

recognizing different facial expressions in human-computer environment is significant

and challenging. A variety of systems have been developed to perform facial expression

recognition [2, 12, 13, 21, 56, 73, 80, 97, 98]. These systems possess some common

characteristics. First, they classify facial expressions using adult facial expression

databases. For instances, the authors in [12, 21, 56, 73, 97] used JAFFE database to

recognize seven main facial expressions: happy, neutral, angry, disgust, fear, sad, and

surprise. Chen and Huang [13] used AR database to classify three facial expressions:

neutral, smile, and angry. Second, most systems conduct two stages: feature extraction

and expression classification. For feature extraction, Gabor filter [12, 56, 97], PCA

6
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(Principal Component Analysis) [13, 21, 56], and ICA (Independent Component Analysis)

[12] are used. For expression classification, LDA (Linear Discriminant Analysis) [1, 21,

56], SVM (Support Vector Machine) [12], two-layer perceptron [97], and HMM (Hidden

Markov Model) [98] are used.

Recently, facial expression recognition is applied to medical treatment of patients.

Dai et al. [19] proposed to monitor patients on bed by utilizing the facial expression

recognition to detect the status of patients. Gagliardi et al. [28] investigated the facial

expression ability for individuals with Williams syndrome. Sprengelmeyer et al. [77]

explored facial expression recognition of emotion for people with medicated and

unmedicated Parkinson's disease.

Since JAFFE database is benchmark and commonly used in measuring the

performance of facial expression recognition systems, the proposed system is applied to

this database and comparisons with other systems [12, 21, 56, 73, 97] are performed.

Lyons et al. [56] made use of Gabor filter at different scales and orientations, and applied

34 fiducial points for each convolved image to construct the feature vector for

representing each facial image. After that, PCA is applied to reduce the dimensionality of

feature vectors and LDA is used to identify seven different facial expressions. Their

recognition rate is 92% for JAFFE database. Zhang et al. [97] adopted Gabor wavelet

coefficients and geometric positions to construct the feature vector for each image and

applied two-layer perceptron to distinguish seven different facial expressions. Their

recognition rate is 90.1%.

Buciu et al. [12] tested different feature extraction methods such as Gabor filter

and ICA combined with SVM using three different kernels: linear, polynomial, and radial
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basis function, to check which combination can produce the best result. From their

experiments, the best recognition rate is 90.34% by using Gabor wavelet at high

frequencies combined with the polynomial kernel SVM at degree 2. Dubuisson et al. [21]

combined the sorted PCA as feature extractor with LDA as the classifier to recognize

facial expressions. Their recognition rate is 87.6%. Shinohara and Otsu [73] used Higher-

order Local Auto-Correlation (HLAC) features and LDA to test the performance.

Unfortunately, their system is unreliable since the correct rate is only 69.4%.

In this chapter, different feature representation and expression classification

methods are explored for achieving high accuracy and efficiency. The rest of this chapter

is organized as follows. Section 2.2 describes the JAFFE database and the proposed

methods. Section 2.3 presents the experimental procedure. Section 2.4 provides the

experimental results and performance comparisons. Finally, conclusions are given in

Section 2.5.

2.2 The JAFFE Database and the Proposed Methods

The image database used in our experiments is the JAFFE facial expression database [56].

This dataset is used as the benchmark database for researchers in [12, 21, 56, 73, 97]. The

database contains ten Japanese females. There are seven different facial expressions such

as neutral, happy, angry, disgust, fear, sad, and surprise. Each female has 2 - 4 examples

for each expression. Totally, there are 213 grayscale facial expression images in this

database. Each image is of size 256 x 256. Figure 2.1 shows two expressers containing

seven different facial expressions from the JAFFE database. In the following, the

methods used in the proposed facial expression recognition system will be briefly
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Figure 2.1 Samples of two expressers containing seven different facial expressions.

2.2.1 Discrete Wavelet Transform (DWT)

Discrete Wavelet Transform (DWT) [14, 62, 96] is a suitable tool for extracting image

features because it allows the analysis of images on various levels of resolution.

Typically, low-pass and high-pass filters are used for decomposing the original image.

The low-pass filter results in an approximation image and the high-pass filter generates a

detail image. The approximation image can be further split into a deeper level of

approximation and detail repeatedly according to different applications. Suppose that the

size of an input image is Nx M. At the first filtering in the horizontal direction of down-

sampling, the size of images will be reduced to Nx (M/2). After that, further filtering and

down-sampling in the vertical direction, four subimages are obtained, each being of size

(N/2) x (M/2). Figure 2.2 shows the sub-band decomposition of an Nx M image, where H

and L respectively denote high-pass and low-pass filters, and 4 ,2 denotes down-sampling

by a factor of 2.



The outputs of these filters are given by Equations (2.1) and (2.2).

10

Figure 2.2 Sub-band decomposition of an Nx M image.

where l[n] and h[n] are coefficients of low-pass and high-pass filters, respectively.

Accordingly, four images denoted as LL, HL, LH and HH can be obtained. The LL

image is generated by two continuous low-pass filters; HL is filtered by a high-pass filter

first and a low-pass filter later; LH is created using a low-pass filter followed by a high-

pass filter; HH is generated by two successive high-pass filters. Figure 2.3 illustrates

first-level decomposition.

Figure 2.3 First-level decomposition.
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Every sub-image can be decomposed further into smaller images by repeating the

above procedure. The main feature of DWT is the multi-scale representation of a function.

By using the wavelets, a given image can be analyzed at various levels of resolution.

Since the LL part contains most important information and discards the effect of noises

and irrelevant parts, the LL part is adopted for further analysis in this study. Features

from the LL part of the second-level decomposition are extracted and analyzed. The

reasons are the LL part keeps the necessary information and the dimensionality of the

image is reduced sufficiently for the computation in the next stage. Figure 2.4 shows the

two levels of DWT for a happy image from JAFFE database.

Figure 2.4 Two-level decomposition of a happy image (a) the original image and (b) the
decomposed subimages.

2.2.2 PCA and 2D-LDA

Principal Component Analysis (PCA) is widely used for feature representation. In this

chapter, PCA is used as a base-line method to compare with the 2D Linear Discriminant

Analysis (2D-LDA) [51]. The central idea behind PCA is to find an orthonormal set of

axes pointing in the direction of maximum covariance in the data [46, 82, 83]. In terms of

facial images, the idea is to find the orthonormal basis vectors or the eigenvectors of the

covariance matrix of a set of images, with each image being treated as a single point in a
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high dimensional space [47].

Since each image contributes to each of the eigenvectors which resemble

ghostlike faces when displayed, it is referred to as holon [18] or eigenface [ 82, 83], and

the new coordinates system is referred to as the face space. Individual images can be

projected onto the face space and represented exactly as weighted combinations of the

eigenface components. The resulting vector of weights that describe each face can be

used in data compression and face classification. Data compression relies on the fact that

the eigenfaces are ordered, with each one accounting for a different amount of variation

among the faces. Compression is achieved by reconstructing images using only those few

eigenfaces that account for the most variability [74]. It results in dramatic reduction of

dimensionality. Classification is performed by projecting a new image onto the face space

and comparing the resulting weight vector with the weight vectors of a given class.

Recently, Li and Yuan [51] introduced a new approach for image feature

extraction and representation called 2D-LDA. The difference between LDA and 2D-LDA

is that in LDA, the image vector is constructed to compute the between-class and within-

class scatter matrices, but in 2D-LDA, the original image matrix is adopted to compute

the two matrices. They claimed that the 2D-LDA can achieve better results than other

feature extraction methods, such as PCA, LDA, and 2D-PCA [94]. The idea of 2D-LDA

is described below.

Suppose that M training samples are used belonging to L classes (L1, L 2 LL). The

training samples in each class are denoted as Ni ( i =1, 2, ..., L). The size of each training

image A, ( j = 1, 2, ..., M) is m x n. The purpose is to find a good projection vector, x,

such that when A, is projected onto x, the projected feature vector, y j of the image A.1 can
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be obtained.

(2.3)

Similar to LDA, the between-class scatter matrix, TS B, and the within-class scatter matrix,

TSw, of the projected feature vectors can be computed by using training images. The

criterion is to project the images onto a subspace that maximizes the between-class

scatter and minimizes the within-class scatter of the projected data. Since the total scatter

of the projected samples can be represented by the trace of the covariance matrix of the

projected feature vectors, the Fisher linear projection criterion can be described as

(2.4)

The optimal projection, xopt, can be decided when the criterion is maximized. That

is, Xopt = arg max J (x) . The solution can be found by solving the generalized eigenvalue

problem. Therefore, if d optimal projection axes x 1 , x2,..., xd corresponding to the first d

largest eigenvalues are chosen, then features for a given image I can be extracted. The

following equation can be used for feature extraction.

(2.5)

Since I is an m x n matrix and [xi, x2, ..., xd] is an n x d matrix, an m x d matrix, y,

can be formed to represent the original image, I. The 2D-LDA representation of the

original image is adopted as the input feeding into the classifier in the next stage.
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2.2.3 RBF and SVM

Radial Basis Function Network (RBFN) is a two-layer, hybrid feed forward learning

network. It is a fully connected network and generally used as a classification tool. It was

first used for discrimination by Broomhead and Lowe in 1988 [10]. In a RBF model, the

first layer from input nodes to hidden neurons is an unsupervised layer and the second

layer from hidden neurons to output nodes is the supervised layer. This means that the

first layer connecting input nodes and hidden neurons has a unit weight and does not need

training; however, the weights between hidden neurons and output nodes must be trained.

The biggest difference between RBFN and traditional neural network is that

RBFN only computes its optimal weights one time but traditional neural networks have

to adjust their weights for a couple of times by using back propagation algorithm. In

RBFN, each hidden neuron has a symmetric radial basis function as an activation

function. Typically, Gaussian-like and direct or inverse multiquadric-like radial basis

functions are mostly used as activation functions. The purpose of the hidden neurons is to

cluster the input data and reduce dimensionality. The objective of the RBF network is to

train input data in order to minimize the sum of square errors and find the optimal

weights between hidden neurons and output nodes. Those optimal weights can classify

effectively the test data into correct classes. Figure 2.5 shows the architecture of a

traditional radial basis function network.
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Figure 2.5 The architecture of a radial basis function neural network.

Support Vector machine (SVM) [86] is a learning system that separates a set of

pattern vectors into two classes with an optimal separating hyperplane. The set of vectors

is said to be optimally separated by the hyperplane if it is separated without an error and

the distance between the closest vector to the hyperplane is maximal. SVM produces the

pattern classifier by applying a variety of kernel functions (e.g. linear, polynomial, and

radial basis function) as possible sets of approximation functions by optimizing the dual

quadratic programming problem, and by using structural risk minimization as the

inductive principle, as opposed to classical statistical algorithms that maximize the

absolute value of an error or a squared error.

SVM is designed to handle dichotomic classes of input vectors. Recently,

researchers have expanded from two-class classification to multi-class classification [32,

33]. Different types of SVM are used depending upon the distribution of input patterns. A

linear maximal margin classifier is used for linearly separable data, a linear soft margin

classifier is used for overlapping classes, and a nonlinear classifier is used for classes that

are overlapped as well as separated by nonlinear hyperplanes. Since there are 7 different

facial expressions to be recognized, tree-based one-against-one SVMs [35] are adopted to
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perform multi-classes classification.

2.3	 Experimental Procedure

The experimental procedure is categorized into three stages: preprocessing, feature

extraction, and expression classification, as illustrated in Figure 2.6.

2.3.1 Pre-processing

Similar to [12, 21, 56, 73, 97], the original image of size 256 x 256 are cropped manually

into 168 x 120 by removing the background influences. Since the illumination condition

is varied to the images in JAFFE database, histogram equalization is applied to eliminate

lighting effect.

2.3.2 Feature Extraction

DWT is applied to the cropped images two times. After that, the LL area is extracted for

further analysis. Then 2D-LDA is used to extract important features from each LL part of

DWT image. For comparison, other feature representations such as PCA, LDA, ICA, and

2D-PCA are tested.

2.3.3 Expression Classification

The linear SVM is performed to identify seven facial expressions in JAFFE database. To

handle the multi-class problem, the tree-based one-against-one SVMs are constructed as

in [35]. Different kernel types of SVM such as linear, polynomial, and radar basis

function are also tested in this stage to compare the performance with the linear SVM.
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Figure 2.6 The experimental procedure.

2.4	 Experimental Results

The objective of the proposed system is to identify different facial expressions accurately

and efficiently. Since the JAFFE database contains only 213 images, the cross-validation

strategy as in [56, 73, 97] and the leave-one-out strategy as in [12] are used to perform

comparisons with other existing systems.
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For the cross-validation strategy, the database is randomly divided into 10

segments in terms of different facial expressions. Each time, nine out of the ten segments

is trained and the remaining segment is tested. The same procedure of training and testing

is performed repeatedly for 30 times. At last, all the 30 recognition rates are averaged to

obtain the final performance of the proposed system. For the leave-one-out strategy, each

time only one image is tested in each class, and the remaining images are used for

training.

The experimental results show that the proposed system can successfully meet the

criteria of accuracy and efficiency for identifying different facial expressions. For

accuracy, the proposed method outperforms other existing systems based on the same

database. The recognition rate of the proposed system is 95.71% by using leave-one-out

strategy and 94.13% by using cross-validation strategy. For efficiency, it takes only

0.0357 second to process one input image of size 256x 256.

Table 2.1 shows the performance comparisons among the proposed system and

the existing systems using the same JAFFE database. From Table 2.1, it is confirmed that

no matter which strategy is used, the proposed system outperforms the others. The effects

of different kernels of SVM, such as polynomial and radial basis functions, are tested for

comparison. In those experiments, linear SVM is most suitable for the JAFFE database. It

is because the feature vectors extracted by 2D-LDA are clustered in each class and can be

separated by the linear SVM. The results are shown in Table 2.2. From those

experimental results, Li and Yuan's conclusion [51] that 2D-LDA is superior to PCA,

LDA, and 2D-PCA as the feature extraction method is conformed. The performances

among different feature extraction with different classifier are also tested.
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Table 2.1 Performance Comparisons in JAFFE Database

The Existing Systems Strategy Generalization Rate

Lyons et al. [56] Cross-validation 92.00%

Zhang et al. [97] Cross-validation 90.10%
Buciu et al. [12] Leave-one-out 90.34%
Dubuisson et al. [21] N/A 87.60%
Shinohara and Otsu [73] Cross-validation 69.40%
The proposed system Cross-validation

Leave-one-out
95.71%
94.13%

Tables 2.3 and 2.4 show the performance comparisons among different feature

extraction methods (such as PCA, LDA, 2D-PCA, ICA and 2D-LDA) along with SVM

and RBFN, respectively. From Tables 2.3 and 2.4, SVM is the best classifier; however,

RBFN is unreliable since the recognition rate is unsatisfied.

Table 2.2 Performance Comparisons of Using Different Kernels of SVM

Kernel Functions Recognition Rates
Cross Validation	 Leave-One-Out

Linear 94.13% 95.71%
Polynomial with degree 2 91.43% 92.3 8%
Polynomial with degree 3 92.86% 94.29%
Polynomial with degree 4 92.22% 93.33%
Radial basis function 85.71% 87.14%

Table 2.3 Comparisons of PCA, LDA, 2D-PCA, ICA and 2D-LDAUsing SVM

Feature Extraction Method Recognition Rates
Cross Validation	 Leave-One-Out

Testing Speed
per Image (second)

LDA + SVM 91.27% 91.90% 0.0367
2D-PCA + SVM 92.06% 93.33% 0.0357
ICA + SVM 93.35% 93.81% 0.0359
PCA + SVM 93.43% 94.84% 0.0353
2D-LDA + SVM 94.13% 95.71% 0.0357



20

Table 2.4 Comparisons of PCA, LDA, 2D-PCA, ICA and 2D-LDA Using RBF

Feature Extraction Method Recognition Rates
Cross Validation	 Leave-One-Out

Testing Speed
per Image (second)

LDA + RBF 26.67% 27.71% 0.0351
2D-PCA + RBF 25.24% 26.67% 0.0349
ICA + RBF 27.14% 27.43% 0.0347
PCA + RBF . 36.67% 37.21% 0.0346
2D-LDA + RBF 37.14%  37.71% 0.0347

Tables 2.5 and 2.6, respectively show the confusion matrices of the correct and

false numbers under cross-validation and leave-one-out strategies for facial expressions.

All the experiments are processed in the Matlab 7 environment under XP and Pentium IV

with 2.80 GHz. The speed of the proposed method is fast. It only takes about 0.0357

second for processing a testing image.

Table 2.5 Confusion Matrix Using Cross-Validation Strategy

Angry Disgust Fear Happy Neural Sad Surprise Total
Angry 30 30
Disgust 1 28 29
Fear 2 27 1 2 32
Happy 30 1 31
Neural 30 30
Sad 3 1 27 31
Surprise 2 28 30
Total 213

Table 2.6 Confusion Matrix Using Leave-One-Out Strategy

Angry Disgust Fear Happy Neural Sad Surprise Total
Angry 30 30
Disgust 1 28 29
Fear 1 29 1 1 32
Happy 29 1 1 31
Neural 30 30
Sad 2 1 28 31
Surprise 30 30
Total 213
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2.5 Conclusions

In this chapter, different feature representation and expression classification schemes are

investigated to recognize seven different facial expressions on JAFFE database.

Experimental results show that the proposed system using DWT and 2D-LDA as feature

representation technique, and linear one-again-one SVMs as classification method

outperforms other systems. For accuracy, the recognition rate of the proposed system is

95.71% by using leave-one-out strategy and 94.13% by using cross-validation strategy.

For efficiency, it takes only 0.0357 second to process one input image of size 256X 256.

That means the proposed system can be applied to real-time applications.

Since the proposed system is robust in feature extraction and pattern recognition,

it can not only apply to facial expression recognition but also face recognition. In the

aforementioned systems, the original images are cropped manually. How to automatically

align and crop the image without degrading the recognition rate is the challenging

problem. This problem will be addressed in Chapter 5.



CHAPTER 3

FACIAL EXPRESSION RECOGNITION-ACTION UNITS CASE

3.1	 Introduction

Facial expression plays a principal role in human interaction and communication since it

contains critical and necessary information regarding emotion analysis. The task of

automatically recognizing different facial expressions in human-computer environment is

significant and challenging. A variety of systems [1, 6, 8, 9, 12, 13, 20, 21, 56, 73, 80, 97,

98] have been developed to perform facial expression recognition in terms of database

and expression targets. Some researchers [12, 21, 56, 73, 97] used homogeneous subject

database, such as JAFFE database [56], to recognize seven prototypical, emotion-

specified facial expressions, such as happy, neutral, angry, disgust, fear, sad, and surprise.

Lyons et al. [56] made use of Gabor filter at different scales and orientations, and

applied 34 fiducial points for each convolved image to construct the feature vector for

representing each facial image. After that, PCA is applied to reduce the dimensionality of

feature vectors and LDA is used to identify seven different facial expressions. Their

recognition rate is 92% for JAFFE database. Zhang et al. [97] adopted Gabor wavelet

coefficients and geometric positions to construct the feature vector for each image and

applied two-layer perceptron to distinguish seven different facial expressions. Their

recognition rate is 90.1%.

Buciu et al. [12] tested different feature extraction methods such as Gabor filter

and ICA combined with SVM using 3 different kernels: linear, polynomial, and radial

basis function, to check which combination can produce the best result. From their

22
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experiments, the best recognition rate is 90.34% by using Gabor wavelet at high

frequencies combined with the polynomial kernel SVM at degree 2. Dubuisson et al. [21]

combined the sorted PCA as feature extractor with LDA as the classifier to recognize

facial expressions. Their recognition rate is 87.6%. Shinohara and Otsu [73] used Higher-

order Local Auto-Correlation (HLAC) features and LDA to test the performance.

Unfortunately, their system is unreliable since the correct rate is only 69.4%.

Some researchers [6, 20, 81] explored heterogeneous subject database, such as

Cohn-Kanade expression database [44], to classify upper or lower face Action Units

(AUs). Tian et al [81] developed an Automatic Face Analysis (AFA) system to analyze

individual action unit or combinations based on both permanent and transient facial

features in frontal face image sequence. The recognition rate of their AFA system is

95.6% on Cohn-Kanade expression database. Donato [20] compared different techniques

for classify 6 single upper and lower face action units, on Ekman-Hager facial action

exemplars [23], respectively. They found that the best performance is obtained by

adopting Gabor wavelet decomposition or ICA representation. The recognition rate is

96.9% for their system. Bazzo and Lamar [20] invented a new pre-processing step based

on the neutral face average difference. Their system used neural network based classifier

combined with Gabor wavelet to categorize seven upper and lower face single action unit

or combinations, respectively. The recognition rates are 86.55% and 81.63% for the upper

and lower face, respectively.

In previous chapter, homogeneous database, JAFFE, is processed. In this chapter,

heterogeneous database, Cohn-Kanade expression database, is applied to recognize the

individual action unit or combinations. The rest of this chapter is organized as follows.
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Section 3.2 describes Facial Action Coding System (FACS) and Face Expression

Database. Section 3.3 presents the experimental procedure. Section 3.4 provides the

experimental results and performance comparisons. Finally, conclusions are given in

Section 3.5.

3.2 Facial Action Coding System (FACS) and Face Expression Database

3.2.1 Facial Action Coding System (FACS)

In 1978, Ekman and Friesen [22] designed the Facial Action Coding System (FACS) for

characterizing facial expressions by action units. This system is a human observed system

developed to explain the subtle changes of facial expressions.

Totally, they defined 44 FACS action units (AUs). Of those AUs, 30 are related to

facial muscular contraction. There are 12 for upper face and 18 for lower face. For

example, Action Unit 1 is related to frontalis and pars medialis describing inner corner of

eyebrow raised and Action Unit 27 is related to pterygoids and digastric depicting mouth

stretched open. The remainders of AUs are attributed to miscellaneous actions. For

example, Action Unit 21 portrays the status of neck tighten. Tables 3.1-3.3 show the

description of all Action Units including upper face, miscellaneous action units and lower

face, respectively.

The action units can appear individual or in combinations. The combination of

action units has additive or non-additive effects. Additive combination means that the

combination does not alter the appearance of the comprised AUs. The example of

additive combination is AU 12 + AU 25 displaying smiling and mouth open. Non-

additive combination means that the appearance of the comprised AUs is modified. It

represents the difficulty and complication for the expression recognition. The example of
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non-additive combination is AU 12 + AU 15 showing that the lip corner of AU 12 is

changed by the downward motion of AU 15.

Table 3.1 The Upper Face Action Units

Action
Units

Upper Facial Muscle Description of Motion Changes

1 Frontalis, pars medialis Inner corner of eyebrow raised
2 Frontalis, pars lateralis Outer corner of eyebrow raised
4 Corrugator supercilii, Depressor

supercilii
Eyebrows drawn medially and down

5 Levator palpebrae superioris Eyes widened
6 Orbicularis oculi, pars orbitalis Cheeks raised; eyes narrowed
7 Orbicularis oculi, pars palpebralis Lower eyelid raised and drawn medially

41 Relaxation of levator palpebrae
superioris

Upper eyelid droop

42 Orbicularis oculi Eyelid slit
43 Relaxation of levator palpebrae

superioris; orbicularis oculi, pars
palpebralis

Eyes closed

44 Orbicularis oculi, pars palpebralis Eyes squinted
45 Relaxation of levator palpebrae

superioris; orbicularis oculi, pars
palpebralis

Blink

46 Relaxation of levator palpebrae
superioris; orbicularis oculi, pars
palpebralis

Wink

Table 3.2 Miscellaneous Actions

Action Units Description of Motion Changes
8 Lips toward
19 Tongue show
21 Neck tighten
29 Jaw thrust
30 Jaw sideways
31 Jaw clench
32 Bite lip
33 Blow
34 Puff
35 Cheek suck
36 Tongue bulge
37 Lip wipe
38 Nostril dilate
39 Nostril compress
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Table 3.3 The Lower Face Action Units

Action
Units

Lower Facial Muscle Description of Motion Changes

9 Levator labii superioris alaeque nasi Upper lip raised and inverted; superior part of
the nasolabial furrow deepened; nostril dilated
by the medial slip of the muscle

10 Levator labii superioris Upper lip raised; nasolabial furrow deepened
producing square-like furrows around nostrils

11 Levator anguli oris
(a.k.a. Caninus)

Lower to medial part of the nasolabial furrow
deepened

12 Zygomaticus major Lip corners pulled up and laterally
13 Zygomaticus minor Angle of the mouth elevated; only muscle in

the deep layer of muscles that opens the lips
14 Buccinator Lip corners tightened. Cheeks compressed

against teeth
15 Depressor anguli oris

(a.k.a. Triangularis)
Corner of the mouth pulled downward and
inward

16 Depressor labii inferioris Lower lip pulled down and laterally
17 Mentalis Skin of chin elevated
18 Incisivii labii superioris andIncisivii

labii inferioris
Lips pursed

20 Risorius w/ platysma Lip corners pulled laterally
22 Orbicularis oris Lips everted (funneled)
23 Orbicularis oris Lips tightened
24 Orbicularis oris Lips pressed together
25 Depressor labii inferioris, or

relaxation of mentalis, or orbicularis
oris

Lips parted

26 Masseter; relaxed temporal and
internal pterygoid

Jaw dropped

27 Pterygoids and digastric Mouth stretched o en
28 Orbicularis oris Lips sucked Lips sucked

3.2.2 Cohn-Kanade AU-Coded Face Expression Image Database

The facial expression image database used in experiments is the Cohn-Kanade AU-Coded

Face Expression Image Database [44]. This database is representative, comprehensive

and robust test-bed for comparative studies of facial expression.

It contains image sequences from 210 adult subjects between the ages of 18 and

50 years. For gender classification, there are 69% female and 31% in this database. For



27

racial group, there are 81% Euro-American, 13% Afro-American, and 6% other groups.

Over 90% of the subjects had no prior experience in FACS. Subjects were instructed by

an experimenter to perform single AUs and AU combinations.

Subjects sat directly in front of the camera and performed a series of facial

behaviors which was recorded in an observation room. Lighting conditions and context

were relatively uniform. The image sequences in this database also include in-plane and

out-of plane head motion from small to mild. The resolution of the image sequence is

490x 640 for grayscale and 480x 640 for 24-bit color images. The image sequences began

with a neutral face and ended with the maximum of the corresponding action units. Face

size varies between 90 x 80 and 220x 200 pixels.

3.3 Experimental Procedure

In the proposed system, except using histogram equalization for adjust lighting condition,

Independent Component Analysis is adopted as feature extraction and representation

method and Support Vector Machine is applied as classification measure. The following

section will briefly describe basic concept of the two methods.

3.3.1 Independent Component Analysis

Independent component analysis (ICA) is a statistical and computational technique for

finding out hidden factors that are representative and favorable for separating the

different sets of images, sounds, telecommunication channels or signals. ICA was

originally designed to process the cocktail-party problem [16, 43] and belongs to a class

of blind source separation (BSS) methods for separating data into underlying

representative components.
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ICA is a general-purpose statistical and unsupervised technique where observed

random vector are linearly transformed into components that are minimally dependent

from each other. The concept of ICA is an extension of the principal component analysis

(PCA), which can only impose independence up to the second order and, consequently,

defines directions that are orthogonal. The formulation of ICA in this section is based on

[55].

Suppose that y E Rn is a n dimensional random vector. The covariance matrix of y

is defined as

EY = Ef [y - E(y)[[y - 8(y)[` (3.1)

where £(•) is the expectation operator, t denotes the transpose operation, and Ey E Rinx"

is a real and symmetric square matrix. The ICA of random vector y factorizes the

covariance matrix Ey into

E = FFF t (3.2)

where I" E Rm- is diagonal real positive and FEW- transforms the original random

vector y E Rn to a new one Z E Rmx" , where y = FZ , such that the m components (m <

n) of the new random vector Z are independent or the most independent possible [16].

Let Pz (u) be the probability density function (pdf) of the random vector Z. Vector

Z has mutually independent components if and only if its joint density is equal to the

product of its marginal densities

p. (u)=n p zi (u,)
i=1

(3.3)
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To derive the ICA transformation, Comon [16] developed an optimization

criterion for measuring the independence of the components of the random vector Z. This

criterion calculates the Kullback—Leibler divergence (or relative entropy) of the two pdf's

corresponding to the left and the right side of Equation (3.3)

(13z) = J13 , (u) log p ^ (u) du
Up, (u,)

1(Pz ) thus specifies the average mutual information of Z. Equations (3.3) and (3.4) show

that the mutual information vanishes if and only if the random vector has mutually

independent components. Equation (3.4) can be rewritten as follows [15]:

1	 1-1 V
/(p z ) =	 J(P, )+ —log 	 ' 1

2	 IV

where V is the covariance matrix of Z, and J(Pz ) the negentropy, a measure of similarity

between a density Pz (u) and the Gaussian density O(Pz )

J(p,)=— fp, (u) log  oy 
(u)  du

P, (u)

By means of Equations (3.5) and (3.6), which provide a way to approximate the mutual

information, Comon [16] developed an optimization procedure (minimization of the

mutual information) that consists of three major steps:

i) a whitening procedure, which involves only second-order statistics, cancels the last
term of Equation (3.5);

ii) a number of rotation transformations, which apply highorder statistics by means of
k-statistics, minimize the second term on the right side of Equation (3.5) while
keeping the others constant;

iii) a normalization procedure, which standardizes the column vectors F in Equation
(3.2) in terms of order, norm, and phase (sign), defines a unique ICA representation.

(3.4)

(3.5)

(3.6)
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The potential applications of ICA can be applied to separation of artifacts in MEG

data, finding hidden factors in financial data, reducing noise in natural images,

telecommunications [40], face recognition [5], and biomedical signal processing, and so

on. Bartlett et al [5]. thought that in face recognition, much of important information is

contained in the high-order statistics of the images, so ICA representation is superior than

PCA representation that is contained second-order statistics.

3.3.2 Support Vector Machine

SVMs, introduced by Vapnik [86], are learning systems that separate sets of input pattern

vectors into two classes with an optimal separating hyperplane. The set of vectors is said

to be optimally separated by the hyperplane if it is separated without error and the

distance between the closest vectors to the hyperplane is maximal. SVMs produce the

pattern classifier by 1) applying a variety of kernel functions (linear, polynomial, radial

basis function (RBF), and so on) as the possible sets of approximating functions,

2) optimizing the dual quadratic programming problem, and 3) using structural risk

minimization as the inductive principle, as opposed to classical statistical algorithms that

maximize the absolute value of an error or of an error squared.

Different types of SVM classifiers are used depending upon the type of input

patterns: a linear maximal margin classifier is used for linearly separable data, a linear

soft margin classifier is used for linearly nonseparable, or overlapping, classes, and a

nonlinear classifier is used for overlapped classes. The promising applications of SVM

can be used on object and face detection, text categorization, face and facial expression

recognition, optical character and speech recognition, and medical fields such as breast

cancer diagnosis and protein structure prediction.
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3.3.3 Experimental Procedure

A complete automatic facial expression analysis system includes face detection, facial

component extraction and representation, and facial expression recognition stages. The

purpose of facial detection is to automatically detect and catch the region of faces in the

still images or sequences. Since there are a lot of algorithms and methods developed for

detecting faces [69, 79, 87], in this study, it is assumed that the exact face is automatically

located and ready to feed into the next stage.

The purpose of the facial extraction and representation is to find out the most

valuable, favorable, and representative information that is derived from facial expression

changes to represent the original detected faces. The implication of this stage is to reduce

the dimensionality of the detected faces from the previous stage and to speed up the

computation of the next stage, facial expression recognition.

The purpose of the facial expression recognition is to accurately and promptly

identify different facial expressions. The facial expressions to be recognized can be

divided into two types. The first type is emotion-specified expressions, such as happy,

angry, surprise, and so on [12, 21, 56, 73, 97]. The other is facial action units [6, 20, 81].

Since in previous chapter, emotion-specified expression recognition is performed, in this

paper, facial action unit recognition is intended. Figure 3.1 describes the proposed

recognition system in this chapter.

Detected facial
,---*

Histogram
--■ ICA Extraction ---■ SVM

Components Equalization and Representation Classification

Figure 3.1 The experimental procedure.
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Since the exact faces that can be located by face detection algorithms [69, 79, 87]

are assumed, the first step of this proposed system is to divide the detected face into

upper and lower part. The illumination condition is uneven, so histogram equalization is

applied to the detected images to eliminate the lighting effect. To extract the subtle

changes of the facial expressions, Independent Component Analysis is implemented.

Linear Support Vector Machine classifier is adopted to recognition the individual action

unit or in combination. The proposed system is fast and can be applied to real time

application. All the experiments are processed in the Matlab 7 environment under XP and

Pentium IV with 2.80 GHz. It only takes about 1.8 ms for processing a testing image.

3.4 Experimental Results

There are four experiments to be performed in this Chapter. The first experiment intends

to recognize 6 individual or in combinations of the upper face action units including AU

4, AU 6, AU 1+AU 2, AU 1+AU 4, AU 4+AU 7, and AU 1+AU 2+AU 5. The second

experiment is constructed to classify six individual or in combinations of the upper face

action units containing AU 17, AU 9+AU 17, AU 12+ AU 25, AU 15+AU 17, AU

20+AU 25, and AU 25+AU 27.

The third experiment is designed to categorize four combination of action units on

the whole face including neutral, AU 1+AU 2+AU 5+AU 25+AU 27, AU 6+AU 12+AU

25, and AU 4+AU 17. The last experiment is schemed to analyze the effect of gender

factor on the previous three experiments. 27 subjects are randomly selected from the

Cohn-Kanade AU-Coded Face Expression Image Database in terms of the action units to

be recognized for those experiments.
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Of 27 subjects, 20 are female and 7 male. Since the image sequences start from

neutral and end at maximum of the corresponding action units, the first three and last

three images are picked as the neutral and corresponding action units, respectively.

Totally, there are 141 images for upper part of action units, 126 for lower part, and 135

for the whole face, respectively.

Since the dataset is limited, 90% of dataset is selected randomly as training set

and the rest of 10% as test set. The same procedure is performed ten times, the

recognition rates of ten independent tests are averaged, and the final performance for

each experiment are obtained. Tables 3.4-3.6 describe the recognition results for different

action units. Table 3.7 compares the difference of performance on action units between

genders.

From Table 3.4, most misclassification is derived from the combination of AU4 +

AU7. This category at times is misclassified as AU6. The cause is the combination of

AU4 + AU7 make the eyes narrow as the AU6 does. From Table 3.5, most

misclassification stems from the combination of AU20 + AU25. This group, sometimes,

is recognized as the group of AU12 + AU25, since the difference between the two groups

is the motion of lip corner. From Tables 3.4-3.6, there is no significant difference to our

proposed system for recognizing the upper and lower part of face.

The recognition rats of 97.06% and 97.13% are obtained for upper part and lower

part, respectively. 100% of recognition rate is obtained for classifying the action units

appearing on the whole face. It means that for expression recognition, the combination of

facial feature components, such as eyes and mouth, can produce better results than only

single component is used.
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It is interesting to explore the gender effect on recognizing the action units. From

the results on Table 3.7, the males can express the action units more accurately than the

females do. From the performance point of view, the proposed system is reliable and

comparable to other published systems. Table 3.8 summarizes the performance of

published systems with our proposed method.

Table 3.4 Recognition Rate for Upper Part of Face



Table 3.5 Recognition Rate for Lower Part of Face

Table 3.6 Recognition Rate for Whole Face

35
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Table 3.7 Recognition Rate Between Genders on Action Units

Action units on different part of face Recognition rate
Male Female

Action units on upper face 100% 95.3 8%

Action units on lower face 100% 93.33%

Action units on whole face 100% 99.29%

Table 3.8 Performance Comparison of Different Systems

Systems Database AUs to be recognized Recognition

rate

Tian et al.[81] Cohn-Kanade AU 9, 10, 12, 15, 17, 20,

25, 26, 27, 23+24

95.6%

Donato [20] Ekman-Hager AU 1, 2, 4, 5, 6, 7 96.9%

Bazzo and Lamar [6] Cohn-Kanade Upper AU 0, 6, 1+2, 4+7, 86.55%

1+2+5, 4+6+7+9, 4+7+9

Lower AU 0, 25, 26, 27, 81.63%

12+25, 15+17, 20+25

Proposed system Cohn-Kanade Upper AU 4, 6, 1+2, 1+4, 97.06%

4+7, 1+2+5

Lower AU 17, 9+17, 12+25, 97.13%

15+17, 20+25, 25+27

Whole face AU neutral, 100%

4+17, 6+12+25,

1+2+5+25+27
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3.5 Conclusions

In this chapter, recognizing action units, the subtle change of face, instead of the

prototypical and emotion-specified facial expressions, such as happy, surprise, and so on,

is analyzed. The comprehensive and heterogeneous subject database, Cohn-Kanade AU-

coded face expression image database, is tested. The proposed system is reliable,

efficient and comparable to other published system. It is also fast and can be applied to

real-time application. The recognition rate of the proposed method is 97.06% for

recognizing the upper part of face, 97.13% for lower part of face, and 100% for the whole

face. The gender effect on recognizing the action units is explored. Two important

findings are obtained. First, for recognition purpose, the combination of facial features is

better than individual features. Second, for gender effect, the males can express the action

units more accurately than the females do.



CHAPTER 4

NEONATAL PAIN CLASSIFICATION

A new application area developed by the Infant COPE project and database developed by

Dr. Brahnam [9] at Missouri State University is the recognition of neonatal facial

expressions of pain. It has been reported in medical literature that health care

professionals have difficulty distinguishing a newborn's facial expressions of pain from

facial reactions to other stimuli. Although a number of pain instruments have been

developed to assist health professionals, studies demonstrate that health professionals are

not entirely impartial in their assessment of pain and fail to capitalize on all the

information exhibited in a newborn's facial displays. In this chapter these problems are

tackled by applying three different state-of-the-art face classification techniques to the

task of distinguishing a newborn's facial expressions of pain.

This chapter, in full, is a collaborative summary and reprint of materials that has

been accepted for publication in Artificial intelligence in Medicine, Brahnam S, Chuang

C.-F., Shih F. Y., and Slack M. R., in press 2005 [9] and Special Issue on "Decision

Support in Medicine" in Decision Support System, Brahnam S, Chuang C.-F., Sexton R.

S., and Shih F. Y., in press 2005 [8]. Computer Vision Laboratory at NJIT is participated

in the Infant COPE project that is designed, developed, and led by Dr. Brahnam at

Missouri State University. All the experiments were done in Missouri State University

and the Computer Vision Laboratory at NJIT.
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4.1 Introduction

The assessment of pain in newborns is considered one of the most challenging problems

in neonatology [26]. Pain assessment is difficult because neonates cannot articulate their

pain experiences and vary tremendously in their responses to pain and other stimuli [26,

88]. Since pain is a major indicator of medical problems [58] and the quality of patient

care depends on the quality of pain management [33], it is vital that methods be

developed that accurately distinguish an infant's signals of pain from a host of minor

distress signals [88].

At present, assessment of neonate pain takes into consideration a number of

physiological and behavioral factors. Among the many physiological indicators of pain

are changes in heart and respiratory rates, blood pressure, vagal tone, and palmar

sweating [15]. The consensus in the reference literature, however, is that physiological

measures are insufficient and unreliable indices of pain. Physiological measures vary

significantly from newborn to newborn, and they fail to reflect the intensity of pain [58].

Moreover, the physiological parameters associated with pain are not easily

distinguishable from parameters associated with fear and anxiety [85].

Significant neonate behavioral responses to pain include body movement, crying,

and facial expressions [58]. Facial expressions play a central role in pain assessment, as

attested by the fact that most pain instruments developed for infants, toddlers, and older

children, including COMFORT [4], CRIES [48], FLACC (Face, Legs, Activity, Cry,

Consolability) [60], MIPS (Modified Infant Pain Scale) [11], and CFACS (Child Facial

Coding System) [29], rely in whole or in part on facial displays. The facial characteristics

associated with pain in infants include prominent forehead, narrowed eyes, deepening of
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the nose-lip furrow, and an angular opening of the mouth [30]. Facial expressions are a

critical factor in the assessment of infant pain because they are the most specific and

frequent indicators of pain [78]. Body movement and crying are behaviors that are

associated with other states, such as hunger, fright, and discomfort; and neonates do not

always respond to pain by crying and moving. Sleep, for instance, inhibits bodily

movement; yet, in sleep, an infant's face will often register the experience of pain [59].

This is an issue that is particularly relevant to neonates since they spend between 14 and

17 hours a day sleeping [90].

Even though the facial characteristics of infant expressions of pain have been

studied extensively [30], there are serious problems with pain assessment instruments that

utilize facial displays. The primary problem is that these tools rely on the observations of

health professionals, and health professionals have been shown to be biased in their

observations and less competent than nonhealth professionals in recognizing facial

expressions of pain [68, 92]. Xavier Balda et al. [92] theorize that health professionals

become desensitized because of their constant exposure to suffering. The findings of

Xavier Balda et al. [92] corroborate other studies demonstrating that the greater the

clinical experience of the health professional the more likely he or she is to underestimate

patient pain [68]. A repeated refrain in the reference literature, therefore, is that neonate

pain assessment tools need to be developed that alleviate or circumvent the problem of

observer desensitization and bias [39, 92].

In order to evaluate and assess the reliable machine recognition of acute pain, the

Infant COPE database is used. This database containing 204 facial expressions of 26

neonates (age 18-36 hours) was photographed experiencing the acute pain of a heel lance
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and three non-pain stressors including transport from one crib to another (a disturbance

that can provoke crying that is not in response to pain), an air stimulus on the nose, and

friction on the external lateral surface of the heel..

The objective of Infant COPE project is to tackle these problems by applying

state-of-the-art face classification techniques to the task of distinguishing a newborn's

facial expressions of pain from facial expressions that are similar but not triggered by

pain. Since the assessment of pain by machine is based on pixel states, the development

of a machine classification system of pain will offer the following advantages: it will

remain objective, exploit the full spectrum of information available in a neonate's facial

expressions, and not degrade over time. A machine classification system of pain will offer

the additional benefit of monitoring a neonate's facial expressions when the patient is left

unattended.

As described more fully in Section 4.3, the face classification techniques used in

this study are PCA (principal component analysis), LDA (linear discriminant analysis),

and SVM (support vector machines). Although these techniques have succeeded in

classifying faces according to identity [7, 82, 83], gender [61, 65], age [84], race [64],

and emotions [12, 97], they have yet to be applied to medical problems that involve the

face. Dai et al. [19] have proposed a method for observing the facial expressions of

patients in hospital beds, but their facial images were not of actual patients but rather of

subjects responding to verbal cues suggestive of medical procedures and conditions. To

date, no work has employed face classification techniques to the task of classifying actual

facial expressions of pain.
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In Infant COPE project, PCA, LDA, and SVM, are trained and tested using facial

photographs of neonates experiencing four noxious stimuli: transport from one crib to

another, air puff on the nose, friction from cotton and alcohol rubbed on the lateral

surface of the heel, and the puncture of a heel lance. The experimental design is described

more completely in Section 4.2, and the three classifiers are reviewed in Section 4.3.

Section 4.4 discusses the methods and the procedures used in the classification

experiments, and Section 4.5 presents the experimental results. The paper is concluded, in

Section 4.6, by noting some of the contributions and limitations of this study and by

offering directions for future research.

4.2 Study Design

Warnock and Sardin [88] have recently stressed the importance of including a variety of

contrasting stimuli in studies on infant pain assessment. Early research focused mostly on

neonate responses to two stimuli: a pain inducing stimulus (pin prick or puncture of a

lancet) and friction on the heel [31, 41]. Contemporary studies tend to include additional

stressors, such as exposure to bright light [92] and diaper change [88].

Infant COPE database follows contemporary research by including two stressors

in addition to the puncture of a lancet. Since PCA, LDA, and SVM classifiers are

sensitive to light changes, an air puff stimulus was introduced in lieu of a bright light

stimulus. Exposure to a puff of air on the face is similar to exposure to bright light in that

it causes the eyes to squeeze tightly together, producing a facial expression that is similar,

yet distinct, from the facial expression of pain. At the suggestion of hospital personnel,

infants were transported from one crib to another before taking the photographs. This
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change was welcomed as it supplied a stressor similar to diaper change: neonates can

respond to both experiences by crying. It afforded the opportunity of contrasting classifier

recognition rates of neonate crying expressions that were in response to pain to those

crying expressions that were in response to a less noxious stimulus.

4.2.1 Subjects

This study complied with the protocols and ethical directives for research involving

human subjects at St. John's Health System, Inc. Informed consent was obtained from a

parent, usually the mother in consultation with the father. Most parents were recruited in

the neonate unit of a St. John's Hospital sometime after delivery. Only mothers who had

experienced uncomplicated deliveries were approached.

A total of 204 color photographs were taken of 26 Caucasian neonates (13 boys

and 13 girls) ranging in age from 18 hours to 3 days old. Six males had been circumcised

the day before the photographs were taken, and the last feeding time before the

photography session ranged from 45 minutes to 5 hours. All infants were in good health.

4.2.2 Apparatus

All photographs were taken using a Nikon D100 digital camera under ambient lighting

conditions in a room separated from other newborns.

4.2.3 Procedure

The facial expressions of the newborns were photographed experiencing four distinct

stimuli: transport from one crib to another, air puff on the nose, friction from cotton and

alcohol rubbed on the heel, and the puncture of a heel lance. The state of the infant after

being transported to another crib was further evaluated at the time the photographs were
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taken into one of two states: crying or resting.

All stimuli were administered by an attending nurse. Following the example of

[92] and the requirements of standard medical procedures, photographs of the facial

expressions of the four stimuli were taken in the following sequence:

1. Transport from one crib to another (Rest/Cry): After being transported from one crib
to another the neonate was swaddled and not handled for 1 minute. After this minute
of rest, a photograph was taken and the state of the neonate noted as either crying or
resting.

2. Air Stimulus: After another minute of rest, the neonate's nose was exposed to a puff of
air emitted from a squeezable plastic camera lens cleaner. A series of pictures of the
neonate's face was taken immediately after the air puff contacted the infant's face.

3. Friction: After another minute of rest the neonate received friction on the external
lateral surface of the heel with cotton wool soaked in 70% alcohol for 10 to 15
seconds. During the friction movements the face of the neonate was photographed.

4. Pain: After one minute of rest the external lateral surface of the heel was punctured
when collecting blood. Several continuous photographs of the neonate's face were
taken starting immediately after introduction of the lancet and while the skin of the
heel was squeezed for blood samples.

Of the 204 facial photographs, 67 are Rest, 18 are Cry, 23 are Air Stimulus, 36 are

Friction, and 60 are Pain. Figure 4.1 provides two example sets, with backgrounds

removed, of the five neonate facial expressions of rest, cry, air puff, friction, and pain.

4.3 Basic Concepts of PCA, LDA, and SVM

In Infant COPE project, three types of classifiers are used to train and to test infant facial

expressions: Principal Component Analysis (PCA), Linear Discriminant Anaylsis (LDA),

and Support Vector Machines (SVM). The basic concepts behind these classifiers are

presented in this section.
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Figure 4.1 Examples of the five facial expressions in the Infant COPE dataset.

4.3.1 Principal Component Analysis

The central idea behind PCA is to find an orthonormal set of axes pointing in the

direction of maximum covariance in the data. In terms of facial images, the idea is to find

the orthonormal basis vectors, or the eigenvectors, of the covariance matrix of a set of

images, with each image treated as a single point in a high dimensional space. It is

assumed that the facial images form a connected subregion in the image space. The

eigenvectors map the most significant variations between faces and are preferred over

other correlation techniques that assume every pixel in an image is of equal importance,

(see, for instance, [47]).

Since each image contributes to each of the eigenvectors, the eigenvectors

resemble ghostlike faces when displayed. For this reason, they are oftentimes referred to

in the literature as holons [18] or eigenfaces [82, 83], and the new coordinate system is

referred to as the face space [82, 83]. Examples of eigenfaces are shown in Figure 4.2.

Individual images can be projected onto the face space and represented exactly as

weighted combinations of the eigenface components (see Figure 4.3).



46

The resulting vector of weights that describe each face can be used both in face

classification and data compression. Classification is performed by projecting a new

image onto the face space and comparing the resulting weight vector to the weight

vectors of a given class [82, 83]. Compression is achieved by reconstructing images using

only those few eigenfaces that account for the most variability [74].

PCA Classification

The principal components of a set of images can be derived directly as follows. Let

I (x, y) be a two-dimensional array of intensity values of size NxN. I (x, y) may also be

represented as a single point, a one-dimensional vector of size N 2 . Let the set of face

represent the mean normalized column vector for a given face rk , where

is the average face of the set.

PCA seeks the set of M orthonormal vectors, uk , and their associated eigenvalues,

, which best describes the distribution of the image points. The vectors u k and scalars

kk are the eigenvectors and eigenvalues, respectively, of the covariance matrix

(4.3)

where the matrix A = [0,,4:1) 2 , ...	 (Turk and Pentland [81, 82]).
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Figure 4.2 The first ten eigenfaces of the 204 neonate images in Infant COPE

database. The eigenfaces are ordered by magnitude of the corresponding eigenvalue.

Figure 4.3 Illustration of the linear combination of eigenfaces. The face to the left can
be represented as a weighted combination of eigenfaces.

The size of C is N 2 by N2 which for typical image sizes is an intractable task

(Turk and Pentland, [82, 83]). However, since typically M < N 2 , that is, the number of

images is less than the dimension, there will only be N —1 non-zero eigenvectors. Thus,

the N 2 eigenvectors can be solved, in this case, by first solving for the eigenvectors of an

M x M matrix, followed by taking the appropriate linear combinations of the data points
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0 (Turk and Pentland, [82, 83]).

PCA is closely associated with the Singular Value Decomposition of a data matrix

and can be decomposed as

41) = USV 1 .	 (4.4)

Where S is a diagonal matrix whose diagonal elements are the singular values, or

eigenvalues, of 41) , and U and V are unary matrices. The columns of U are the

eigenvectors of OD' , and are referred to as eigenfaces. The columns of V are the

eigencevotrs 0' 0 and are not used in this analysis.

Faces can be classified by projecting a new face F onto the face space as follows:

wk uki (rk (4.5)

for k = 1,...M' eigenvectors, with M' M , if reduced dimensionality is desired. The

weights form a vector 52 k1 = [a , ], which contains the projections onto each

eigenvector. Classification is performed by calculating the distance of il k from SZ ,

where f/ represents the average weight vector defining some class [81, 82].

Data Compression

Since the eigenfaces are ordered, with each one accounting for a different amount of

variation among the faces, images can be reconstructed using only those few eigenfaces,

M' M in equation 4.3.4, that account for the most variability [74]. Because PCA

results in a dramatic reduction of dimensionality and maps the most significant variations

in a dataset, it is typically used to represent faces when performing other classification

procedures.
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4.3.2 Linear Discriminant Analysis

While PCA is optimal for reconstructing images from a low dimensional space, it is not

optimal for discrimination. PCA yields projection directions that maximize the total

scatter across all classes. LDA, or Fisher's linear discriminants, in contrast, is a

supervised learning procedure that projects the images onto a subspace that maximizes

the between-class scatter and minimizes the within-class scatter of the projected data. A

classical technique in pattern recognition, LDA is an example of a class specific method

in that it shapes the scatter in order to make it more reliable for classification [7]. There

has been a tendency to prefer LDA to PCA because LDA deals directly with

discrimination between classes, whereas PCA aims at faithfully representing the data. It

has been shown that LDA outperforms PCA only when large and representative training

data sets are given [57].

4.3.3 Support Vector Machine

Support Vector Machines (SVM), introduced by Vapnik [86], are learning systems that

separate a set of input pattern vectors into two classes with an optimal separating

hyperplane. The set of vectors is said to be optimally separated by the hyperplane if it is

separated without error and the distance between the closest vectors to the hyperplane is

maximal. SVM produces the pattern classifier by applying a variety of kernel functions

(linear, polynomial, radial basis function, and so on) as the possible sets of approximating

functions, by optimizing the dual quadratic programming problem, and by using

structural risk minimization (SRM) as the inductive principle, as opposed to classical

statistical algorithms that maximize the absolute value of an error or of an error squared.
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Originally, SVM was designed to handle dichotomic classes. Recently, research

has concentrated on expanding two-class classification to multi-class classification. Since

the objective in this paper has been to distinguish neonate facial displays of pain from

other facial displays, this discussion of SVM will be limited to dichotomic classification.

Different types of SVM classifiers are used depending upon the type of input

patterns: a linear maximal margin classifier is used for linearly separable data, a linear

soft margin classifier is used for linearly non-separable, or overlapping, classes, and a

nonlinear classifier is used for classes that are overlapped as well as separated by

nonlinear hyperplanes. All three classifiers are discussed in more detail below. It should

be noted, however, that the linearly separable case is rare in real world problems and was

not explored in our experiments.

4.3.3.1 Linear Maximal Margin Classifier. The case where the training patterns

can be linearly separated by a hyperplane, w • x + b = 0, is the simplest case and provides

a good foundation for the other two cases. The purpose of the SVM is to find the optimal

values for w (e.g., wo) and b (e.g., bo). After finding the optimal separating hyperplane,

wo • x + bo = 0, an unseen pattern, x t can be classified by the decision

rule f(x) = sign(w 0 • x, + b0 ), as shown below.

Suppose, there is a set of training data, x 1 , X2, Xk. where x i E le with i = 1, 2 . . .

k. Each x i , belonging as it does to one of two classes, has a corresponding value y, where

y, E {-1, 1}. The goal in this case is to build the hyperplane that maximizes the

minimum distance between the two classes. Because the hyperplane is w • x + b = 0, the
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training data can be divided into 2 classes such that

w • xi + b	 1	 if y, = 1,	 (4.6)

w • x, + b	 —1	 if y, = —1.

where w e RH and b E R.

Combining the equations in (4.6), Equation (4.7) is obtained.

y, (w • xi + b)	 1	 V x;, i = 1, 2 . . . k.	 (4.7)

The distance between a point x and the hyperplane is d(w, b; x) = I w • x + b / wig.

According to (4.6), the minimum distance between one of the two classes and the

hyperplane is  1  . The margin, M, which is the distance between the two classes, is  2 

II w II	 II w II

Finding the optimal separating hyperplane having a maximal margin requires that the

following minimization problem be solved:

Minimize:	 — w • w
2

Subject to	 y, (w • xi + b)	 1	 V x, , i =1, 2 . . . k.

This nonlinear optimization problem with inequality constraints can be solved by

the saddle point of the Lagrange function:

L(w, b, a)=—
2 

w•w-	 a, (y, (w • x, +b)-1),

where a,	 0 are the Lagrange multipliers.

By minimizing the Lagrange function with respect to w and b, as well as by

maximizing with respect to a t  the minimization problem above can be transformed to its

dual problem, called the quadratic programming problem:

1
(4.8)

/=1



=0
1=1

81,( v ,b, a,) K

aW	 IVV = WO = [ W O — 1

1=1

52

(4.9)

(4.10)a(w,b,a,) 1 b bo 	 yi = O
ab

Equation (4.11) can be obtained by plugging (4.9) and (4.10) into (4.8).

K K

L(a) = 	 a 1 ---1-YEa j a •y,y i x i x i
2 i=1 1=1

The dual problem can be described as follows:

(4.11)

K K

Maximize: 	 E a, 	 E a i aj y,yj x,x j

j =1

Subject to:	 y,a, = 0,	 a, > 0
,.1

By solving the dual problem, the optimal separating hyperplane is determined by

(4.12) and (4.13).

WO = Ici,y,x, 	 (4.12)
i=i

bo = y e - wo • xi	 (4.13)

where xi belongs to support vectors, y, E — 1, 11.

The unseen test data xt can be classified, therefore, by simply computing (4.14).

f(x)= sign(w 0 • x t +b0 ) 	 (4.14)

By examining (4.12), it can be seen that the hyperplane is determined by all the

training data, xi, that have the corresponding attributes of a, > 0. This kind of training

data is called support vectors. Thus, the optimal separating hyperplane is not determined

by the training data per se but rather by the support vectors.
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4.3.3.2 Linear Soft Margin Classifier. 	 As mentioned above, patterns that are

linearly separable are rare in real world problems. In this sub-session, SVM is expanded

to handle input patterns that are overlapping, or linearly non-separable. In this case, our

objective is to separate the two classes of training data with a minimal number of errors.

To accomplish this, some non-negative slack variables is introduced, i = 1,

2 . . . k to the system. Thus, (4.6) and (4.7), in the linearly separable case above, can be

rewritten as (4.15) and (4.16):

(4.15)

(4.16)

Just as the optimal separating hyperplane in the linearly separable case, obtaining

the soft margin hyperplane in the linear non-separable case requires that the following

minimization problem be solved:

where C is a penalty or regularization parameter.

By minimizing the Lagrange function with respect to w, b, and , as well as by

maximizing with respect to a, the minimization problem above can be transformed to its

dual problem, described as follows:
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Solving the dual problem, the soft margin hyperplane is determined by (4.17) and

(4.18).

(4.17)

(4.18)

where xi belongs to margin vectors, y, E { —1, 11.

By examining (4.3.17), it can be seen that the hyperplane is determined by all the

training data, xi that have the corresponding attributes of a, > 0. These support vectors

can be divided into two categories. The first category has the attribute of a, <C. In this

category,	 = 0, and these support vectors lie at the distance  1 from the optimal
II w

separating hyperplane. These support vectors are called margin vectors. The second

category has the attributes of a, = C. In this category, the support vectors are correctly

classified with either a distance smaller than  1 	 from the optimal separating
II w II

hyperplane (if 0 <	 1) or they are misclassified (if >1). The support vectors in the

second category are regarded as errors.
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4.3.3.3 Non-linear Classifier. Sometimes, the input vectors can not be linearly

separated in the input space. In this case, kernel functions, such as the polynomial or RBF

kernel functions are used to transform the input space to a feature space of higher

dimensionality. In the feature space, a liner separating hyperplane is sought that separates

the input vectors into two classes.

If x E R" is in the input space, the input vector x can be mapped from the n-

dimension input space to a corresponding N-dimensions feature space through a

function, 0 . After the transformation, it is known 0 (x) E RN . Following the steps

described in the case of linearly separable training patterns (section 4.3.3.1) and the case

of linearly non-separable training patterns (section 4.3.3.2), the hyperplane and decision

rule for nonlinear training patterns can be established.

So, similar to obtain the hyperplane for the linearly separable training patterns in

equations (4.12) and (4.13) and the hyperplane for the linearly non-separable training

patterns in equations (4.17) and (4.18), the hyperplane can be obtained for the non-linear

training pattern as in equation (4.19).

(4.19)

From the equation (4.19), the original dot products of input variables are replaced

by a function, 0 . That is kernel function, K(x i , x) = 0 (x i) • 0 (x). The decision rule for

nonlinear training patterns can be established as shown in equation (4.20):

(4.20)
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4.4	 Experimental Procedure

As illustrated in Figure 4.4, the experimental procedures can be divided into the

following stages: preprocessing, feature extraction, and classification.

In the preprocessing stage, the original images are cropped, rotated, and scaled

such that the eyes lie roughly along the same axis. The original 204 images, size 3008 x

2000 pixels, are also reduced to 100 x 120 pixels.

In the feature extraction stage, facial features are centered within an ellipse and

color information is discarded. The rows within the ellipse are concatenated to form a

feature vector of dimension 8383 with entries ranging in value between 0 and 255. PCA

is used to reduce the dimensionality of the feature vectors further. In our experiments, the

first 70 principle components resulted in the best classification scores.

Finally, in the classification stage, PCA, LDA, and SVM are used to classify the

feature vectors into the following category pairs: pain/non-pain, pain/cry, pain/air puff,

and pain/friction.

4.5 Experimental Results

This section describes three face classification experiments. In experiment 1, PCA, LDA,

and SVM classify faces into the following classification pairs: a) pain/rest, b) pain/cry, c)

pain/air puff, and d) pain/friction. In experiment 2, PCA, LDA, and SVM classify faces

into the classification pair of pain/non-pain. The set of non-pain images was obtained by

combining the rest, cry, air puff, and friction images into one category of 140 images. The

remaining 60 images were of pain. The two experimental cases above are person-

dependent where part of the data for each subject is used as training set, and another part

as test set. The cross-validation technique is used in person-dependent case.



Figure 4.4 The experimental procedure.

As the intention of the initial study was to examine classification differences

between pain expressions and a variety of similar non-pain expressions, the images used

in the experiments were divided into training and testing sets based on facial expression

categories, not subjects. As a result, the training and testing sets contained multiple

samples of each subject in each expression category. While it is true that ideally, as is the

case with speech recognition software, samples of individual subjects would be used to

personalize the classifier, in a clinical setting, it is more realistic to assume that the

classifier would be trained previously on one set of subjects and then applied out of the
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box to future newborns. The experiment 3, person-independent case, is designed to

examine the more realistic evaluation protocol of requiring that subjects in the testing sets

not be included in the training sets. Furthermore, only two categories of facial

expressions are examined: pain and non-pain, a choice that is discussed further in Section

4.5.2.

4.5.1 Person-dependent Case

Because the number of images in the dataset is small, a cross-validation technique was

applied in all experiments. The images in each experiment were randomly divided into

ten segments, and nine out of the ten segments were used in training. The remaining

segment was used in testing. This procedure was repeated ten times. The ratio of right to

wrong classifications was used as the classification index, and the ten classification

indexes were averaged for a final classification score.

4.5.1.1 Experiment 1. Tables 4.1-4.4 compare the classification scores of PCA

(using the L 1 metric), LDA (using the L 1 metric) and SVM (using linear, polynomials of

degree 2, 3, and 4, and RBF kernel functions) for each of the following expression pairs:

pain/rest, pain/cry, pain/air puff, and pain/friction. Referring to Tables 4.1 and 4.2, the

best classification score of pain versus rest is 94.62% and pain versus cry is 80.00%,

using a SVM with polynomial kernel of degree 3. In Table 4.3, the best classification

score of pain versus air puff is 90.00% using a linear SVM. In Table 4.4, most SVM

systems separate pain from friction. The best result is 96.00% using a SVM with

polynomial kernel of degree 2.

Tables 4.1-4.4 demonstrate that different SVM systems have distinct effects on

recognizing pain from other facial expressions. For example, a linear SVM has a stable
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recognition rate of 90.00% in pain versus all facial expressions except cry. In general,

however, a SVM with polynomial kernel of degree 3 has the best overall classification

performance.

Table 4.1 Pain versus Rest

Recognition rate
Linear 90.77%
Polynomial with degree = 2 84.62%
Polynomial with degree = 3 94.62%
Polynomial with degree = 4 86.15%
RBF Kernel 53.85%
PCA with Ll distance 87.18%
LDA with Ll distance 93.08%

Table 4.2 Pain versus Cry

Type of SVM Recognition rate
Linear 71.25%
Polynomial with degree = 2 78.75%
Polynomial with degree = 3 80.00%
Polynomial with degree = 4 76.25%
RBF Kernel 75.00%
PCA with Ll distance 68.75%
LDA with Ll distance 70.42%

Table 4.3 Pain versus Air Puff

Type of SVM Recognition rate
Linear 90.00%
Polynomial with degree = 2 77.78%
Polynomial with degree = 3 83.33%
Polynomial with degree = 4 78.89%
RBF Kernel 66.67%
PCA with Ll distance 81.48%
LDA with Ll distance 89.63%
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Table 4.4 Pain versus Friction

Type of SVM Recognition rate
Linear 90.00%
Polynomial with degree = 2 96.00%
Polynomial with degree = 3 93.00%
Polynomial with degree = 4 92.00%
RBF Kernel 60.00%
PCA with Ll distance 74.00%
LDA with Ll distance 91.00%

4.5.1.2 Experiment 2.	 In experiment 2, PCA, LDA, SVM are used to classify

faces into two categories: pain and non-pain. The non-pain set consisted of all the air puff,

cry, friction, and rest images. Table 4.5 shows the results of the PCA, LDA and several

SVM systems. The best classification score (88.00%) is obtained using SVM with

polynomial kernel of degree 3. Recall that SVM with polynomial kernel of degree 3

provided the best overall classification score in experiment 1 as well. SVM with

polynomial kernel of degree 3, therefore, is probably the best selection for classifying

neonate facial expressions of pain.

Table 4.5 Pain versus Non-pain

Type of SVM Recognition rate
Linear 83.67%
Polynomial with degree = 2 86.50%
Polynomial with degree = 3 88.00%
Polynomial with degree = 4 82.17%
RBF Kernel 70.00%
PCA with Ll distance 80.33%
LDA with Ll distance 83.67%
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4.5.2 Person-independent Case

The evaluation protocol used in this study called for 26 experiments to be performed by

each classifier. For each of the 26 subjects, the set of facial images for that subject formed

the testing set, and the facial images of the remaining 25 subjects formed the training set.

The 204 photographs were divided into two categories: pain and non-pain. The set of

non-pain images was obtained by combining the rest, cry, air puff, and friction images

into one category of 144 images. The set of pain images consisted of the remaining 60

images. For each experiment, classification scores were computed for each classifier by

averaging the number of correct classifications made.

This section describes person-independent experimental results using PCA, LDA,

and SVM. Tables 4.6 and 4.7 present the classification scores and 95% confidence

interval. SVM with linear kernel has the highest classification rate of 82.35% accuracy,

with a 95% confidence interval of ± 6.20%. Given this result, it is believed that there is a

high potential for developing a decision support system for diagnosing neonatal pain

from images of neonatal facial displays. Classification results for the 26 experiments

performed by each method are presented in table 4.6. It is clear by examining the results

in this table that certain subjects are easy to classify and others are more difficult. For

instance, all four methods correctly classified the image sets associated with subjects 2,

21, and 25, whereas subjects 1, 9, and 26 proved difficult for most methods.

The remainder of this section provides a more detailed discussion of method

parameters and classification results. PCA and LDA used the sum of absolute differences,

or L1, distance metric in all experiments. Referring to Table 4.6, the average

classification score for PCA was 80.30% and for LDA 76.96%. However, from Table 4.7
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there is no statistical difference in performance between PCA and LDA. This is not

unexpected, as it has been shown that LDA outperforms PCA only when large and

representative training data sets are given [57]. All PCA and LDA experiments were

processed in the MATLAB environment under the Windows XP operating system using a

Pentium 4 — 2.80 GHz processor.

SVMs with five different Kernels (linear, RBF, polynomial degree 2, polynomial

degree 3, and polynomial degree 4) performed the 26 experiments defined by the

evaluation protocol. The regularization parameter, C, for the SVMs was determined using

a grid search. Since the recognition rates in those experiments were not significantly

different in terms of different values for C, the regularization parameter C=1 is adopted.

The bandwidth parameter, y = 1.2, in SVM using RBF kernels was also optimized using a

grid search. Referring to Table 4.6, an SVM with linear kernel provided the best

recognition rate of 82.35%. However, examining Table 4.7, there is no statistical

significant between the classification rates of the various SVM methods. All SVM

experiments were processed in the same MATLAB environment used for the PCA and

LDA experiments. SVM was implemented using the OSU SVM Classifier MATLAB

Toolbox developed by Ohio State University.

From Tables 4.5 and 4.6, results of the two experiments, person-dependent and —

independent cases were contradictory in terms of the best kernel to use with SVM. An

SVM with polynomial kernel of degree 3 obtained the best classification score (88.00%)

in the person-dependent study, and an SVM with a linear kernel obtained the best

classification score (82.35%) in the person-independent study. Sampling error caused by

the small number of images in the sample pool is one possible explanation for this
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discrepancy.

Table 4.8 compares the average classification scores obtained using the two cases.

Referring to Table 4.8, the average classification score for PCA was 80.36% and for LDA

80.32%. SVM, as expected, outperformed both PCA and LDA, except in the case of RBF

kernel. Given previous reports in facial expression classification using SVM (see, for

instance, [54]), it is not expected the RBF kernel performance to be as low as it was.

There are several possible explanations for the kernel performance differences in

the two studies. The most likely cause for the discrepancy is sampling error due to the

small number of images in the sample pool. The average performance of the SVMs using

the two kernels, for instance, is very close, the difference being only 1.18%. However,

since the data in the training sets used in the two sets of experiments differ only in a few

inputs (approximately 15%), this assumption is questioned. To determine if the difference

in kernel performance is the result of sampling error, experiments that varied the size of

the sample pool are implemented. This can be achieved by comparing SVM classification

of pain expressions to each of the other four facial displays.
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Table 4.6 Average Method Classification Scores and Individual Experiment Scores

Met od

Exp. No.

SVM with

Linear

Kernel

SVM with

Polynomial

degree =2

SVM with

Polynomial

degree = 3

SVM with

Polynomial

degree = 4

SVM with

RBF

Kernel

PCA L 1

distance

LDA L i

distance

1 77.78% 44.44% 77.78% 55.56% 55.56% 88.89% 66.67%

2 100% 100% 100% 100% 100% 100% 100%

3 87.50% 75.00% 75.00% 75.00% 75.00% 62.50% 75.00%

4 60.00% 100% 100% 100% 60.00% 60.00% 60.00%

5 75.00% 83.33% 75.00% 75.00% 75.00% 66.67% 75.00%

6 85.71% 57.14% 85.71% 57.14% 85.71% 85.71% 85.71%

7 88.89% 88.89% 77.78% 77.78% 77.78% 77.78% 77.78%

8 88.89% 66.67% 77.78% 66.67% 66.67% 77.78% 77.78%

9 50.00% 66.67% 33.33% 66.67% 83.33% 16.67% 33.33%

10 70.00% 80.00% 80.00% 70.00% 90.00% 60.00% 80.00%

11 100% 100% 100% 87.50% 50.00% 100% 100%

12 75.00% 87.50% 87.50% 87.50% 87.50% 75.00% 62.50%

13 60.00% 60.00% 90.00% 60.00% 60.00% 80.00% 70.00%

14 90.91% 100% 81.82% 72.73% 72.73% 81.82% 81.82%

15 83.33% 83.33% 83.33% 83.33% 83.33% 66.67% 66.67%

16 83.33% 83.33% 83.33% 83.33% 66.67% 91.67% 91.67%

17 100% 88.89% 77.78% 66.67% 55.56% 100% 100%

18 90.00% 80.00% 80.00% 70.00% 60.00% 100% 100%

19 85.71% 85.71% 85.71% 85.71% 85.71% 100% 100%

20 75.00% 83.33% 66.67% 50.00% 58.33% 91.67% 58.33%

21 100% 100% 100% 100% 100% 100% 100%

22 87.50% 75.00% 75.00% 62.50% 62.50% 62.50% 62.50%

23 50.00% 83.33% 100% 100% 66.67% 66.67% 33.33%

24 100% 85.71% 85.71% 42.86% 57.14% 100% 85.71%

25 100% 100% 100% 100% 100% 100% 100%

26 100% 50.00% 50.00% 50.00% 50.00% 66.67% 66.67%

Average 82.35% 79.90% 80.39% 72.06% 70.10% 80.39% 76.96%
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Table 4.7 95% Confidence Intervals Using t Distribution ( x ± ta , 2

Method 95 % Confidence Interval Standard Deviation
SVM with Linear Kernel 82.35% ± 6.20% 15.34%

SVM with Polynomial degree = 2 79.90% ± 6.36% 15.74%

SVM with Polynomial degree = 3 80.39% ± 6.23% 15.41%

SVM with Polynomial degree = 4 72.06% ± 7.03% 17.41%

SVM with RBF Kernel 70.10% ± 6.32% 15.64%

PCA with Ll distance 80.39% ± 7.98% 19.75%

LDA with Ll distance 76.96% ± 7.81% 19.34%

Table 4.8 Comparison of Classification Rates Using Person-dependent and -independent

Type of SVM Person-dependent Person-independent Average

Linear 83.67% 82.35% 83.01%

Polynomial degree = 2 86.50% 79.90% 83.20%

Polynomial degree = 3 88.00% 80.39%  84.20%

Polynomial degree = 4 82.17% 72.06% 77.12%

RBF 70.00% 70.10% 70.05%

PCA with Ll distance 80.33% 80.39% 80.36%

LDA with Ll distance 83.67% 76.96% 80.32%

This resulted in pool sizes of 83 images for pain versus air stimulus, 78 images for

pain versus cry, 96 images for pain versus friction, and 127 images for pain versus rest.

Only protocol person-dependent case was used in these experiments, as splitting

expressions for each subject (person-independent case) resulted in pool sizes that were

too small for training.

Tables 4.1-4.4 present the results of the set of experiments. The average

performance of the four experiments using SVM with a linear kernel is 85.51%, and the

average performance of SVM with a polynomial kernel of degree 3 is 87.74%. The
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difference in kernel performance (2.23%) is half that in [9] (4.33%), which also used

person-dependent. This leads us to believe that sample error is most likely the cause of

kernel performance differences. As far as neonatal facial expressions are concerned, the

results of the new set of experiments suggest that there is no significant classification

difference in SVMs using a linear kernel versus a polynomial kernel of degree 3. This

conclusion is consistent with [54], which examined SVM expressing classification

performance using a number of adult facial databases.

4.6 Conclusions

Reported in this chapter were the classification results of three face classification

techniques, PCA, LDA, and SVM, applied to the Infant COPE database. Person

dependent and independent cases are discussed. The facial expressions of 26 neonates

experiencing the puncture of a heel lance, transport from one crib to another, air stimulus

to the nose, and friction on the external lateral surface of the heel were photographed. The

state of the infant after being transported from one crib to another was further noted as

being in one of two states: resting or crying. A series of experiments compared the

recognition rates of PCA, LDA, and SVM classifying the following pairs: pain/non-pain,

pain/rest, pain/cry, pain/air puff, and pain/friction.

For person-dependent case, SVM with a polynomial kernel of degree 3 produced

the best overall recognition rates of pain versus non-pain (88.00%), pain versus cry

(80.00%), pain versus rest (94.62%), pain versus air puff (83.33%), and pain versus

friction (93.00%) is inferred. For person-independent, the classification rates of SVM

were promising. SVM with a Linear Kernel provided the best SVM classification rate of



67

82.35% accuracy. PCA and LDA using an L 1 distance metric produced an average

classification rate of 80.39% and 76.96% respectively.

The Infant COPE project makes a number of contributions. It is a first attempt at

applying state-of-the-art face recognition technologies to actual medical problems. As

noted in the introduction, medical applications of face recognition technologies have been

suggested [19] but not tried with actual medical data. The results of this project are

promising and suggest that face recognition technologies could prove useful in neonate

pain assessment.

Moreover, even though machine classification of emotion has long been an area

of active investigation, research that includes the machine classification of pain

experiences is unaware. The Infant COPE project not only addresses pain, but the dataset

in this project also includes facial expressions in response to several stressors that result

in expressions that are similar to the facial displays of pain. Infants typically respond to

pain by crying, for instance, but they also cry in reaction to a number of minor

disturbances; this project has included in the dataset expressions of crying that were not

triggered by pain experiences.

Finally, this project is one of the first to investigate machine classification of

neonate facial displays. Most work in facial classification has focused on adult faces.

Rarely have the faces of children been included in these studies, and certainly not the

faces of infants.

The current experimental design has a number of limitations that need to be

addressed. First, only reactions to acute pain experiences were included in the dataset.

This project does not address chronic pain—pain experiences that are thought to have
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long term psychological and neurological consequences [58]. Second, because this

project uses photographs, it does not take into account the dynamic nature of facial

expressions. It is possible that temporal changes in expressions include significant

information regarding a neonate's state. Third, this study does not compare human

assessment of neonate pain with machine assessment, nor does it speculate on the

practicality of implementing these technologies within a hospital setting.

In terms of future research possibilities, the author of this dissertation is working

with the other members of the Infant COPE project to design a study that will compare

human recognition rates of pain with machine classification rates, and in future studies

investigating the dynamic nature of facial displays is planned. Another research direction

would be to combine machine recognition of physiological indices with machine

recognition of facial expressions. Lindh, Wiklund, and Hákansson [53], for instance, have

had some success classifying pain as it relates to heart rate variability using PCA.

Machine recognition of behavioral indicators, however, offers the advantage of

monitoring neonates without the attachment of sensors. Since there is some evidence that

the temporal frequency and intensity information in cry can discriminate pain (see [50]),

combining sound classifiers with face recognition is yet another area of potential research.



CHAPTER 5

FACIAL FEATURES DETECTION

One of the challenging problems for facial expression or face recognitions is how to

automatically locate the principal facial parts from an original image since most existing

algorithms capture the necessary face parts by manually cropping the original images. In

this chapter, two novel methods are presented to automatically locate the face features

especially for eyes. After locating the facial feature, eyes, the face region can be easily

obtained from the original image by using the geometric relationship of the face. The

advantage of the first method described in section 5.1 is that it can locate the face

boundary and facial features without the training of a lot of images. However, it is time

consuming. The benefit of the second method described in section 5.2 is that it is fast.

However, it has to use a lot of training samples.

5.1 Automatic Extraction of Face and Facial Features

This section presents a novel approach for the extraction of human head, face and facial

features. In the double-threshold method, the high-thresholded image is used to trace

head boundary and the low-thresholded image is used to scan face boundary. After facial

features candidates are obtained and noises are eliminated, x- and y-projections are

applied to extract facial features such as eyes, nostrils and mouth. Because low contrast

of chin occurs in some face images, its boundary cannot be completely detected. An

elliptic model is used to repair it. Because of noises or clustered facial features candidates,

69
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a geometric face model is applied to locate facial features and an elliptic model to trace

face boundary. The Gabor filter algorithm is adopted to locate two eyes.

5.1.1 Introduction

Automatic extraction of human head and face boundaries and facial features is critical in

the areas of face recognition, criminal identification, security and surveillance systems,

human computer interfacing [71], and model-based video coding [2, 3]. In general, the

computerized face recognition includes four steps [75]. First, the face image is enhanced

and segmented. Second, the face boundary and facial features are detected. Third, the

extracted features are matched against the features in the database. Fourth, the

classification into one or more persons is achieved. In order to detect faces and locate the

facial features correctly, researchers have proposed a variety of methods which can be

divided into two categories. One is based on gray-level template matching, and the other

is based on computation of geometric relationship among facial features.

In the geometric relationship aspect, Jeng et al. [42] proposed an efficient face

detection approach based on the configuration of facial features. Using their method, one

can detect the images with frontal-view faces as well as with tilted faces. However the

method will fail on the images with face sizes smaller than 80 x 80 pixels or with

multiple faces. Wong et al. [91] developed an algorithm for face detection and facial

features extraction based on genetic algorithms and eigenface. Lin and Fan [52] presented

a face detection algorithm to detect multiple faces in complex background. They assume

that in the frontal-view face images, the centers of two eyes and the center of mouth form

an isosceles triangle, and in the side-view face images, the center of one eye, the center of

one ear hole, and the center of mouth form a right triangle. The algorithm will fail when
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the images are too dark or eyes are occluded by hair.

In the template matching aspect, Ryu and Oh [70] proposed an algorithm based on

eigenfeatures and neural networks for the extraction of eyes and mouth using rectangular

fitting from gray-level face images. The advantage is that it does not need a large training

set by taking advantage of eigenfeatures and sliding window. However, their algorithm

will fail on the face images with glasses or beard. Besides the aforementioned two

categories, some researchers used motion active contour or snakes to detect the face

contours [63, 75, 93, 95]. Kass et al. [45] proposed the Snake algorithm in 1988, and

since then it has been widely used to detect contours. Yow and Cipolla [95] used the

active contour model to enhance the feature-based approach to detect the face boundary.

Sobottka and Pitas [75] used snakes to trace face contour on a number of image

sequences. Because each method has its own advantages, Nikolaidis and Pitas [63]

developed a combined approach using adaptive Hough transform, template matching,

active contour model, and projective geometry properties. They used adaptive Hough

transform for curve detection, template matching for inner facial features location, active

contour model for inner face contour detection, and projective geometry properties for

accurate pose determination.

This section is organized as follows. Section 5.1.2 presents our methodology.

Section 5.1.3 describes the facial features extraction based on the geometric face model.

Section 5.1.4 presents our experimental results. Conclusions are made in Section 5.1.5.
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5.1.2 Methodology

In this section, the proposed method is introduced to process the frontal-view face images

for the extraction of head boundary, face boundary, and facial features including eyes

with eyebrows, nostrils, and mouth. Head boundary is the outer profile of head including

shoulders. Face boundary is the face contour that excludes hair, shoulders, and neck.

Rectangular boxes are adopted to locate facial features.

5.1.2.1 Smoothing and Thresholding. The scheme diagram of the double-threshold

method is shown in Figure 5.1. The first step is to reduce noise by using a 3 x 3 median

filter. After that, an edge operator is applied. The edge detection technique by Wechsler

and Kidode [89] is tested and the result is shown in Figure 5.2. The edge output appears

too thin and the top-face boundary is too weak to be detected in the later thresholding

procedure. In order to obtain fat boundary, Hu et al. [36] proposed four masks (horizontal

(size 3 x 7), vertical (7 x 3), 45 ° (9 x 3), and 135 ° (9 x 3)) to detect image edges and

select the maximum as the edge strength. Instead of using large sizes, smaller sizes of

masks are developed as shown in Figure 5.3 for edge detection.

Experimental results show that the proposed method is as good as their method.

Thresholding is performed to transform the gray-level edge images into binary. The high

threshold value is determined by choosing all the high intensity pixels that occupy 5% of

the entire pixels. The low threshold value is decided by choosing all the high intensity

pixels that occupy 25% of the entire pixels. The high thresholded image is used to obtain

the head boundary and the low thresholded image is used to produce the face boundary.

These thresholding percentages are determined based on our empirical data in order to

achieve the best results.



•
Head Boundary

•
Face Boundary

v
Edge Image

Thresholding

•
High Threshholed

Image

Low Threshholded

Image

Boundary scanning

Input Image

Median Filtering and

Edge Detection

73

5.1.2.2 Track Head and Face Boundary.	 In order to trace the head boundary, the

high-thresholded image is divided into left and right halves. When the edge image is

scanned from top to bottom, the first layer of the contour occurred is the head boundary,

T
Facial Features

Candidates

x- and y-Projections

Facial Features

Rectangular Boxes

Face Boundary

Repairing

Figure 5.1 The scheme diagram of double-threshold method.
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and the second layer of the contour occurred is the face boundary. For tracing the head

boundary, a starting point is located as the first white pixel on the first layer of the left

half From the starting point, the left and right profiles of head are traced. Because the

outer boarder of the first layer is shifted outwards from the actual boundary for a few

pixels (say, p) , the edge of the left half to the right and the edge of the right half to the left

is adjusted by p pixels respectively.

Because some face profiles disappear in the high thresholded image, the low

thresholded image is used to trace face boundary. The head borders are removed and a

morphological opening is used to eliminate unnecessary noises. After that, the image is

scanned from four directions (right to left, left to right, top to bottom, and bottom to top)

to produce the face boundary.

(c)	 (d)

Figure 5.2 The outputs of Wechsler and Kidode's method. (a) and (c)
are original images. (c) and (d) are edge detection images.



75

5.1.2.3 Locate Facial Features. In order to identify facial features, first the facial

feature candidates are selected. The candidates are extracted by overlaying the face

boundary obtained from the previous section on the binary edge image, and converting all

the white pixels in the binary edge image that are on or outside the face boundary to

black. After that, x- and y-projections are applied to locate facial features. In the

candidate image, x-projection is used to obtain the facial features' horizontal locations

and y-projection is used to obtain their vertical locations. By combining the horizontal

and vertical locations, four rectangular boxes are obtained: two for eyes, one for nostrils,

and one for mouth.

Figure 5.3 Edge detection masks: (a) vertical mask, (b) horizontal mask,
(c) 135 ° mask and (d) 45 ° mask.

5.1.2.4 Face Boundary Repairing. Sometimes, the chin edge is too low-contrasted to

be completely detected by edge detection. Two approaches are performed to repair the

chin line of face boundary. In the first approach, the center point of chin is utilized (i.e.,

the average point of the available chin edge pixels) as the initial point in the grayscale
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image to trace the chin line. The algorithm for tracing the chin line is described below.

(1) From the center point of the chin to its right:

Let the center point of the chin be 1(x, y), max {Ax+1, y+1), f(x+1, y), 	 .f(x+ 1, y- 1)}
are chosen to be the next connected point and repeat the procedure until it reaches
the right part of the face boundary. As an example, Figure 5.4 (a) shows an image of
facial features candidates, Figure 5.4 (b) shows the unrepaired face boundary, and
Figure 5.4 (c) shows the repaired face boundary.

(2) From the center point of the chin to its left:

Max tAx-1, y+1), f(x-1 , y), fix-1, y+1)} are chosen to be the next connected point and
the procedure is repeated until it reaches the left part of the face boundary.

In the second approach, an elliptic model is adopted where the ratio of the major

axis to minor axis is 1.5. Figure 5.5 (a) and (c) illustrate the missing chin lines due to the

face shadows. By using the lower-end points of the left and right face boundaries, the

horizontal distance of the two end points can be computed as the minor axis and fit in the

elliptic model to repair the chin line. Figure 5.5 (b) and (d) show the results after

repairing.

(a)	 (b)	 (c)

Figure 5.4 (a) An image of facial features candidates, (b) the unrepaired face boundary
and (c) shows the repaired face boundary.
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(c)	 (d)

Figure 5.5 The examples of repairing (a) and (c) are images before repairing (b) and (d)

are images after repairing.

5.1.3 Finding Facial Features Based on Geometric Face Model

5.1.3.1 Geometric Face Model. 	 Sometimes, the facial features candidates are too

clustered, the x- and y-projections cannot work well. Under these circumstances, the

geometric face model is applied to locate facial features. The model utilizes the

configuration among eyes, nostrils, and mouth since in most of faces, the vertical

distances between eyes and nose and between eyes and mouth are proportional to the

horizontal distance between the two centers of eyes.

Referring to Figure 5.6, let the distance between the two centers of eyes be D. The

geometric face model (Figure 5.6) and related distances are described below [63].

(1) The vertical distance between two-eyes and the center of mouth is D.

(2) The vertical distance between two-eyes and the center of the nostrils is 0.6D.

(3) The width of the mouth is D.



78

(4) The width of nose is 0.8D.

(5) The vertical distance between eyes and eyebrows is 0.4D.

The procedure of locating facial features by the geometric face model is

illustrated in Figure 5.7.

Figure 5.8 shows three examples of using the geometric face model. Figures 5.8

(a) is the original images. Figures 5.8 (b) is the facial features candidates obtained by

using the method in Section 5.2. Because the facial feature candidates are clustered, x-

and y-projections are performed. Figures 5.8 (c) is the facial features candidates after

Sobel operation and thresholding. Figures 5.8 (d) shows the results after applying the

geometric face model.

Figure 5.6 Geometric face model.



Input Image

Sobel Operation

Thresholding

Find Face Positions

Geometric Face Model

Figure 5.7 The procedure of finding facial features.

5.1.3.2 Geometrical Face Model Based on Gabor Filter. 	 For particularly difficult

cases such as poor lighting and shadows, two eyes can be located using Gabor filter [24,

34] and then apply the elliptic model to extract face boundary. The three steps to locate

two eyes are described as follows:

(1) Apply Gabor filter to the original image

(2) Apply Gaussian weighting to the filtered image

(3) Locate peaks in the image and find the locations of eyes

After two eyes are located, the geometric face model is applied to extract other facial

features. Let the distance between two eyes be D. The center of the ellipse is placed at

0.4D below the midpoint of the two eyes. The length of the major axis is given 3D and of

the minor axis is given 2D.
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Figure 5.8 Examples of geometric face model (a) original images (b) facial features
candidates after thresholding (c) facial features candidates after Sobel operation
(d) extractions of facial features.
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5.1.4 Experimental Results

Figure 5.9 shows the results of using the double-threshold method. Figure 5.9 (a) is the

original image, (b) is the edge detection image, and (c) and (d) are high and low

thresholded images respectively. Figure 5.9 (e) is the head boundary and (f) is the face

boundary. Figure 5.9 (g) is the facial features candidates. Figure 5.9 (h) is the rectangular

boxes for facial features. Figure 5.9 (i) shows the overlay of the head and face boundaries

with the original image. Figure 5.9 (j) shows the overlay of facial features with the

original image. The proposed algorithms are tested on more than 100 FERET face images.

A partial set of our experimental results using the geometric face model is shown in

Figure 5.10. By comparing with [63], the proposed approaches demonstrate better results

in head boundary tracing, chin boundary repairing, and facial features detection. The

programs using MATLAB are implemented on SUN ULTRA 60 workstation. The

execution time is about 170 s including 15 s for the geometric face model to process a

384 by 256 image on FERET face database.

5.1.5 Conclusions

A novel approach is presented for the extraction of human head, face and facial features.

Two thresholds are used: the high-thresholded image for tracing head boundary and the

low-thresholded image for scanning face boundary. X- and y-projections are applied to

extract facial features such as eyes, nostrils and mouth. Because low contrast of chin

occurs in some face images, its boundary cannot be completely detected. An elliptic

model is used to repair it. Because of noises or clustered facial features candidates,

geometric face model is implemented to locate facial features and an elliptic model to

trace face boundary. The Gabor filter algorithm is adopted to locate the positions of two
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eyes. The proposed algorithms are tested on more than 100 FERET face images.

Experimental results show that the proposed algorithm can perform the extraction of

human head, face and facial features successfully.

a)
Figure 5.9 The experimental results of double-threshold method (a) original image (b)
edge detection image (c) high thresholded image (d) low thresholded image (e)
head boundary (f) face boundary (g) facial features candidates (h) rectangular
boxes for facial features (i)detection of contours (j) extraction of facial features.
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In this chapter, only frontal-view face images are considered that have not glasses.

When the face is tilted intensively or rotated greatly, our two-dimensional geometric

model cannot fit the facial features completely. Under the circumstance, the future work

is emphasized on using a three-dimensional model to adjust for the three-dimensional

rotations of faces.

Figure 5.10 Partial experimental results.
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Figure 5.10 Partial experimental results (cont.).

5.2	 Facial Feature Detection (Eyes Detection)

In this session, locating the eyes automatically in the single-face frontal and profile (15 °

and 25 °) images is implemented. The proposed procedure that makes use of edge

information as the potential candidates of the eyes is a novel research. FERET face

database is tested for the proposed procedure and the experimental results are promising.
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5.2.1 Introduction

Researchers have endeavored to develop the eye detection algorithms in the last decade.

Lam and Yan [49] proposed a method for locating and extracting eyes based on snake,

corner detection, and cost functions. There are disadvantages in their algorithm, such that

snake requires manual initialization to locate head boundary and their system can only

handle the plain background and one-person images. Feng and Yuen [25] proposed a

three-cue eye detection algorithm. The three cues are the relatively low intensity of the

eye regions, the direction of the line connecting the centers of eyes, and the response of

convolving the eye variance filter with the face image. They experimented on face

images from MIT AI Laboratory to obtain the accuracy rate 92.5%. However, snake's

manual initialization and handling only one-person images are their shortcomings.

Huang and Wechsler [38] developed their hybrid approach using optimal wavelet

packets for eyes representation and Radial Basis Functions Neural Networks (RBFNN)

for classification between eye and non-eye regions. There are some interesting results

from their experiments. If they directly feed the images into RBFNN and do not use the

optimal wavelet packets to reduce the dimensionality of the original image, the correct

rate for eye detection is 70% and for non-eye detection is also 70%. If the test images are

preprocessed by optimal wavelet packets and are reconstructed under the best 16 or 64

wavelet coefficients using Shannon entropy minimization, the performance becomes

better. The correct rate for eye detection is 82.5% and for non-eye is 80% under the best

16 wavelet coefficients. Under the best 64 wavelet coefficients, the correct rate for eye is

85% and for non-eye is 100%. However, they only used RBFNN to discriminate eyes

from non-eyes and did not test it on the whole face images for eye detection.
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Peng et al. [66] went a step further by using RBFNN to locate the eye locations in

the face images. In their experiments, 97.41% of the test samples received the correct

detection results, with 1.69% of the test samples being rejected. Huang et al. [37]

detected eyes using Support Vector Machine (SVM). In their experiments, the best result

is achieved by using polynomial kernel at degree of 2. The correct rate is 96%. From the

results, SVM outperforms RBFNN. Similar to [72], they just applied SVM to

discriminate eyes from non-eyes and did not test on face images. In this section, SVM is

adopted to locate the eye positions in the face images. Moreover, more statistical methods

on eye detection can be referred in [17, 67]

5.2.2 Experimental Procedure

The experimental procedure is illustrated on Figure 5.11. After original FERET face

images are fed into the proposed procedure, the Canny edge detection is performed to

find out the potential candidates of eyes features. SVM is used to verify the candidates of

facial features, and finally confirm the facial feature candidates by some rules. There are

two experimental results on this session. First experiment only distinguishes eyes from

non-eyes. The results are presented in section 5.2.2.1. In second experiment, the proposed

procedure is applied to the FERET face database to examine the performance. The

experimental results are illustrated in section 5.2.2.2.

5.2.2.1 The Classification of Eyes and Non-eyes. In this section, eyes and non-eyes

classification is performed and the training procedure for eyes using SVM is discussed.

Note that the training of mouth also follows the same procedure as eyes training. For

training of SVM, 800 eyes and 10000 non-eyes from the FERET face database are

selected. According to the observed approximated ratio of height-to-width of eyes, i.e., 1:
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2, the size of eyes and non-eyes is fixed to be 19 by 39 pixels. In SVM, the bigger

training set does not guarantee the better classification result. 5 sizes of the training set:

3000, 4000, 6000, 8000 and 10000 samples are tested. After the training stage, their

classification accuracy are tested by means of different data. In these experimental results,

4000 training set is suitable and obtain the best performance among different training sets.

The accuracy is 99.85%.

The processing above is time-consuming because the dimensionality of each

sample is huge. In order to reduce the dimensionality and in the meantime to maintain as

much information as possible, the technique of PCA is adopted. Various sizes of

eigenvalues: 20, 30, 40, 50, 60, 70, and 80 eigenvalues, are tested in order to search for

the best dimensionality of samples that are based on the aforementioned 4000 training

samples. New unseen 4000 samples including 200 eyes and 3800 non-eyes are examined

to measure the performance of SVM. From the experimental results, it is observed that

the more eigenvalues used produce the higher accuracy rates as it is expected. To reduce

the computational time and data storage, but still maintain as high accuracy rate as

possible, the first large 60 eigenvalues are selected as the dimensionality for eyes and

non-eyes.

Furthermore, different degrees of polynomial kernel functions: 2, 3 and 4 using 60

eigenvalues on 4000 samples are explored, and the accuracy rates respectively are

98.42%, 98.48%, and 98.51%. From the experimental results, the performance of linear

SVM (98.52%) is almost the same as that of nonlinear SVM with degree = 4 (98.51%). It

indicates that the linear SVM can be used to save the computational time. Compared our

results with reference [37], the proposed method can obtain better performance.
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Figure 5.11 The procedure for detecting eyes.

5.2.2.2 Eye Detection on FERET Face Database. 	 As illustrated in Figure 5.11,

after original FERET face images are fed into the proposed procedure, the Canny edge

detection is performed to find out the potential area of interest (A0I). Because the

information of head boundary can be displayed by the canny edge detection, the AOI can

be easily located in terms of head boundary information. Since facial features such as

eyes and mouth are darker than other parts on the face, it must be existed some edges
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around the facial features in the AOI. In order to locate eyes correctly and efficiently and

to avoid unnecessary false positive, trained SVM is implemented to scan the edge points

only inside the AOI. In some cases, the edge points appear near eyes, and the center of

the eyes does not present by the edge points. In order to remedy this situation, 1 pixel up

and down in the vertical positions of the edge point is included. For example, if the

position of an edge pixel is (x, y), the positions of (x+1, y) and (x-1, y) are also verified.

The trained SVM is used to scan all the eyes candidates to locate the true location of eyes.

After the scan procedure, there may still have false positives. Some rules are

investigated to eliminate the false positives. Sobottka and Pitas [76] proposed some

requirements and Feng and Yuen [25] proposed some rules for validating eyes. Both

requirements are combined to develop the following rules to remove false positives.

1. The two eyes have similar gray level values.

2. Basically, the distance between the two eyes is within a certain range of the head
width.

3. Generally, the line connecting the two eyes is horizontal or within some angle ranges.

The experimental results are illustrated in Figure 5.12. From Figure 5.12, the

proposed procedure not only can locate the eyes area correctly but also can detect the

face images with right and left profile including 15 ° and 25 ° .

5.2.3 Conclusions

In this section, a feasible eye detection system is built. The presented eye detection

technique combines image processing technique and Support Vector Machine (SVM).

Compared with reference [37] using the polynomial kernel with degrees 2, 3, and 4

respectively, the proposed method shows the higher eye detection rates.
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Figure 5.12 The partial experimental results.



CHAPTER 6

SUMMARY AND FUTURE RESEARCH

Facial expressions are the facial feature changes in response to a person's internal

emotional states, intentions, cognitive process, or social interactions and communications.

Facial expression recognition refers to make use of computer systems that attempt to

automatically analyze and recognize facial motions and facial features changes from

visual information including still images and video sequences. Automatic facial

expression recognition system has a number of potential applications, such as emotion

and paralinguistic communication, clinical psychology, medical care and cure, psychiatry,

neurology, pain assessment, lie detection, human computer interface.

6.1 Summary

In this dissertation, different components of an automatic facial expression recognition

system are discussed. For face detection, two methods are developed to locate the face

and eyes. For feature extraction and representation, various techniques, such as PCA,

ICA, LDA, 2D-PCA, and 2D-LDA, are explored to find out the suitable representation

for the underlying information. For facial expression recognition, classifiers, such as

RBF, SVM, PCA, and LDA, are performed to check their recognition abilities. A robust

recognition system has the ability of handling homogeneous and heterogeneous database.

In this dissertation, homogeneous database (e.g., Japanese female facial expression

dataset, JAFFE) and heterogeneous database (e.g., Cohn-Kanade AU-coded face

expression image database) are used. JAFFE is used to classify seven prototypical and

emotion-specified expressions such as happy, surprise, sad, disgust, fear, angry, and
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neutral. Cohn-Kanad database is used to recognize the action units, the subtle changes of

facial expressions.

Time complexity and recognition rate are two main factors in performance

evaluation of a proposed facial expression recognition algorithm. The recognition rate of

the proposed method applying to JAFFE is 95.71% by using leave-one-out strategy and

94.13% by using cross-validation strategy. It takes only 0.0357 second for processing one

input image of size 256 x 256. The recognition rate of the proposed system applying to

Cohn-Kanade AU-coded face image database is 97.06% for recognizing the upper part of

face, 97.13% for lower part of face, and 100% for the whole face. It takes only 1.8 ms for

processing one test image of size 40 x 90. Both systems are reliable, efficient, and can be

applied to real-time applications.

In this dissertation, a machine recognition and assessment system of neonatal

expressions of pain is developed to assist clinicians in diagnosing pain. The Infant COPE

database is used. This database is designed and developed by Dr. Brahnam at Missouri

State University for the Infant COPE project that is led and supervised by Dr. Brahnam.

The Infant COPE research of the neonatal pain classification is a first attempt at applying

state-of-the-art face recognition technologies to actual medical problems. Medical

applications of face recognition technologies have been suggested but not tried with

actual medical data. Two different protocols, person-dependent and person-independent,

are investigated.

The objective of Infant COPE project is to bypass these observational problems

by developing a machine classification system to diagnose neonatal facial expressions of

pain. Since assessment of pain by machine is based on pixel states, a machine
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classification system of pain will remain objective and will exploit the full spectrum of

information available in a neonate's facial expressions. Furthermore, it will be capable of

monitoring a neonate's facial expressions when the patient is left unattended and will not

degrade over time. The results indicate that the application of face classification

techniques in pain assessment and management is a promising area of investigation.

6.2 Future Research

6.2.1 Future Research on Pattern Recognition

Time complexity and recognition rate are two main factors in performance evaluation of

a proposed pattern recognition algorithm. The two main factors are influenced by pre-

processing, face detection, feature extraction, feature selection, and classification

methods. The future research focuses on two issues: one is to select the most important

features, and the other is to search more useful feature extraction methods. The purpose is

to increase the accuracy rate and decrease computational time simultaneously.

Feature extraction and selection are two techniques for picking up the most

important features from the original variables to reduce dimensionality. Feature

extraction provides a transformation of the original variables such that the resulting

features are a set of new variables in the transformed space. PCA, LDA, and ICA are the

examples of feature extraction techniques. Feature selection focuses on selecting features

in the original space such that the chosen features are a subset of the original variables.

Genetic algorithm, sequential forward selection, and sequential backward elimination are

the examples of feature selection.
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Although different feature extraction methods such as PCA, LDA, and ICA are

investigated, they are in spatial domain. The feature extraction methods in frequency

domain, such as discrete Fourier transform and discrete cosine transform, will be the

main research direction.

In this dissertation, various feature extraction methods such as PCA, LDA, and

ICA are investigated but not the feature selection algorithms. In the future research, the

influence of different feature selection techniques, such as genetic algorithm and

sequential forward selection, will be explored on the performance of the pattern

recognition algorithm. The promising concept may be combining the feature extraction

and selection approaches to form the best features for the input variables. For example,

the feature extraction of PCA can be fused with the feature selection of genetic algorithm

to form representative features for the original variables.

6.2.2 Future Research on Neonatal Pain Classification

Since there is some evidence that the temporal frequency and intensity information in cry

can discriminate pain, combining sound classifiers with face recognition is yet another

area of potential research.

The neonate face database is color images. In this dissertation, only grayscale

space is used by transforming the color images to grayscale images directly. In the future

research, different color space such as YC bC r and HSV will be explored to check whether

the color information is useful or not for our developed system.
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