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Abstract

Face Recognition with Attention Mechanisms

by

Qiangchang Wang
Doctor of Philosophy in Computer Science

West Virginia University

Guodong Guo, Ph.D., Chair

Face recognition has been widely used in people’s daily lives due to its contactless process
and high accuracy. Existing works can be divided into two categories: global and local
approaches. The mainstream global approaches usually extract features on whole faces.
However, global faces tend to suffer from dramatic appearance changes under the scenarios
of large pose variations, heavy occlusions, and so on. On the other hand, since some local
patches may remain similar, they can play an important role in such scenarios. Existing
local approaches mainly rely on cropping local patches around facial landmarks and then
extracting corresponding local representations. However, facial landmark detection may be
inaccurate or even fail, which would limit their applications. To address this issue, attention
mechanisms are applied to automatically locate discriminative facial parts, while suppressing
noisy parts. Following this motivation, several models are proposed, including: the Local
multi-Scale Convolutional Neural Networks (LS-CNN), Hierarchical Pyramid Diverse At-
tention (HPDA) networks, Contrastive Quality-aware Attentions (CQA-Face), Diverse and
Sparse Attentions (DSA-Face), and Attention Augmented Networks (AAN-Face). Firstly, a
novel spatial attention (local aggregation networks, LANet) is proposed to adaptively locate
useful facial parts. Meanwhile, different facial parts may appear at different scales due to
pose variations and expression changes. In order to solve this issue, LS-CNN are proposed
to extract discriminative local information at different scales. Secondly, it is observed that
some important facial parts may be neglected, if without a proper guidance. Besides, hier-
archical features from different layers are not fully exploited which can contain rich low-level
and high-level information. To overcome these two issues, HPDA are proposed. Specifi-
cally, a diverse learning is proposed to enlarge the Euclidean distances between each two
spatial attention maps, locating diverse facial parts. Besides, hierarchical bilinear pooling
is adopted to effectively combine features from different layers. Thirdly, despite the decent
performance of the HPDA, the Euclidean distance may not be flexible enough to control the
distances between each two attention maps. Further, it is also important to assign differ-
ent quality scores for various local patches because various facial parts contain information
with various importance, especially for faces with heavy occlusions, large pose variations,
or quality changes. The CQA-Face is proposed which mainly consists of the contrastive
attention learning and quality-aware networks where the former proposes a better distance
function to enlarge the distances between each two attention maps and the latter applies a
graph convolutional network to effectively learn the relations among different facial parts,



assigning higher quality scores for important patches and smaller values for less useful ones.
Fourthly, the attention subset problem may occur where some attention maps are subsets
of other attention maps. Consequently, the learned facial parts are not diverse enough to
cover every facial detail, leading to inferior results. In our DSA-Face model, a new pairwise
self-constrastive attention is proposed which considers the complement of subset attention
maps in the loss function to address the aforementioned attention subset problem. Moreover,
a attention sparsity loss is proposed to suppress the responses around noisy image regions,
especially for masked faces. Lastly, in existing popular face datasets, some characteristics of
facial images (e.g. frontal faces) are over-represented, while some characteristics (e.g. profile
faces) are under-represented. In AAN-Face model, attention erasing is proposed to simulate
various occlusion levels. Besides, attention center loss is proposed to control the responses
on each attention map, guiding it to focus on the similar facial part. Our works have greatly
improved the performance of cross-pose, cross-quality, cross-age, cross-modality, and masked
face matching tasks.
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Chapter 1

Introduction

This chapter provides an introduction in this dissertation. Specifically, a conceptual

background is introduced to provide context of face recognition. Related works are reviewed

in the following section.

Biometric enables to recognize and authenticate people via the use of people’s unique

biological characteristics. A biometric authentication system collects a user’s information and

check it with the stored templates to determine if this user possesses the access right [15].

There are two types of biometrics, which are physiological measurements and behavioral

measurements. The former contains fingerprints, vein patterns, irises, and faces, which do

not change over time. The latter contains biological traits, including DNA, urine, voice

recognition, and signature dynamics. These measurements are subject to change over time.

Although the accuracy of Face Recognition (FR) as the biometric technology is lower than

fingerprint recognition and iris recognition, it has been the prominent biometric technique

and has been widely used in different areas due to its contactless process, such as human-

computer interaction, surveillance and security, digital libraries, and so on.

FR is a technology which is capable of matching a human face with a facial image against

a gallery set. FR consists of two sub-problems: face identification and face verification. For

the former, as shown in Fig. 1.1, given a face image, the aim is to find the subject of this

image in a gallery set. As for the latter, given a pairs of facial image, the target is to check

if these face images belong to the same subject or not.

In the past several decades, FR has been a hot research topic. As shown in Fig. 1.2,
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Figure 1.1: Face identification and face verification.

Figure 1.2: Many challenging factors that can affect the FR performance.



Qiangchang Wang Chapter 1. Introduction 3

there are many factors that can affect the FR performance, including pose, illumination, oc-

clusion, resolution, aging, and so on. is firstly studied by using traditional approaches where

different types of features are extracted, followed by classifiers. However, these methods have

inferior representational abilities, suffering from performance drops under some challenging

scenarios. Deep learning has greatly improved the FR results, while most existing meth-

ods use global faces as the input. It is observed that global face appearances could change

dramatically under large pose variations, heavy occlusions, and so on. In these cases, some

local patches still remain similar, playing an important role in FR. Some works extract local

patches by cropping discriminative facial parts around facial landmarks. However, facial

landmark detection may be inaccurate or totally fail for some challenging faces with strong

illumination changes, heavy occlusions. Recently, some attention mechanisms are designed

to locate disciminative facial parts automatically. However, different attention maps tend

to have limited responses around similar facial regions, missing some important ones. FR

is challenging mainly because of two reasons: 1) High intra-class variations. Faces from the

same subject may appear at different poses or occlusion levels. Consequently, if only few

facial parts are located, the extracted features may not be sufficient when these parts are in-

visible under occlusions (e.g. face masks) or pose variations. 2) Small inter-class differences.

Faces from different subjects may have similar local appearances, especially considering a

large number of subjects. The performance would decline if the few emphasized facial parts

across different subjects look similar. To alleviate the above issues, it is necessary to capture

local representations that are as rich as possible. In such a way, more potentially useful

facial parts can contribute to FR if the few emphasized parts are invisible or remain similar

across different subject

The remaining is organized as follows: In Section 2, related works are reviewed compre-

hensively, including global , landmark-based, or attention-based approaches. In Section 3,

current progresses are introduced. In Section 4, conclusions and future work are discussed.
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1.1 Review of Related Research

In this section, we review the developments of FR, which include traditional approaches

and deep learning based approaches.

1.1.1 Traditional Approaches

FR has been a popular research topic in the computer vision field for a long time. It

was first pioneered in 1960s. Woody Bledsoe, Helen Chan Wolf, and Charles Bisson worked

together to teach computers to recognize human faces. To find effective descriptors for FR,

different holistic methods are proposed. EigenFace [16] was proposed 1991 where Principal

Component Analysis (PCA) is used to efficiently reconstrcut human faces by a weighted

sum of a small collection of images that define a facial basis. Fisherface was proposed

in [17] where Linear Discriminant Analysis (LDA) is used to produce well-separated classes

in low-dimensional subspace under the scenario of dramatic lighting variations and facial

expressions. Better experimental results are obtained than EigenFaces. Two-Dimensional

PCA (2DPCA) is developed in [18] for image feature extraction. Different from the con-

ventional PCA, 2DPCA is calculated based on 2D image matrices rather than 1D vectors

so that the image matrix does not need to transformed into a vector. Better experimental

results are achieved in terms of accuracy and efficiency.

On the other hand, many local descriptors have gained attention due to their robustness

to the uncontrolled facial changes, such as pose and illumination changes. Elastic Bunch

Graph Matching (EBGM) [19] was proposed where Gabor wavelets responses around certain

facial landmarks are used to represent faces and adapted graphs capture spatial relations

of these landmarks, benefiting FR across large viewpoint changes. Local Binary Patterns

(LBP) was proposed in [20] to extract efficient facial texture representations. A facial image

is divided into several facial regions where LBP representations are extracted and concate-

nated into a feature vector. It is invariant to monotonic gray-level changes and has excellent

computational efficiency, yielding outstanding results. Since kernels in Gabor wavelets are

similar to the mammalian cortical cells with great characteristics of spatial locality and

orientation selectivity, Gabor filter representations [21] are robust to illumination and ex-
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pression variations. A combination of Gabor and LBP further boosts the FR performance.

In [22], a Local Gabor Binary Pattern Histogram Sequence (LGBPHS) is proposed which

has a great discriminative power and is robust to various image variations. This is achieved

by combining local intensity distribution with the spatial information based on multi-scale

and multi-orientation Gabor filters, making models robust to noise and lighting, occlusion,

or pose variations.

Although current descriptor-based approaches have been proven to be effective to FR,

they need to balance between the discriminative power and the robustness against various

data variances. In order to tackle this issue, several learning-based methods are proposed to

automatically encode useful representations. In [23], an unsupervised learning mechanism is

designed to learn an encoder from training examples. In [24], a discriminant face descriptor

is learned in a data-driven way where the differences between descriptors of the same person

are minimized and those between different persons are maximized. However, these shallow

representations tend to have a limited representational capacity on faces with complex non-

linear appearance changes. Meanwhile, most of these approaches only take limited facial

variations into considerations, such as one of the lighting, pose, occlusion, and age. Therefore,

the FR was improving slowly, limiting the its application in the real-world scenario.

1.1.2 Deep Learning based Approaches

Starting from AlexNet [25] which won the ImageNet classification competition [26] by

a significant margin, deep learning has dominated many computer vision fields. With the

availability of large-scale datasets and the development of deep learning, FR has achieved

decent performance [1, 27–31]. The Convolutional Neural Network (CNN) is one of the

most popular deep learning methods which consists of multiple convolutional and pooling

layers. CNNs can extract hierarchical information which corresponds to different levels of

abstractions. Low layers output features similar to the Gabor feature defined by human

experiences. As the layer goes deeper, learned features are becoming more complex which

could be some facial parts, like eyes, noses.

Most of the progress depends on the large-scale training datasets [11,32,33], deep neural
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Figure 1.3: The overall framework of DeepFace [1].

networks [1, 34, 35], and effective loss functions [29–31, 36]. Most existing works use global

faces as the input of CNNs, however, global face appearances tend to suffer from dramatic

changes under some challenging scenarios, such large pose variations, heavy occlusion, and

other quality changes.

On the other hand, some local patches still remain similar or the same, playing an

important role in FR. Many methods crop facial parts around facial landmarks to benefit

FR [37–42]. On the other hand, some attention mechanisms are designed to locate useful

discriminative facial parts automatically [2, 43–45].

Global Approaches

In these approaches, global faces serve as the input of CNNs. We discuss the developments

mainly in two aspects: 1) Neural network architectures; 2) Loss functions.

Neural network architectures Different models can be used for FR, including AlexNet

[25] [46], VGG [47], GoogLeNet [48], Inception-v3 [49], ResNets [50], DenseNets [51], Deep-

Face [1], and LightCNN [35].

The AlexNet-v1 [25] model is the first model that successfully applies CNNs for large-scale

image classification. The Dropout technique is employed to reduce overfitting; Rectified Lin-

ear Units (ReLU) can prevent neurons from saturating; Local response normalization (LRN)

layers aid generalization. In AlexNet-v2 [46], LRN layers are removed without remarkable

performance change. The VGG-16 [47] model is substantially deeper than the networks used

before. 3 × 3 convolutional kernels are used to increase the network depth and reduce the

number of parameters. In VGG-16-BN model, Batch Normalization (BN) layers [52] are

added before ReLU, which can accelerate network training. The GoogLeNet [48] model has
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much fewer parameters than the VGG-16, while still achieves a rather good performance.

The Inception module is proposed to increase depth and width of deep networks. 1 × 1

convolutional kernels are applied to reduce the computational burden. The Inception-v3 [49]

model is one of the Inception families. It has high computational efficiency and low parame-

ter number. Factorizing large convolutional filters is implemented by smaller and asymmetric

convolutions. Efficient grid size reduction is proposed to reduce computational cost. The

ResNets [50] can be a depth of up to 152 layers but with a low complexity. A residual

learning module is presented to ease the training of substantially deeper networks. ResNet-

50 is a network with 50 layers. The DenseNets [51] also have much deeper architectures.

It connects each layer to every other layer in a feed-forward fashion. It can alleviate the

vanishing-gradient problem, strengthen feature propagation, encourage feature reuse, and

substantially reduce the number of parameters.

In [1], an effective neural network (called DeepFace) is developed to leverage a large-scale

training dataset to extract face representations that generalize well to other test datasets.

Specifically, the used dataset contains 4M facial images from 4000 identities. As shown in

Fig. 1.3, a 3D model is firstly used to align faces to a canonical pose. Experimental results

on the Labelled Faces in the Wild (LFW) [53] benchmark as well as the Youtube Faces

in the wild (YTF) [54] benchmark demonstrate the effectiveness of this approach. This

approach is trained on large-scale face identities and then use a bottleneck layer to represent

faces. However, the representational size in the bottleneck layer is too large. LightCNN [35]

introduces Max-Feature-Map (MFM) to learn a robust face representation, which not only

separates between noisy features and informative signals but also plays an important role in

feature selection.

Loss functions FR is challenging mainly because of two reasons: 1) High intra-class

variations. Faces from the same subject may appear at different poses or occlusion levels.

2) Small inter-class differences. Faces from different subjects may have similar local appear-

ances, especially considering a large number of subjects. However, softmax-based loss only

encourages the separalibility between different classes.

In order to extract discriminative features, many loss functions are proposed for FR,

which can be further divided into two categories: metric-based and softmax-based loss func-
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tions. As for the former, contrastive loss [34] and triplet loss [1, 28] are used. Specifically,

in [34], the classification signal pulls apart features from different subjects, while this signal

has a weak constraint for faces from the same subject. To address this issue, the verifi-

cation signal is used as additional information to suppress the intra-class variations. The

formulation is defined as follows:

L =


1
2
||fi − fj||22 if yij=1

1
2
max(0,m− ||fi − fj||2)2 if yij=-1,

(1.1)

where fi and fj are feature vectors from two facial images, yij = 1 denotes that fi and fj

are from the same subject, yij = −1 denotes that fi and fj are from different subjects, m is

a margin to encourage the distances between facial images from different subjects.

In [1], it uses a siamense network where a pair of faces are compared using the Euclidean

distance where positive pairs are minimized and negative pairs are maximized. In [28], a

triplet-based loss function is used with a compact 128-D embedding, which separates the

positive face pair with the negative by a distance margin. The specific formulation is defined

as follows:
N∑
i=1

[||f(xai )− f(xpi )||22 − ||f(xai )− f(xni )||22 + α], (1.2)

where xai is an anchor of a specific person, xpi is the positive image from the same subject,

xni is a facial image from another person, N is the number of all possible triplets, and α is

a margin between positive pairs and negative pairs. In such a way, models are forced to

achieve much greater representational capacity, achieving decent performance on LFW and

YTF benchmarks. However, the number of image pairs or triplets increases dramatically,

which inevitably results in instability and slow convergence.

To address this issue, many softmax-based loss functions are proposed. The Softmax loss

function is defined in the following:

L(I) = − 1

N

N∑
i=1

eW
T
yi
xi + byi∑c

j=1 e
WT

j xi+bj
, (1.3)

where N and c denote the number of samples and classes, respectively. xi ∈Rd refers the

ith deep feature, belonging to the yi
th class. d is the feature dimension. Wj ∈ Rd are the
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weights in the last fully connected layer connecting to the jth class. bj is the bias term of

the jth class.

The main drawback of Softmax loss is that it aims to separate different subjects well but

does not explicitly minimize the intra-subject variations. To this aim, several loss functions

are used to enhance the discriminative power of the learned features. Center loss [29] is pro-

posed to reduce intra-class variations. It can simultaneously learn a center for deep features

of each class and penalize the distances between the deep features and their corresponding

class centers. On one hand, center loss focuses on increasing intra-subject compactness. On

the other hand, softmax loss aims at enlarging the inter-class distance. Intuitively, it is

necessary to employ them jointly to supervise the training of CNNs. The formulation is in

the following:

L(I) = −
N∑
i=1

eW
T
yi
xi + byi∑c

j=1 e
WT

j xi+bj
+
λ

2

N∑
i=1

∥xi − cyi∥22, (1.4)

where the former part is the Softmax loss, and the later one is about Center loss. λ is used

to balance the two loss functions. cyi is the yi
th class center of deep features.

There exits another trend in the research community which increases the margin between

different subjects in training. SphereFace [36] presents A-Softmax loss to impose discrimina-

tive constraints on a hypersphere manifold, which intrinsically matches the prior that faces

lie on a manifold. Formally it optimizes:

L(I) = − 1

N

N∑
i=1

log
e∥xi∥ψ(θyi,i)

e∥xi∥ψ(θyi,i) +
∑

j ̸=yi e
∥xi∥cosθj,i

, (1.5)

where ψ(θyi,i) = (−1)kcos(mθyi,i) − 2k, θyi,i ∈
[
kπ
m
, (k+1)π

m

]
and k ∈ [0,m − 1]. m ≥ 1 is an

integer which controls the size of angular margin. θj,i is the angle between weight wj and

sample xi.

In the CosFace loss [30], m is the cosine margin to maximize the decision margin in the

angular space. The sample xi is normalized and re-scaled to s.

L(I) = − 1

N

N∑
i=1

log
es(cos(θyi,i)−m)

es(cos(θyi,i)−m) +
∑

j ̸=yi e
s cos θj,i

. (1.6)

In the ArcFace loss [31], the additive angular margin penalty m is used to encourage the



Qiangchang Wang Chapter 1. Introduction 10

intra-class compactness and inter-class discrepancy.

L(I) = − 1

N

N∑
i=1

log
es(cos(θyi,i+m))

es(cos(θyi,i+m)) +
∑

j ̸=yi e
s cos θj,i

. (1.7)

Local Approaches

Current local approaches can be grouped into several variants: 1) Landmark-based ap-

proaches [34, 38, 55, 56]: facial landmarks need to detected first, and cropping facial parts

around landmarks with predefined sizes. Since facial landmark detection may fail for faces

with strong illumination changes, heavy occlusions, and so on, this could limit the applica-

tion scenarios. Besides, predefined crop size are not flexible to represent facial parts. For

example, sunglasses may be extracted to worsen the representation. 2) Locally connected

layers [1, 55]: Different facial parts exhibit different statistics. For example, eyebrows and

mouth have very different appearances. It is unreasonable to apply the same convolution

filters to different locations of facial images. To achieve this goal, locally connected lay-

ers are used in [1, 37] where every location in feature maps uses a different set of filters.

However, using locally connected layers significantly increases the number of parameters. 3)

Attention-based models [2,43–45]: Rather than relying on landmarks, recent attention-based

networks weighed varying local patches adaptively. Attention mechanisms are designed to

model human behaviors where important information are selectively concentrated on and

noisy ones are ignored. Attentions [57] have been widely used in many computer vision

fields including FR. In this subsection, we mainly review related works on landmark-based

and attention-based methods.

Landmark-based Approaches Most existing works employ global faces to train net-

works [29,31,36]. However, the performance is degraded if the global face appearance changes

dramatically. To alleviate this issue, some prior works focus on subtle differences of facial

parts by cropping patches around facial landmarks. In [37], a face image was first divided

into several local regions centered around five facial landmarks (two eye centers, nose tip,

and two mouth corners) at different scales and color channels, and these parts are used to

extract local representations. As shown in Fig. 1.4, to make models robust to pose variations

and occlusions, complementary information between global faces and different local patches
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Figure 1.4: Model architecture of Trunk-Branch Ensemble CNN. The Trunk network learns

holistic face representations and the trunk networks learn features for image patches cropped

around facial landmarks. The trunk network and branch networks share low and middle

feature maps, and they have independent high-level feature maps.

Figure 1.5: Row 1: some challenging faces. Row 2: even face landmarks are detected, prede-

fined crops may not be flexible and robust under pose, expression and occlusion variations.

is explored in [38]. Different from previous works, this approach extracts local representa-

tions on feature maps, instead of images. In [39], seven different CNNs are used on seven

overlapped image patches centered around facial landmarks, learning invariant features to-

wards pose, occlusion, or expression changes. Some facial parts centered around landmarks

(e.g. centers of eyes, tip of noses, and the corners of the mouths) are randomly removed

with random-sized rectangles in [40]. This model can alleviate the overfitting issue and learn

robust features. In [41], an attention mechanism is used on different sub-regions, and local

descriptors between pairs of faces are compared. In [42], the pairwise relational network

(PRN) was proposed which makes every possible pairs of local appearance features, then

each pair of local appearance features is used to extract relational features.

However, face landmark detection is not reliable, which may fail for faces with large

occlusion, pose, aging, and makeup variations. Besides, landmark-based methods crop face
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Figure 1.6: The overall framework of AFPN [2].

parts around landmarks, suffering from noise from adjacent parts or background. For ex-

ample, as shown in Fig. 6.4, Columns 1, 2, 3, mouths have varying shapes or sizes (Row

1) due to expression changes. As a consequence, some crops contain noise from noses and

background (Row 2). Meanwhile, because of pose variations (Row 1, Columns 4, 5) and

occlusions (Row 1, Column 6), some parts are partly or completely invisible. In such cases,

background (Row 2, Columns 4, 5) or sunglasses (Row 2, Column 6) are cropped, leading to

noisy representations. Moreover, it is noticed that landmark detection may be not accurate,

resulting in inaccurate crops (Row 2, Columns 4, 5). Furthermore, different facial parts

should have different discriminative abilities. However, the importance of different facial

parts is not taken into consideration.

Attention-based Approaches Rather than relying on landmarks, recent attention-

based networks weighed varying local patches adaptively. As shown in Fig. 1.6, in [2], an

attention feature-pair relation network (AFRN) was proposed to represent faces by rele-

vant pairs of local appearance block features with attention scores, capturing unique and

discriminative feature-pair relations to classify faces among different subjects. An attention-

based convolutional neural network was proposed in [43], which reduces the information

redundancy among channels and emphasizes important feature maps. Specifically, a chan-

nel attention and a spatial attention are used to adaptively aggregate feature maps in both

channel and spatial dimensions to capture inter-channel and intra-channel attention maps.

Extensive experiments on several challenging benchmarks demonstrate the usefulness of the

proposed attention modules. To alleviate the problem of cross-pose face matching, a method

was presented in [44] to progressively transform profile face representations to the frontal

pose with an attentive pair-wise loss. Two-level attention fusion method was proposed in [45]
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for RGB-D face recognition. Specifically, the first layer focuses on the fused feature maps

generated by the feature extractor, exploiting the relationship between feature maps using

LSTM recurrent learning. The second layer focuses on the spatial features of those maps

using convolution.

In these approaches, since there is no explicit signal, different attention maps tend to

have redundant responses around similar facial parts, missing some important facial parts.

FR is challenging mainly because of two reasons: 1) High intra-class variations. Faces from

the same subject may appear at different poses or occlusion levels. In such a case, if only few

facial parts are located, the extracted features may not be sufficient when these parts are

invisible under occlusions (e.g. face masks) or pose variations. 2) Small inter-class differences.

Faces from different subjects may have similar local appearances, especially considering a

large number of subjects. The performance would decline if the few emphasized facial parts

across different subjects look similar. To alleviate the above issues, it is necessary to capture

local representations that are as rich as possible. In such a way, more potentially useful

facial parts can contribute to FR if the few emphasized parts are invisible or remain similar

across different subjects.
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Chapter 2

Datasets

The training and test datasets used in the dissertation are introduced.

2.1 Training Datasets

Several training datasets are used, including CASIA-WebFace [11], UMDFaces [58], VG-

GFace2 [32], and MS-Celeb-1M dataset [33] datasets.

CASIA-WebFace It contains 494,414 face images of 10,575 identities. The authors

claimed that not all faces were detected and annotated correctly.

UMDFaces It has 367,888 faces from 8,277 identities. Humanly curated bounding

boxes for faces are provided. The authors claim that it provides more pose variations than

the popular WebFace dataset.

VGGFace2 It has 3,141,890 images of 8,631 identities. Human verified bounding boxes

around faces are provided. It covers a large range of poses, ages, professions, and ethnicities.

MS-Celeb-1M The original MS-Celeb-1M dataset contains too much noise. To get a

high-quality dataset, [31] refined the dataset and made it publicly available. There are about

85,000 subjects with 5.8 million aligned images. There is another version which is adopted in

the benchmark: To get a high-quality dataset, DeepGlint (http://trillionpairs.deepglint.com/)

refined the dataset and made it publicly available. There are 86,878 subjects with 3.92 mil-

lion aligned images.
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2.2 Test Datasets

Cross-Pose Face Matching There are 500 subjects in the CFP dataset [59]. Each

subject has 10 frontal and 4 profile faces. Frontal-frontal (FF) and frontal-profile (FP)

verification protocols are considered. Each protocol consists of 10 folds with 350 positive

pairs and 350 negative pairs.

CPLFW dataset [60] has 3K positive pairs and 3K negative pairs. Pose differences are

added in positive pairs to increase intra-class variations. Negative pairs have limited attribute

differences to reduce inter-class variations.

VGGFace2-FP dataset [32] has 300 subjects and matches face templates between frontal

views and profile views. Each template has 5 face images. In which, the VGGFace2-test

dataset has 169,396 images from 500 celebrities. The test has two scenarios. Pose template:

a template consists of five faces from the same subject with a consistent pose which can be

frontal, Three-quarter or profile view. Age template: a template consists of five faces from

the same subject with either an apparent age below 34 (deemed young) or 34 and above

(deemed mature). Each subject is represented by averaging the feature vector of all faces

in each subject set. Then the similarity score is computed as the cosine similarity between

feature vectors representing each subject.

On top of a subset of the UMDFaces dataset [58], they developed a large testing protocol

that contains three tracks: small pose variations (easy), medium pose variations (moderate)

and large pose variations (difficult). There are 5,000 positive pairs and 5,000 negative pairs

within each track. A large number of image pairs make it possible to compare performance

at a low FAR.

Cross-Age Face Matching The CACD-VS dataset [12] is used for age-invariant face

recognition with varying illumination, pose variations and makeup. Following the config-

uration [12], we use the 10-fold cross-validation on 2,000 positive pairs and 2,000 negative

pairs.

The CALFW dataset [61] consists of 4,025 subjects. Each subject has 2, 3 or 4 images.

There are large age gaps between positive pairs to increase intra-subject variations. For

negative pairs, only face pairs with the same gender and race are selected to reduce the
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influence of attribute differences. It has 10 folds with 3,000 positive pairs and 3,000 negative

pairs.

AgeDB dataset [62] has 12,240 images of 440 subjects. The age is in the range of [3, 101].

We focus on the group with 30 year gaps, which has 10 splits of face images. Each split has

300 positive pairs and 300 negative pairs.

Cross-Quality Face Matching1 The IJB-A [63] and FaceScrub [64] datasets have

images of different qualities. Follow the work in [65], we assess the face image quality and

select low- and high-quality face images for cross-quality face matching. For IJB-A dataset,

there are 1,543 high-quality images of 500 identities and 6,196 with low-quality images from

489 identities. For FaceScrub dataset, there are 10,089 high-quality images of 530 subjects

and 362 low-quality images of 232 subjects. Each low-quality image is compared with every

high-quality face image in this protocol, making the task very challenging. Verification

performance is reported when FAR=0.01 and 0.001, respectively.

Cross-Modality Face Matching The CASIA NIR-VIS 2.0 [66] is a popular NIR-VIS

database with a large intra-class variations, including lighting, expression, pose, and distance

variations. It contains 725 subjects and each subject has 1-22 VIS and 5-50 NIR images.

There are two views of evaluation protocols where view 1 is for hyper-parameter tuning and

view 2 is used for training and testing. Without fine-tuning on training data in views 1 or 2,

we directly evaluate our models using the test protocols in view 2. There are 10 folds where

each fold is composed of 358 gallery images and around 6K probe images.

Masked Face Matching1 Two masked face datasets in [67] are used: the real-world

masked face recognition dataset (RMFRD) and masked LFW (MLFW) dataset. The former

contains 403 overlapped subjects with 1,945 masked and 80,577 normal faces. Two tasks are

designed based on the RMFRD: Masked2Normal (M2N) and Masked2Masked (M2M). First,

M2N contains both verification and identification protocols. In verification, each masked

face is matched with every normal face, generating 394K positive and 156M negative pairs.

In identification, we compute the average of all normal faces in a subject as the corresponding

gallery subject feature, and calculate the Rank-1 accuracy for all masked faces. Second, each

1These protocols will be released soon.
1These protocols will be released soon.
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masked face is compared with every other masked face in M2M, creating 3.76M negative

and 20K positive pairs.

As for the MLFW, a software is developed to wear masks for face images in LFW [67].

It has 5,749 subjects with 13,175 masked faces. Referring to the original protocol in LFW

which has 6K pairs, there are 5,955 pairs in MLFW protocol because some faces are failed

to wear masks.

Disguised Face Matching The DFW dataset [68] is the largest dataset of disguised

faces and impostors. There are 1,000 subjects (400 in the training set and 600 in the test

set) and 11,155 images. Each subject in the test set has one genuine image, some validation

images, several disguised images and a few images of impostors. Each pair in the test set is

assigned a ground-truth label (‘positive’, ‘negative’ or ‘do not care’). The task is to recognize

disguised faces as the subject that they belong to and identify impostors. The performance

is evaluated when FAR = 1%, 0.1%, respectively.

LFW It [69] contains 13,233 images collected online from 5,749 identities. Following

the 10-fold verification protocol, experimental results are reported accordingly.

IJB-C It [70] includes 31,334 still images and 117,542 frames from 11,779 full-motion

videos.
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Chapter 3

Benchmarking Deep Learning

Techniques for Face Recognition

3.1 Introduction

During the past several decades, numerous face recognition approached are proposed

[20] [71] [72] [73] where various hand-crafted features are used. Recently, Convolutional

Neural Networks (CNNs) greatly advance the face recognition performance. For example, the

accuracy on the Labeled Faces in the Wild (LFW) dataset [69] has increased to 99.83% [31].

However, training deep neural networks is a very complex process. There are several

factors that can affect the training process and evaluation performance. Firstly, there are a

number of deep learning frameworks available, including Caffe from UC Berkeley [74], Ten-

sorFlow from Google [75] and PyTorch from Facebook [76], which are widely used frame-

works among deep learning researchers [77]. However, these frameworks may have different

data layouts (e.g. NCWH, NWHC) and convolution implementations (e.g. GEMM, FFT,

Winograd), resulting in different performance.

Secondly, recent progress in deep CNNs has substantially improved state-of-the-art per-

formance in face recognition, and there are a number of models available, such as AlexNet [25],

VGG [47], GoogLeNet [48], ResNet [50], DenseNet [51], LightCNN [78], Incepetion-DenseNet

[79], DDML [80], Center-loss [29], SphereFace [36], CosFace [30], UniformFace [81] and Ar-

cFace [31]. The inherent structures in these models are somehow different. For example,
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GoogLeNet and DenseNet emphasize multi-scale feature learning; ResNet and DenseNet are

deep networks to model complex data with a large spectrum of variations. Further, the

developed deep models are usually reported on different training datasets, making it difficult

to understand how different these models intrinsically, using the same training datasets.

Thirdly, training CNNs is a very time-consuming process. Graphical Processing Units

(GPUs) are playing a key role in training networks. However, there are a number of GPU

types, such as Titan Xp, GTX 1080Ti, Titan X(Pascal), Titan X(Maxwell) and Titan Z. It

is interesting to know how differently these GPUs could perform in training deep models in

practice.

Fourthly, there are different test datasets that may have different characteristics. In LFW

dataset, almost all faces are frontal or close to frontal views; VGGFace2-test dataset [82]

mainly focuses on pose and age variations; As for our processed IJB-A [63] quality dataset, it

contains faces of different qualities; Disguise Faces in Wild (DFW) dataset [68] is the largest

dataset of disguised faces and impostors; UMDFaces-test dataset [58] contains three tracks

with different pose variations.

Fifthly, recent progress in face recognition is mainly being driven by advanced CNNs,

fast GPUs, and large training datasets. Meanwhile, as CNNs are getting deeper, the require-

ment of large-scale training datasets becomes urgent. In recent years, several face datasets

are made public with different scales, ranging from a few hundred thousand images, e.g.,

FaceScrub [64], CASIA-WebFace [11] and UMDFaces [58], to a few million images, e.g., VG-

GFace [27], MegaFace [83], MS-Celeb-1M [33] and VGGFace2 [82]. The deep CNNs may

behave differently as the training datasets change. Many current face recognition models are

trained on different training datasets, making it difficult to compare these models directly.

Given the variety of deep learning frameworks, face recognition models, GPU platforms,

and training datasets, it is quite difficult for end users to select appropriate platforms to

conduct their face recognition tasks. However, few works systematically investigate this issue.

In [84], different types of neural networks are evaluated on a set of deep learning frameworks

with different hardware platforms. However, there were no specific face recognition models

or performance explored in [84]. Besides, more recent GPU types and newer versions of deep

learning frameworks were not included in their study.
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In this paper, based on several training datasets (i.e., UMDFaces, WebFace, MS-Celeb-

1M and VGGFace2), we benchmark several face recognition models (i.e., AlexNet, VGG,

GoogLeNet, ResNet, DenseNet, LightCNN, Center-loss, SphereFace, CosFace and ArcFace)

under different deep learning frameworks (i.e., Caffe, TensorFlow and PyTorch) using differ-

ent GPUs (i.e., Titan Xp, GTX 1080Ti, Titan X(Pascal), Titan X(Maxwell) and Titan Z)

and test their performance on different datasets (i.e., LFW, VGGFace2-test, IJB-A quality,

DFW challenge and UMDFaces-test).

The rest of paper is organized as follows. Section 2 introduces frameworks, deep models,

and GPU platforms. Section 3 presents training and test datasets. Benchmarking results

are presented in Section 4. Conclusion and future work are given in Section 5.

3.2 Frameworks, Deep Models, and GPU Platforms

We briefly review three main deep learning frameworks, some popular deep learning face

recognition models, and five widely used GPU platforms.

3.2.1 Deep Learning Frameworks

With the growing success of deep learning, there are many popular open-source deep

learning frameworks which aim to help researchers quickly develop deep learning models,

including Caffe, TensorFlow and PyTorch.

Caffe [74] is developed by Berkeley AI Research (BAIR) and GitHub community contrib-

utors. It enables researchers and practitioners to train and deploy general-purpose CNNs and

other deep models efficiently on commodity architectures based on Python and MATLAB

bindings.

TensorFlow [75] is designed by Google to operate at large scale and in heterogeneous

environments. It uses dataflow graphs to represent both the computation in an algorithm

and the state on which the algorithm operates.

PyTorch [76] is a scientific computing framework with two high-level features: tensor

computation with strong GPU acceleration; deep neural networks built on a tape-based

autodiff system. It aims to provide users with maximum flexibility and speed.
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3.2.2 Deep Models for Face Recognition

With the availability of large datasets, researchers have developed a number of CNN

models. In this paper, we mainly focus on several publicly available models: AlexNet [25] [46],

VGG [47], GoogLeNet [48], Inception-v3 [49], ResNets [50], DenseNets [51], LightCNN [78],

Center-loss [29], SphereFace [36], CosFace [30], and ArcFace [31]. The last five ones are

specifically designed for face recognition, while others are originally developed for ImageNet

classification [85].

The AlexNet-v1 [25] model is the first model that successfully applies CNNs for large-scale

image classification. The Dropout technique is employed to reduce overfitting; Rectified Lin-

ear Units (ReLU) can prevent neurons from saturating; Local response normalization (LRN)

layers aid generalization. In AlexNet-v2 [46], LRN layers are removed without remarkable

performance change.

The VGG-16 [47] model is substantially deeper than the networks used before. 3 × 3

convolutional kernels are used to increase the network depth and reduce the number of

parameters. In VGG-16-BN model, Batch Normalization (BN) layers [52] are added before

ReLU, which can accelerate network training.

The GoogLeNet [48] model has much fewer parameters than the VGG-16, while still

achieves a rather good performance. The Inception module is proposed to increase depth and

width of deep networks. 1× 1 convolutional kernels are applied to reduce the computational

burden.

The Inception-v3 [49] model is one of the Inception families. It has high computational

efficiency and low parameter number. Factorizing large convolutional filters is implemented

by smaller and asymmetric convolutions. Efficient grid size reduction is proposed to reduce

computational cost.

The ResNets [50] can be a depth of up to 152 layers but with a low complexity. A

residual learning module is presented to ease the training of substantially deeper networks.

ResNet-50 is a network with 50 layers.

The DenseNets [51] also have much deeper architectures. It connects each layer to ev-

ery other layer in a feed-forward fashion. It can alleviate the vanishing-gradient problem,
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strengthen feature propagation, encourage feature reuse, and substantially reduce the num-

ber of parameters.

LightCNN [78] introduces Max-Feature-Map (MFM) to learn a robust face representa-

tion, which not only separates between noisy features and informative signals but also plays

an important role in feature selection.

The Softmax loss function for LightCNN and ImageNet models is in the following:

L(I) = − 1

N

N∑
i=1

eW
T
yi
xi + byi∑c

j=1 e
WT

j xi+bj
, (3.1)

where N and c denote the number of samples and classes, respectively. xi ∈Rd refers the

ith deep feature, belonging to the yi
th class. d is the feature dimension. Wj ∈ Rd are the

weights in the last fully connected layer connecting to the jth class. bj is the bias term of

the jth class.

The main drawback of Softmax loss is that it aims to separate different subjects well but

does not explicitly minimize the intra-subject variations. To this aim, several loss functions

are used to enhance the discriminative power of the learned features. Center loss [29] is pro-

posed to reduce intra-class variations. It can simultaneously learn a center for deep features

of each class and penalize the distances between the deep features and their corresponding

class centers. On one hand, center loss focuses on increasing intra-subject compactness. On

the other hand, softmax loss aims at enlarging the inter-class distance. Intuitively, it is

necessary to employ them jointly to supervise the training of CNNs. The formulation is in

the following:

L(I) = −
N∑
i=1

eW
T
yi
xi + byi∑c

j=1 e
WT

j xi+bj
+
λ

2

N∑
i=1

∥xi − cyi∥22, (3.2)

where the former part is the Softmax loss, and the later one is about Center loss. λ is used

to balance the two loss functions. cyi is the yi
th class center of deep features.

There exits another trend in the research community which increases the margin between

different subjects in training. SphereFace [36] presents A-Softmax loss to impose discrimina-

tive constraints on a hypersphere manifold, which intrinsically matches the prior that faces
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lie on a manifold. Formally it optimizes:

L(I) = − 1

N

N∑
i=1

log
e∥xi∥ψ(θyi,i)

e∥xi∥ψ(θyi,i) +
∑

j ̸=yi e
∥xi∥cosθj,i

, (3.3)

where ψ(θyi,i) = (−1)kcos(mθyi,i) − 2k, θyi,i ∈
[
kπ
m
, (k+1)π

m

]
and k ∈ [0,m − 1]. m ≥ 1 is an

integer which controls the size of angular margin. θj,i is the angle between weight wj and

sample xi.

In the CosFace loss, m is the cosine margin to maximize the decision margin in the

angular space. The sample xi is normalized and re-scaled to s.

L(I) = − 1

N

N∑
i=1

log
es(cos(θyi,i)−m)

es(cos(θyi,i)−m) +
∑

j ̸=yi e
s cos θj,i

. (3.4)

In the ArcFace loss, the additive angular margin penalty m is used to encourage the

intra-class compactness and inter-class discrepancy.

L(I) = − 1

N

N∑
i=1

log
es(cos(θyi,i+m))

es(cos(θyi,i+m)) +
∑

j ̸=yi e
s cos θj,i

. (3.5)

3.2.3 GPU Platforms

Deep learning is a field with intense computational requirements, and the choice of GPUs

can make big differences. In this work, three major GPU architectures are investigated.

Furthermore, it is necessary to use multi-GPUs to speed up the training process and improve

the model performance.

Table 3.1: Some details about various GPUs that we tested.

Titan Z
Titan X
(Maxwell)

Titan X
(Pascal) GTX 1080Ti Titan Xp

Boost Clock (MHz) 876 1075 1531 1582 1582

CUDA Cores 5760 3072 3584 3584 3840

Memory Speed (Gbps) 7 7 10 11 11.4

Standard Memory Config (GB) 12 12 12 11 12

Memory Interface width (bit) 768 384 384 352 384

Memory Bandwidth (GB/sec) 672 336.5 480 484 547.7

GPU Architecture Kepler Maxwell Pascal Pascal Pascal
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Table 3.1 gives some details of GPUs used in our experiments. Three different GPU

architectures are benchmarked: Kepler (Titan Z), Maxwell (Titan X(Maxwell)) and Pascal

(Titan X(Pascal), GTX 1080Ti and Titan Xp). Notice that we only use one of the two

GK110 chips in Titan Z for the single GPU comparison.

3.3 Benchmarking Experiments

We first discuss the implementation details in Sec. 3.3.1. Different face recognition mod-

els are compared in Sec. 3.3.2 wwhere model comparisons within the same deep learning

framework and between different frameworks are discussed. Running time comparison of

different models on various GPU platforms and scalability of different deep learning frame-

works on multi-GPUs are presented in Sec. 3.3.3. Finally, Sec. 3.3.4 shows performance

comparison of different training datasets on several test datasets.

3.3.1 Implementation Details

For DFW and UMDFaces datasets, faces are cropped using the provided face coordinates

and resized to the target image size. Other images are detected and cropped by the MTCNN

[4] method. We use the Python implementation of the method MTCNN in [86]. Fig. 3.1

demonstrates the workflow on an example image. Referring to pre-processing operations

in [87], we enlarge the bounding box size by 15% on each side and crop the image without

the alignment procedure. If face detection is failed on one image, this image will be discarded

if it is in the training dataset.

Deep models are trained on the WebFace dataset if not specified, so their relative per-

formances can be compared. There are 453,413 detected faces in WebFace dataset. In order

to reduce overfitting, all images are shuffled under PyTorch, Caffe and TensorFlow if the

dataset is used for training. Let b, n refer to the batch size used in training and the image

number in the dataset, respectively. There are ⌈n
b
⌉ batches in the dataset. Then a batch

with b images is loaded sequentially from the beginning of the dataset, and then these im-

ages are pre-processed to feed the CNN model. Repeat these operations ⌈n
b
⌉ times until the

end of the dataset. When the image number n is not divisible by the batch size b, the last
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Figure 3.1: The pre-processing on an example image, which consists of two stages, i.e.

detection and crop stages. The detection stage is used to detect faces with the pre-trained

MTCNN model, and the crop stage is to crop the face based on the bounding box.

batch size will be smaller than b. Under such a scenario in training, different frameworks

have different strategies: the image pointer will seek to the start of the dataset recursively

to get enough b images when training in Caffe; the last insufficient batch is directly used

in PyTorch; TensorFlow will discard the smaller batch. During testing, the last insufficient

batch will be processed in PyTorch, Caffe and TensorFlow. We input the face image and

extract features from the penultimate layer for later analysis.

3.3.2 Accuracy Comparison of Different Face Recognition Models

Table 3.2: The hyper-parameter settings and # of parameters in the models. The momentum

is 0.9; iter means the global step during training; iterations per epoch (ipe) = # of images

/ (batch size).

Model
Batch
size

Image

size

Input

size Learning rate
Epochs

or iters

Weight

decay

# of params (million)

Caffe TF PyTorch

AlexNet-v1 256 256×256 227×227 0.01 ∗ 0.1(floor(iter/(21∗ipe)) 96 5e-4 100.17 - -

AlexNet-v2 256 256×256 224×224 0.01 ∗ 0.1(floor(iter/(21∗ipe))) 96 5e-4 - 89.53 100.33

DenseNet-121 40 256×256 224×224 0.1 ∗ 0.1(floor(iter/(10∗ipe))) 30 1e-4 17.78 17.76 17.79

GoogLeNet 32 256×256 224×224 0.01 ∗ (1 − iter/(64 ∗ ipe))0.5 64 2e-4 42.78 16.43 -

Inception-v3 25 299×299 299×299 0.045 ∗ 0.94(floor(iter/(2∗ipe))) 100 4e-4 43.43 54.13 43.45

LightCNN-29 128 144×144 128×128 0.1 ∗ 0.457(floor(iter/(10∗ipe))) 80 1e-4 8.19 - -

ResNet-50 50 256×256 224×224 0.1 ∗ 0.1(floor(iter/(28∗ipe))) 128 1e-4 45.16 45.18 45.18

VGG-16 128 256×256 224×224 0.1 ∗ 0.1(floor(iter/(17∗ipe))) 74 5e-4 177.56 177.59 177.59

VGG-16-BN 128 256×256 224×224 0.1 ∗ 0.1(floor(iter/(17∗ipe))) 74 5e-4 - - 177.59

Softmax 512 112×112 112×112 0.1 ∗ 0.1(floor(iter/[16K,24K,28K])) 30K 5e-4 - - -

Center-loss 256 112×96 112×96 0.1 ∗ 0.1(floor(iter/[16K,24K])) 28K 5e-4 32.95 - -

SphereFace 128 112×96 112×96 0.1 ∗ 0.1(floor(iter/[16K,24K])) 28K 5e-4 68.45 - -

CosFace 512 112×112 112×112 0.1 ∗ 0.1(floor(iter/[16K,24K,28K])) 30K 5e-4 - - -

ArcFace 512 112×112 112×112 0.1 ∗ 0.1(floor(iter/[16K,24K,28K])) 32K 5e-4 - - -

Table 3.2 shows hyper-parameter settings and # of parameters of different face recog-

nition models. After comparisons of different hyper-parameter settings on several models,

there is little performance change compared with the original parameter settings in the
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Table 3.3: Experimental results of various models in PyTorch on LFW and VGGFace2-test

datasets.

PyTorch-based LFW (%)

VGGFace2 (Similarity Score)

Pose Age

Front Three-quarter Profile Young Mature

AlexNet-v2 93.1

Front 0.625 0.595 0.393 Young 0.534 0.231

Three-quarter 0.599 0.651 0.510 Mature 0.259 0.606

Profile 0.390 0.508 0.625

VGG-16 97.2

0.726 0.698 0.510 0.648 0.353

0.705 0.739 0.603 0.382 0.711

0.517 0.604 0.695

VGG-16-BN 97.6

0.778 0.756 0.599 0.714 0.431

0.760 0.789 0.669 0.452 0.761

0.610 0.671 0.730

Inception-v3 97.9

0.778 0.749 0.595 0.700 0.454

0.756 0.789 0.671 0.497 0.758

0.606 0.680 0.743

ResNet-50 98.2

0.756 0.726 0.556 0.669 0.412

0.727 0.755 0.629 0.447 0.710

0.559 0.635 0.693

DenseNet-121 97.8

0.755 0.731 0.576 0.682 0.419

0.735 0.763 0.648 0.452 0.722

0.582 0.654 0.709

proposed papers. Therefore, we decided that parameter settings of every model are the

same as the paper in which the model was initially proposed. The momentum is 0.9. The

weight-decay of the DenseNet-121, LightCNN-29, ResNet-50 models is 1e-4, GoogLeNet is

2e-4, Inception-v3 is 4e-4, and for other models, it is 5e-4. 2 GPUs are used to train the

DenseNet-121, ResNet-50, VGG-16, VGG-16-BN, Center-loss and SphereFace models. 4

GPUs are employed to train the Softmax, CosFace and ArcFace based models.

We also compare the number of parameters in different frameworks. One can observe that

the same face recognition model has similar number of parameters on three deep learning

frameworks except the AlexNet-v2 and GoogLeNet. The AlexNet-v2 models in TensorFlow

and PyTorch apply a zero padding of size 0 and 2 in the first convolutional layer, resulting in

the last convolutional layer with size 256×5×5 and 256×6×6, separately. Because this layer

is connected with a fully connected layer with units 4096, the PyTorch has 4096×256×(6×6-

5×5)=11.5 million more parameters compared with TensorFlow. As for the GoogLeNet

model, the parameter number difference between Caffe and TensorFlow is that Caffe adds
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Table 3.4: Experimental results of various models in PyTorch on IJB-A quality dataset.

PyTorch-based

IJB-A (%)

Low2High Middle2High

1% 0.1% 0.01% 1% 0.1% 0.01%

AlexNet-v2 29.1 11.9 5.1 55.3 34.9 23.0

VGG-16 47.3 23.7 7.5 77.6 54.4 35.5

VGG-16-BN 51.5 28.0 7.9 81.3 60.0 38.7

Inception-v3 51.3 28.2 7.9 81.4 60.2 38.8

ResNet-50 62.3 38.9 12.7 85.9 68.0 48.9

DenseNet-121 58.8 33.1 9.8 83.3 62.4 42.1

two auxiliary classifiers connected to intermediate layers, while TensorFlow does not.

We first compare model accuracy within the same deep learning framework and several

loss functions in Sec. 3.3.2 and Sec. 3.3.2, respectively, and then illustrate model accuracy

comparison between different frameworks in Sec. 3.3.2.

Model Accuracy Comparison within the Same Deep Learning Framework

Tables 3.3 and 3.4 are about experimental results of PyTorch based models. For LFW

dataset, the AlexNet-v2 model performs the worst, while others have similar performances.

This is because the LFW dataset is a relatively easy dataset. For VGGFace2-test dataset, the

VGG-16-BN and Inception-v3 models rank the first. For IJB-A quality dataset, the ResNet-

50 model gets the first place on cross-quality face matching. This proves the fact that the

network depth is important. VGG-16-BN achieves better performance than VGG-16. This is

because BN layers act as a regularizer to improve the performance for the VGG-16. However,

BN layers may fail for some models, and an appropriate batch size is needed to avoid the

possible out-of-memory problem [88].

Experimental results about Caffe based models are shown in Tables 3.5 and 3.6. For

LFW dataset, GoogLeNet model can reach 97.8% accuracy. For VGGFace2-test and IJB-A

datasets, LightCNN-29 model beats other models by a pronounced margin. It can be seen

that LightCNN-29 can get better performance than other ImageNet based models. This
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Table 3.5: Experimental results of various models in Caffe on LFW and VGGFace2-test

datasets.

Caffe-based LFW (%)

VGGFace2 (Similarity Score)

Pose Age

Front Three-quarter Profile Young Mature

AlexNet-v1 94.6

Front 0.595 0.543 0.301 Young 0.477 0.259

Three-quarter 0.557 0.609 0.432 Mature 0.281 0.541

Profile 0.310 0.430 0.583

VGG-16 95.3

0.692 0.663 0.462 0.610 0.384

0.675 0.709 0.564 0.395 0.656

0.476 0.565 0.681

GoogLeNet 97.8

0.698 0.652 0.440 0.605 0.372

0.660 0.701 0.540 0.392 0.658

0.450 0.541 0.644

Inception-v3 96.1

0.712 0.692 0.560 0.626 0.415

0.706 0.719 0.600 0.442 0.653

0.572 0.602 0.596

ResNet-50 97.5

0.744 0.710 0.505 0.667 0.425

0.718 0.753 0.591 0.455 0.697

0.513 0.594 0.677

DenseNet-121 97.6

0.737 0.699 0.520 0.655 0.413

0.707 0.746 0.604 0.442 0.698

0.533 0.611 0.690

LightCNN-29 97.6

0.764 0.740 0.600 0.691 0.472

0.748 0.774 0.666 0.501 0.729

0.607 0.665 0.703

proves that the effectiveness of Max-Feature-Map designed for the face recognition task.

Tables 3.7 and 3.8 show the performance of TensorFlow based models. For LFW dataset,

Inception-v3 gets 98.5% accuracy, slightly better than other models. For VGGFace2-test

dataset, GoogLeNet, Inception-v3 and DenseNet-121 are obviously better than others. For

IJB-A quality dataset, GoogLeNet dramatically improves the matching accuracy across di-

verse qualities.

Among these models, results show that the GoogLeNet model is the most discriminative

which gets 3 highest accuracies though unavailable in PyTorch because the LRN regulariza-

tion is not supported. Despite only supported in Caffe, the LightCNN-29 model obtains 2

best results. The ResNet-50 and Inception-v3 models get 2 and 2 best results, respectively.

The GoogLeNet and Inception-v3 models have Inception modules which consist of parallel

convolutional kernels (1×1, 3×3 and 5×5). Inception modules allow to extract both local
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Table 3.6: Experimental results of various models in Caffe on IJB-A dataset.

Caffe-based

IJB-A (%), different FARs

Low2High Middle2High

1% 0.1% 0.01% 1% 0.1% 0.01%

AlexNet-v1 12.1 4.2 1.7 35.8 21.3 13.2

VGG-16 29.6 12.3 4.5 61.0 38.5 24.2

GoogLeNet 45.4 21.2 5.6 75.8 55.4 36.3

Inception-v3 29.65 12.34 4.52 61.2 38.53 24.24

ResNet-50 39.2 1.4 0.2 74.5 46.3 5.8

DenseNet-121 38.8 6.8 0.4 73.5 49.5 22.6

LightCNN-29 50.4 28.2 14.0 76.2 55.9 36.7

features (small convolutional kernels) and abstract features (larger convolutional kernels).

The extracted multi-scale features can characterize face images at various levels, improving

the face recognition performance. The ResNet-50 model uses identity mappings as bypass-

ing paths, easing the training of very deep networks and improving the capacity to describe

faces. On the other side, identity mappings connect features from two layers, which have

different receptive field sizes. The Max-Feature-Map design allows the LightCNN-29 model

to extract informative signals from noisy features.

Model Accuracy Comparison of Several Loss Functions

Tables 3.9 and 3.10 compares the Softmax loss function with several loss functions:

Center-loss, SphereFace, CosFace and ArcFace.

In these models, SphereFace and ArcFace based models achieve the best accuracy on LFW

dataset. Center-loss based model has the best accuracy on VGGFace2-test task. SphereFace

based model outperforms others on the IJB-A quality task overall. It is observed that due to

the complex face distributions, some loss functions may tend to perform well on some tasks,

while have poor results on some specific tasks. Comprehensive investigation is necessary to

achieve good results on specific tasks.
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Table 3.7: Experimental results of various models in TensorFlow on LFW and VGGFace2-

test datasets.

TensorFlow-based LFW (%)

VGGFace2 (Similarity Score)

Pose Age

Front Three-quarter Profile Young Mature

AlexNet-v2 91.1

Front 0.588 0.563 0.376 Young 0.497 0.255

Three-quarter 0.567 0.608 0.470 Mature 0.262 0.563

Profile 0.380 0.473 0.574

VGG-16 95.3

0.714 0.710 0.538 0.657 0.372

0.713 0.751 0.624 0.386 0.721

0.545 0.621 0.708

GoogLeNet 97.9

0.829 0.811 0.683 0.783 0.543

0.816 0.836 0.739 0.559 0.825

0.693 0.746 0.791

Inception-v3 98.5

0.814 0.790 0.652 0.752 0.512

0.791 0.815 0.709 0.532 0.776

0.661 0.714 0.752

ResNet-50 97.3

0.734 0.690 0.459 0.654 0.394

0.695 0.726 0.557 0.423 0.687

0.464 0.562 0.654

DenseNet-121 97.2

0.805 0.787 0.632 0.728 0.468

0.791 0.811 0.700 0.488 0.790

0.646 0.707 0.766

Model Accuracy Comparison between Different Frameworks

Tables 3.11, 3.12 3.13, 3.14 3.15, 3.16, 3.17, and 3.18 compare the VGG-16, Inception-v3,

ResNet-50, and DenseNet-121 models across different deep learning frameworks. For the

VGG-16 model, PyTorch gets the best accuracy on LFW and IJB-A quality datasets, and

TensorFlow achieves the best result on VGGFace2-test dataset. For the Inception-v3 model,

PyTorch gets the best accuracy on IJB-A quality dataset, and TensorFlow achieves the best

result on LFW and VGGFace2-test datasets. For the ResNet-50 model, PyTorch can get

the best results on LFW, VGGFace2-test and IJB-A quality datasets. For the DenseNet-121

model, PyTorch achieves the best performance on LFW and IJB-A quality datasets, and

TensorFlow performs best on VGGFace2-test dataset.

Based on the above experiments, PyTorch based models tend to perform the best among

these three frameworks, especially on LFW and IJB-A quality datasets. TensorFlow based

models can get excellent results on VGGFace2-test dataset. Caffe based models have the

worst performance. These frameworks have diverse default settings, including data pre-
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Table 3.8: Experimental results of various models in TensorFlow on IJB-A dataset.

TensorFlow-based

IJB-A (%), differnt FARs

Low2High Middle2High

1% 0.1% 0.01% 1% 0.1% 0.01%

AlexNet-v2 25.2 11.5 5.9 47.9 31.4 20.7

VGG-16 39.4 17.4 6.2 69.8 44.5 24.5

GoogLeNet 58.3 34.1 15.6 84.1 62.8 37.9

Inception-v3 47.7 25.6 9.7 76.6 53.4 31.6

ResNet-50 47.3 23.3 4.5 77.4 57.6 33.2

DenseNet-121 47.7 25.7 9.8 76.7 53.5 31.8

processing steps as shown in Table 3.19 and weight initialization methods as indicted in

Table 3.20, resulting in different performance as well. Diverse kernel initialization methods

may have 1% effect on accuracy [89]. It is suggested that the PyTorch framework should be

used in order to have better accuracy.

3.3.3 Running Time Comparison

Running time is a main factor that a user should take into consideration when training

deep networks. These deep learning frameworks are benchmarked by using different batch

sizes in 4 CNN models (i.e. VGG-16, Inception-v3, ResNet-50 and DenseNet-121). These

four models have their characteristics to test the performance of frameworks. The below

batch sizes are tried in every model: 16, 32, 64, 128, 256 and 512. However, some of them

may fail because a too large batch size may lead to the out of memory problem.

The system configuration is Ubuntu 16.04.3 LTS. Hardwares include Intel(R) Core(TM)

i7-6850K CPU @ 3.60GHz, 32GB RAM and 512GB SSD. Detailed information about several

types of GPUs is shown in Table 3.1. Table 3.21 shows the information about different

frameworks used in experiments. cuDNN [90] is a GPU-accelerated deep learning library,

for neural network computing.

In subsequent experiments, running performance is evaluated by averaging 2,000 itera-

tions. The timing method used is shown in the following:
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Table 3.9: Experimental results of several loss functions on LFW and VGGFace2-test

datasets.

Losses

LFW (%)

VGGFace2 (Similarity Score)

Pose Age

Front Three-quarter Profile Young Mature

Softmax 99.0

Front 0.512 0.492 0.392 Young 0.477 0.419

Three-quarter 0.510 0.517 0.412 Mature 0.417 0.404

Profile 0.406 0.411 0.397

Center-loss 98.2

0.857 0.846 0.751 0.816 0.606

0.847 0.863 0.788 0.631 0.842

0.752 0.791 0.812

SphereFace 99.2

0.549 0.396 0.201 0.401 0.253

0.398 0.498 0.334 0.249 0.428

0.217 0.332 0.487

CosFace 99.1

0.552 0.539 0.427 0.531 0.468

0.562 0.570 0.445 0.450 0.437

0.450 0.446 0.407

ArcFace 99.2

0.580 0.571 0.462 0.559 0.501

0.593 0.600 0.478 0.488 0.472

0.481 0.478 0.436

• Caffe: “Caffe time” function is used to calculate the average running time between two

consecutive iterations. It reads original images from hard disk provided by a file list.

• PyTorch: the timing function in Python is used to calculate average iteration time. It

directly reads original images from hard disks.

• TensorFlow: the internal timing function in the TensorFlow-Slim library [91] outputs

time details in a specified number of iterations. It uses a processed file format called

TFRecord.

It should be noted that these frameworks have very flexible programming APIs. It is pos-

sible that there exist other timing methods. Therefore, we should make it clear that our

implementations are not necessarily the best approach for training.

Running Time Comparison of Different Frameworks and GPU Platforms

The performance of the VGG-16 model is shown in the top left of Fig. 3.2. When the

batch size is 128, the VGG-16 model fails to run on GTX 1080Ti. This is because GTX

1080Ti has a 11GB memory space, compare to 12GB in Titan Xp, Titan X(Pascal) and
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Table 3.10: Experimental results of several loss functions on IJB-A quality dataset.

Losses IJB-A (%), differnt FARs

Low2High Middle2High

1% 0.1% 0.01% 1% 0.1% 0.01%

Softmax 55.3 39.6 20.4 81.3 72.7 53.6

Center-loss 57.9 33.3 16.1 88.1 68.8 46.4

SphereFace 54.7 38.8 22.2 90.3 80.0 64.3

CosFace 59.6 31.8 0.4 81.9 78.4 20.9

ArcFace 59.6 0.7 0 82.9 77.6 0.3

Table 3.11: Experimental results of the VGG-16 model on Caffe, PyTorch, and TensorFlow

on LFW and VGGFace2-test datasets.

VGG-16 LFW (%)

VGGFace2 (Similarity Score)

Pose Age

Front Three-quarter Profile Young Mature

Caffe-based 97.6

Front 0.737 0.699 0.520 Young 0.655 0.413

Three-quarter 0.707 0.746 0.604 Mature 0.442 0.698

Profile 0.533 0.611 0.690

PyTorch-based 97.2

0.726 0.698 0.510 0.648 0.353

0.705 0.739 0.603 0.382 0.711

0.517 0.604 0.695

TensorFlow-based 95.3

0.714 0.710 0.538 0.657 0.372

0.713 0.751 0.624 0.386 0.721

0.545 0.621 0.708

Table 3.12: Experimental results of the VGG-16 model on Caffe, PyTorch, and TensorFlow

on IJB-A quality dataset.

VGG-16

IJB-A (%), different FARs

Low2High Middle2High

1% 0.1% 0.01% 1% 0.1% 0.01%

Caffe-based 38.8 6.8 0.4 73.5 49.5 22.6

PyTorch-based 47.3 23.7 7.5 77.6 54.4 35.5

TensorFlow-based 39.4 17.4 6.2 69.8 44.5 24.5

Titan X(Maxwell). Since only one of the two GK110 chips in Titan Z is used, there is 6GB

memory available, which is the reason why batch sizes 64 and 128 fail on Titan Z. On the

other side, across different frameworks, PyTorch obtains the best performance among these
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Table 3.13: Experimental results of the Inception-v3 model on Caffe, PyTorch, and Tensor-

Flow on LFW and VGGFace2-test datasets.

Inception-v3 LFW (%)

VGGFace2 (Similarity Score)

Pose Age

Front Three-quarter Profile Young Mature

Caffe-based 96.1

Front 0.712 0.692 0.559 Young 0.626 0.415

Three-quarter 0.706 0.719 0.597 Mature 0.442 0.653

Profile 0.572 0.602 0.596

PyTorch-based 97.9

0.778 0.749 0.595 0.700 0.454

0.756 0.789 0.671 0.497 0.758

0.606 0.680 0.743

TensorFlow-based 98.5

0.814 0.790 0.652 0.752 0.512

0.791 0.815 0.709 0.532 0.776

0.661 0.714 0.752

Table 3.14: Experimental results of the Inception-v3 model on Caffe, PyTorch, and Tensor-

Flow on IJB-A quality dataset.

Inception-v3

IJB-A (%), different FARs

Low2High Middle2High

1% 0.1% 0.01% 1% 0.1% 0.01%

Caffe-based 29.7 12.3 4.5 61.2 38.5 24.2

PyTorch-based 51.3 28.2 7.9 81.4 60.2 38.8

TensorFlow-based 47.7 25.6 9.7 76.6 53.4 31.6

Table 3.15: Experimental results of the ResNet-50 model on Caffe, PyTorch and TensorFlow

on LFW and VGGFace2-test datasets.

ResNet-50 LFW (%)

VGGFace2 (Similarity Score)

Pose Age

Front Three-quarter Profile Young Mature

Caffe-based 97.5

Front 0.744 0.710 0.505 Young 0.667 0.425

Three-quarter 0.718 0.753 0.591 Mature 0.455 0.697

Profile 0.513 0.594 0.677

PyTorch-based 98.2

0.756 0.726 0.556 0.669 0.412

0.727 0.755 0.629 0.447 0.710

0.559 0.635 0.693

TensorFlow-based 97.3

0.734 0.690 0.459 0.654 0.394

0.695 0.726 0.557 0.423 0.687

0.464 0.562 0.654

three frameworks, followed by Caffe and then TensorFlow. For Titan Xp, the improvement

of PyTorch compared with Caffe and TensorFlow is 26.5% and 45.1% when the batch size
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Table 3.16: Experimental results of the ResNet-50 model on Caffe, PyTorch and TensorFlow

on IJB-A quality dataset.

ResNet-50

IJB-A (%), different FARs

Low2High Middle2High

1% 0.1% 0.01% 1% 0.1% 0.01%

Caffe-based 39.2 1.4 0.2 74.5 46.3 5.8

PyTorch-based 62.3 38.9 12.7 85.9 68 48.9

TensorFlow-based 47.3 23.3 4.5 77.4 57.6 33.2

Table 3.17: Experimental results of the DenseNet-121 model on Caffe, PyTorch, and Ten-

sorFlow on LFW and VGGFace2-test datasets.

DenseNet-121 LFW (%)

VGGFace2 (Similarity Score)

Pose Age

Front Three-quarter Profile Young Mature

Caffe-based 97.6

Front 0.737 0.699 0.520 Young 0.655 0.413

Three-quarter 0.707 0.746 0.604 Mature 0.442 0.698

Profile 0.533 0.611 0.690

PyTorch-based 97.8

0.755 0.731 0.576 0.682 0.419

0.735 0.763 0.648 0.452 0.722

0.582 0.654 0.709

TensorFlow-based 97.2

0.805 0.787 0.632 0.728 0.468

0.791 0.811 0.700 0.488 0.790

0.646 0.707 0.767

Table 3.18: Experimental results of the DenseNet-121 model on Caffe, PyTorch, and Ten-

sorFlow on IJB-A quality dataset.

DenseNet-121

IJB-A (%), different FARs

Low2High Middle2High

1% 0.1% 0.01% 1% 0.1% 0.01%

Caffe-based 38.8 6.8 0.4 73.5 49.5 22.6

PyTorch-based 58.8 33.1 9.8 83.3 62.4 42.1

TensorFlow-based 47.7 25.7 9.7 76.7 53.5 31.6

is 16, 31.5% and 40% when the batch size is 32, and 34.1% and 38.3% when batch size is

64. Besides, PyTorch is more memory-efficient since Caffe and TensorFlow have the out of

memory problem under the batch size 128, 256 or 512.

The performance comparison of the Inception-v3 is shown in the top right of Fig. 3.2.



Qiangchang Wang Chapter 3. Benchmark 36

Table 3.19: The data pre-processing of different CNN models in PyTorch/TensorFlow/Caffe.
Model name
(Framework) During training During evaluation

AlexNet-v2, VGG-16,

VGG-16-BN, ResNet-50,

Inception-v3, DenseNet-121

(PyTorch)

1) Crop the image to random size and aspect ratio,

followed by the resizing operation.

2) Randomly flip the image horizontally.

3) Convert range of the image to [0, 1].

4) Normalize the image with mean [0.485, 0.456, 0.406]

and standard deviation [0.229, 0.224, 0.225].

1) Center cropping and resize the image.

2) Convert the image pixel range to [0, 1].

3) Normalize the image with

mean [0.485, 0.456, 0.406] and standard

deviation [0.229, 0.224, 0.225].

AlexNet-v2,VGG-16,

ResNet-50, DenseNet-121

(TensorFlow)

1) Get the smaller side of the image,

followed by aspect-preserving resizing.

2) Randomly flip the image horizontally.

3) Randomly crop the image to 224×224.

4) Subtract means [123.68, 116.779, 103.939]

from each image channel.

1) Get the smaller side of the image,

followed by aspect-preserving resizing.

2) Center cropping image to 224×224.

3) Subtract means [123.68, 116.779, 103.939]

from each image channel.

GoogLeNet, Inception-v3

(TensorFlow)

1) Convert the image pixel range to [0, 1].

2) Generate cropped images using a randomly

distorted bounding box and resize it.

3) Randomly distort the colors

(brightness, hue, saturation or contrast).

4) Transform the image range to [-1, 1].

1) Convert the image pixel range to [0, 1].

2) Center cropping and resize the image.

3) Transform the image range to [-1, 1].

LightCNN-29

(Caffe)

1) Randomly crop the image to the input size.

2) Randomly flip the image horizontally.

3) Transform dimensions.

4) Reorder image channels to BGR.

5) Subtract mean [127.5, 127.5, 127.5] and

scale the image to range [-1, 1]. 1) Center cropping and resize the image.

2) Transform dimensions.

3) Reorder image channels to BGR.

4) Subtract mean [87.1, 102.7, 134.6] and

scale the image to range [0, 1].
AlexNet-v1, VGG-16,

GoogLeNet, ResNet-50,

Inception-v3, DenseNet-121

(Caffe)

1) Randomly crop the image to the input size.

2) Randomly flip the image horizontally.

3) Transform dimensions.

4) Reorder image channels to BGR.

5) Subtract mean [87.1, 102.7, 134.6] and

scale the image to range [0, 1].

Batch sizes 128, 256 and 512 fail, due to the out of memory issue. Across different GPU

platforms, the Inception-v3 model displays relatively similar performance on 5 types of GPUs

like the VGG-16 model. Across different frameworks, PyTorch obtains better performance

than TensorFlow and Caffe under nearly each batch size. However, the speedup is different

between PyTorch and TensorFlow when batch size changes. As for Titan Xp, when batch

size is 16, PyTorch achieves about 1.16% speedup. However, when batch sizes are 32, 64

separately, the improvements are 20%, 27%. This shows that the larger the batch size is,

the more obvious the speedup is. In addition, Caffe is less memory-efficient compared with

TensorFlow and PyTorch because Caffe runs out of memory if the batch size is 32 or 64.

The performance of the ResNet-50 model is shown in the bottom left of Fig. 3.2. There is

out of memory problem if the batch size is 256 or 512. Across different frameworks, PyTorch

achieves the best performance compared with TensorFlow and Caffe, except that the batch

size is 64 on GTX 1080Ti. For the Titan Xp, speedup between PyTorch and TensorFlow is

25.4%, 28.2%, 31.5% and 27% when the batch size is 16, 32, 64 or 128 respectively. Titan

Z and GTX 1080Ti cannot afford the batch size 128 under these three frameworks. Caffe
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Table 3.20: The default weight initialization of diverse CNN models in

Caffe/TensorFlow/PyTorch.

Suppose parameters of one layer have shape

(output channel num, input channel num, kernel size, kernel size),

fanin = input channel num ∗ kernel size ∗ kernel size
and fanout = output channel num ∗ kernel size ∗ kernel size.

Model name
(framework) Convolutional layers Fully connected layers
VGG-16
(PyTorch) W ∈ N

(
0,

√
2

fanout

)
W ∈

[
−

√
1

fanin
,
√

1
fanin

]
VGG-16
(Caffe) W ∈

[
−

√
3

fanin
,
√

3
fanin

]
W ∈

[
−

√
3

fanin
,
√

3
fanin

]
VGG-16

(TensorFlow) W ∈
[
−

√
6

fanin+fanout
,
√

6
fanin+fanout

]
-

Inception-v3

(PyTorch) W ∈ N(0, stddev),−2 ≤W ≤ 2 W ∈
[
−

√
1

fanin
,
√

1
fanin

]
Inception-v3

(Caffe) Winput ∈ N
(
0,

√
2

fanin+fanout

)
Winput ∈ N

(
0,

√
2

fanin+fanout

)
Inception-v3

(TensorFlow) W ∈
[
−

√
6

fanin+fanout
,
√

6
fanin+fanout

]
-

ResNet-50
(PyTorch) W ∈ N

(
0,

√
2

fanout

)
W ∈

[
−

√
1

fanin
,
√

1
fanin

]
ResNet-50
(Caffe)

Winput ∈ N
(
0,

√
2

fanout

)
,

Wothers ∈ N
(
0,

√
2

fanin

)
W ∈ N(0, 0.01)

ResNet-50
(TensorFlow) W ∈

[
−

√
6

fanin+fanout
,
√

6
fanin+fanout

]
-

DenseNet-121
(PyTorch) W ∈ N

(
0,

√
2

fanin

)
W ∈

[
−

√
1

fanin
,
√

1
fanin

]
DenseNet-121

(Caffe) W ∈
[
−

√
3

fanin
,
√

3
fanin

]
-

DenseNet-121
(TensorFlow) W ∈

[
−

√
6

fanin+fanout
,
√

6
fanin+fanout

]
W ∈

[
−

√
6

fanin+fanout
,
√

6
fanin+fanout

]

based ResNet-50 model can run with a batch size 16 on Titan X(Maxwell), Titan X(Pascal),

GTX 1080Ti and Titan Xp. Since one of two chips on Titan Z has less memory, Caffe based

ResNet-50 model fails when the batch size is 16.

The performance of the DenseNet-121 model is shown in the bottom right of Fig. 3.2. It

fails when the batch size is 128, 256 or 512. PyToch is better than other frameworks. For

Titan Z, batch sizes of PyTorch and TensorFlow are 16 and 32; Caffe fails even when the

batch size is 16. For other GPU platforms, PyTorch and TensorFlow can run with the batch

size 64. For Titan Xp, PyTorch obtains 36.5%, 41.7% and 43.4% speedup than TensorFlow

when batch sizes are 16, 32 and 64, respectively.

Across different GPU platforms for the VGG-16, Inception-v3, ResNet-50 and DenseNet-
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Table 3.21: Versions of deep learning frameworks used in experiments.

Frameworks Major version cuDNN CUDA

Caffe 1.0.0 V7.0 V9.0

TensorFlow 1.6.0 V7.0 V9.0

PyTorch 0.3.1 V7.0 V9.0

121 models, Titan Xp obtains the best performance, which is slightly better than GTX

1080Ti, Titan X(Pascal) and Titan X(Maxwell). Other four GPUs are at least 2 times

faster than Titan Z. As shown in Table 3.1, architectures of Titan Z, Titan X(Maxwell)

are Kepler, Maxwell, and the architecture of Titan X(Pascal), GTX 1080Ti and Titan Xp

is Pascal. This shows that the more recent GPU architecture is, the faster the running

performance is. Although Titan X(Pascal), GTX 1080Ti and Titan Xp have the same GPU

architecture, their specifications are more or less different. GTX 1080Ti has better boost

clock, memory speed and memory bandwidth than Titan X(Pascal), and Titan Xp has more

CUDA cores, higher memory speed, wider memory interface width and memory bandwidth

than GTX 1080Ti. This explains why Titan Xp is a little faster than GTX 1080Ti, and

GTX 1080Ti is faster than Titan X(Pascal).

Across different frameworks, there are mainly two factors which may result in different

computation time. First, in training CNNs, convolutional layers which are the most time-

consuming layers are usually invoked by the high performance library cuDNN [90]. However,

there are several types of convolution implementations, such as GEMM, FFT and Winograd.

TensorFlow prefers to use the Winograd algorithm, and PyTorch could autotune to find

the most efficient convolutional algorithm. While Caffe uses GEMM-based convolution.

The FFT- and Winograd-based convolutions are faster than GEMM-based convolution in

general [63]. The sub-optimal convolution makes Caffe slower than TensorFlow and PyTorch

in most cases. Second, PyTorch uses NCHW layout naively which is implicitly supported in

cuDNN, while TensorFlow uses NHWC layout. As shown in [92], changing data layout in

TensorFlow from NHWC from NCHW leads to 15% speedup. This explains why PyTorch is

faster. It is worth noting that PyTorch is a dynamic framework to maximize flexibility, and

TensorFlow is a static framework with less computation cost. However, PyTorch minimizes
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Figure 3.2: Running time comparison of VGG-16 (top left), Inception-v3 (top right), ResNet-

50 (bottom left), and DenseNet-121 (bottom right) models on GPU platforms.

the computational cost of graph construction in every iteration and implements faster GPU

kernels for frequent workloads, allowing for more efficient dynamic computation.

Scalability of Different Deep Learning Frameworks on Multi-GPUs

Since the AlexNet model [25] won the ILSVRC 2012 challenge [85], CNNs have become

ubiquitous in various computer vision tasks [93] [94] [95] [96] [97] [98]. Making deeper and

more complicated networks has been the general trend to improve the performance [47]

[50] [51] [49]. However, a single GPU only has a limited memory space, which seriously

limits the network capacity. On the other side, training CNNs is time-consuming, especially

for deeper networks and large training datasets. Therefore, scalability is very critical for

deep learning frameworks, allowing for accelerating the training process by spliting the data

across multiple GPUs or machines, and training extremely large models which would not

fit into the limited memory of one GPU. Support of multiple GPUs and machines becomes

necessary for frameworks. The distributed synchronous stochastic gradient descent (SGD)
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method [99] [100] is widely used to achieve a better scaling performance on multiple GPUs

or machines.

In this Section, running time of the VGG-16, Inception-v3, ResNet-50 and DenseNet-121

model is evaluated on 1, 2 and 4 Titan X(Pascal) GPUs. A proper batch size for each model is

determined to make the model run on every framework and better utilize the GPU resources.

We use the metric (i.e. # of samples processed per second) to measure the throughput. To

show the scalability, the speedup is calculated to indicate how much the throughput with

GPUs could be increased:

speedup =
throughput2×(# of gpus) − throughput# of gpus

throughput# of gpus

(3.6)

Ideally, the value of speedup should be 100% when the GPU number is doubled.

Results of the VGG-16 model with a batch size 64 per GPU are shown in the top left

of Fig. 3.3. PyTorch has the highest throughput, which can process 127, 203 and 377

images per second as the GPU number increases from 1, 2 to 4, compared with 79, 156 and

316 images in Caffe. TensorFlow has the lowest processing speed on the VGG-16 model,

which can process 76, 117 and 196 images per second, respectively. It can be seen that on

a single GPU, PyTorch is the best, and Caffe is slightly better than TensorFlow. With the

number of GPUs doubls, scalability of Caffe is the most remarkable (97%), while PyTorch

and TensorFlow have similar speedup performances, over 50%. When the GPU number is

4, speedup of Caffe is up to 103% compared with 68% in TensorFlow and 86% in PyTorch.

The performance of the Inception-v3 model with a batch size 25 per GPU is shown in

the top right of Fig. 3.3. As for the throughput across deep learning frameworks, PyTorch

(114, 192 and 357 images per second on 1, 2 and 4 GPUs) is faster than Caffe (74, 146 and

294 images) and TensorFlow (106, 160 and 279 images). On a single GPU, PyTorch displays

a better performance than TensorFlow and Caffe. When the GPU number doubles, speedup

of Caffe, TensorFlow and PyTorch is 97%, 51% and 68%. When the number of GPUs

increases to 4, Caffe, TensorFlow and PyTorch have 101%, 68% and 86% improvement than

the performance on 2 GPUs.

The performance of the ResNet-50 model with a batch size 25 per GPU is shown in the

bottom left of Fig. 3.3. PyTorch can process 464, 268 and 171 images per second on 4, 2
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and 1 GPUs, compared with 300, 149 and 77 images in Caffe and 252, 222 and 160 images in

TensorFlow. On a single GPU, PyTorch is the fastest compared with TensorFlow and Caffe.

When the number of GPUs doubles, speedup of Caffe, TensorFlow and PyTorch is 94%, 39%

and 57%. If the number of GPUs changes to 4, Caffe has the best speedup (101%), while

PyTorch is much better than TensorFlow (73% compared with 13.5%).

The batch size per GPU of the DenseNet-121 model is set to 20 in our experiments, and

results are shown in the bottom right of Fig. 3.3. TensorFlow (368, 212 and 119 images

per second) has the second-best throughput behind PyTorch (388, 237 and 155), with Caffe

lagging relatively far behind (238, 115 and 59). The throughput of PyTorch is slightly better

than TensorFlow, and PyTorch and TensorFlow are almost two times faster than Caffe on

a single GPU. When the number of GPUs is doubled, scalability of Caffe (95%) is the best,

followed by TensorFlow (78%) and PyTorch (53%). With 4 GPUs, Caffe, TensorFlow and

PyTorch further achieve 107%, 74% and 64% speedup, respectively.

As for the efficiency of frameworks, TensorFlow implicitly uses NHWC tensor layout. On

the contrary, PyTorch adopts NCHW layout naively in which cuDNN is better optimized.

This can explain why PyTorch is able to process more images per second than TensorFlow.

Meanwhile, PyTorch tends to use FFT-based convolutions which are faster than GEMM-

based convolutions used in Caffe [92]. Because the convolutional operation is the computation

bottleneck in CNN models, PyTorch is faster than Caffe. Due to its excellent throughput in

above experiments, PyTorch is selected to conduct the remaining experiments.

But as for the scalability of different frameworks, it should be noted that the speedup

of Caffe is around 100%. We attribute this to the reason that loading images from hard

disks instead of more efficient LMDB data format becomes a bottleneck in Caffe. To train

CNN models with SGD, the model is iteratively updated with the feeding data. There are

four steps generally in one iteration. 1) Load a mini-batch of data from hard disks to CPU

memory and transfer the data to GPU memory. The time in this step is represented by tdata.

2) Each GPU launches kernels to finish the forward- and backward- operations. 3) The

gradients from all GPUs are aggregated. tagg refers to the time of the gradient aggregation.

4) The model in each GPU is updated based on the aggregated gradients. Let tgpu represent

the total time in step 2) and 3). It is obvious to represent the time titer in one iteration with
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the following equation:

titer = tdata + tgpu + tagg (3.7)

Since loading images for the next iteration can be overlapped with GPU computation for

the current iteration, and gradient aggregation on the previous iteration can be parallelized

with backward operation on the current iteration. So the average iteration time in Caffe is:

titer = max{tdata, tgpu, tagg} (3.8)

Because we receive info “waiting for data” during training in Caffe, prefetching data is

too slow for the next iteration, and GPU computation and gradient aggregation needs to

wait for the data loading in every iteration. In other words, tdata is larger than tgpu and tagg.

When more GPUs are used, GPU computation and gradient aggregation are still hidden

behind the data loading, which leads to a bottleneck in the scaling performance. Therefore

a linear speedup is achieved in Caffe.

Efficient data communication between GPUs is important to ease the overhead of gradient

synchronization: TensorFlow and PyTorch use the Google’s Remote Procedure Call (gRPC)

[101] Library and NVIDIA Collective Communications Library (NCCL) [102], respectively.

Since NCCL has a higher efficiency and lower latency in collective gradient communications

[103], TensorFlow has a sub-optimal scaling performance compared with PyTorch.

3.3.4 Comparison of Different Training Datasets

In this section, we investigate the effect of different training datasets (i.e. UMDFaces,

WebFace, VGGFace2 and MS-Celeb-1M) on five test datasets (i.e. LFW, VGGFace2-test,

IJB-A quality, DFW and UMDFaces). Experimental results are shown in Tables ?? and

3.24.

Based on comparative results of different frameworks, PyTorch is selected to run exper-

iments in this section because of its high throughput and relatively good accuracies. Due

to its good performance, the ResNet-50 is used as the baseline model. The model is trained

with 14 epochs. The learning rate is set to 0.1 and divided by 10 every 6 epochs. The batch

size is 210 on 3 GPUs. In order to compare training datasets fairly, overlapped subjects
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Figure 3.3: Scalability comparison of the VGG-16 model with a batch size 64 (top left),

the Inception-v3 model with a batch size 25 (top right), the ResNet-50 model with a batch

size 25 (bottom left) and the DenseNet-121 model with a batch size 20 (bottom right) w.r.t.

multiple GPUs.
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Table 3.22: Experimental results of the ResNet-50 trained on the UMDFaces, WebFace and

VGGFace2 datasets and tested on the LFW and VGGFace2-test datasets.

Dataset LFW (%)

VGGFace2 (Similarity Score)

Pose Age

Front Three-quarter Profile Young Mature

UMDFaces 95.5

Front 0.783 0.755 0.555 Young 0.707 0.436

Three-quarter 0.760 0.793 0.645 Mature 0.452 0.743

Profile 0.558 0.642 0.749

WebFace 98.2

0.783 0.761 0.601 0.707 0.438

0.767 0.793 0.677 0.464 0.762

0.611 0.683 0.739

VGGFace2 98.8

0.820 0.792 0.673 0.748 0.497

0.798 0.826 0.736 0.522 0.790

0.678 0.740 0.786

MS-Celeb-1M 98.9

0.776 0.734 0.610 0.683 0.412

0.739 0.777 0.684 0.431 0.739

0.615 0.685 0.741

Table 3.23: Experimental results of the ResNet-50 trained on the UMDFaces, WebFace,

and VGGFace2 datasets and tested on the IJB-A quality dataset.

Dataset

IJB-A (%), different FARs

Low2High Middle2High

1% 0.1% 0.01% 1% 0.1% 0.01%

UMDFaces 40.8 19.5 7.7 69.4 45.5 29.3

WebFace 54.5 29.8 6.9 82.3 62.2 41.8

VGGFace2 81.8 62.8 38.1 94.8 85.4 69.0

MS-Celeb-1M 76.2 59.5 37.6 95.0 89.1 77.2

Table 3.24: Experimental results of the ResNet-50 trained on the UMDFaces, WebFace and

VGGFace2 datasets and tested on the DFW and UMDFaces-test datasets.

Dataset

DFW (%), different FARs UMDFaces (%), different FARs

1% 0.1%
Easy Moderate Difficult

1% 0.1% 0.01% 1% 0.1% 0.01% 1% 0.1% 0.01%

UMDFaces 21.4 7.6 76.5 59.3 44.9 65.6 43.0 23.8 56.7 32.6 19.4

WebFace 50.6 26.6 69.8 54.3 42.7 57.7 36.8 22.6 48.0 24.4 10.4

VGGFace2 49.0 25.3 80.3 66.6 54.5 72.2 55.9 43.5 66.0 43.4 24.7

MS-Celeb-1M 26.8 8.4 66.9 49.4 37.1 55.1 30.2 14.5 47.1 22.9 8.3

between training and test datasets are removed. After removing, an overview of MS-Celeb-

1M, UMDFaces, VGGFace2, and WebFace datasets is presented in Tab. 3.25. In terms of
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Table 3.25: An overview of MS-Celeb-1M, UMDFaces, VGGFace2, and WebFace datasets,

after removing overlapped subjects with test datasets.

Dataset # of subjects # of images # of images per subject (average)

MS-Celeb-1M 84,936 3,838,654 45

UMDFaces 5,222 236,856 45

VGGFace2 8,410 3,141,890 374

WebFace 10,182 393,700 39

breadth (number of subjects), MS-Celeb-1M dataset (84,936) gets the first place, followed by

WebFace dataset (10,182), VGGFace2 dataset (8,410), and then UMDFaces dataset (5,222).

As for depth (number of images per subject), VGGFace2 dataset (374) is significantly supe-

rior than both UMDFaces (45), MS-Celeb-1M (45) and WebFace (39) datasets. The depth

of UMDFaces, MS-Celeb-1M and WebFace datasets are very similar.

For the LFW verification task, MS-Celeb-1M dataset achieves the best performance,

0.1% improvement compared with the VGGFace2 dataset. The performance of WebFace

dataset slightly lags behind, while UMDFaces dataset ranks the last by a large margin. This

indicates that MS-Celeb-1M, VGGFace2 and WebFace datasets are more suitable for this

task. This may be because these three datasets are broader compared to UMDFace dataset,

allowing the model to learn more discriminative features to increase inter-class distances

and verify if one pair of images belong to the same subject or not. It is worth noting that

the LFW dataset was an early benchmark for face verification. Its performance is almost

saturated [30] [31] because most faces in LFW dataset are close to frontal. MS-Celeb-1M

and VGGFace2 datasets may have good potentials for more challenging tasks.

For the cross-pose face matching task on VGGFace2-pose and UMDFaces-test, the VG-

GFace2 dataset outperforms the UMDFaces for training by a significant margin. WebFace

and MS-Celeb-1M datasets lag behind. Since modern deep learning is heavily data-driven,

the generalization performance depends on the distribution of the training dataset [104].

It is known that the data generation pipeline in VGGFace2 dataset aims to encourage age

and pose diversity for each subject [82]. Pose information is provided in UMDFaces dataset

which has more pose variations compared to the WebFace [58]. Although both UMDFaces
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and VGGFace2 datasets have pose information, their large gaps on depth and breadth ex-

plains why VGGFace2 dataset achieves much better performances than UMDFaces dataset

for cross-pose matching tasks. In contrast, despite a large number of images in the MS-

Celeb-1M dataset, most of them are frontal faces because of without specific data collection

rules in the data collection stage.

For the cross-quality face matching task on IJB-A, VGGFace2 dataset ranks the first

on the Low2High task, and MS-Celeb-1M gets the first place on the Middle2High task,

respectively, followed by WebFace dataset and then UMDFaces dataset. Because images in

these four datasets are crawled from the Internet, they contain various quality levels. If

there are more images in the training dataset, there are more images with different image

qualities, which guide the model to learn robust features to various image qualities. This

explains why VGGFace2 and MS-Celeb-1M datasets are substantially superior to WebFace

and UMDFaces. On the other side, MS-Celeb-1M dataset (cleaned by DeepGlint) tends

to have high ratios about middle- and high- level image qualities than VGGFace2 dataset,

resulting in a better performance in the Middle2High task.

For the DFW challenge, WebFace dataset performs better than other two datasets, al-

though it is just marginally better than VGGFace2 dataset. The reason may be that im-

ages from WebFace dataset are not manually identity labeled and appropriate noise level

makes the model more robust to recognize the disguised faces and reject impersonators.

VGGFace2 dataset contains much more information and has closer gap with DFW dataset

than UMDFaces dataset in terms of depth and breadth, resulting in the remarkable per-

formance improvement. On the other side, MS-Celeb-1M dataset cleaned by DeepGlint

(http://trillionpairs.deepglint.com/) may have fewer disguised faces in the dataset, leading

to an inferior performance

For the cross-age face matching task on VGGFace2-age dataset, VGGFace2 dataset ob-

viously obtains a better performance, achieving around 3% improvement because it contains

more age variations within the same subject during the image crawling stage [82]. As shown

in Table ??, for these three training datasets, the performance improvement is more signifi-

cant when face matching across young and mature faces, which is more difficult than young

to young and mature to mature face matching. Besides, young to young matching has more
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remarkable improvement compared with mature to mature matching. These results can be

attributed to the reason that more young faces in VGGFace2 dataset enable the model to

learn more age-invariant features, especially for young to mature face matching. Although

WebFace dataset has more images than UMDFaces dataset, these images are more likely to

deem as mature faces. This explains why mature to mature face matching has better accu-

racy improvement, followed by young to mature matching. Young to young face matching

performance remains almost the same for WebFace and UMDFaces datasets. The ratio of

mature faces in the MS-Celeb-1M dataset may be much higher than young faces. Therefore,

MS-Celeb-1M dataset performs poorly in the cross-age task.

Because VGGFace2 dataset takes depth and breadth into consideration, guaranteeing rich

intra-subject variations and inter-subject diversity. Moreover, it collects face images with a

wide range of poses and ages. This explains why it obtains the best accuracy on cross-pose,

cross-age and cross-quality face matching tasks. Since a large number of high-quality faces

in the revised MS-Celeb-1M dataset, it achieves the best result on the LFW verification

task. For the DFW challenge, some outliers in WebFace dataset make CNN more robust

to disguised faces and impersonators, so WebFace provides slightly better performance than

VGGFace2. Although UMDFaces dataset has a smaller number of images than WebFace

dataset, it has more pose variations and performs better on the cross-pose face matching

task.

3.4 Summary

We have performed a benchmark of various models (i.e. AlexNet-v1, AlexNet-v2, VGG-

16, VGG-16-BN, GoogLeNet, Inception-v3, ResNet-50, DenseNet-121 and LightCNN-29,

Center-loss, SphereFace, CosFace and ArcFace) for face recognition under different frame-

works (i.e. PyTorch, TensorFlow and Caffe) in two folds. First, we compare the accuracy of

different CNN models within the same deep learning framework. Experimental results show

that models, such as the Center-loss, SphereFace, CosFace, ArcFace, GoogLeNet, Inception-

v3 and ResNet-50 models achieve better performances. Second, we compare the accuracy

of the same CNN model under different frameworks. Results show that the PyTorch based
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models tend to obtain the best performance among these three frameworks because of its

better weight initialization methods and data pre-processing steps, followed by TensorFlow

and then Caffe.

The running time performance of frameworks PyTorch, TensorFlow and Caffe, and GPU

platforms are compared as well. PyTorch has the highest throughput and TensorFlow obtains

slightly better throughput than Caffe in most cases because of the difference of data layout

and convolution implementations among these frameworks. For five GPU platforms, five

different designs (e.g. architecture, CUDA core number, memory speed and bandwidth) are

tested and we found that the Titan Xp displays slightly faster speed than GTX 1080Ti,

Titan X(Pascal) and Titan X(Maxwell) and Titan Z is nearly 2 times slower than the other

four GPUs. We also compare the scalability of different frameworks. Experiments show

that Caffe has almost linear speedup because of the data loading bottleneck. Because the

communication library used in PyTorch (i.e. NCCL) is better than TensorFlow (i.e. gRPC),

PyTorch has a slightly better scaling performance.

Four training datasets (i.e. UMDFaces, WebFace, VGGFace2, and MS-Celeb-1M) are

investigated for training the CNN models, and five test datasets (i.e. LFW, VGGFace2-test,

IJB-A, DFW, and UMDFaces-test) are used for recognition accuracy measures. Because of its

rich intra-subject variations and inter-class diversity, age and pose information, VGGFace2

dataset is preferable to train CNNmodels; MS-Celeb-1M dataset (http://trillionpairs.deepglint.com/)

has more high-quality frontal faces, which makes it suitable for the controlled face verifica-

tion task, like access control; Due to the larger pose variations, UMDFaces dataset achieves a

good performance on pose related tasks than the WebFace dataset; WebFace allows CNNs to

learn more robust features, distinguishing disguised faces and impersonators and surpassing

UMDFaces and VGGFace2 datasets on the DFW challenge.

Further, a set of deep face models trained on the WebFace dataset under three frameworks

will be made publicly available. Users can take them as baselines to further fine-tune them

for their tasks. This will save the training time significantly required for face recognition

models, and helpful for beginners.

In future, we plan to evaluate the performance of distributed frameworks over multi-

machine environments. And also, newer state-of-the-art face recognition models will be
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added continuously with more and more newer GPU platforms.
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Chapter 4

LS-CNN: Characterizing Local

Patches at Multiple Scales for Face

Recognition

4.1 Motivations

Although great progresses have been made in face recognition, few existing works could

incorporate multi-scale representations and characterize local regions together to describe

faces.

Learning multi-scale information is necessary to boost the face recognition performance.

Discriminative face regions may occur at multiple scales. For example, as shown in Fig.

4.1 Columns 1, 2 and 3, even though faces have dramatic changes, some local regions re-

main to be similar but have different sizes. Thus, perceiving information from multiple

scales is important for understanding local facial regions. Different from the prior work [55]

that concatenates multi-scale features from the last two layers, we propose the Harmonious

multi-Scale Networks (HSNet) which covers a wide range of receptive fields. It learns multi-

scale features from two harmonious perspectives. On one hand, Inception [48] [49] extracts

multi-scale representations in a single layer by kernels of different sizes. On the other hand,

DenseNets [51] form multi-scale information from different layers because each layer is di-

rectly connected to each preceding layer. Besides, due to good information and gradient
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Figure 4.1: Some positive pairs from CFP, CALFW and IJB-A quality datasets and their

corresponding class activation maps (CAMs) [3] learned by the proposed LS-CNN model.

Faces are affected by several challenging factors, such as pose, aging, occlusion, resolution,

blur, expression and illumination. Column 1: Similar mouths with different sizes. Column

2: Similar mouths with different sizes. Column 3: Similar eyes with different sizes. Column

4: Similar mouth parts. Column 5: Similar pointy noses. Column 6: Similar eyes.

flow, the HSNet model can scale naturally hundreds of layers. Because very deep mod-

els have a better representational ability than shallower ones [105], the HSNet has a good

representational power without optimization difficulties, modeling complex faces like Fig.

4.1.

Spatial attention is introduced to characterize informative regions automatically. Global

face geometry and appearances may be significantly different. As a consequence, identifying

similar facial regions is of vital importance. As shown in Fig. 4.1, some local regions remain

similar despite pose variations (mouths in Column 4), aging (noses in Column 5) and face

quality changes (eyes in Column 6). To learn local representations, several works train CNNs

on cropped patches around face landmarks [34,38,39,55]. However, face landmark detection

may fail in some cases, as illustrated in Fig. 4.2. Illumination changes make detailed face

texture missing (Row 1, Columns 1, 2); occlusions cause some face organs to be invisible,

such as microphone on the mouth (Row 1, Columns 3, 4); poses are self-occlusion and can

lead to some face regions completely missing (Row 1, Columns 5, 6). Besides, we notice

two observations. First, different face regions exhibit different discriminative abilities. As
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Figure 4.2: Some challenging faces and their corresponding class activation maps (CAMs) [3]

learned by LS-CNN model. Faces are influenced by illumination changes (Columns 1, 2),

occlusions (Columns 3, 4), and pose variations (Columns 5, 6). MTCNN [4] fails to detect

landmarks, while our LS-CNN model can locate discriminative face regions (Row 2).

Figure 4.3: Four channels are visualized for a positive pair with similar eyes, where purple

areas correspond to essential areas, and green areas mean less important ones. Different

weights are assigned through the channel attention.

presented in [1], areas between eyes and eyebrows are more discriminative than those between

the nose and mouth in frontal faces. Second, a convolution kernel is considered as a feature

detector [106]. It can detect specific features, while may have noisy responses on distraction

parts, such as an uncontrolled background in Fig. 4.9 Column 5. Based on the discussion

above, we propose an attention mechanism, i.e. local aggregation network (LANet), to

localize the most discriminative face regions. Moreover, background information is filtered

flexibly to reduce distraction. As illustrated in Fig. 4.2, our model can not only locate faces,

but also focus on useful face regions and filter out distraction regions.

Further, channel attention is incorporated into the Harmonious multi-Scale CNN (HSNet)

which highlights important channels and suppresses less informative ones. When employing

a CNN to extract features, channels that contain information with various importance are

extracted. This observation comes from the fact that different convolution kernels detect

different features. As observed in Fig. 4.3, four channels correspond to different face parts for
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each face image. Besides, hierarchical channels from multiple layers in the HSNet should have

different discriminative abilities. This is mainly based on the following two reasons. First,

channels from low layers may contain local face details, and high layers tend to have high-

level representations. Second, local discriminative face regions from different face images

may have different sizes (e.g. Fig. 4.1 Columns 1, 2 and 3), which may appear at different

layers. To overcome these problems, the SENet module [107] is incorporated into our HSNet

model to assign weights for each channel, where discriminative channels are enhanced while

irrelevant channels are suppressed. For example, the similar eyes of faces in Fig. 4.3 are

useful information to verify that these two faces belong to the same subject. Through the

SENet module, these less informative channels are assigned with smaller weights (Columns

2, 3) and important channels that capture eye information have larger weights (Columns 4,

5).

Since SENet model works locally and LANet model applies globally on channels, it is

intuitive to combine them together to form the Dual Face Attentions (DFA). Attention

mechanisms have been widely used in various tasks [107–109]. However, to the best of

our knowledge, this is the first time to apply the attention module for the general face

recognition task except for video face recognition which aggregates multiple frames into

one representation. Thus, Local and multi-Scale Convolutional Neural Networks (LS-CNN)

model is developed by integrating the DFA into HSNet model. As demonstrated in Fig. 4.1,

the LS-CNN model can locate discrminative local regions despite their various sizes.

The proposed Local and multi-Scale Convolutional Neural Networks (LS-CNN) model is

studied for the unconstrained face recognition task. Our major contributions include:

1. We propose the Harmonious multi-Scale Network (HSNet), which allows us to learn

multi-scale features from different perspectives: utilization of different kernel sizes in a

single layer; combination of multi-scale feature maps from different layers. It outper-

forms many backbone networks in terms of accuracy, model capacity and parameter

efficiency.

2. Channel and spatial attentions are incorporated to form the Dual Face Attentions

(DFA). As far as we know, this is the first time to use attention modules for the
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general face recognition task. The SENet module is integrated to learn what features

to emphasize: more informative channels are highlighted and less important ones are

inhibited. The LANet module is proposed to decide where to focus: discriminative local

patches are assigned with larger weights, and less useful ones have smaller weights.

Combining the DFA with the HSNet results in the proposed Local and multi-Scale

Convolutional Neural Networks (LS-CNN) model.

3. Trained on publicly available CASIA-WebFace or VGGFace2 dataset, the proposed

LS-CNN model yields better results than state-of-the-art methods on cross-age, cross-

pose and cross-quality face matching. It also achieves a comparable performance on

the LFW dataset.

4.2 A New Deep Network

Our proposed deep network, called Local and multi-Scale Convolutional Neural Networks

or simply LS-CNN mainly contains four modules: Inception, DenseNet, SENet, and LANet.

We will describe them in the following.
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SENet
1×

1 

co
nvh×w×(m×k) h×w×4k

h×w×4k
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h×w×k h×w×k
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Figure 4.4: LS-CNN-Dense block (LS-CNN-D): the composite operation of the DFA-

Inception module in dense blocks of DenseNets, where h and w refer to height and width of

channels, respectively. k and m mean the growth rate and mth layer within a dense block,

respectively. DFA consists of LANet and SENet.
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Figure 4.5: LS-CNN-Transitional (LS-CNN-T): the implementation of the DFA-Inception

module in the transitional layer of DenseNets, where h, w and c refer to height, width and

number of channels, respectively. S-2 means stride 2. DFA consists of LANet and SENet.

4.2.1 Inception Module

The Inception [48] maps cross-channel and spatial correlations simultaneously by using

different convolution kernels. Following the Inception-v3 [49], two consecutive 3×3 filters are

used to replace 5× 5 filters. This can reduce about 28% parameters as well as computation

time without loss of the representation ability. As the Inception shown in Fig. 4.4, we have

three branches: 1× 1 convolution, 3× 3 convolution and two 3× 3 convolutions. Meanwhile,

the bottleneck layer (i.e. 1 × 1 convolution) is used in the branch wherever computational

requirements would dramatically increase otherwise.

To reduce the channel size in a multi-scale way, a max-pooling branch and two convolution

branches with stride 2 for each are used. The bottleneck layer is first used to reduce the

number of channels. See the Inception in Fig. 4.5 for an illustration.

4.2.2 DenseNet Module

In order to improve the information and gradient flow, dense connections are proposed

in [51]. Each layer is directly connected to each preceding layer. Namely, the output of

the mth layer can be stated as xm = Hm([x0, x1, ..., xm−1]), where [x0, x1, ..., xm−1] represents

channel concatenation from preceding layers (i.e. 0, 1, ...,m − 1). Hm is the composite LS-

CNN-D operation shown in Fig. 4.4, which outputs k channels. As a result, the mth layer
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has (m − 1) + k0 input channels and outputs k channels, where k0 is the number of input

channels for the dense block. Let k refer to the growth rate, which controls the width of the

network. Like [49] [110], the bottleneck layer is used before the 3× 3 convolution to reduce

the number of input channels to 4k, improving parameter efficiency.

On the other hand, as an essential part of CNNs, the pooling operation reduces the

channel size to produce more robust features. The pooling is used between two dense blocks,

which is referred as the transitional layer. To improve the computational efficiency, the

transitional layer outputs c/2 channels if the previous dense block produces c channels.

Because of dense connections, rich hierarchical features from different layers contain

multi-scale representations. Meanwhile, intermediate layers contain middle-level visual fea-

tures about object parts, and high layers detect high-level representations about objects [106],

so different levels of visual semantic features (e.g. local details) may be combined to benefit

face recognition.

4.2.3 Harmonious Multi-Scale Networks

On one hand, the Inception module characterizes faces at various scales in a single layer.

On the other hand, the DenseNet module concatenates hierarchical features from different

layers with various receptive fields. Therefore, a new backbone network, i.e. Harmonious

multi-Scale Networks (HSNet), which integrates the Inception with the DenseNet is proposed.

It extracts multi-scale features from two complementary perspectives. Besides, the HSNet

model has identity mapping and deep supervision, enabling it to have a good generalization

capacity for complex faces.

As shown in Fig. 4.4, the Inception module is used in dense blocks of the DenseNet.

Inception module contains three branches: 1× 1, 3× 3, and two 3× 3 convolutional kernels.

The 1 × 1 branch outputs k channels, where k refers to the growth rate. The other two

branches first output 4k channels by a bottleneck layer (i.e. 1× 1 kernel) to improve param-

eter efficiency. Then different convolutional kernels are applied in each branch to output k

channels, respectively. Next, a concatenation operation is conducted among three branches

to output 3k channels. Finally, a bottleneck layer is used to output k channels.
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The Inception module is also applied in transitional layers of DenseNets. As shown in

Fig. 4.5, the grid size reduction method in [49] is used. Let c represent the number of

input channels of the transitional layer. A bottleneck layer is first employed to output c/2

channels. After that, a max-pooling and two different convolutional operations with stride

2 are used in every branch to reduce the channel size. In the following, channels from three

branches are concatenated together to output 3c/2. Last, another bottleneck layer is applied

to reduce the number of channels from 3c/2 to c/2.

4.2.4 LANet Module

LANet

h×w×c/r

Conv-
1×1

h×w×c

Conv-
1×1

h×w×1
Figure 4.6: The LANet module, where h, w and c refer to height, width and number of

channels, respectively.

To characterize local regions automatically, the local aggregation network (LANet),

shown in Fig. 4.6, is proposed. It has two consecutive 1 × 1 convolutional layers to ag-

gregate spatial information across channels to one channel. The first convolutional layer

outputs c/r channels, where c and r refer to the number of input channels and reduction

ratio, respectively, followed by a ReLU function [25]. Then, another 1×1 convolutional layer

outputs 1 channel with a sigmoid function, namely spatial attention. Finally, every channel

is scaled by the spatial attention.

Since every unit in the spatial attention corresponds to a local patch of the input image,

more informative local regions are expected to have higher weights and less important ones

are pushed to have smaller values. Since the input and output channels have the same size,

the LANet can be easily plugged into any existing CNNs.

4.2.5 SENet Module

The SENet [107] module is used to select informative channels and suppress less discrimi-

native ones on demand. For example, when we want to verify a positive face pair with similar
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Figure 4.7: The SENet module, where h, w and c refer to height, width and number of

channels, respectively.
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Figure 4.8: The overall framework of the Local and multi-Scale Convolutional Neural Net-

works (LS-CNN) model.

eyes, SENet module assigns higher weights on channels which have effective eye information,

illustrated in Fig. 4.3.

It mainly consists of two operations, as shown in Fig. 4.7: squeeze and excitation. The

squeeze operation is used to squeeze global channel information into a one channel descriptor,

which is achieved by a global average pooling operation. Formally, the signal z of channel t

is generated by averaging across spatial locations w as following: zt =
1
w

∑w
i=1

∑h
j=1 ut(i, j),

where ut(i, j) is an element of channel t at position (i, j). The excitation operation is followed,

which aims at modelling the channel-wise dependencies flexibly. Two fully-connected (FC)

layers are employed: s = σ(w2g(w1z)), where σ refers to the sigmoid function and g is a

ReLU function, w1 ∈ R
c
r and w2 ∈ Rc× c

r with the number of channels c and reduction ratio

r. In order to avoid overfitting and aid generalization, w1 is a dimension-reduction layer

and w2 is a dimension-increasing layer. Finally, the scale operation is used to rescale every

channel by the transformation with learned activations, which is dynamically conditioned

on inputs. xi = sii, where si represents a scalar about the ith channel and ui ∈ Rw means

the ith channel.
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Table 4.1: The architecture of the Local and multi-Scale Convolutional Neural Networks

(LS-CNN) model, where k refers to the growth rate of Harmonious multi-Scale Networks

model. (N1, N2, N3) refers to the repeated times in the first, second and third dense blocks,

respectively. LS-CNN-D and LS-CNN-T refer to the architecture in Fig. 4.4 and Fig. 4.5,

respectively.

Layer Type Size, Stride, Pad Output Size

Convolution 3, 1, 1 128× 128× k

Convolution 3, 1, 1 128× 128× k

Max Pooling 3, 2, 0 63× 63× k

Convolution 3, 1, 1 63× 63× 2k

Convolution 3, 1, 1 63× 63× 2k

Max Pooling 3, 2, 0 31× 31× 2k

N1×LS-CNN-D - 31× 31× (2 +N1)k

LS-CNN-T - 15× 15× (2 +N1)× 0.5k

N2×LS-CNN-D - 15× 15× ((2 +N1)× 0.5 +N2)k

LS-CNN-T - 7× 7× ((2 +N1)× 0.5 +N2)× 0.5k

N3×LS-CNN-D - 7× 7× (((2 +N1)× 0.5 +N2)× 0.5 +N3)k

Average Pooling 7, 1, 0 1× 1× (((2 +N1)× 0.5 +N2)× 0.5 +N3)k

Fully Connected - 512

Softmax - # of subjects
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4.2.6 Local and Multi-Scale Convolutional Neural Networks

We use both channel and spatial attentions in the Harmonious multi-Scale Networks

(HSNet), as shown in Figs. 4.4 and 4.5. First, channel attention (i.e. SENet module) is

applied to learn what features to emphasize. More useful channels are assigned with higher

weights, and less important ones have smaller weights, as illustrated in Fig. 4.3. Second,

spatial attention (i.e. LANet module) is proposed to decide where to focus. Informative

regions are emphasized and less important ones are suppressed. As demonstrated in Figs. 4.9,

4.10 and 4.11, different weights are assigned to areas with different discriminative abilities.

The LANet and SENet modules are combined to form the Dual Face Attentions (DFA)

where the LANet module is used before the SENet module, refining local face details fist

before weighing the channel-wise representation. As a result, a new model is created for face

recognition, called Local and multi-Scale Convolutional Neural Networks (LS-CNN). It can

learn rich multi-scale and local representations by integrating DFA with HSNet models.

The overall framework of LS-CNN model is shown in Fig. 4.8. Its details are presented in

Table 4.1. We start testing the DFA-Inception modules at higher layers for better memory

efficiency, keeping lower layers in the traditional convolutional fashion. In earlier layers, two

3×3 convolutional layers are used, followed by a max-pooling layer as suggested by VGG [47].

This can reduce the number of parameters without loss of representational ability. We

repeat this procedure twice before the first dense block. After that, the proposed LS-CNN-D

module, as shown in Fig. 4.4, is repeated N1 times, which learns multi-scale representations,

characterize local patches and model channels-wise importance from multiple layers. The

LS-CNN-T module, shown in Fig. 4.5, is used to reduce the channel size and output more

robust features. Repeating LS-CNN-D and LS-CNN-T several times until a global average

pooling layer, which minimizes overfitting by reducing the number of parameters. There

is one fully connected (FC) layer with 512 units before the softmax layer. It is clear that

(N1, N2, N3) in Table 4.1 controls the depth of network. Softmax loss L is used to extract

discriminative features and minimize the classification error with the following formulation:

L = −
N∑
i=1

yilogpi, (4.1)
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where N is the number of subjects, yi represents whether the face belongs to subject i, and

pi means the probability of belonging to subject i.

4.3 Experiments

Experimental results of our proposed Local and multi-Scale Convolutional Neural Net-

works (LS-CNN) are presented. We first introduce preprocessing methods and then perform

ablation studies. Next, we compare the proposed Harmonious multi-Scale Network (HSNet)

with other popular networks. Then, we compare the Dual Face Attentions (DFA) with re-

cent attention mechanisms. Finally, the proposed model is compared with state-of-the-art

methods for face recognition.

4.3.1 Preprocessing

The face detection method is the MTCNN [4]. In the training process, face images are

resized to 144× 144 and then randomly cropped to 128× 128.

4.3.2 Implementation Details

The proposed Local and multi-Scale Convolutional Neural Networks (LS-CNN) model is

implemented in PyTorch [76]. In training on WebFace dataset, the learning rate begins at

0.1 and is divided by 10 every 10 epochs. The training process stops at the 25th epoch. In

training on VGGFace2 dataset, the learning rate begins at 0.1 and is divided by 10 every

4 epochs. The training process stops at the 10th epoch. The weight-decay and momentum

are 1e − 4 and 0.9, respectively. Two Harmonious multi-Scale Network (HSNet) backbone

networks are mainly used: HSNet-61 and HSNet-97 models. Their growth rates k and depths

(N1, N2, N3) in Table 4.1 are 48, (3, 3, 5) and 80, (6, 6, 8), respectively.

4.3.3 Ablation Study

In this subsection, we first show the importance of four contributing modules: Inception,

DenseNet, SENet, and LANet. Then we show the effect of different model widths and depths.
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Finally, we compare different ways to combine SENet and LANet modules.

Table 4.2: Trained on VGGFace2 dataset, performance comparison (%) of different module

combinations on LFW, CALFW, IJB-A quality and CFP datasets. The growth rate k is 48.

(N1, N2, N3) in Table 4.1 is (3,3,5).

Model LFW CALFW
IJB-A CFP

FAR=0.01 FAR=0.001 FF FP

Inception 94.7 70.5 46.6 16.7 90.5 86.3

DenseNet 98.1 86.1 70.2 46.1 96.9 92.0

HSNet 98.8 90.3 81.4 65.3 98.6 95.0

SENet-HSNet 99.1 89.9 84.3 68.8 98.8 95.9

LANet-HSNet 99.0 90.0 82.4 66.3 98.6 95.2
DFA-HSNet
(LS-CNN) 99.3 90.5 85.2 70.3 99.0 96.0

Importance of four Contributing Modules

In order to obtain a deep insight into our proposed Local and multi-Scale Convolu-

tional Neural Networks (LS-CNN) model, four contributing modules are analyzed: Incep-

tion, DenseNet, SENet, and LANet. We compare different module combinations and show

results in Table 4.2. To compare fairly, these models have the same number of layers and

channels.

The performance of the Inception model lags behind the DenseNet significantly. For

example, the DenseNet obviously boosts the performance on the relatively easy LFW task

(about 3.4%). This is because, although the Inception model concatenates channels gener-

ated by multi-scale kernels, it has few layers and channels to have a strong representational

capacity. In contrast, dense connections in the DenseNet encourage multi-scale feature prop-

agation and reuses, thus resulting in a better performance.

When the Inception module is incorporated into DenseNet module, namely Harmonious

multi-Scale Network (HSNet), it outperforms the individual Inception and DenseNet by a

large margin. This proves the necessity of incorporating the Inception with DenseNet. On

one hand, the Inception module learns features with parallel kernels with different sizes
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in a single layer. On the other hand, dense connections enable the DenseNet module to

combine features from multiple layers. Therefore, two complementary multi-scale learning

modules explains why the HSNet model has a better representation ability compared with

the individual Inception or DenseNet model.

The SENet further improves performance by weighing the importance of different chan-

nels. It is plugged into dense blocks (Fig. 4.4) and transitional layers (Fig. 4.5) before

the multi-branch operation in Inception module. Important channels are emphasized and

less informative ones are suppressed, as shown in Fig. 4.3. This is the reason why the

SENet-HSNet performs slightly better than the HSNet, as indicated in Table 4.2.

A global feature vector tends to pay attention to overall appearances rather than local

discriminative regions, which may ignore discriminative local facial details. The LANet

module is introduced to characterize local patches automatically. To show the effectiveness

of the LANet module, it is first integrated into the HSNet model, i.e. LANet-HSNet. In

most cases, the LANet-HSNet has a better performance than the HSNet model.

Since channel attention (i.e. SENet) applies globally and spatial attention (i.e. LANet)

module works locally on channels, it is intuitive to combine them together, taking advantage

of each other. We apply LANet module first, followed by SENet module as shown in Figs.

4.4 and 4.5. As indicated in Table 4.2, the LS-CNN outperforms the LANet-HSNet and

SENet-HSNet, verifying the complementarity of SENet and LANet modules.

Sensitivity to Model Capacity

There are generally two ways to increase model capacity: width and depth.

As for the width, we change the growth rate k in DenseNets module in Table 4.1 to have

different widths. The growth rate k means the number of channels that each layer outputs in

dense blocks. Since each previous layer is concatenated together in a dense block, we can see

the growth rate k controls the width of the network. The effect of k is investigated in Table

4.3. The table indicates that the performance tends to be better under four test datasets as

the k increases.

We have models with different depths by changing (N1, N2, N3) in Table 4.1. (N1, N2, N3)

means how many times the LS-CNN-D in Fig. 4.4 repeats in Table 4.1. Experimental results
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Table 4.3: Trained on WebFace dataset, performance comparison (%) of the HSNet

model with different growth rates k on LFW, CALFW, IJB-A quality, and CFP datasets.

(N1, N2, N3) in Table 4.1 is (3,3,5).

Model LFW CALFW
IJB-A CFP

FAR=0.01 FAR=0.001 FF FP

32 97.5 82.5 63.6 40.0 97.4 92.7

48 98.1 84.8 67.0 44.8 98.0 93.0

64 98.0 84.1 67.9 46.0 98.0 93.6

80 98.1 85.3 69.2 47.9 98.3 93.6

96 98.2 86.0 70.3 48.0 98.3 94.0

112 98.4 86.4 71.0 50.5 98.6 94.3

Table 4.4: Trained on WebFace dataset, performance comparison (%) of the HSNet model

with different depths on LFW, CALFW, IJB-A quality and CFP datasets. The growth rate

k in HSNet model is 48. (N1, N2, N3) refers to the configuration in Table 4.1.

Depth (N1, N2, N3) LFW CALFW
IJB-A CFP

FAR=0.01 FAR=0.001 FF FP

33 (1,1,2) 97.0 81.8 59.3 35.0 96.7 90.9

61 (3,3,5) 98.1 84.8 67.0 44.8 98.0 93.0

97 (6,6,8) 98.3 86.0 70.3 49.1 98.3 93.5

177 (12,12,16) 98.4 86.8 73.0 52.3 98.6 94.7

are shown in Table 4.4. The table shows that performance benefits from deeper models.

These experiments indicate that our model can utilize the increased model capacity of

wider and deeper models. On one hand, deeper CNNs can extract richer and more descriptive

features for complex face distributions. Meanwhile, wider CNNs are able to capture more

local features [111], characterizing fine-grained face details. On the other hand, they do not

suffer from overfitting or optimization problems. The explanation for this observation is that

implicit supervision signals with shorter connections to loss functions can benefit individual

layers, guiding early and intermediate layers to learn more discriminative features.
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Table 4.5: Trained on VGGFace2 dataset, performance comparison (%) of different ways to

combine SENet and LANet modules on LFW, CALFW, IJB-A quality and CFP datasets.

The HSNet-61 model is used as the backbone network.

Model LFW CALFW
IJB-A CFP

FAR=0.01 FAR=0.001 FF FP
SENet

(Before Inception) 99.1 89.9 84.3 68.8 98.8 95.9
LANet

(Before Inception) 99.0 90.0 82.4 66.3 98.6 95.2
SENet+LANet

(Before Inception) 99.3 90.7 85.1 70.1 98.8 96.0
SENet&LANet

(Before Inception) 99.3 90.4 84.4 69.1 99.0 96.0
LANet+SENet
(After Inception) 99.1 90.4 85.1 69.9 98.9 95.4
LANet+SENet

(Before Inception) 99.3 90.5 85.2 70.3 99.0 96.0

Different Ways to Form Dual Face Attentions (DFA)

We study different ways to combine LANet and SENet modules into DFA, which could

differ in two aspects: 1) order; 2) location. For the first aspect, there are three options:

first LANet then SENet (‘LANet+SENet’), first SENet then LANet (‘SENet+LANet’) and

parallel use of SENet and LANet (‘SENet&LANet’). As for the second aspect, we compare

two locations of applying LANet and SENet modules: ‘Before Inception’ (used in Figs.

4.4 and 4.5) and ‘After Inception’. ‘After Inception’ refers to applying SENet and LANet

modules after the Inception module in Figs. 4.4 and 4.5.

Table 4.5 summarizes the experimental results. The SENet learns what features to

emphasize, and LANet focuses on which facial parts to focus, which complement each

other. This explains why all ways to combine SENet and LANet modules achieve better

performances than using LANet or SENet independently. Besides, we observe that the

‘LANet+SENet’ performs slightly better than ‘SENet+LANet’ and ‘SENet&LANet’. We

attribute this observation to the reason that more benefits are learned by refining local fa-

cial representations before learning global channel-wise inter-dependencies. We find the best

location to apply LANet and SENet modules is ‘Before Inception’, where rich hierarchical
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Table 4.6: Parameter settings of different models. The iter means the global step during

training. The momentum is 0.9. The m refers to million. The iterations per epoch (ipe) =

# of images / (batch size). The (k, (N1, N2, N3)) in the HSNet-61 and HSNet-97 models

are (48, (3, 3, 5)) and (80, (6, 6, 8)), respectively, where (N1, N2, N3) is from Table 4.1, and

k means the growth rate.

Model Batch size Input size Learning rate Epochs
Weight
decay

AlexNet-v2 256 224 0.01*0.1(floor(iter/(21∗ipe))) 96 5e-4

DenseNet-121 40 224 0.1*0.1(floor(iter/(10∗ipe))) 30 1e-4

DPN-92 48 224 0.1*0.1(floor(iter/(30∗ipe))) 90 1e-4

Inception-v3 25 299 0.045*0.94(floor(iter/(2∗ipe))) 100 4e-4

ResNet-50 50 224 0.1*0.1(floor(iter/(28∗ipe))) 128 1e-4

ResNet-101 50 224 0.1*0.1(floor(iter/(28∗ipe))) 128 1e-4

VGG-16 128 224 0.1*0.1(floor(iter/(17∗ipe))) 74 5e-4

HSNet-61 128 128 0.1*0.1(floor(iter/(10∗ipe))) 25 1e-4

HSNet-97 128 128 0.1*0.1(floor(iter/(10∗ipe))) 25 1e-4

channel information in DenseNets needs to be recalibrated. In contrast, less channel in-

formation needs to be weighed in ‘After Inception’. More specifically, channels with size

h × w × (m × k) in ‘Before Inception’ are weighed, compared with h × w × 3k channels in

‘After Inception’ in LS-CNN-D, as shown in Fig. 4.4; channels with size h×w× c in ‘Before

Inception’ are readjusted, compared with h/2× w/2× 3c/2 channels in ‘After Inception’ in

LS-CNN-T, as shown in Fig. 4.5.

Comparison with Different Backbone Networks

In this work, we study the integration of the DenseNet [51] and the recent Inception

module [49] into the Harmonious multi-Scale Network (HSNet). Several popular CNNs are

compared, including AlexNet-v2 [46], VGG-16 [47], Inception-v3 [49], ResNet-50, ResNet-

101 [50], DenseNet-121 [51] and DPN-92 [112]. Detailed hyper-parameter settings and exper-

imental results are shown in Tables 4.6 and 4.7. The growth rates k and depths (N1, N2, N3)

in Table 4.1 of the HSNet-61 and HSNet-97 models are 48, (3, 3, 5) and 80, (6, 6, 8), respec-
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Table 4.7: Performance comparison (%) of different models. Trained on WebFace dataset

and tested on LFW, CALFW, IJB-A quality and CFP datasets. The LS-CNN model uses

HSNet-97 model as the backbone.

Model LFW CALFW
IJB-A CFP

Params
Speed
(ms)FAR=

0.01
FAR=
0.001 FF FP

AlexNet-v2 97.6 69.6 29.1 11.9 90.4 80.8 100.4m 46

DenseNet-121 97.8 80.4 58.8 33.1 97.6 93.5 17.8m 196

DPN-92 97.5 75.0 60.2 35.3 97.8 93.4 63.4m 467

Inception-v3 97.9 81.8 51.3 28.2 98.1 94.4 43.5m 309

ResNet-50 98.2 76.8 62.3 38.9 98.1 94.0 45.2m 178

ResNet-101 98.3 78.4 65.8 42.0 98.6 94.4 64.2m 276

VGG-16 97.6 79.2 47.3 23.7 96.5 89.8 177.6m 261

HSNet-61 98.3 86.0 70.3 49.1 98.3 93.5 18.5m 234

HSNet-97 98.5 87.3 72.9 52.1 98.6 94.7 41.2m 441

LS-CNN - - - - - - - 643

tively.

The HSNet-61 model has the second fewest parameters. However, it achieves the highest

accuracy on LFW, CALFW and IJB-A quality datasets except CFP dataset. More specifi-

cally, both HSNet-61 and ResNet-101 models achieve the second best accuracy (98.3%) on

LFW dataset, lagging behind the HSNet-97 model, while the ResNet-101 model has almost

3.5× parameters. This indicates that HSNet model has better parameter efficiency. There are

several factors which can explain this observation: the bottleneck layer used in the DenseNet

module; factorizing larger convolutions (5 × 5 convolutions) into smaller convolutions (two

3 × 3 convolutions) without loss of expressiveness adopted in the recent Inception module;

dimension reduction (i.e. the bottleneck layer) used in the Inception module. Besides, the

HSNet model obviously boosts the accuracy on CALFW dataset (5.5%) and IJB-A quality

dataset (4.5%, 7.1% when FAR=0.01, 0.001) than ResNet-101 model. IJB-A quality dataset

contains faces influenced by many challenging factors, like poses, expressions, resolution and

occlusions. In such cases, discriminative facial information may exist at various scales, mak-
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ing it necessary to learn multi-scale features. Further, although HSNet-61 only has 61 layers,

dense connections in HSNet model incorporate multi-scale representations with local details

which may appear at various scales.

However, HSNet-61 model has a slightly worse performance (98.3%) than ResNet-101

model (98.6%) under the CFP-FF test scenario and performs worse than Inception-v3,

ResNet-50 and ResNet-101 models under the CFP-FP test scenario. One possible expla-

nation is that the growth rate k and depth (N1, N2, N3) is too small, which is insufficient to

obtain comprehensive fine-grained features to describe profile faces. Therefore, the growth

rate k and depth (N1, N2, N3) are increased from 48 to 80 and from (3, 3, 5) to (6, 6, 8),

respectively, namely HSNet-91. It has the third fewest parameters, followed by the DenseNet-

121 and HSNet-61 models. HSNet-91 model improves the accuracy on all datasets, which

shows its powerful generalization ability.

We explain why HSNet models achieve better performances than other models. First,

AlexNet and VGG models only have a small range of receptive fields, which is insufficient to

capture local face patches with various sizes. Second, ResNet and DenseNet models concate-

nate features from different layers similarly by the short connection and dense connections,

respectively. DPN model combines ResNet and DenseNets, sharing a similar way to extract

multi-scale features. Third, Inception model learns multi-scale features in a single layer

using parallel kernels of different sizes. However, our HSNet model extracts multi-scale fea-

tures from two harmonious perspectives: parallel multi-scale kernels in a single layer (e.g.

Inception-v3); multi-scale feature maps from different layers (e.g. ResNet, DenseNet, DPN).

We also measure the speed of the HSNet model. The system configuration is Ubuntu

16.04.3 LTS. Other hardware information includes: Intel(R) Core(TM) i7-6850K CPU @

3.60GHz, 32GB RAM, 512GB SSD, and Titan X (Pascal). The PyTorch version is 0.3.1. We

average the running time of 2,000 iterations with a batch-size 32. In the HSNet model, due

to dense connections in DenseNets and multiple branches in Inception, HSNet-61 ranks the

fourth and HSNet-91 has the penultimate running time among different backbone networks.

We also show that the LS-CNN model which uses HSNet-97 as the backbone has a higher

running time.

To sum up, the HSNet model has a good representation capacity to perform well under
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Table 4.8: Trained on VGGFace2 dataset, performance comparison (%) of different attention

modules on LFW, CALFW, IJB-A quality, and CFP datasets. The HSNet-61 model is used

as the backbone network.

Model LFW CALFW
IJB-A CFP

FAR=0.01 FAR=0.001 FF FP

SENet [107] 99.1 89.9 84.3 68.8 98.8 95.9

CBAM [108] 99.0 88.5 81.4 62.8 98.5 94.9

DFA (Max&avg pool) 98.8 86.4 79.9 59.6 98.0 94.0

BAM [109] 99.1 90.3 83.9 67.9 98.9 95.8

DFA (Dilated conv) 99.3 90.2 85.0 70.3 98.8 95.9

DFA 99.3 90.5 85.2 70.3 99.0 96.0

complex data distributions and utilizes parameters effectively to be less prone to overfitting.

However, because of complex operations, its running speed is slightly slower. Thus, the

HSNet and LS-CNN models are suitable for some tasks where accuracy is more important

than speed, like the highly confidential access control and anti-terrorism video surveillance.

Comparison with Different Attention Modules

We compare our proposed Dual Face Attentions (DFA) with several recent attention

modules, i.e. SENet [107], CBAM [108] and BAM [109], which are proposed for general

classification tasks. We integrate these attention modules into the same HSNet model and

report experimental results in Table 4.8.

The SENet only uses channel attention, while ignores spatial attention. Therefore, local

facial details may be failed to be captured. In contrast, our DFA module aims at learning

channel and spatial attentions simultaneously, demonstrating a better performance.

The CBAM has both channel and spatial attentions to learn what and where to emphasize

or suppress in channels, in which max- and average-pooling are used. As demonstrated in

Table 4.8, our proposed DFA module outperforms the CBAM. To explain this result, we

replace the average pooling with the max & average pooling used in the CBAM and remain

the same for other parts in the DFA, i.e. DFA (Max&avg pool). However, its performance

is worse than the DFA, demonstrating that the max-pooling is not appropriate. The max-
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pooling encodes the most salient parts, which may be influenced by the background noise,

such as the background person in Fig. 4.3 Row 1 Column 1.

The BAM also uses channel and spatial attentions. The dilated convolution [113] is em-

ployed in spatial attention to enlarge the receptive field. We remain unchanged in the SENet

and use the dilated convolution in the LANet, namely the DFA (dilated conv). One expla-

nation for its slightly worse performance is that as the network goes deeper, the receptive

field size is enlarged exponentially by the dilated convolution, corresponding to more coarse

face information. This inevitably leads to loss of local details and be more sensitive to pose

and age variations.

4.3.4 Experiments on Cross-Pose Face Matching

Table 4.9: Trained on VGGFace2 dataset, performance comparison (%) of the LS-CNN

model with state-of-the-art methods on CFP dataset. The HSNet-97 model is used as the

backbone network.

Methods
CFP
(FP)

Deep features [59] 84.91

TDE [114] 89.17

FV-DCNN [115] 91.97

PIM [116] 93.10

DR-GAN [117] 93.41

DR-GANAM [118] 93.89

DA-GAN [119] 95.96

p-CNN [120] 94.39

NoiseFace [121] 96.40

ArcFace [122] 97.15

Human 94.57

LS-CNN 97.17

We compare the performance of the Local and multi-Scale Convolutional Neural Networks

(LS-CNN) model with the state-of-the-art on CFP dataset in Table 4.9. Fig. 4.9 shows class
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Figure 4.9: Class activation maps (CAMs) [3] with/without LANet module on three positive

pairs from CFP dataset. Column 1 & 4: frontal and profile faces of the same subject with

various challenging factors (e.g. pose, makeup and expression). Column 2 & 5: CAMs

generated by SENet-HSNet model. Column 3 & 6: CAMs generated by Local and multi-

Scale Convolutional Neural Networks (LS-CNN) model. Note that the fully connected layer

before the final layer is removed in both models.

activation maps (CAMs) [3] with/without LANet module on three positive pairs from CFP

dataset.

Global learning methods (Deep features [59], TDE [114] and FV-DCNN [115]) accept

whole channels as the input without filtering out the background information of profile

faces and emphasizing important regions. More specifically, deep features [59] extract CNN

features directly, which has 84.91% accuracy. TDE [114] learns low-dimensional embeddings

using triplet probability constraints, which improves to 89.17%. FV-DCNN [115] combines

Fisher vector and CNN for unconstrained face verification, achieving 91.97%.

There are several methods that extract pose-invariant representations and perform face

frontalization simultaneously. PIM [116] trains a frontalization network that perceives global

structures and local details and a discriminative network that learns discriminative repre-

sentations jointly, achieving 93.10% accuracy. DR-GAN [117] proposes an encoder-decoder

structure for the generator and disentangles face representation from pose variations, which

improves the performance to 93.41%. DR-GANAM [118] extends DR-GAN [117] to improve

the model generalization during training, reaching 93.89%. DA-GAN [119] combines a prior

data distribution and domain knowledge to synthesize photorealistic and identity-preserving

profile faces. The accuracy is 95.96%. p-CNN [120] introduces the stochastic routing scheme
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to different paths for faces with various poses, which obtains 94.39%. NoiseFace [121] weighs

training samples using angular margin based loss to train CNNs on large-scale noisy data. Its

accuracy is 96.40%. ArcFace [122] model maximizes the decision boundary in angular space

based on normalized weights and features, achieving 97.15% when trained on VGGFace2

dataset.

Is is noticed that due to self-occlusion in profile faces, discriminative local face parts

have smaller sizes than those in frontal faces. The powerful HSNet backbone network can

capture rich multi-scale information. However, local face regions in lower channels may

fail to propagate as the network goes deeper. To alleviate this problem, SENet-HSNet

model emphasizes important channels in lower layers by using SENets, as illustrated in

Fig. 4.9, Columns 2, 5. Further, the LANet module is introduced to alleviate the effect of

background inconsistency, especially for profile faces. As shown in Fig. 4.9, compared to

the SENet-HSNet model, class activation maps (CAMs) generated by the LS-CNN model

tend to locate more discriminative parts in frontal faces (Column 3 to 2) and suppress less

informative regions in profile faces (Column 6 to 5). Finally, compared to the state-of-the-art

which either requires complex data augmentation (DR-GAN, DR-GANAM, PIM, DA-GAN)

or multi-task training (p-CNN) or a noise-tolerate paradigm (NoiseFace) or a more advanced

loss function (ArcFace), our approach is simple and effective.

4.3.5 Experiments on Cross-Age Face Matching

It is well known that age-invariant face recognition (AIFR) is very meaningful for various

applications, such as looking for missing children after years. However, large age variations

make the AIFR problem challenging. We compare the performance of the proposed Local

and multi-Scale Convolutional Neural Networks (LS-CNN) model with the state-of-the-art

on CACD-VS and CALFW datasets in Table 4.10.

There are several approaches that propose advanced loss functions. VGGFace [27] learns

a face embedding using a triplet loss. Center loss [29] learns a center for deep features of each

subject to increase the intra-subject compactness. Marginal loss [123] minimizes the intra-

class distances and maximizes the inter-class variances based on marginal samples. Noisy
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Table 4.10: Trained on VGGFace2 dataset, performance comparison (%) of the LS-CNN

model with state-of-the-art methods on CALFW and CACD-VS datasets. The HSNet-97

model is used as the backbone network.

Methods CACD-VS CALFW

VGGFace [27] 96.00 86.50

Center loss [29] 97.48 -

Marginal loss [123] 98.95 -

Noisy Softmax [124] - 82.52

CCL [125] 99.23 91.15

DeepVisage [105] 99.13 -

LF-CNN [126] 98.50 -

AFJT-CNN [127] 99.00 85.20

OE-CNN [128] 99.20 -

DAL [129] 99.40 -

Human, Average [130] 85.70 -

Human, Voting [130] 94.20 -

LS-CNN 99.50 92.00

Softmax [124] injects annealed noise in softmax to mitigate the early saturation behavior

of the softmax. CCL [125] encourages face samples to distribute dispersedly across the

coordinate space and pushes classification vectors to lie on a hypersphere. DeepVisage [105]

introduces a feature normalization before the softmax loss, ensuring that features have an

equal distribution.

There are several approaches proposed to solve the AIFR problem. More specifically, LF-

CNN [126] couples learning of the CNN and latent identity analysis parameters to extract

age-invariant features. AFJT-CNN [127] trains the identity discrimination model and the

age discrimination model jointly by sharing the same feature layers to extract cross-age iden-

tity features. OE-CNN [128] decomposes face features into age-related and identity-related

components using A-Softmax loss [36]. DAL [129] introduces a linear feature factorization

based algorithm to regularize decomposed feature learning.
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Figure 4.10: Class activation maps (CAMs) [3] with/without LANet module on three positive

pairs from CALFW dataset. Column 1 & 4: Input faces of the same subject with various

challenging factors (e.g. pose, occlusion, aging and expression). Column 2 & 5: CAMs

generated by SENet-HSNet model. Column 3 & 6: CAMs generated by Local and multi-

Scale Convolutional Neural Networks (LS-CNN) model. Note that the fully connected layer

before the final layer is removed in both models.

We can see that our LS-CNN model achieves better performances than the state-of-

the-art on CACD-VS and CALFW datasets. Besides, the LS-CNN model surpasses human

performance on CACD-VS dataset significantly. Unlike some models (LF-CNN, AFJT-CNN,

OE-CNN, and DAL), LS-CNN model is not specifically designed for the AIFR problem,

demonstrating its good generalization ability. In addition, the LS-CNN model only uses

the softmax loss without feature normalization. Therefore, performance improvement is

expected by adopting more advanced loss functions or feature normalization.

It is observed that humans tend to pay more attention to more salient parts instead of

the whole scene when localizing objects [131]. Intuitively, this is applicable to the AIFR

problem, because some local regions remain the same, despite aging affect the global face

appearances. As demonstrated in Fig. 4.10, although the age gap is large among these

face pairs, some facial regions still look similar, such as pointy noses (Row 1, Columns 1, 4),

intraocular regions (Row 2, Columns 1, 4) and mouths (Row 3, Columns 1, 4). We show class

activation maps (CAMs) [3] generated by SENet-HSNet and LS-CNN models in Fig. 4.10.

We can observe that LS-CNN model tends to emphasize more discriminative face regions

than SENet-HSNet model. Like the SENet-HSNet model, these methods under comparisons

are likely to model less informative facial patches, which inevitably leads to a sub-optimal
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Table 4.11: Trained on VGGFace2 dataset, performance comparison (%) of the LS-CNN

model with state-of-the-art methods on IJB-A quality and FaceScrub quality datasets. The

HSNet-97 model is used as the backbone network.

Methods
IJB-A FaceScrub

FAR=0.01 FAR=0.001 FAR=0.01 FAR=0.001

VGGFace [27] 60.5 36.7 59.5 38.9

LightCNN [35] 56.6 40.2 50.3 33.0

Center loss [29] 52.1 31.3 49.3 34.1

SphereFace [36] 54.8 39.6 45.8 34.3

LS-CNN 87.5 75.5 80.5 70.4

performance.

4.3.6 Experiments on Cross-Quality Face Matching

In unconstrained scenarios like video surveillance and access control, face matching may

be conducted between low-quality faces captured in real-world environments and high-quality

mugshots. We show three positive pairs in IJB-A quality dataset in Fig. 4.11 with various

challenging factors (e.g. pose, blur, resolution and expression).

We compare the performance of the Local and multi-Scale Convolutional Neural Networks

(LS-CNN) model with several methods on IJB-A quality and FaceScrub quality datasets in

Table 4.11. Results of VGGFace [27], LightCNN [35] and Center loss [29] models are from

[65]. We use the publicly available SphereFace [36] model to conduct the same experiments.

As shown in Table 4.11, we obtain significantly better accuracies on both the IJB-A

and FaceScrub datasets at different false accept rate (FAR) measures. The performance is

greatly improved, improving 21% at least and 35.3% accuracy at most. This proves the

benefits of learning multi-scale representations by two complementary ways to characterize

a complex data distribution under different image qualities. Besides, the SENet module

enhances useful channels and suppresses noisy channels. Furthermore, the LANet module is

especially useful to characterize faces of different qualities. We visualize the class activation

maps (CAMs) [3] generated by SENet-HSNet and LS-CNN models in Fig. 4.11. Note that
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Figure 4.11: Class activation maps (CAMs) [3] with/without LANet module on three posi-

tive pairs from IJB-A quality dataset. Column 1 & 4: high- and low-quality faces of the same

subject with various challenging factors (e.g. pose, illumination, blur, resolution and expres-

sion). Column 2 & 5: CAMs generated by SENet-HSNet model. Column 3 & 6: CAMs

generated by Local and multi-Scale Convolutional Neural Networks (LS-CNN) model. Note

that the fully connected layer before the final layer is removed in both models.

CAMs of LS-CNN model emphasize representational patches (Column 3 to 2) and suppress

less informative parts (Column 6 to 5) than SENet-HSNet model. The compared methods

in the Table are similar to SENet-HSNet model without characterizing discriminative facial

regions and filtering out less informative parts.

4.3.7 Experiments on the LFW Dataset

To show the generalization ability, we compare with other approaches on the LFW

dataset. Table 4.12 demonstrates the experimental results.

Compared with LF-CNN [126], OE-CNN [128] and DAL [129] models which are proposed

to learn age-invariant deep face representations, the proposed LS-CNN model achieves a

better performance.

The p-CNN [120] model is proposed for face images with different poses. However,

almost all faces in the LFW dataset are frontal or close to frontal views. This explains why

its performance is worse than our proposed LS-CNN model.

The Marginal loss [123], VGGFace [27], Center loss [29], LightCNN [35], Feature trans-

fer [132], SphereFace [36], Noisy Softmax [124], CCL [125], DeepVisage [105], CosFace [30]

and ArcFace [122] models are generic models which aim at the generic unconstrained face
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Table 4.12: Trained on VGGFace2 dataset, performance comparison (%) of the LS-CNN

model with several state-of-the-art methods on LFW dataset. The HSNet-97 model is used

as the backbone network.

Methods LFW

LF-CNN [126] 99.10

OE-CNN [128] 99.47

DAL [129] 99.47

p-CNN [120] 98.27

Marginal loss [123] 98.95

VGGFace [27] 99.13

Center loss [29] 99.28

LightCNN [35] 99.33

Feature transfer [132] 99.37

SphereFace [36] 99.42

Noisy Softmax [124] 99.48

CCL [125] 99.58

DeepVisage [105] 99.62

CosFace [30] 99.73

ArcFace [122] 99.78

LS-CNN 99.52

recognition problem. As we can observe, our proposed LS-CNN model has a better perfor-

mance than these models except the CCL, DeepVisage, CosFace and ArcFace models, demon-

strating its excellent generalization ability. The performance of ArcFace model (99.78%) is

based on the VGGFace2 dataset. Since our LS-CNN model is trained only using the softmax

loss, we expect that the performance can be improved by using some advanced loss functions

in CCL, CosFace and ArcFace models.
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4.4 Summary

We have developed a new network structure for face recognition, based on the integration

of rich multi-scale feature learning, correlating and weighing different channels, and auto-

matic characterizing local face regions. The proposed model, called Local and multi-Scale

Convolutional Neural Networks, or simply LS-CNN, has the capability of characterizing com-

plex face images to reduce intra-class variations. It generalizes well across multiple datasets.

Experimental results on several databases have shown that the LS-CNN model can achieve a

better performance than the state-of-the-art methods for cross-quality, cross-age and cross-

pose face matching and obtain a competitive performance on LFW dataset. In future,

several more advanced loss functions will be validated to further improve the recognition

performance.
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Chapter 5

Hierarchical Pyramid Diverse

Attention Networks for Face

Recognition

5.1 Introduction

CNN representations achieve the state-of-the-art in face recognition (FR). However, most

existing models learn global representations where whole faces are regarded as CNN inputs

[27,29,31,36]. Few works take hierarchical multi-scale local representations into account.

It is observed that global face geometry and appearances may change dramatically under

pose, age, or large quality variations. In contrast, some facial parts remain similar in these

cases, which would play important roles in FR. For instance, as shown in Fig. 5.1, it is

difficult to consider the global face representation to match the frontal face (Row 1) with the

profile (Row 2) which is influenced by blur, pose and background distraction. However, we

notice that similar eyes in these two faces can contribute to verification. Similar observations

about pointy noses (Rows 3, 4) and big lips (Rows 5, 6) can be made. Thus, representing

similar facial parts become especially important. Previous works mainly depend on face

landmarks to incorporate local information [2, 38, 39, 41, 42, 55, 133]. However, landmark

detection may be inaccurate or even fail due to occlusions, large head poses, extreme illu-

minations, or dramatic expression changes. As shown in Fig. 6.4, Row 1, MTCNN [4] fails
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to detect landmarks for faces which are influenced by occlusions (Columns 1, 2), expressions

(Columns 3, 4), illumination (Columns 5, 6), and poses (Columns 7, 8).

Figure 5.1: Illustration on the effects of local CNNs, the diverse learning and

global CNN. Local CNNs learn diverse local representations using multiple local branches

at various scales from different hierarchical layers. For good illustration, only one scale and

the last convolutional layer are used. The number of local branches is 3. The diverse learning

guides multiple local branches to locate diverse local patches. Global CNN extracts holistic

representations. Column 1: faces with varying challenging factors (e.g. resolution, pose,

occlusion, aging and expression). Column 2: a model which has a single local branch.

Columns 3, 4 and 5: 1st, 2nd and 3rd local branch of local CNNs, which are guided by

the diverse learning. Column 6: local CNNs. Column 7: global CNN. Column 8: fused

global and local CNNs.

Without relying on face landmarks, discriminative local patches are located automati-

cally in [2, 5]. As shown in Fig. 5.1, compared to the model without an attention module

(Column 7), important facial parts are enhanced and some useless ones are suppressed when

the attention is applied (Column 2). However, it is observed that only specific facial re-

gions are located, while neglecting some potential discriminative regions. For instance, the
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Figure 5.2: Qualitative comparison between prior local methods and the proposed

HPDA model. Landmark-based methods suffer from landmark detection failure (Row 1)

and attention-based methods locate uninformative or even noisy regions (Row 2). The

proposed HPDA can emphasize discriminative information and inhibit less important (Row

3).

attention map has strong responses around eyes (Column 2), but ignores some discrimina-

tive regions, such as similar big lips (Column 2, Rows 5, 6). From the above analysis, we

expect that emphasized facial parts should be well distributed over face images to extract

more useful features. To achieve this goal, a diverse learning is developed to guide multiple

attention modules to accurately locate diverse discriminative facial parts as well as reduce

the background distraction.

Learning multi-scale representations is beneficial to various tasks [48, 96, 134, 135]. As

for FR, local patches may have various sizes or shapes under pose or expression changes,

making it necessary to learn multi-scale features. Take faces in Fig. 6.4 as examples, eyes

with different expressions in Columns 3, 4 and 5 appear at varying sizes and shapes; due

to pose variations, mouths have different sizes in Columns 6, 7 and 8. [55] fuses multi-scale

features from the last two layers. [5] extracts rich multi-scale features from two harmonious

perspectives: different convolutional sizes in a single layer and hierarchical concatenation of

feature maps from varying layers. However, both approaches ignore the fact that features

in a layer may cover a large range of scales. This is especially important for layers which

concatenate feature maps from prior layers and generate feature maps by multi-scale con-

volution kernels. To address this challenge, we propose a pyramid attention which scales

feature maps within a layer under different scales, exploring multi-grained information.
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Figure 5.3: Framework of the proposed hierarchical pyramid diverse attention

(HPDA) model. GAP and FC layers mean global average pooling and fully connected

layers. Local CNNs learn rich local representations which mainly consist of a pyramid diverse

attention (PDA) and a hierarchical bilinear pooling (HBP). The PDA aims at learning

multi-scale diverse local features. The HBP fuses complementary local information from

hierarchical layers.

Most previous works only use the last convolutional layer, lacking of low-level informa-

tion. This is because units in high layers have large receptive fields, and hence respond

around large-scale facial parts and represent high-level semantic information, but inevitably

lack of locally detailed information or small-scale face parts in low layers. [5] can allevi-

ate the above problem by combining hierarchical information from different layers within a

block. [133] incorporates low-level features with high-level features to capture discriminative

representations. Both methods combine hierarchical information simply by concatenation,

which leads to sub-optimal cross-layer information fusion.

In this work, we propose a hierarchical pyramid diverse attention (HPDA) network which

can describe diverse local patches at various scales adaptively and automatically from varying

hierarchical layers. Fig. 5.3 illustrates the framework. First, we propose a pyramid diverse

attention, as shown in Fig. 5.4. Specifically, feature maps are pooled to various scales, al-

lowing for exploiting features at different scales. Meanwhile, since attention modules tend to

have redundant responses around some similar face regions, a diverse learning is proposed to

guide multiple local branches in each scale to focus on diverse facial regions automatically,

instead of relying on face landmarks. As shown in Fig. 5.1, the diverse learning leads to

localization of different discriminative local patches in Columns 3, 4 and 5. Second, a hier-

archical bilinear pooling is proposed to combine complementary information from different



Qiangchang Wang Chapter 5. HPDA 83

LANet

LANet

LANet

Diverse learning

Pool

U
psam

ple

✖

LANet

LANet

LANet

Diverse learning
... ... ...

Figure 5.4: Framework of the proposed pyramid diverse attention (PDA). We set

the number of local branches to 3 as an example. It consists of a pyramid attention and a

diverse learning. The former allows the network to weigh face parts at various scales auto-

matically. The latter guides multiple local branches to extract diverse local representations.
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Figure 5.5: Framework of the LANet, where h, w and c represent height, width and

number of feature maps, respectively. r is the reduction ratio.

hierarchical layers. Exactly, it uses different cross-layer bilinear modules to integrate both

the high-level abstraction and the low-level detained information. The major contributions

of our work are three-fold:

1. The proposed pyramid diverse attention introduces multiple attention-based local

branches at different scales to emphasize different discriminative facial regions at various

scales automatically, avoiding the need of face landmark detection. To our knowledge, this

is the first attempt of automatic locating multiple complementary facial regions in general

face recognition.

2. Instead of simple concatenation or addition, a hierarchical bilinear pooling is presented

to combine features from different hierarchical layers, covering both local details or small-
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scale face regions in low layers to high-level abstraction and large-scale parts in high layers.

3. The proposed model achieves the state-of-the-art performance on several challenging

face recognition tasks.

5.2 Proposed Method

5.2.1 Overall Framework

As shown in Fig. 5.3, our framework consists of four parts: stem CNN, local CNNs,

global CNN and classification.

Due to its good performance, HSNet-61 model [5] is used. SENet [107] can enhance

important feature maps and inhibit less informative. Since layers in HSNet model contain

feature maps captured at various sizes, we fuse SENet with HSNet model to improve the

model capacity, namely SENet-HSNet. There are three blocks. The first two blocks are

used as the stem CNN, as illustrated in Fig. 5.3. In the third block, every two layers

of five layers are used as inputs of local CNNs which are designed to extract hierarchical

multi-scale diverse local features. More details are discussed in Sec. 5.2.2. SENet-HSNet

model is the default model if not specified. We also consider LS-CNN model [5] as the stem

CNN due to its powerful generalization ability. In theory, our proposed hierarchical pyramid

diverse attention module can be applied to any networks. Here, we investigate the above

two networks as representatives.

Finally, the learned global and local information is combined to further boost the ac-

curacy. Global CNN extracts the holistic face representation by consecutive global average

pooling (GAP) and fully connected (FC) layers with 512 units. Local CNNs output 512

units. We can obtain joint local and global representations with 1024 units, followed by a

FC layer with 512 units and a classification layer.

5.2.2 Local CNNs

Local CNNs are developed to extract multi-scale diverse local features hierarchically,

which consist of a pyramid attention and a diverse learning. Specifically, due to pose vari-
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ations or large expression changes, facial parts may have varying sizes. Therefore, it is

necessary to represent local patches at various sizes. To this aim, a pyramid attention is

proposed to locate multi-scale discriminative facial regions adaptively. However, it is possible

that multiple local branches have redundant responses around the similar regions, like similar

eye responses in Fig. 5.1, Column 2. To address this issue, a diverse learning is proposed to

guide multiple branches to locate diverse facial regions automatically. The pyramid diverse

attention (PDA) is formed by combining the pyramid attention with the diverse learning.

Besides, few works consider hierarchical features from different layers in face recogni-

tion, resulting in loss of discriminative features from low layers. To alleviate this issue, the

hierarchical bilinear pooling is used to explore good inter-layer interactions.

5.2.3 Pyramid Attention

The framework is shown in Fig. 5.4. There are multi-scale local representations encoded

in a single layer, making it necessary to calibrate features at different scales. Pyramid scales

refer to different scales. The structure is very like a pyramid, which is also similar to [134].

Let X ∈ R h × w × c denote the input of the pyramid attention, where h, w and c represent

height, width and number of feature maps, respectively. First, feature maps are splited

into outputs with different scales
[
X1, X2, ..., XS

]
, where S is the number of scales. Xi ∈

R hi× wi× c is the output of the ith level, where hi× wi represent the spatial size. The finest

level has the same size as input X. The other levels split feature maps into different sub-

regions, and then pool features in corresponding sub-regions.

Second, for the ith scale, the target is to output diverse attention masks
[
M1

i ,M
2
i , ...,M

B
i

]
,

where B is the number of local branches. The jth output attention mask in the ith scale has

the same spatial size as the input Xi, i.e. M
j
i ∈ R hi × wi . To model the feature map spatially,

the Local Attention Network (LANet) from [5] is used, as shown in Fig. 5.5. Weights of

different spatial locations are regressed by two consecutive convolutional layers. The first

layer has c
r
feature maps, followed by a ReLU layer to increase the non-linearity. r means the

channel reduction ratio. The second one generates a feature map (i.e. M j
i ) with a sigmoid

function.
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Third, we upsample different attention masks M j
i across multiple local branches (j ∈[

1, 2, ..., B]) in different scales (i ∈
[
1, 2, ..., S]) to have the same size as input X ∈ R h × w × c

using a bilinear interpolation.

Then, refined feature maps Rj
i for the j

th local branch in the ith scale is aggregated by

the product of the attention mask M j
i and input X:

Rj
i = X ◦M j

i , (5.1)

where ◦ denotes Hadamard product.

Finally, output of ith scale is obtained by first concatenating B local branches and followed

by a 1× 1 convolutional layer to output c feature maps. Then, feature maps across different

scales are concatenated, regarding as outputs of the pyramid attention.

However, it may be difficult for multiple local branches in the same scale to find different

discriminative regions simultaneously. To address this problem, a diverse learning is proposed

to guide the learning of complementary information across different local branches.

5.2.4 Diverse Learning

A divergence loss LD is proposed to guide multiple local branches to learn diverse at-

tention masks (i.e. M1
i ,M

2
i , ...,M

B
i ), locating diverse face regions and achieving a robust

recognition from diversified parts (e.g. the left eye and mouth if the right eye is occluded in

Fig. 5.1, Row 6, Column 8). The formulation is defined as following:

LD =
2

SB(B − 1)

S∑
i=1

B∑
j=1

B∑
k=1,
k ̸= j

max(0, t− (M j
i −Mk

i )
2),

(5.2)

where t is a hyper-parameter margin. M j
i and Mk

i represent attention masks learned by

local branches j and k in the ith scale, respectively.

The diverse learning encourages each local branch to learn different attention masks

by increasing their distances. Since each attention mask is applied on the same feature

maps, diverse attention masks can locate different local patches. Consequently, the diverse

learning can alleviate the problem of redundant responses in Fig. 5.1, Column 2, and extract

diverse local patches, as shown in Fig. 5.1, Columns 3, 4 and 5. It is possible that some
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less important facial parts and even noisy background noise are located, resulting in sub-

optimal facial representations. To overcome this issue, the classification loss is used with

the divergence loss to select discriminative local patches. Only discriminative local patches

are emphasized. This explains why attention masks may have overlaps among different local

branches where some attention masks emphasize small regions while some focus on larger

facial parts.

5.2.5 Hierarchical Bilinear Pooling

Most existing works learn features from the last convolutional layer. However, represen-

tations from the individual layer are not comprehensive. We consider to fuse features from

multiple hierarchical layers.

There are five layers in the last block of HSNet-61 model, shown in Fig. 5.3. The pyramid

diverse attention is applied in every two layers, extracting complementary local information

across different layers. Each single layer contains three parallel paths and the deepest path

has three convolutional layers. Therefore, different features can be extracted hierarchically

in every two layers. Instead of simple concatenation or addition, we adopt the approach

in [136] to aggregate information from different layers.

Suppose X, Y ∈ R h× w×c are outputs of two different layers, where h, w and c represent

height, width and number of feature maps, respectively. We denote a c dimensional feature

at a spatial location i on X as xi =
[
X1, X2, ..., Xc

]⊤
. Similarly, a c dimensional feature

from Y is yi =
[
Y 1, Y 2, ..., Y c

]⊤
.

To capture more comprehensive local features, the cross-layer interaction is used, which

is defined as following:

zi = x⊤i wiyi = x⊤i U iV i
⊤yi = U i

⊤xi ◦ V i
⊤yi, (5.3)

where wi ∈ Rc × c is the projection matrix and zi is the projected output. ◦ means Hadamard

product. In [136], the projection matrix is factorized into two one-rank vectors U i, V i ∈ Rc.

To encode local information, features should be expanded to a high dimensional space

by linear mappings. Therefore, a weight matrix w =
[
w1, w2, ..., wd

]
is defined to obtain a d
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dimensional feature z.

z = U⊤xi ◦ V ⊤yi, (5.4)

where U, V ∈ Rc × d and d is the dimension of the projected feature.

We consider to aggregate features from more layers, capturing more discriminative local

features. Let X1, X2, X3 represent outputs from three different layers. Eq. (5.4) is extended

to concatenate multiple cross-layer representations:

z = Concat(U⊤x1 ◦ V ⊤x2, U⊤x1 ◦ S⊤x3, V ⊤x2 ◦ S⊤x3). (5.5)

Finally, a FC layer is used to reduce dimension to 512.

5.3 Experiments

In this section, we conduct experimental validation of the proposed HPDA model on

several datasets.

5.3.1 Implementation Details

CPLFW and CALFW datasets provide cropped faces. For other datasets, faces are

cropped by MTCNN [4].

The t in Eq. (5.2) is set to 1 empirically. After comparative experiments, the number

of local branches is 3 (i.e. B = 3) and the pyramid diverse attention in Fig. 5.4 has three

different scales (i.e. S = 3).

5.3.2 Ablation Analysis

We conduct several experiments to analyze the proposed model on LFW, CPLFW and

CALFW datasets. Tables 5.1 and 5.2 give detailed investigations.

Importance of Diverse Learning

To locate diverse facial regions automatically in multiple local branches, a diverse learning

is proposed. Competitive results demonstrate its superiority in Table 5.1.
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Table 5.1: Ablation analysis (%) of the HPDA. Global CNN or local CNNs refer to the

framework in Fig. 5.3.

Model LFW CPLFW CALFW

W/o diverse learning 99.15 85.82 90.52

W/o hierarchical 99.07 85.63 90.35

Global CNN 99.10 79.30 89.90

Local CNNs 99.22 85.73 90.20

HPDA 99.33 86.07 90.93

Table 5.2: Comparison of varying number of optimal scale levels S and local branches

B, values of hyper-parameter t and methods to fuse channels from different layers.

S B t Channel fusion LFW CPLFW CALFW

1 3 1.00 HBP 99.30 85.93 90.57

2 3 1.00 HBP 99.17 85.77 90.58

3 3 1.00 HBP 99.33 86.07 90.93

4 3 1.00 HBP 99.15 85.53 91.10

3 1 1.00 HBP 99.08 85.63 90.47

3 3 1.00 HBP 99.33 86.07 90.93

3 5 1.00 HBP 99.07 86.14 90.87

3 3 0.25 HBP 99.20 85.98 90.30

3 3 0.50 HBP 99.15 85.73 90.75

3 3 1.00 HBP 99.33 86.07 90.93

3 3 2.00 HBP 98.97 85.18 90.65

3 3 4.00 HBP 99.20 85.97 90.43

3 3 1.00 Concat 99.17 85.82 90.88

3 3 1.00 Add 99.18 85.67 90.55

3 3 1.00 HBP 99.33 86.07 90.93
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Besides, this is a face landmark free approach. For example, MTCNN [4] fails to detect

landmarks for faces in Fig. 6.4, Row 1. For such challenging cases, our model can still learn

discriminative local patches regardless of loss of face organs and noisy background (Row

3). Besides, it is also observed that in Fig. 5.1, Columns 3, 4 and 5, diverse attentions

are generated by three local branches when the diverse learning is used, compared with the

model without the diverse learning in Fig. 5.1, Column 2. This is because the diverse learn-

ing can emphasize informative face regions and suppress less important ones or background

distraction. On one hand, discriminative local patches are enlarged. For example, as demon-

strated in Fig. 6.4, Columns 6, 8, without diverse learning, discriminative face regions are

lost in Row 2 under dramatic illumination changes or pose variations. However, our method

locates rich discriminative face regions in Row 3. This benefits from the diverse learning

which pushes models to learn more discriminative regions. On the other hand, our method

suppresses noisy regions, like goggles in Fig. 6.4, Columns 1, 2, Row 3, compared with the

model without the diverse learning in Row 2.

Importance of Hierarchical Features

Compared with the last convolutional layer which captures high-level face abstractions,

lower layers preserve more local details or small-scale face parts, exhibiting complementary

components.

Our model fuses features from three different layers hierarchically, as shown in Fig. 5.3.

To investigate the necessity, we compare the HPDA model with the model without hier-

archical information (i.e. w/o hierarchical) which only extracts features based on the last

convolutional layer. As demonstrated in Table 5.1, our HPDA has slightly better overall

performances. This shows the complementary information contained in low layers.

Effects of Hierarchical Bilinear Pooling

It is intuitive to directly concatenate or add feature maps from different layers. However,

simply concatenation or addition fails to capture rich inter-layer feature relations. To over-

come this issue, we use hierarchical bilinear pooling (HBP) to incorporate multiple cross-layer

interaction modules to learn complementary information from different layers.
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Experiments are conducted to compare HBP with concatenation and addition. For fair

comparison, channels in each layer is transformed to a high dimension by 1×1 convolution

as the HBP, encoding rich local information. Table 5.2 shows that HBP achieves slightly

better performances than concatenation or addition, demonstrating that its superiority in

capturing inter-layer feature relations.

Effects of Number of Local Branches B

We set B to 1, 3 and 5. The performance increases when B is changed from 1 to 3. This

is because more discriminative facial regions are located by varying local branches which are

guided by the diverse learning, boosting the performance. However, the performance drops

slightly when B is changed from 3 to 5. This can be explained by the fact that the diverse

learning encourages diverse information extracted by different branches, resulting in useless

or noisy information in some branches when B is too large.

Importance of Local CNNs and Global CNN

First, as shown in Fig. 5.1, the global CNN tends to characterize some less informative

regions (e.g. cheek in Column 7, Rows 3, 4) and model more background information,

compared with the local CNNs (Column 7 to Column 6, Rows 3, 4). On the other hand, the

local CNNs focus on informative areas (Column 6, Rows 3, 4). This explains why the local

CNNs offer performance improvement compared with the global CNN, as shown in Table

5.1.

Second, global features describe general information of whole faces (Fig. 5.1, Column

7). Differently, the local CNNs encode more detailed characteristics within different local

patches (Fig. 5.1, Column 6). Take faces in Fig. 5.1, Rows 3, 4 as examples, the noses and

the shape of whole faces remain similar in these two faces despite changes of the global face

appearances. The global CNN can represent holistic face shapes (Column 7) and the local

CNNs can describe noses (Column 6). It is intuitive to combine the global CNN with the

local CNNs to boost the performance. It is observed that the combined global and local

representation (Column 8) is more descriptive compared with the global CNN (Column 7)

and the local CNNs (Column 6).
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Effects of the Scale Level Number S

We set the scale number S in the pyramid attention to 1, 2, 3 and 4, respectively, where

scale 7 is used for S = 1 and scale 7, 5, 3 and 1 are used for S = 4. However, setting proper

scale levels is necessary to boost the performance. The HPDA achieves the best overall

performance when S = 3 in Table 5.2.

Discriminative face regions have varying sizes due to expression changes (e.g. eyes in Fig.

6.4, Row 1, Columns 3, 4, 5) and pose changes (e.g. mouths in Fig. 6.4, Row 1, Columns 6,

7, 8). Although HSNet model extracts rich multi-scale features in a single layer by utilization

of multi-scale convolutional kernels and concatenation of feature maps from previous layers,

it can just weigh parts with fixed scales, while lacking the capacity to emphasize regions

with flexible scales. In contrast, when the pyramid attention is used, attention masks are

able to capture information at various scales.

Effects of Hyper-parameter t

Values of t (0.25, 0.5, 1, 2 and 4) are compared. It can be seen that performance increases

when t increases from 0.25 to 1, but drops when t increases from 1 to 4.

Table 5.3: Performance comparison (%) of the HPDA model with state-of-the-art methods.

LS-CNN model and MS-Celeb-1M dataset are used as the stem CNN and training dataset,

respectively. As the baseline, LS-CNN model is run on both VGGFace2 and MS-Celeb-1M

datasets.

Methods
IJB-A

CALFW CACD-VS CPLFW VGGFace2-FP LFW
FAR=0.01 FAR=0.001

VGGFace [27] 60.5 36.7 86.50 96.00 - - 99.13

Center loss [29] 52.1 31.3 85.48 97.48 77.48 75.10 99.28

SphereFace [36] 54.8 39.6 90.30 - 81.40 20.10 99.42

VGGFace2 [32] - - 90.57 - 84.00 62.22 99.43

LS-CNN [5]

(VGGFace2) 87.5 75.5 92.00 99.50 88.03 69.92 99.52

LS-CNN [5]

(MS-Celeb-1M) 87.2 77.5 94.40 99.10 - - -

ArcFace [31] 68.6 65.7 95.45 - 92.08 46.20 99.83

Co-mining [137] - - 93.28 - 87.31 - -

MV-Softmax [138] - - 95.63 - 89.69 - 99.79

HPDA 87.6 80.3 95.90 99.55 92.35 95.32 99.80
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Figure 5.6: Qualitative comparison between landmark-based methods and the

proposed HPDA model. Row 1: some challenging faces. Row 2: even face landmarks

are detected, predefined crops may not be flexible and robust under pose, expression and

occlusion variations. Row 3: the HPDA model can locate discriminative facial parts flexibly.

5.3.3 Experiments on Cross-Quality Face Matching

Notice that this task is very close to real-world scenarios where the match is between

faces from access control, video surveillance, or public safety (low-quality faces) and enrolled

photos (high-quality faces). Following the work [65], several public models are compared.

As shown in Table 5.3, our method HPDA increases the accuracies.

There are many factors that can influence the quality of face images, such as resolution,

pose, expression, aging, and illumination. A positive pair of high-quality and low-quality

faces are shown in Fig. 5.1, Rows 1, 2. In such cases, the local CNNs can learn discriminative

and diverse local regions. As illustrated in Column 6, it is observed that the local CNNs filter

out useless background information and enhance important regions. In contrast, without the

diverse learning, these compared models cannot filter out background, which would inevitably

decrease the performance.

Previous landmark-based and attention-based local methods are qualitatively compared

with the proposed HPDA model. Landmark-based methods crop face parts around land-

marks, suffering from noise from adjacent parts or background. For example, as shown in

Fig. 5.6, Columns 1, 2, 3, mouths have varying shapes or sizes (Row 1) due to expression

changes. As a consequence, some crops contain noise from noses and background (Row 2).

Meanwhile, because of pose variations (Row 1, Columns 4, 5) and occlusions (Row 1, Col-
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umn 6), some parts are partly or completely invisible. In such cases, background (Row 2,

Columns 4, 5) or sunglasses (Row 2, Column 6) are cropped, leading to noisy representations.

Moreover, it is noticed that landmark detection may be not accurate, resulting in inaccu-

rate crops (Row 2, Columns 4, 5). For the attention-based models without diverse learning,

many unimportant or noisy facial regions are emphasized in Fig. 6.4, Row 2. In contrast,

our proposed HPDA model can locate discriminative parts and suppress less informative, as

shown in Row 3, demonstrating its superiority.

5.3.4 Experiments on Cross-Age Face Matching

We compare performances on CALFW and CACD-VS datasets in Table 5.3. It can be

seen that HPDA model can slightly outperform others. For this task, as shown in Fig. 5.1,

Rows 3, 4, even if these faces have undergone dramatic appearance changes, some local facial

regions (e.g. the pointy nose) remain to be very characteristic and the face shape (i.e. the

oval face) is still similar. Accordingly, the global CNN (Column 7) and local CNNs (Column

6) focus on facial shapes and pointy noses, respectively.

5.3.5 Experiments on Cross-Pose Face Matching

As shown in Table 5.3, our HPDA model outperforms the state-of-the-art on CPLFW

and VGGFace2-FP datasets. Results on VGGFace2-FP dataset of Center loss, SphereFace

and ArcFace models are from [139].

There are several reasons that can explain the results. First, local patches appear at

different sizes due to pose changes. Especially, profile faces are self-occlusion where only

partial organs are visible, like the small-scale mouths in Fig. 6.4, Columns 7, 8. The problem

above motivates us to develop the pyramid attention to capture multi-scale features. Second,

background distraction is a common problem for faces with large pose variations. On one

hand, there are some transition regions between discriminative local patches (e.g. noses,

eyes, mouths) and background for frontal faces. On the other hand, discriminative local

patches are near to noisy background for profile faces. As a result, noisy background tends

to be cropped with discriminative local patches, leading to inferior representations. This
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is especially serious for landmark-based local methods because face landmarks may lie in

the background, as shown in Fig. 5.6, Row 2, Columns 4, 5. Meanwhile, because previous

attention-based local methods do not consider the attention diversity, some useful regions

are missed, as shown Fig. 6.4, Columns 7, 8, Row 2. The proposed diverse learning can

alleviate this issue by emphasizing discriminative face regions and suppressing less important

and background distraction, as illustrated in Row 3.

Besides, the local CNNs extract complementary information to the global CNN. One

positive pair with pose changes are shown in Fig. 5.1, Rows 5, 6, which have similar eyes

and big lips. The global CNN describes eyes in Column 7. Meanwhile, the local CNNs focus

on big lips in Column 6. The combined local and global CNNs (Column 8) show that the

complementarity between the local CNNs and the global CNN is learned.

5.3.6 Experiments on LFW Dataset

We also report the accuracy on the popular LFW dataset where most faces are frontal

or near-frontal. As shown in Table 5.3, our model is only slightly worse than ArcFace,

but outperforms all other models. Although our proposed HPDA model is designed to

solve challenging face matching tasks, it still has an excellent generalization ability on LFW

dataset.

5.4 Summary

We have proposed the HPDA model for face recognition, which adaptively extracts hi-

erarchical multi-scale local representations. A pyramid attention has been applied to locate

multi-scale discriminative face regions automatically and weigh adaptively for multiple facial

parts. To capture diverse local facial representations, a diverse learning has been introduced

to guide multiple attentions to locate diverse facial parts. The hierarchical bilinear pooling

has been used to fuse complementary features from different layers. Experimental results on

several very challenging face recognition tasks have validated the effectiveness and impor-

tance of our proposed HPDA model.
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Chapter 6

DSA-Face: Diverse and Sparse

Attentions for Face Recognition

Robust to Pose Variation and

Occlusion

6.1 Motivations

Face recognition (FR) relying on deep convolutional neural networks has achieved promis-

ing results [31, 138, 140, 141]. Most existing works extracted features on global face images.

However, as illustrated in Fig. 6.1, the global face images may change dramatically caused

by face masks in (1), quality changes in (2), age gaps in (3), and pose variations in (4). In

contrast, local patches may change less, such as the similar noses in (3) and eyes in (1), (2),

and (4), which would play an important role for face matching.

Some works extracted local features on cropped parts centered around facial landmarks

[37, 38, 42]. However, landmark detection may fail under extreme illuminations, strong

pose variations, severe occlusions, or heavy makeup. Without relying on landmarks, re-

cent attention-based networks applied attention modules to automatically locate important

parts [2, 5]. However, as illustrated in Fig. 6.2 (c), these networks may have the attention

redundancy problem: Multiple attention maps tend to have redundant responses around the
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     (a)           (b)          (c)          (d)          (e)            (f)          (g)          (h)

(1)

(2)

(3)

(4)

Figure 6.1: Effects of the DSA-Face model on four positive pairs. (a) & (e): Input faces

which are affected by face masks (1), quality changes (2), aging (3), and pose variations (4).

(b) & (f): Without a proper guidance, multiple attention maps focus on few local patches,

while ignoring some potentially important regions. (c) & (g): The PSCA can locate rich

local patches. However, because every facial part is mined thoroughly, it is possible that

some unimportant patches may be taken into consideration, e.g. cheeks or foreheads. (d) &

(h): The ASL is able to filter out useless facial parts by suppressing responses in attention

maps.

same facial parts, while missing other potentially useful regions. This is serious for faces

where the emphasized parts may be invisible due to occlusions or pose variations, or being

hard to understand caused by other face image quality changes.

To alleviate the above issues, it is critical to capture local representations that are as

diverse as possible. Our previous work [14] achieved this partially by maximizing pairwise

attention distances which are Euclidean distances between every pair of attention maps.

As a result, varying attention maps are encouraged to be different from each other, and

thus extracting different facial parts. However, the attention subset problem may occur.

As illustrated in Fig. 6.2 (d), centered on the same part (i.e. the nose), some attention

maps emphasize larger areas, while some others highlight smaller areas which are subsets of

the larger ones. In such a case, the pairwise distances may still satisfy the criteria in [14].
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Consequently, the performance is deteriorated due to lacking of some other discriminative

facial parts (e.g. eyes). Besides, some unimportant facial parts may also be emphasized in

large response areas, like cheeks or foreheads, limiting the representational ability of features.

This problem would become especially serious in case of the masked face matching where

face masks are extracted as well.

The aforementioned problems motivate us to develop diverse and sparse attentions, called

DSA-Face, which mainly consist of pairwise self-contrastive attentions (PSCA) and attention

sparsity loss (ASL). First, the PSCA enlarges pairwise attention distances in a self-contrastive

way. In such a manner, different attention maps are encouraged to repulse each other, and

thus locate different facial parts. Second, since every image detail is mined thoroughly under

the guidance of the PSCA, some noisy information like background or face masks may be

extracted if there is not an explicit signal. To address this issue, the ASL is proposed to

encourage sparse responses in attention maps where important regions tend to be emphasized

and noisy parts are likely to be suppressed. Besides, we take masked face matching to

promote and validate the development in this field. Due to the ongoing pandemic of the

COVID-19, people are wearing face masks to prevent its spread in many scenarios, such as

access control and security checks [142]. Most existing FR models are designed based on deep

learning which require a large number of training images. However, most existing training

datasets have limited face images wearing masks. As a consequence, some open questions are

raised: Could existing FR models identify masked faces? How about our DSA-Face model?

Experimental results show that our DSA-Face model outperforms other models dramatically.

The main contributions of our work are three-fold:

1. Pairwise self-contrastive attentions are proposed to enforce models to extract diverse

local features;

2. An attention sparsity loss is devised to encourage sparse responses in attention maps,

discouraging the emphasis on noisy regions while encouraging focus on discriminative facial

parts;

3. The masked face matching is presented to benefit from our algorithm. Experimental

results on this and several other challenging tasks validate the importance and usefulness of

our proposed method.
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						(a)															(b)															(c)																(d)															(e)
Figure 6.2: Comparison of different attention-based networks. (a): An example face. (b):

The response of an attention map. (c): Attention redundancy problem: Multiple

attention maps just focus on the same facial part. (d): Attention subset problem:

Centered on the same part, some attention maps emphasize larger areas, while some highlight

smaller areas which are subsets of the larger ones. (e): Diverse attention maps generated

by our proposed DSA-Face model.
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DSA-Face

Figure 6.3: Overall framework. LPSCA encourages models to locate diverse local patches by

mining every facial image detail. LASL guides models to have sparse responses in attention

maps, suppressing emphasis on noisy regions. LCls is the classification loss to learn discrim-

inative features. LANet is a spatial attention in [5], where h, w, and c is the height, width,

and number of features maps, respectively, and r is the reduction ratio. GAP and FC mean

global average pooling and fully-connected layer, respectively. Notice that only three local

branches are used for good illustration.

6.2 Proposed Method

The overall framework is shown in Fig. 6.3. The stem CNN extracts high-level feature

maps for extracting diverse local features. Then multiple local branches are used to extract

diverse local features, which are guided by the PSCA and ASL. Local features are extracted

and used to predict the identity.

Due to its effectiveness, HSNet-61 model [5] is selected as the default stem CNN if

unspecified. Besides, we also consider ResNet-100 [50], LS-CNN and LS-CNN-177 [5] models.

There are three stages in LS-CNN. Compared with LS-CNN which has 6, 6, and 8 repeated
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operations in three stages, LS-CNN-177 sets the three stages to 12, 12, and 16, respectively,

further boosting the representational capacity.

6.2.1 Pairwise Self-Contrastive Attentions

Since the same architecture (i.e. LANet in Fig. 6.3) is used in different local branches,

highly similar parameters would be learned if there is not a proper guidance. This would

result in the attention redundancy problem. Therefore, a diversification prior should be

designed, which aims at diversifying multiple local branches.

The loss in [14] achieved this goal partially by maximizing pairwise attention distances,

which is defined as follows:

LPCA =
2

B(B − 1)

B∑
i=1

B∑
j=i+1

max(0, t− dist(Mi,Mj)), (6.1)

where M i and M j denote the attention maps which are generated by the ith and jth local

branches, respectively. B is the total number of local branches, t refers to a hyper-parameter

margin, dist(M i,M j) is the Euclidean distance between M i and M j. As a result, varying

attention maps are encouraged to be different from each other, and thus focus on different

facial parts. Here, we call them pairwise contrastive attentions (PCA). Although it boosts

the performance, the PCA could result in the attention subset problem (Fig. 6.2 (d)).

To alleviate this problem, we propose the pairwise self-contrastive attention (PSCA),

which is guided by a divergence loss LPSCA. The loss is defined as follows:

LPSCA =
2

B(B − 1)

B∑
i=1

B∑
j=i+1

max(0, t− dist(Mi,Mj)+

α ∗ dist(Mi,Mj)).

(6.2)

It maximizes the distance between M i and M j and minimizes the distance between M i and

M j. Notice that Mj +M j = E where E is a matrix with all-ones elements, meaning that

areas with high responses in M j would have low responses in M j, and vice versa.

For local representations in FR, only few important local patches (e.g. the nose, mouth,

both eyes, or mouth) can play a crucial role. Therefore, it is expected that M i and M j

have sparse responses on few parts. On the other hand, M j has high responses around large
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unimportant areas. Consequently, dist(Mi,Mj) tends to be much larger than dist(Mi,Mj).

Therefore, we use a coefficient (i.e. α) to balance these two values. Notice that Eqn. (8.3)

can be seen as a special case of Eqn. (6.2) when α = 0. Compared with PCA, it is more

difficult to meet the constraint of the attention subset problem in PSCA, which would be

proved in the following.

Proof. We use set operations to explain why the proposed PSCA can alleviate the

attention subset problem.

Since dist(M i,M j) is about the Euclidean distance between M i and M j, the square

operation is used. If we want to use the set operation to explain the above issue, dist(M i,M j)

can be converted to M i ⊕M j as follows:

M i ⊕M j = (M i −M j) ∪ (M j −M i), (6.3)

where ⊕, −, and ∪ mean the disjunctive union, difference set, and union set operations,

respectively.

For the PCA [14], it is expected that the following condition should be satisfied for Eqn.

(8.3):

dist(M i,M j) ≥ t. (6.4)

If the set operation is used, the above formula can be converted as follows:

M i ⊕M j ≥ t.

(M i −M j) ∪ (M j −M i) ≥ t.
(6.5)

If the attention subset problem occurs (assume M j ⊂ M i), the following inequality should

be met as follows:

(M i −M j) ≥ t. (6.6)

For our PSCA, we expect that the following formula should be satisfied for Eqn. (6.2):

dist(M i,M j) ≥ t+ α ∗ dist(M i,M j), (6.7)
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where M i is produced by using the complement set operation on M i. If the set operation is

used, the above formula can be converted as follows:

(M i ⊕M j) ≥ t+ α ∗ (M i ⊕M j).

(M i −M j) ∪ (M j −M i) ≥ t+ α∗

((M i −M j) ∪ (M j −M i)).

(6.8)

If the attention subset problem occurs (assume M j ⊂M i), the following equation should be

met as follows:

(M i −M j) ≥ t+ α ∗ (M j ∪M i). (6.9)

Compared with the constraint (Eqn. (6.6)) for the PCA, the constraint (Eqn. (6.9)) for

the PSCA is more difficult to be satisfied. In other words, the attention subset problem is

less likely to occur in the PSCA. In such a manner, different local branches are encouraged

to repulse from each other and extract more diverse local representations.

6.2.2 Attention Sparsity Loss

For local patches in face image, there are several characteristics: 1) Few important local

patches (e.g. the nose, mouth, both eyes, or mouth) can contribute to FR; 2) Some regions

are less discriminative, like the cheek or forehead; 3) Background or occlusions are noisy.

This issue is especially important for robust FR where background information or face masks

may be represented because discriminative parts are close to important parts (e.g. eyes) in

profile or masked faces, respectively. The attention module automatically determines which

regions should be highlighted. It is highly desired that few discriminative parts should be

emphasized and unimportant or noisy regions should be suppressed. Therefore, the attention

responses should be sparse.

However, few existing approaches have designed a mechanism to control the attention

responses. When some noisy regions are extracted, such as noisy background or face masks,

they may deteriorate the recognition performance. This issue is especially serious when

the PSCA is used, because every face detail is explored to extract comprehensive features.

For example, for masked face matching, because face masks are very close to discriminative
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parts, noisy information tends to be represented. To avoid this issue, we propose an attention

sparsity loss LASL to augment the objective function, which is defined as follows:

LASL =
1

B · h · w

B∑
i=1

h∑
j=1

w∑
k=1

(M j,k
i )2, (6.10)

where B is the total number of local branches. h and w is the height and width of the

attention map Mi. The main incentive behind this idea is to impose sparsity penalization

loss by encouraging response sparsity in attention maps. By penalizing highly responded

areas, the LASL constrains the values in attention maps towards zero. In such a manner,

only useful facial parts tend to respond, while noisy regions are suppressed.

6.2.3 Overall Loss

In order to supervise the network to learn discriminative features, the classification loss

LCls should be used, including CosFace loss [30] (LCls-cosface) and ArcFace loss [31] (LCls-arcface),

which can generate discriminative features.

CosFace loss is formulated as follows:

LCls-cosface = − 1

N

N∑
i=1

log
es(cos(θyi,i)−m)

es(cos(θyi,i)−m) +
∑

j ̸=yi e
s cos θj,i

, (6.11)

where N represents the number of samples. m is the cosine margin to maximize the decision

margin in the angular space. The sample xi is normalized and re-scaled to s, belonging to

the yi class.

The additive angular margin penalty m is used in ArcFace loss to encourage the intra-

class compactness and inter-class discrepancy.

LCls-arcface = − 1

N

N∑
i=1

log
es(cos(θyi,i+m))

es(cos(θyi,i+m)) +
∑

j ̸=yi e
s cos θj,i

. (6.12)

In our approach, the overall loss is formulated as follows:

L = LCls + λLPSCA + βLASL, (6.13)

where LCls is the classification loss, supervising the network to learn discrimination between

subjects. Theoretically, our proposed DSA-Face model can work together with any loss, like
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CosFace loss [30] and ArcFace [31]. LPSCA encourages the localization of diverse facial parts.

Since every detail is explored across an image, LCls may fail to filter out some noisy regions,

like face masks or other occluded parts. To address this problem, LASL is able to enhance

the ability of suppressing noisy responses. λ and β control the balance in these three losses.

6.3 Experiments

6.3.1 Implementation Details

During training on VGGFace2, the batch-size is set 256. ArcFace loss [31] in Eqn. (7.8)

is used where s = 32 and m = 0.35. Learning rate is 0.05 and is divided by 10 at the 7th

and 10th epochs, respectively. It is set to 1e− 4 at the 12th epoch. Training stops at the 12th

epoch. During training on MS1MV2 database, there are different settings in order to fairly

compare existing models: First, DSA-Face[a] and DSA-Face[c] adopt ResNet-100 [50] and

LS-CNN [5] as the stem CNN where the learning rate is initially set to 0.1 and 0.05. The

learning rate is multiplied by 0.1 at the 13th and 19th epochs. It is set to 1e − 4 at the

23nd epoch. Training stops at the 24th epoch. The batch-size is 512. Both are supervised

by ArcFace loss [31] in Eqn. (6.12). Second, DSA-Face[b] employees LS-CNN [5] as the

stem CNN. The batch-size is set to 256. The number of warm-up epochs is 2. The learning

rate starts at 0.03 and multiplied by 0.1 at the 7th and 10th epochs, respectively. It is set

to 1e− 4 at the 12th epoch. Totally there are 12 training epochs. Third, DSA-Face[d] uses

the LS-CNN-177 as the backbone. The batch-size is set to 256. The number of warm-up

epochs is 2. The learning rate starts at 0.03 and is multiplied by 0.1 at the 13th and 19th

epochs, respectively. It is set to 1e − 4 at the 23rd epoch. Totally there are 24 epochs.

DSA-Face[b] and DSA-Face[d] are supervised by CosFace loss [30] in Eqn. (6.11) where

scale s and margin m are set to 32 and 0.5, respectively.

For data pre-processing, faces are cropped and aligned to the size of 112×112 by the

MTCNN [4]. After comparative experiments, t and α in Eqn. (6.2) are set to 1 and 0.05,

respectively. The number of local branches (B) is 6. λ and β in Eqn. (6.13) are assigned

with 0.1 and 0.05, respectively.
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6.3.2 Ablation Study

In the ablation study, results are reported on CFP-FP, CPLFW, MLFW, and AFDB

datasets, as shown in Tables 6.1 and 6.2. To show the results efficiently, a tuple (a, b, c, d) is

used where a, b, and c demonstrate the accuracy on CFP-FP, CPLFW, and MLFW datasets

and d is the Rank-1 accuracy on M2N protocol of AFDB dataset.

Effects of the proposed components

The proposed DSA-Face model mainly consists of two components: the PSCA and ASL.

Their performances are shown in Table 6.1.

Without an explicit guidance, the attention redundancy problem may occur in multiple

local branches, as shown in Fig. 6.2 (c). To alleviate this problem, the PSCA is proposed

to guide different attention maps to locate diverse local patches. Some local patches are

occluded due to pose variations or face masks. It is possible that some local patches remain

the same for face pairs in such cases, consequently, diverse discriminative local patches are

mined thoroughly by the PSCA to boost the performance from (96.87%, 91.10%, 78.93%,

18.92%) to (96.97%, 91.25%, 81.66%, 19.97%). As illustrated in Fig. 6.4, due to strong

occlusions in (1) & (3), poor lighting in (2), and pose variations in (4), MTCNN method [4]

fails to detect landmarks for these challenging faces. However, guided by the PSCA, diverse

local patches are located in three local branches, as shown in (d), (e), & (f). This greatly

improves the representation ability. Besides, as illustrated in Fig. 6.1, supervised by the

PSCA, rich discriminative local patches are located in (c) & (g), compared with the model

without a proper guidance in (b) & (f).

Since every image detail is explored, noisy information may be extracted if there is not an

explicit control. To address this issue, the ASL is proposed to suppress responses in attention

maps towards zero, discouraging responses around noisy face masks. Consequently, the ASL

boosts the performance from 81.66% to 81.97% on MLFW and from 19.97% to 20.26% on

AFDB. Similarly, the ASL constrains responses on background, which results in the accuracy

improvement from 96.97% to 97.27% on CFP-FP and from 91.25% to 91.57% on CPLFW.

As shown in Fig. 6.1, responses on attention maps are narrowed to focus on discriminative
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local patches (e.g. noses in (3), eyes in (1), (2) & (4)), while neglecting less important parts

(e.g. foreheads or cheeks). Therefore, the discriminative ability of features are boosted to

achieve a better performance.

Comparison between PSCA and PCA

Diverse local representations can contribute to FR, which can be implemented in two

ways: the PCA and PSCA. Performance comparison is shown in Table 6.1. Since the PSCA

is less likely to have the attention subset problem, it has a better ability to generate diverse

attention maps, and thus outperforms the PCA. Specifically, the overall accuracy is boosted

from 97.17% to 97.27% on CFP-FP, from 91.43% to 91.57% on CPLFW, from 81.89% to

81.97% on MLFW, and from 19.33% to 20.26% on AFDB, respectively. We also qualitatively

compare the PCA and PSCA on some challenging faces in Fig. 6.4. Compared with the

PCA which emphasizes noisy background or noisy parts in (b), the PSCA is able to filter

out noisy background and focus on important facial parts in (c).

Varying values of B

Different values of B, such as 2, 4, 6, and 8, are compared in Table 6.2. If B is too

small, it is very likely that comprehensive facial parts are not well-explored, lacking of some

discriminative local representations. This explains why the overall performance is boosted

from (96.63%, 90.82%, 82.60%, 14.29%) to (96.81%, 91.25%, 77.48%, 16.56%) when B is

increased from 2 to 4. Similarly, when B is changed to 6, improving the performances to

(97.27%, 91.57%, 81.97%, 20.26%), respectively. However, if B is too large, some unnecessary

information may not be removed. Consequently, the overall results are slightly dropped to

(97.11%, 91.48%, 82.52%, 17.17%) if B = 8.

Different values of λ

Different values of λ in Eqn. (6.13) are compared in Table 6.2: 1.0, 0.5, 0.1, 0.05, and

0.01. When λ is reduced from 1.0, 0.5 to 0.1, performances are improved to (97.27%, 91.57%,

81.97%, 20.26%). This suggests that the signal of the PSCA is too strong, leading to the

localization of diverse but noisy facial regions. When λ is reduced from 0.1 to 0.05 and 0.01,
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Table 6.1: Effectiveness of different components and their combinations.

PSCA ASL PCA CFP-FP CPLFW MLFW AFDB

96.87 91.10 78.93 18.92
√

96.97 91.25 81.66 19.97
√ √

97.17 91.43 81.89 19.33
√ √

97.27 91.57 81.97 20.26

   (a)          (b)           (c)           (d)         (e)           (f)   

(1)

(2)

(3)

(4)

Figure 6.4: Qualitative comparison between the PCA and PSCA on some challenging faces.

(a): The MTCNN [4] fails to detect landmarks for some faces under heavy occlusions,

poor lighting, low quality factors, and profile poses. (b): Visualization of the PCA. (c):

Visualization of the PSCA. (d) & (e), and (f): 1st, 2nd, and 3rd local branches where

different local patches are located in each local branch. For a good illustration, only three

local branches are used to show class activation maps (CAMs) [3].



Qiangchang Wang Chapter 6. DSA-Face 108

overall performances drop. This is because the attention redundancy problem occurs if the

signal of the PSCA is weak, resulting in missing of some other important features. Therefore,

λ is set 0.1 to achieve a good trade-off between LCls and LPSCA.

Different values of β

Several values of β in Eqn. (6.13) are compared in Table 6.2: 0.5, 0.1, 0.05, 0.01, and

0.005. When the β is decreased from 0.5 to 0.1, the overall performance is increased from

(96.93%, 91.65%, 78.82%, 16.35%) to (96.96%, 91.57%, 82.60%, 17.22%). Likewise, if β is

decreased from 0.1 to 0.05, the accuracy achieves (97.27%, 91.57%, 81.97%, 20.26%). This is

because the LASL suppresses some important regions, leading to incomplete representations,

if the value of β is too large. In contrast, if β = 0.01, or 0.005, the LASL is too weak,

leading to features with noisy information. This is the main reason why the performances

are dropped.

Varying values of t

We compare different values of the hyper-parameter t: 0, 0.2, 0.4, 0.6, 0.8, and 1. As

illustrated in Table 6.2, the best overall results are achieved by setting t = 1.

6.3.3 Experiments on Masked Face Matching

We show results of our DSA-Face models in Tables 6.3 and 6.4 on M2N, M2M, and

MLFW protocols.

M2N refers to matching between masked faces and normal faces. Notice that either

masked or normal faces are captured in real-world scenarios. As shown in Fig. 6.5, faces

have dramatically different appearances under quality changes in (a) & (b), pose variations in

(c) & (d), large age gaps in (e) & (f), and heavy occlusion in (g) & (h). Multiple challenging

factors make this task very difficult. For a clear presentation, a tuple (a, b, c, d) is used where

a, b, and c represent True Acceptance Rate (TAR) values on False Acceptance Rate (FAR)

= 0.1, 0.01, and 0.001, respectively, and d denotes Rank-1 accuracy. Trained on global faces,

ArcFace [31], CurricularFace [143], and Subcenter ArcFace [144] achieve (31.53%, 8.54%,
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Table 6.2: Performance comparison (%) of different hyper-parameters: Varying number of

local branches (B) and values of λ and β in Eqn. (6.13) and t in Eqn. (6.2).

B λ β t CFP-FP CPLFW MLFW AFDB

2 0.10 0.05 1.0 96.63 90.82 82.60 14.29

4 0.10 0.05 1.0 96.81 91.25 77.48 16.56

6 0.10 0.05 1.0 97.27 91.57 81.97 20.26

8 0.10 0.05 1.0 97.11 91.48 82.52 17.17

6 1.00 0.05 1.0 96.53 91.10 76.71 16.50

6 0.50 0.05 1.0 97.01 91.22 82.05 17.33

6 0.10 0.05 1.0 97.27 91.57 81.97 20.26

6 0.05 0.05 1.0 97.34 91.50 76.73 18.35

6 0.01 0.05 1.0 97.19 91.75 80.79 18.41

6 0.10 0.50 1.0 96.93 91.65 78.82 16.35

6 0.10 0.10 1.0 96.96 91.57 82.60 17.22

6 0.10 0.05 1.0 97.27 91.57 81.97 20.26

6 0.10 0.01 1.0 96.99 91.07 76.94 17.48

6 0.10 0.005 1.0 96.57 91.07 79.16 15.37

6 0.10 0.05 0.0 97.19 91.28 78.51 17.22

6 0.10 0.05 0.2 96.77 91.37 80.22 18.87

6 0.10 0.05 0.4 96.99 91.15 81.85 17.94

6 0.10 0.05 0.6 96.76 91.35 77.62 17.33

6 0.10 0.05 0.8 96.63 91.33 78.57 17.79

6 0.10 0.05 1.0 97.27 91.57 81.97 20.26
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Table 6.3: Performance comparison (%) of our DSA-Face models with several models on

M2N and M2M protocols of masked face matching.

Method M2N M2M
FAR=
0.1

FAR=
0.01

FAR=
0.001 Rank-1

FAR=
0.1

FAR=
0.01

FAR=
0.001

ArcFace [31] 31.53 8.54 1.45 15.73 29.22 7.25 2.06

CurricularFace [143] 33.43 13.21 4.42 17.38 31.55 9.79 2.95

Subcenter Arcface [144] 24.60 4.51 0.56 12.49 28.95 8.57 3.15

HPDA [14] 57.41 30.94 14.98 34.76 58.99 37.68 22.01

DSA-Face[a] 48.04 21.53 8.09 22.67 47.96 21.47 7.93

DSA-Face[b] 62.09 36.59 18.55 43.08 60.81 38.92 19.58

DSA-Face[c] 48.28 21.60 7.42 23.91 51.05 25.54 11.16

DSA-Face[d] 62.83 39.21 21.14 43.50 59.28 38.14 17.08

1.45%, 15.73%), (33.43%, 13.21%, 4.42%, 17.38%), and (24.60%, 4.51%, 0.56%, 12.49%),

respectively. As shown in Fig. 6.5, wearing masks makes some face clues invisible (i.e. noses

and mouths) and dramatically changes global face appearances. However, since global faces

are directly employed to train ArcFace, CurricularFace, and Subcenter ArcFace, noisy masks

tend to be represented in features, resulting in sub-optimal representations. In contrast,

some local patches may remain to be similar, suggesting their importance. Trained on the

same backbone (i.e. ResNet-100) as ArcFace, CurricularFace, and Subcenter ArcFace, DSA-

Face[a] boosts results to (48.04%, 21.53%, 8.09%, 22.67%), which shows the importance

of our proposed modules. HPDA [14] has the capacity of locating diverse local patches,

and thus greatly improves performances to (57.41%, 30.94%, 14.98%, 34.76%). However,

it may miss some important regions due to the attention subset problem. Our DSA-Face

model can alleviate this issue, learning diverse and comprehensive local features effectively.

Specifically, compared with HPDA, DSA-Face[b] has the same training setting, but increases

results to (62.09%, 36.59%, 18.55%, 43.08%). Besides, using LS-CNN as the stem CNN,

DSA-Face[c] achieves better overall result of (48.28%, 21.60%, 7.42%, 23.91%) than DSA-

Face[a]. Furthermore, we employ a more powerful LS-CNN-177 as the stem CNN which

increases the depth of LS-CNN greatly, namely DSA-Face[d]. It achieves a result of (62.83%,

39.21%, 21.14%, 43.50%), which is even better.
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Table 6.4: Performance comparison (%) of our DSA-Face models with several models on

MLFW protocol of masked face matching.

Method MLFW

FAR=0.1 FAR=0.01 FAR=0.001 Acc.

ArcFace [31] 44.92 12.85 1.81 69.25

CurricularFace [143] 59.24 23.45 3.62 74.61

Subcenter Arcface [144] 50.05 30.32 18.82 69.89

HPDA [14] 89.06 85.51 76.65 92.34

DSA-Face[a] 82.81 69.33 36.77 87.47

DSA-Face[b] 89.20 85.84 79.77 92.46

DSA-Face[c] 85.68 74.91 51.12 88.63

DSA-Face[d] 89.74 86.72 82.25 92.91

M2M refers to matching between masked and masked faces. A tuple (a, b, c) is used

where a, b, and c represent TAR values on FAR= 0.1, 0.01, and 0.001, respectively. As

shown in Table 6.3, ArcFace, CurricularFace, and Subcenter ArcFace models have results of

(29.22%, 7.25%, 2.06%), (31.55%, 9.79%, 2.95%), and (28.95%, 8.57%, 3.15%), respectively.

These models are trained on global faces. However, some parts in both gallery and probe

sets are occluded to have global appearance changes. Consequently, large appearance gaps

in train and test data lead to the inferior results. Differently, HPDA [14] automatically

locates different parts, boosting results to (58.99%, 37.68%, 22.01%). DSA-Face models

achieve promising results. First, compared with ArcFace, CurricularFace, and Subcenter

ArcFace models, DSA-Face[a] achieves (47.96%, 21.47%, 7.93%); Second, compared with

HPDA, DSA-Face[b] obtains a slightly better performance of (60.81%, 38.92%, 19.58%);

Thirdly, both DSA-Face[a] and DSA-Face[c] have similar training settings while the former

uses ResNet-100 and the latter employs LS-CNN. Under the more challenging M2M pro-

tocol, DSA-Face[c] boosts the result to (51.05%, 25.54%, 11.16%) compared to DSA-Face[a]

which demonstrates the excellent generalization ability of LS-CNN, especially on masked

face recognition; Fourthly, because of over-fitting potentials on non-masked faces, the result

of DSA-Face[d] is slightly decreased to (59.28%, 38.14%, 17.08%).

MLFW denotes the protocol in the masked LFW dataset. A tuple (a, b, c, d) is used
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(1)

(2)

(3)

(4)

         (a)            (b)         (c)           (d)          (e)           (f)            (g)          (h)    
Figure 6.5: Qualitative illustration of the DSA-Face model [6] on masked face matching. (1)

& (3): Input faces with quality changes (a & b), pose variations (c & d), aging (e & f),

and heavy occlusions (g & h). (2) & (4) show CAMs on these faces.

where a, b, and c represent TAR values on FAR= 0.1, 0.01, and 0.001, respectively, and

d denotes accuracy. As illustrated in Table 6.4, although ArcFace1 achieves 99.77% on

original LFW, its performance is greatly reduced to (44.92%, 12.85%, 1.81%, 69.25%) on

MLFW. Similarly, CurricularFace [143] obtain 99.80% accuracy on original LFW, its result

is dropped to (59.24%, 23.45%, 3.62%, 74.61%) on MLFW. Subcenter ArcFace [144] achieves

the performance of (50.05%, 30.32%, 18.82%, 69.89%). In contrast, HPDA [14] achieves

99.80% accuracy on the original LFW, while obtaining (89.06%, 85.51%, 76.65%, 92.34%) on

MLFW. First, DSA-Face[a] achieves the performance of (82.81%, 69.33%, 36.77%, 87.47%),

which significantly outperforms ArcFace, CurricularFace, and Subcenter ArcFace models.

Second, DSA-Face[b] surpasses HPDA which is (89.20%, 85.84%, 79.77%, 92.46%). Third,

compared with DSA-Face[a] which uses ResNet-100, DSA-Face[c] adopts LS-CNN as the stem

CNN which increases the performance from (82.81%, 69.33%, 36.77%, 87.47%) to (85.68%,

74.91%, 51.12%, 88.63%). Last, DSA-Face[d] achieves the best performance of (89.74%,

86.72%, 82.25%, 92.91%).

There are two reasons to explain the above results. First, the PSCA ensures that diverse

discriminative local patches are emphasized, as illustrated in Fig. 6.5 (4). This is especially

useful for masked faces where other potentially discriminative parts can contribute to match-

1https://github.com/deepinsight/insightface/wiki/Model-Zoo
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ing beyond occluded parts. As shown in Fig. 6.5 (2), eyes in (a), (h) and (c-f) are important

if mouths and noses are invisible caused by masks, or noses in (b) & (g) can provide infor-

mation when eyes and mouths are occluded due to sunglasses and masks. Second, the ASL

suppresses responses around noisy regions, such as masks, hats, and sunglasses in Fig. 6.5

(2).

It can be observed that the attention mechanism usually concentrates on one single eye

in Fig. 6.5 (2). There are 8 facial images in (2). Two eyes are occluded by sunglasses in (b)

& (g); The illumination distribution on the face image in (e) is not balanced where the left

eye tends to be more easily emphasized compared with the right eye. Differently, both eyes

in (a), (c), and (h) are located where they are assigned with different weights due to their

different importance in the recognition. It is also observed that the right eye in (d) and the

left eye in (f) are not located. This may be attributed to the fact that these two eyes are

very close to the background. Consequently, they are noisy by background information, not

captured by the attention mechanism.

6.3.4 Experiments on Cross-Pose Face Matching

We conduct experiments on CFP-FP, CPLFW, and VGGFace2-FP datasets. A tuple

(a, b, c, d) is used where a, b, and c represent accuracy on CFP-FP, CPLFW, and VGGFace2-

FP datasets, respectively.

Most existing methods are trained on global faces. However, for profile faces or faces

with large pose variations, they suffer from self-occlusions where only some facial parts are

visible, like faces in Fig. 6.1 (4) (e). In such a case, if the model only focuses on few parts,

it is very likely to predict the wrong identity when these parts are occluded. Therefore, it

is necessary to extract diverse local representations from different facial parts. HPDA [14]

achieved this by using the PCA, which achieves the accuracy of (-, 92.35%, 95.32%) where

- denotes the result is not available. Compared with HPDA, our DSA-Face[b] has the same

training setting, but increases the performance to (98.14%, 92.73%, 95.66%).

Besides, using the same backbone (i.e. ResNet-100) as those compared models, DSA-

Face[a] obtains a higher overall accuracy of (98.53%, 93.70%, 95.96%). Using LS-CNN as
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Table 6.5: Results (%) of our DSA-Face models and the state-of-the-art on CFP-FP,

CPLFW, VGGFace2-FP, LFW, and IJB-C datasets.

Method CFP-FP CPLFW VGGFace2-FP LFW IJB-C

MV-Softmax [138] 95.70 89.69 - 99.79 -

ArcFace [31] 98.37 92.08 - 99.83 95.60

MagFace [145] 98.46 92.87 79.28 99.83 95.97

HPDA [14] - 92.35 95.32 99.80 -

DBM [140] - 92.63 - 99.78 -

CurricularFace [143] 98.37 93.13 94.60 99.80 96.10

GroupFace [146] 98.63 93.17 - 99.85 96.26

BroadFace [147] 98.63 93.17 - 99.85 96.03

DSA-Face[a] 98.53 93.70 95.96 99.83 93.93

DSA-Face[b] 98.14 92.73 95.66 99.75 94.62

DSA-Face[c] 98.66 93.33 95.96 99.82 94.30

DSA-Face[d] 98.69 93.62 96.24 99.85 95.51

the backbone, DSA-Face[c] has similar results of (98.66%, 93.33%, 95.96%). Furthermore,

DSA-Face[d] uses a more powerful network (i.e. LS-CNN-177) and achieves the highest

accuracy of (98.69%, 93.62%, 96.24%). This is because our DSA-Face model is less likely

to have the attention subset problem and effectively emphasizes diverse discriminative local

patches. Specifically, the PSCA can focus on more diverse local patches and the ASL is able

to suppress responses from useless facial parts or background.

As shown in Fig. 6.1 (4), diverse local patches are located for the frontal face in (d),

including mouth, nose, and both eyes. However, due to dramatic pose variations in (e),

only the right eye is visible, which may cause a wrong match since other parts are partly

or totally invisible. If there is no supervision, the attention map misses the right eye in (f).

In contrast, our PSCA successfully emphasizes the right eye and nose, as illustrated in (g).

Furthermore, the ASL further constrains responses from useless regions, like cheeks as shown

in (h).
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Table 6.6: Performance comparison (%) of our DSA-Face models with several models on

cross-quality face matching.

Method FAR=0.01 FAR=0.001

Center loss [29] 52.5 31.3

SphereFace [36] 54.8 39.6

LS-CNN [5] 87.5 75.5

ArcFace [31] 68.6 65.7

HPDA [14] 87.6 80.3

DSA-Face[a] 87.3 80.4

DSA-Face[b] 89.5 83.2

DSA-Face[c] 91.2 86.7

DSA-Face[d] 90.5 85.3

6.3.5 Experiments on LFW and IJB-C Datasets

Notice that LFW dataset is a relatively easy dataset where most faces are frontal or

nearly frontal. As shown in Table 6.5, in addition to its excellent performances on various

challenging tasks, our DSA-Face[d] obtains the highest accuracy on LFW (99.85%) as well.

We also compare the TAR@FAR=0.0001 of different models on IJB-C dataset. In IJB-C

dataset, there are 3,531 identities with 31.3K still images and 117.5K frames from 11,799

subjects, which contain 19,557 genuine pairs and 15,639K impostor matches. As demon-

strated in Table 6.5, our models have slightly lower results on this challenging benchmark.

Since video frames are used in this evaluation benchmark, blur variations are serious issues.

Consequently, these blur variations tend to distract our DSA-Face models to locate useless

or even noisy image regions. In future, we may further improve our models by incorporating

different modules to handle the blur issue specifically.

6.3.6 Experiments on Cross-Quality Face Matching

Since pose variations and occlusions have important influence on the quality scores, we

conduct experiments on cross-quality face matching task [65]. This task simulates some real-

world applications where a low-quality face (Fig. 6.1 (2) (e)) is matched to a high-quality
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face (Fig. 6.1 (2) (a)). Different methods are compared on IJB-A quality in Table 6.6. A

tuple (a, b) is reported at FAR= 0.01 and 0.001.

Center loss [29], SphereFace [36], and ArcFace [31] designed loss functions, while they

ignore discriminative local patches. In contrast, although it is only guided by Softmax loss,

LS-CNN [5] emphasizes important local parts (Fig. 6.2 (b)), and thus obtains better results

which are (87.5%, 75.5%). However, due to lacking of a proper guidance, the attention

redundancy problem occurs (Fig. 6.2 (c)). HPDA [14] alleviates this problem by enlarging

pairwise attention distances. Consequently, it locates diverse parts, and obtains the accuracy

of (87.6%, 80.3%), which surpasses LS-CNN. However, the HPDA may have the attention

subset problem (Fig. 6.2 (d)), missing some important local patches.

Our DSA-Face model can encourage the localization of diverse and comprehensive dis-

criminative parts (Fig. 6.2 (e)). To compare performances fairly, we conduct experiments

based on ResNet-100 and LS-CNN, respectively. First, using the same ResNet-100 as Ar-

cFace [31], DSA-Face[a] significantly increases the performance to (87.3%, 80.4%). Second,

compared with HPDA [14], DSA-Face[b] achieves a better accuracy, i.e. (89.5%, 83.2%)

versus (87.6%, 80.3%). This is because, despite quality changes, as shown in Fig. 6.1 (2),

discriminative parts are located in (c) and (g). Third, in cross-quality face matching, the

blur factor plays an important role in dividing face images into low- or high-quality. Since

there exists an imbalanced blur distribution in the training dataset, LS-CNN-177 tends to

suffer from poor generalization ability on cross-quality face matching. This may explain why

DSA-Face[c] and DSA-Face[d] use LS-CNN and LS-CNN-177 as the stem CNN. However,

the former obtains the highest accuracy of (91.2%, 86.7%) and the latter has the result of

(90.5%, 85.3%).

6.4 Summary

We have developed a DSA-Face model, which consists of novel pairwise self-contrastive

attentions (PSCA) and an attention sparsity loss (ASL). First, the PSCA is capable of

extracting diverse local representations by enlarging pairwise attention distances. Second,

the ASL shrinks responses from noisy regions in attention maps towards zeros. Consequently,
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only discriminative parts are emphasized, while noisy regions are discouraged. Besides, the

masked face matching task has been executed to show the usefulness of the method, which

could play an important role in FR under the spread of the COVID-19. Further, our DSA-

Face model surpasses other methods on other challenging FR tasks as well, demonstrating

the general FR performance of our model.
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Chapter 7

AAN-Face: Attention Augmented

Networks for Face Recognition

7.1 Motivations

Face recognition (FR) is a challenging task mainly because of two reasons: 1) Large

intra-class variations. Faces in the same subject may have dramatically different appearances

under different challenging factors, like occlusions, pose variations, quality changes, or aging.

2) Small inter-class differences. Faces from different subjects may be very similar, especially

under the scenario with large-scale subjects. To alleviate these issues, many loss functions

have been proposed to enhance features’ discriminative ability [29] [36] [31]. Aside from

delicatedly-designed loss functions, training data is one of the crucial factors that affects

the performance. In general, training data should exhibit a balanced distribution among

different classes. However, a common problem is that most existing training data inherently

follows an imbalanced data distribution where a small number of classes are over-represented

(e.g. frontal or non-occluded faces) and some of the remaining rarely appear (e.g. profile or

heavily occluded faces). This is the reason why the models are biased toward the majority

classes, while suffer from performance degradation in minority classes. For example, due

to the outbreak of the COVID-19, the use of face masks has become ubiquitous. However,

because training data exhibits limited masked face images, few FR models tend to be effective

in many real-world applications, such as access control or security checks.
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Figure 7.1: CAMs without/with our AAN-Face model on four positive face pairs. Columns

1&4: Positive face pairs which are affected by various challenging factors (e.g. occlusion,

pose, makeup, and aging changes), leading to the landmark detection failure. Columns

2&5: CAMs without our AAN-Face. Columns 3&6: CAMs with our AAN-Face.

Some works design data augmentation methods via synthesizing faces [148] [149]. Dif-

ferent from these methods which aim at solving a specific variation problem (e.g. pose

variations), our AAN-Face model can be applied to a wide range of variations. Most exist-

ing models extract holistic face representations, while failing to consider discriminative local

representations. For example, as demonstrated in Fig. 7.1, although these faces have dra-

matic changes because of varying challenging factors (e.g. occlusion, pose, aging, or makeup

variations), similar eyes (Row 1), noses (Rows 2&4), or lips (Rows 3&4) can still contribute

to the verification of these face pairs.

To extract discriminative local features, existing methods can be split into two categories:

landmark-based and attention-based. As for the former, different networks are trained on

multiple facial parts which are cropped around facial landmarks [37] [38] [40]. However,

landmark detection may fail in some cases. For instance, due to dramatic pose variations,

extreme illuminations, large expression changes, or heavy occlusion levels, MTCNN [4] fails

to detect landmarks for faces in Fig. 7.1. In contrast, without relying on facial landmarks,

attention-based methods can locate discriminative facial parts automatically [5] [42] [2], as

illustrated in Fig. 7.1, Columns 2&5. However, as pointed out in our previous work [14],
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Figure 7.2: Examples generated by the AE. Column 1: Original faces. Column 2: Class

Activation Maps (CAMs) [7]. Columns 3-7: CAMs with varying occlusion levels which are

generated by the AE.

without a proper guidance, multiple attention modules tend to have redundant responses

around the similar facial regions, while neglecting other discriminative facial parts. This may

lead to performance degradation if these emphasized parts are occluded in some scenarios,

such as large pose or occlusion changes. To address this issue, [14] proposes a diverse learning

to locate diverse local patches in different attention maps. Consequently, other local patches

can contribute besides the occluded ones. However, this approach can only alleviate this issue

to some extent because training samples still exhibit limited occlusion variations. Therefore,

it is unavoidable that results would drop for faces under large pose or occlusion changes, like

masked faces.

To overcome this issue, we propose an augmented attention network, called AAN-Face.

First, when some parts of a face are occluded, it is expected that models are still able to

recognize the identity from non-occluded facial parts. To achieve this goal, an attention

erasing (AE) scheme is proposed to randomly erase units in attention maps. As a result,

augmented faces with various occlusion levels can be generated, which well prepares models

towards pose or occlusion changes. Fig. 7.2 shows some examples which are generated

by the AE where erased masked have different sizes and locations. As illustrated in Fig.

7.6, compared with the model without AE (Row 2), the model with AE is more robust

to occlusions or large pose variations (Row 3). Second, an attention center loss (ACL)

is proposed to learn a center for each attention map, and thus force the same attention

map to locate the same facial part for each facial image. This is a strong signal to control

each attention map to emphasize important facial regions and suppress noisy ones. As

shown in Fig. 7.5 Row 1 Columns 3&6, more useful facial parts are emphasized when the
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ACL is used, compared with the model without ACL in Row 1 Columns 2&5. Differently,

distracted information are suppressed in Row 2 Columns 3&6, compared with Row 2 Columns

2&5. Third, the ACL is combined with the AE to form the AAN-Face. Because the AE

removes some facial parts which are located by attention maps, models are encouraged to

learn different attention centers. Consequently, diverse facial parts can be located, allowing

models to focus on non-occluded facial parts beyond occluded ones. As illustrated in Fig.

7.1, some less useful information (e.g. cheeks) or even noisy features are located if without

AAN-Face model, as demonstrated in Columns 2&5. In contrast, when AAN-Face model is

used, discriminative facial regions are more accurately located and emphasized, while noisy

facial parts are inhibited, as shown in Columns 3&6.

Our contributions can be summarized as follows:

1. An attention erasing (AE) scheme randomly erases units in attention maps, which

well prepares models for occlusion or pose variations.

2. An attention center loss (ACL) is proposed to learn a center for each attention map,

encouraging each attention map to emphasize informative facial regions and inhibit the

distracted.

3. Incorporating the AE with the ACL, our AAN-Face model can generate attention maps

to accurately locate diverse facial parts, and thus extract complementary local information.

4. The proposed model outperforms the state-of-the-art on different challenging face

matching tasks, especially on masked face matching which is especially important due to the

ongoing pandemic of the COVID-19.

7.2 Proposed Method

In this section, details of the proposed approach are discussed. The overview structure

is illustrated in Fig. 7.3. It mainly consists of four parts: stem CNN, local CNNs, global

CNN, and classification, which are discussed as follows.

There are several models used in the stem CNN. First, HSNet-61 model [5] is selected

as the default stem CNN if unspecified which can extract multi-scale features from two

harmonious perspectives: utilization of multi-scale convolutional kernels in a single layer
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Figure 7.3: Overall framework of the proposed AAN-Face model. The attention erasing (AE)

makes the model robust to pose and occlusion changes. The attention center loss (ACL)

guides the same attention map to focus on the same facial part, emphasizing informative

facial parts and suppressing distracted. GAP and FC mean global average pooling and fully-

connected layers, respectively.

1×1
conv

1×1
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h×w×c

h×w×c/r

h×w×1
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Figure 7.4: Framework of LANet [5]. h,w, and c refer to the height, width, and number of

feature maps, respectively. r represents the reduction ratio.

and concatenation of feature maps from different layers. Second, to compare fairly with

existing the state-of-the-art models, IR-100 [31] is used as the backbone. Third, to further

boost the performance, LS-CNN and LS-CNN-177 models are employed in [5] where the

latter is a more powerful network with 12, 12, and 16 repeated operations in three stages.

Local CNNs aim at learning local facial representations. The global CNN focuses on

holistic face features. Both of them have 512 units. Details are discussed in the following

subsections.

In the classification stage, a joint local and global feature representation is obtained by

concatenating outputs of the local and global CNNs, followed by a fully connected (FC) layer

with 512 units and a classification layer.
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7.2.1 Local CNNs and Global CNN

Local CNNs

Instead of cropping discriminative parts around facial landmarks, we use an attention

module (i.e. LANet [5] shown in Fig. 7.4) to automatically locate discriminative parts. It is

trained in an end-to-end way, allowing for locating useful facial regions flexibly. It is expected

that more important facial regions are assigned with higher weights, while less informative

ones have smaller weights.

Let X ∈ R h×w×c denote the input of local CNNs where h, w, and c refer to height,

width, and number of feature maps, respectively. First, an attention map M i ∈ R h×w is

generated by the LANet in the ith local branch. It represents informative facial parts, like

eyes or noses. As illustrated in Fig. 7.4, the first layer has c
r
feature maps, followed by a

ReLU layer to increase the non-linearity. The second layer generates M i with a Sigmoid

function. Suppose b refer to the number of local branches. Since each branch generates an

attention map, there are b attention maps which would be used for data augmentation.

Second, the refined feature map Ri for the ith branch is aggregated by product of the

attention map M i and the input X:

Ri = X ◦M i, (7.1)

where ◦ denotes the element-wise multiplication operation.

Third, the local facial representation P i for the i
th local branch is computed by a Global

Average Pooling (GAP) layer:

P i = GAP i(Ri). (7.2)

There are b local facial representations (i.e. P 1, P 2, ..., P b), followed by a FC layer with 512

units.

Global CNN

The global CNN is used to extract the holistic face representation G, which takes X as

the input:

G = GAP g(X), (7.3)
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where GAPg refers to the GAP layer in the global CNN. Following a FC layer, the holistic

face representation (i.e. G) has 512 units.

Attention Erasing

Notice that the AE is only conducted in the training stage with a probability p. It erases

units within a rectangle area of a size S which is selected from attention mapsM ∈ R h×w×b.

The AE is conducted on feature maps with the following steps. First, a rectangle area of

size Se is selected within attention maps M , where size ratio Se

h×w ∈ [sl, sh] and aspect ratio

a ∈ [al, ah]. Consequently, if height he is set to
√
Se × a, then width we is

√
Se

a
. Second, a

point (xe, ye) is randomly initialized in M . If the point meets the criterion: xe+we ≤ w and

ye + he ≤ h, then units in the rectangle (xe, ye, xe + we, ye + he) are replaced with random

values in range [0, 1]. Otherwise, the above procedures are repeated until an appropriate

area is selected.

Since some facial parts are removed, models would pay more attention to non-occluded

parts and extract other potentially discriminative local representations. In this way, the AE

forces models to represent the face image in a global perspective, rather than focusing on

few facial parts which may be unavailable due to occlusions, pose, or viewpoint variations.

This well prepares the model for various real-world occlusions.

Attention Center Loss

It is expected that the same local branch focuses on the same facial part for every facial

image, making models to emphasize important facial parts and suppress useless or noisy

ones. To this aim, an attention center loss (ACL) is proposed to effectively regularize the

attention learning process.

Specifically, an attention center is learned for each attention map in local CNNs. In the

training stage, attention center Ai from the ith local branch is updated where the distance

between Ai and the local representation Pi (See Eqn. (7.2)) is minimized. The following

formulation can be used:

LACL =
b∑
i=1

||Pi − Ai||22. (7.4)
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The Ai is initially set to 0, and updated at each iteration by moving average:

At+1
i = Ati + β(P t

i − Ati), (7.5)

where β controls the update from iteration t to iteration t+ 1.

By penalizing the variances between the attention center and the corresponding local

representation, the LACL encourages each local branch to locate the same semantic facial

part of the input face image. Consequently, only discriminative facial parts are emphasized

and less informative or noisy ones are suppressed.

Overall Loss

In order to supervise the network to learn discriminative features, the classification loss

LCls should be used, including Softmax loss (LCls-softmax), CosFace loss [30] (LCls-cosface), and

ArcFace loss [31] (LCls-arcface) are used. Compared with Softmax loss, the CosFace and

ArcFace loss can generate more discriminative features but need a longer training time.

Softmax loss is defined as follows:

LCls-softmax = − 1

N

N∑
i=1

eW
T
yi
xi + byi∑K

j=1 e
WT

j xi+bj
, (7.6)

where N and K denote the number of samples and classes, respectively. xi ∈ Rd refers the

ith deep feature, belonging to the yi class. d is the feature dimension. Wj and bj are the

weights and bias term in the last FC layer connecting to the jth class.

CosFace loss is formulated as follows:

LCls-cosface = − 1

N

N∑
i=1

log
es(cos(θyi,i)−m)

es(cos(θyi,i)−m) +
∑

j ̸=yi e
s cos θj,i

, (7.7)

where m is the cosine margin to maximize the decision margin in the angular space. The

sample xi is normalized and re-scaled to s.

The additive angular margin penalty m is used in ArcFace loss to encourage the intra-

class compactness and inter-class discrepancy.

LCls-arcface = − 1

N

N∑
i=1

log
es(cos(θyi,i+m))

es(cos(θyi,i+m)) +
∑

j ̸=yi e
s cos θj,i

. (7.8)
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The LCls is incorporated with LACL to form the overall loss as follows:

L = LCls + λLACL, (7.9)

where λ controls the trade-off in these two losses.

The AAN-Face Model

In local CNNs, ensemble concatenates representations from multiple local branches. The

key to success is the excellent performance of the individual local branch as well as outstand-

ing complementarity among multiple local branches. The classification loss LCls ensures the

excellent performance of individual local branch. LACL controls the same attention map to

focus on the same semantic facial part for every facial image. For example, the ith attention

map emphasizes eyes for every face image. However, if without a proper guidance, multi-

ple local branches may have the similar attention centers, and thus focus on similar facial

parts, while missing potentially discriminative ones. To enhance the diversity among local

branches, the AE is used before the ACL, aiming to differentiating the feature embeddings

among different branches. This is achieved by removing some facial parts in the training

process, which results in the localization of non-removed facial parts. Consequently, diverse

complementary facial parts are emphasized to boost the performance.

7.3 Experiments

7.3.1 Implementation Details

During training on VGGFace2 data, Softmax loss is employed. The batch-size is 330.

Learning rate starts at 0.1 and is multiplied by 0.1 at the 5th and 9th epochs, respectively.

Training stops at the 10th epoch. During training on MS1MV2 data, there are several

different settings: First, if IR-100 (AAN-Face⋆) is adopted as the stem CNN, ArcFace

loss in Eqn. (7.8) is adopted where s = 32 and m = 0.35. The batch-size is 512. The

learning rate is 0.1 initially and is multiplied by 0.1 at the 13th, 19th, and 23nd epochs,

respectively. Training stops at the 24th epoch; Second, AAN-Face† has the same epoch

setting as HPDA [14]; Third, when LS-CNN (AAN-Face‡) or LS-CNN-177 (AAN-Face◦)
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Table 7.1: Effectiveness of the proposed components and their combinations.
Global
CNN

Local
CNNs ACL AE LFW CPLFW CALFW

√
97.85 76.06 84.73

√ √
98.02 77.63 85.92

√ √ √
98.13 78.33 86.18

√ √ √
98.06 77.73 86.87

√ √ √ √
98.27 78.72 87.03

Figure 7.5: CAMs without/with the ACL. Columns 1&4: Four faces with various chal-

lenging factors. Columns 2&5: CAMs without the ACL. Columns 3&6: CAMs with the

ACL.

are used as backbone, CosFace loss in Eqn. (8.8) is used where scale s and margin m are

set to 32 and 0.5, respectively. The batch-size is set to 256. The number of warm-up epochs

is 2. The learning rate starts at 0.03 and is multiplied by 0.1 at the 13th and 19th epochs,

respectively. It is set to 1e− 4 at the 23rd epoch. Totally there are 24 training epochs.

The number of local branches b is 6 after conducting comparative analysis. The AE is

performed with a probability p = 0.5. The aspect ratio a and upper bound area ratio sh

in the AE is 0.3 and 0.4, respectively. β in Eqn. (7.5) is set to 0.05. λ in Eqn. (7.9) is

experimentally set to 1.

7.3.2 Ablation Study

Several experiments are performed to investigate the proposed model on the LFW,

CPLFW, and CALFW datasets. Tables 7.1 and 7.5 give detailed investigations.
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Figure 7.6: CAMs without/with the AE. Row 1: Faces with occlusions or large pose varia-

tions. Row 2: CAMs without the AE. Row 3: CAMs with the AE.

Figure 7.7: Class Activation Maps (CAMs) [7] on three positive pairs with pose variations

(Rows 1, 2, 3&4) and age gaps (Rows 5&6). Column 1: Original faces. Column 2: CAMs

with local CNNs. Column 3: CAMs with ACL. Column 4: CAMs with AE. Column 5:

CAMs with ACL and AE.
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Table 7.2: Performance comparison (%) on Pitch 0, different Yaw of M2FPA dataset [10].

Method Pitch 0, different Yaw

15 30 45 60 75 90

w/o AE 99.92 99.68 98.99 97.33 91.63 52.37

w/ AE 99.89 99.79 99.31 97.68 92.66 53.92

Table 7.3: Performance comparison (%) on Pitch +15, different Yaw of M2FPA dataset [10].

Method Pitch +15, different Yaw

0 15 30 45 60 75 90

w/o AE 99.89 99.87 99.89 99.31 96.22 85.66 45.12

w/ AE 99.79 100.0 99.97 99.36 96.46 85.93 45.79

Contributions of proposed components

As discussed above, our AAN-Face mainly consists of two components: the AE and the

ACL. We perform comparative experiments in Table 7.1 to show their effectiveness.

First, the performance is slightly increased on test datasets by adding local CNNs, which

rises from 97.85% to 98.02% on LFW, from 76.06% to 77.63% on CPLFW, and from 84.73%

to 85.92% on CALFW, respectively. The outcome can be attributed to the fact that local

CNNs automatically select informative regions which would play important roles in FR.

Since local facial representations are complementary with the global face description, a better

performance is achieved.

Second, it should be noticed that without a proper guidance, there exist two issues: 1)

Attention maps may miss some important facial parts, as illustrated in Fig. 7.5 Row 1

Columns 2&5; 2) Attention maps may take useless or even noisy regions into consideration,

as shown in Fig. 7.5 Row 2 Columns 2&5. To address this challenge, the ACL is proposed

to control the ith attention map in the ith local branch to focus on the same facial part

for every facial image. Because the ACL pulls the deep embeddings of the same local

branch to the same attention centers, this is a very strong signal to control the responses

of attention maps on facial images, which can address the aforementioned two issues. First,

the randomness between different attention maps are reduced, encouraging models to locate
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Table 7.4: Performance comparison (%) on Pitch +30, different Yaw of M2FPA dataset [10].

Method Pitch +30, different Yaw

0 22.5 45 67.5 90

w/o AE 99.63 99.23 96.46 81.05 37.95

w/ AE 99.89 99.17 96.83 81.78 39.07

discriminative facial parts. As illustrated in Fig. 7.5 Row 1, more rich important facial parts

are emphasized in Columns 3&6, compared with Columns 2&5. Second, the same attention

map tends to locate the same semantic facial parts. In such a way, only useful facial parts are

emphasized, while noisy ones are suppressed, as illustrated in Fig. 7.5 Row 2 Columns 3&6,

compared with Row 2 Columns 2&5. important facial parts tend to be highlighted, while less

informative regions are inevitably suppressed. This explains why 0.11% increase on LFW,

0.70% increase on CPLFW, and 0.26% increase on CALFW are obtained, respectively. The

ACL can guide each attention map to locate the same semantic facial parts.

Third, the AE can generate occlusions in feature maps. Consequently, models are en-

couraged to learn useful representations from non-occluded facial regions, resulting multiple

diverse local representations. Therefore, accuracy improvements occur when the AE is ap-

plied, which are from 98.02% to 98.06% on LFW and from 85.92% to 86.87% on CALFW,

respectively. Besides, training data would exhibit rich occlusion changes, which well prepares

models to pose variations. Consequently, the accuracy on CPLFW is boosted from 77.63%

to 77.73%. As show in Fig. 7.6, the model with AE (Row 3) is more robust to occlusions

or large pose variations than the case of without AE (Row 2). Besides, M2FPA [10] is also

evaluated. It is the most comprehensive multi-view face database for facial pose analysis

which has 397,544 images of 229 subjects with different yaw, pitch, attribute, illumination,

and accessory variations. As shown in Tables 7.2, 7.3, and 7.4, the model with AE achieves

the better performances than the model without AE. More specifically, it is observed that

the larger the yaw angles, the lower the performances are obtained. The AE enables models

to well prepare various pose variations. This explains why the performance improvement is

larger if the AE is used when the yaw angle increases, compared with the model w/o the

AE.
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Fourth, the ACL encourages the same attention map to focus on the same facial part for

every facial image. Although supervised by the ACL, the overlap of different attention maps

is reduced. However, it is still possible that different attention maps focus on the same salient,

discriminative features because there is no explicit mechanism to repel different attention

centers scattered. Consequently, they tend to ignore other potentially discriminative regions.

To alleviate this challenge, the AE is conducted before performing the ACL, as demon-

strated in Fig. 7.3, where each attention map is multiplied with the same erasing mask. As

a consequence, if some discriminative facial parts are removed, models then turn to other

discriminative regions, reducing the risk of redundant responses around similar facial regions

among different local branches. Different attention centers which aim at different facial parts

are learned. Therefore, multiple local branches are more likely to focus on different facial

parts. We demonstrate better performance is achieved by utilizing the ACL and AE simul-

taneously, which is 98.27% on LFW and 87.03% on CALFW, respectively. Besides, when

the AE is applied, training data would exhibit rich occlusion changes, which well prepares

models towards pose variations. Therefore, the performance on CPLFW is boosted from

78.33% to 78.72%. As illustrated in Fig. 7.7, compared with ACL (Column 3) and AE

(Column 4), putting ACL and AE together in Column 5 can obtain more comprehensive

discriminative local patches. This demonstrates the excellent complementarity between the

AE and ACL.

Varying number of local branches b

The number of local branches b is compared in Table 7.5. The performance is improved

from 98.05% to 98.27% on LFW and from 78.58% to 78.72% on CPLFW when b is increased

from 3 to 6. This outcome can be attributed to the fact that more discriminative facial regions

are located by different local branches. But accuracy drops slightly when b is changed to 9,

which is 98.08%, 77.85%, and 86.85% on LFW, CPLFW, and CALFW, respectively. This is

because useless or noisy information are extracted in some branches when b is too large.
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Table 7.5: Performance comparison (%) of varying number of local branches (b), probability

(p) of conducting the AE, AE locations, AE types, and ACL types.

b p AE Locations AE Types ACL Types LFW CPLFW CALFW

3 0.50 AE-L AE-R ACL-F 98.05 78.58 87.06

6 0.50 AE-L AE-R ACL-F 98.27 78.72 87.03

9 0.50 AE-L AE-R ACL-F 98.08 77.85 86.85

6 0.25 AE-L AE-R ACL-F 98.38 78.28 86.78

6 0.50 AE-L AE-R ACL-F 98.27 78.72 87.03

6 0.75 AE-L AE-R ACL-F 98.22 76.88 86.95

6 0.50 AE-N - ACL-F 98.13 78.33 86.18

6 0.50 AE-I AE-R ACL-F 97.78 78.58 85.87

6 0.50 AE-G AE-R ACL-F 98.20 77.75 86.95

6 0.50 AE-GL AE-R ACL-F 98.23 78.05 87.37

6 0.50 AE-L AE-R ACL-F 98.27 78.72 87.03

6 0.50 AE-L - ACL-F 98.06 77.73 86.87

6 0.50 AE-L AE-0 ACL-F 98.00 77.53 86.43

6 0.50 AE-L AE-M ACL-F 98.38 78.28 86.68

6 0.50 AE-L AE-R ACL-F 98.27 78.72 87.03

6 0.50 AE-L AE-R ACL-M 98.06 78.72 86.72

6 0.50 AE-L AE-R ACL-FS 98.10 76.22 85.95

6 0.50 AE-L AE-R ACL-F 98.27 78.72 87.03
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Different values of probability p to conduct the AE

Different probability values p (0.25, 0.5, and 0.75) to conduct the AE operation are

compared in Table 7.5. When p is increased from 0.25 to 0.5, the performance is boosted to

from 78.28% to 78.72% on CPLFW and from 86.78% to 87.03 % on CALFW. However, if p

is increased to 0.75, the performance is slighted dropped to 76.88% on CPLFW and 86.95%

on CALFW.

Different locations of the AE

Varying locations of the AE are compared in Table 7.5: AE-N represents no AE is used;

AE-I, AE-G, AE-L, and AE-GL denote the AE is used in the image, global, local, and

both global and local branches, respectively.

On one hand, because the AE-L is applied on high-level attention maps where one unit

corresponds to one facial part, discriminative facial parts tend to be removed. As a result, the

AAN-Face model would explore other potentially discriminative facial parts. On the other

hand, since the AE-I is applied on images, it is more likely to erase less informative facial

parts. As a consequence, models are less likely to explore other discriminative parts and

only focus on few facial parts. Therefore, AE-L can better encourage models to learn diverse

discriminative local representations, which achieves 98.27% on LFW, 78.72% on CPLFW,

and 87.03 on CALFW, respectively, compared with 97.78%, 78.58%, and 85.87% of the AE-I.

For FR, if the model only focuses on few facial parts, it is very likely to predict the wrong

identity when these parts are occluded because of pose and viewpoint variations. Therefore,

it is crucial to extract diverse local features from different facial parts. When the AE is

used in local CNNs, some facial regions located by attention maps in local branches are

erased, encouraging models to extract potentially discriminative features from non-erased

facial regions. This explains why AE-L (98.27%, 78.72%, 87.03%) has a better performance

than AE-N (98.13%, 78.33%, 86.18%), and AE-GL (98.23%, 78.05%, 87.37%) obtains a

higher accuracy than AE-G (98.20%, 77.75%, 87.35%).

Besides, in the AE-G, units are erased within selected facial regions in feature maps of

the global CNN, which makes models robust to various occlusions. Meanwhile, in the AE-L,
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the ACL cooperates with the AE to focus on diverse local information. In this way, the

AE-L not only better prepares models with various occlusion levels, but also pushes models

to generate diverse discriminative local representations beyond occluded facial regions. This

explains why the AE-L has a better performance than the AE-G, which is 98.27% to 98.20%

on LFW, 78.72% to 77.75% on CPLFW, and 87.03% to 86.85% on CALFW, respectively.

Different types of random values in the AE

Three types of random values are used in the AE to erase units in the selected rectangle

region: 1) Units are assigned with 0, denoted as AE-0; 2) Units are erased with mean

values 0.5, referred to AE-M; 3) Units are replaced with random values ranging in [0, 1],

represented as AE-R. As shown in Table 7.5, we notice that AE-M and AE-R outperform

the baseline; AE-R and AE-M have slightly better performance than AE-0; AE-R obtains a

higher accuracy on AE-M. If not specified, AE-R is the default setting.

Table 7.6: The settings of methods in Table 5.3. Specifically, Center loss uses web-collected

training data, including CASIA-WebFace [11], CACD2000 [12], and Celebrity+ [13]. After

removing the images with identities appearing in testing datasets, it roughly goes to 0.7M

images of 17,189 unique persons.

Method Backbone Dataset Batch size Image size

Center loss [29] ResNet34 Combined 256 112×96

SphereFace [36] ResNet64 WebFace 128 112×96

LS-CNN [5] LS-CNN VGGFace2 256 128

MV-Softmax [138] AttentionNet MS-v1c-R 128 144

ArcFace [31] ResNet100 MS1MV2 512 112

DDL [150] ResNet100 VGGFace2 1536 112

HPDA [14] LS-CNN MS1MV2 256 112

DBM [140] ResNet50 MS1MV2 - 112

AAN-Face⋆ ResNet100 MS1MV2 512 112

AAN-Face† LS-CNN MS1MV2 256 112

AAN-Face‡ LS-CNN MS1MV2 256 112

AAN-Face◦ LS-CNN-177 MS1MV2 256 112
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Table 7.7: The settings of methods in Table 5.3. Specifically, Center loss uses web-collected

training data, including CASIA-WebFace [11], CACD2000 [12], and Celebrity+ [13]. After

removing the images with identities appearing in testing datasets, it roughly goes to 0.7M

images of 17,189 unique persons.

Method Learning rate
Epochs
or iters

Center loss [29] 0.1(1+floor(iters/[16K,24K])) 28K

SphereFace [36] 0.1(1+floor(iters/[16K,24K])) 28K

LS-CNN [5] 0.1(1+floor(epoch/[5,9])) 10

MV-Softmax [138] 0.1(1+floor(iters/[4,8,10])) 12

ArcFace [31] 0.1(1+floor(iters/[100K,160K])) 180K

DDL [150] 0.1(3+floor(iters/10K)) 20K

HPDA [14]
3 ∗ 0.1(2+floor(epoch/[7,10]))

2 warm-up epochs; 1e-4 if epoch=11 12

DBM [140] 0.1(1+floor(epoch/[5,8,11])) 15

AAN-Face⋆ 0.1(1+floor(epoch/[13,19,23])) 24

AAN-Face†
3 ∗ 0.1(2+floor(epoch/[7,10]))

2 warm-up epochs; 1e-4 if epoch=11 12

AAN-Face‡
3 ∗ 0.1(2+floor(epoch/[13,21]))

2 warm-up epochs; 1e-4 if epoch=23 24

AAN-Face◦
3 ∗ 0.1(2+floor(epoch/[13,21]))

2 warm-up epochs; 1e-4 if epoch=23 24

Varying types of the ACL

The ACL is used to encourage the same local branch to focus on the same facial part.

When the ACL is used with the AE, diverse facial regions can be automatically learned.

Three types of ACL are evaluated in Table 7.5. ACL-M and ACL-F denote that the ACL

is applied on attention maps and feature embeddings of local branches, respectively. Notice

that each subject learns its corresponding attention centers in both ACL-M and ACL-F. We

also compare the ACL-FS where feature embeddings of attention centers are shared among

different subjects.

ACL-M penalizes the variances of locations about responded facial areas and their centers.

Consequently, it is easily affected by location changes of facial regions, especially scenarios

under heavy occlusions or large pose variations. In contrast, ACL-F is proposed to efficiently
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Table 7.8: Performance comparison (%) on cross-quality and cross-pose face matching.

Method IJB-A quality
CPLFW CFP-FP VGGFace2-FP

FAR=0.01 FAR=0.001

Center loss [29] 52.5 31.3 77.48 - 75.10

SphereFace [36] 54.8 39.6 81.40 - 20.10

LS-CNN [5] 87.5 75.5 88.03 97.17 69.92

MV-Softmax [138] - - 89.69 95.70 -

ArcFace [31] 68.6 65.7 92.08 98.37 46.20

DDL [150] - - 93.43 98.53 -

HPDA [14] 87.6 80.3 92.35 - 95.32

DBM [140] - - 92.63 - -

AAN-Face⋆ 90.6 85.9 93.25 98.39 95.72

AAN-Face† 89.2 82.6 92.68 97.94 95.62

AAN-Face‡ 89.4 82.9 92.97 98.26 95.68

AAN-Face◦ 90.0 84.5 93.57 98.63 95.82

pull the deep embeddings of the same semantic facial parts to their centers. Since embeddings

in ACL-F are outputs of the GAP operation, ACL-F is encouraged to be more robust to

changes of facial parts locations. This is the reason why ACL-F has a better performance

than ACL-M (98.27% to 98.06% on LFW and 87.03% to 86.72% on CALFW).

Different from ACL-FS which has shared attention centers among different subjects,

ACL-F has its attention centers for each subject. In such a way, each subject has the

ability to flexibly locate its discriminative facial regions. This allows ACL-F models to

learn informative features flexibly than ACL-FS models. Therefore, ACL-F achieves 98.27%

on LFW, 78.72% on CPLFW, and 87.03% on CALFW, exceeding ACL-FS which obtains

98.10%, 76.22%, and 85.95%, respectively.

7.3.3 Experiments on Cross-Quality Face Matching

This task matches a low-quality face with a high-quality face, which is very common in

real-world applications. Different methods are compared on IJBA-quality dataset, as shown

in Table 7.8. A tuple (a, b) is used to efficiently represent verification results when FAR=0.01
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Table 7.9: Performance comparison (%) on cross-age and general face matching.

Method CALFW AgeDB-30 LFW

Center loss [29] 85.48 - 99.13

SphereFace [36] 90.30 - 99.42

LS-CNN [5] 92.00 - 99.52

MV-Softmax [138] 95.63 98.11 99.79

ArcFace [31] 95.45 98.15 99.83

DDL [150] - - 99.68

HPDA [14] 95.90 - 99.80

DBM [140] 96.08 97.90 99.78

AAN-Face⋆ 96.03 97.95 99.85

AAN-Face† 96.00 97.83 99.80

AAN-Face‡ 95.97 98.10 99.82

AAN-Face◦ 96.13 98.15 99.87

and 0.001, respectively.

Several models design advanced loss functions, like Center loss [29], SphereFace [36],

and ArcFace [31]. However, they employ global faces to extract representations, which may

suffer from performance degradation due to dramatic quality changes of global face images.

In contrast, LS-CNN [5] designs a spatial attention module to weigh important parts and

suppress noisy ones, obtaining a higher performance, i.e. (87.5%, 75.5%).

By extracting rich local representations, HPDA [14] achieves a result of (87.6%, 80.3%).

Despite with the same training setting as the HPDA, the proposed AAN-Face† outperforms

the HPDA, obtaining a result of (89.2%, 82.6%). Similarly, as illustrated in Tables 7.6

and 7.7, both ArcFace and AAN-Face⋆ train ResNet-100 on the same MS1MV2 dataset.

However, the latter achieves the state-of-the-art result, i.e. (90.6%, 85.9%) as shown in

Table 5.3. This is because our AAN-Face model is robust to occlusions or pose changes

which have significant influences on face image quality values. AAN-Face‡ doubles training

epochs, achieving a performance of (89.4%, 82.9%). Employing a more powerful network

(LS-CNN-177), AAN-Face◦ achieves a competitive performance, i.e. (90.0%, 84.5%).
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7.3.4 Experiments on Cross-Pose Face Matching

We compare the AAN-Face model with state-of-the-art methods in Table 7.8 where a

tuple (a, b, c) is used to represent results on CPLFW, CFP-FP, and VGGFace2-FP datasets.

VGGFace2-FP results of Center loss, SphereFace, and ArcFace models are from [139].

Firstly, AAN-Face⋆ is trained on ResNet-100 and achieves a competitive result of (93.25%,

98.39%, 95.72%). Secondly, experimental results demonstrate that our AAN-Face† model

achieves a higher overall performance, which is (92.68%, 97.94%, 95.62%). This is because

AAN-Face can well prepare models with pose variations by generating various occlusions

levels using the AE. For instances, as demonstrated in Fig. 7.2, different discriminative

facial parts are erased, simulating various levels of pose variations. Furthermore, when

the AE is incorporated with the ACL, the AAN-Face model can extract rich diverse local

representations. If some facial parts are invisible in profile faces, representations from other

facial parts can contribute. Take faces in Fig. 7.1 as examples, although eyes in Row 2,

Columns 1&4 and Row 3, Column 4 are occluded, the similar noses in Row 2 and similar

lips in Row 3 located by AAN-Face model contribute the verification. Thirdly, AAN-Face‡

further increases the performance to (92.97%, 98.26%, 95.68%). Besides, AAN-Face◦ achieves

the state-of-the-art accuracy, which is (93.57%, 98.63%, 95.82%).

7.3.5 Experiments on Cross-Age Face Matching

We compare the results of AAN-Face model with the state-of-the-art approaches on

CALFW and AgeDB-30 in Table 5.3.

It demonstrates that our approach surpasses the state-of-the-art. Although faces with

large age gaps have remarkable appearance changes, some facial regions remain similar which

play important roles in cross-age face matching. For example, faces in Fig. 7.1 Row 4 have

dramatic appearance changes, but we can still match them by the similar noses and mouths.

Guided by the AE and ACL, AAN-Face model can extract multiple local representations.

This is the reason why AAN-Face◦ model has a higher accuracy than other models, achieving

96.13% on CALFW and 98.15% on AgeDB-30, respectively.
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Table 7.10: Performance comparison (%) on cross-modality face matching.

Method CASIA NIR-VIS 2.0

FAR=0.01 FAR=0.001 FAR=0.0001 Rank-1

IDR [151] 98.90 95.70 - 97.30

WCNN [152] 99.40 97.60 - 98.40

MFR [153] 99.32 95.97 81.92 96.92

PCFH [154] 99.60 97.70 - 98.80

PACH [155] 99.60 98.30 - 98.90

HPDA [14] 99.47 98.28 94.56 98.68

AAN-Face⋆ 89.98 75.10 55.90 81.11

AAN-Face† 99.67 98.94 96.29 99.18

AAN-Face‡ 99.40 98.00 93.54 98.54

AAN-Face◦ 99.65 99.06 97.06 99.27

7.3.6 Experiments on LFW Dataset

Because most faces in LFW dataset are frontal or near-frontal, this a relatively simple

task. Although our AAN-Face model is designed to solve many challenging face matching

tasks, it still obtains the highest accuracy on the LFW.

As demonstrated in Table 7.9, AAN-Face⋆ and AAN-Face† achieve 99.85% and 99.80%

accuracy. Although it has the same stem CNN as AAN-Face†, AAN-Face‡ doubles the train-

ing epochs, leading to a better convergence and obtaining 99.82% accuracy. Furthermore,

since AAN-Face◦ uses a powerful stem CNN (LS-CNN-177), which obtains a 99.87% accu-

racy. Since there are 6 mislabeled pairs in the verification protocol, the upper bound of

accuracy is 99.90%. These results show a excellent generalization ability of the proposed

model.

7.3.7 Experiments on Cross-Modality Face Matching

We compare different methods on the CASIA NIR-VIS 2.0 database in Table 7.10. In

order to show the results efficiently, we use a tuple (a, b, c, d) to represent TAR results when

FAR=0.01, 0.001, 0.0001, and Rank-1 accuracy, respectively.
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Both IDR [151] and WCNN [152] are pre-trained on MS-Celeb-1M dataset and fine-

tuned on the NIR-VIS domain, which obtain (98.90%, 95.70%, -, 97.30%) and (99.40%,

97.60%, -, 98.40%), respectively, where - represents that the result is unavailable. Without

training on NIR face images, MFR [153] meta-leans transferable knowledge across domains

to improve generalization, achieving a competitive performance (99.32%, 95.97%, 81.92%,

96.92%). PCFH [154] and PACH [155] solve the heterogeneous face recognition problem

via face hallucination, which achieves (99.60%, 97.70%, -, 98.80%) and (99.60%, 98.30%, -,

98.90%), respectively.

Although our previous HPDA [14] does not use any NIR images during training or learns

transferable knowledge in different domains, it still achieves great performance of (99.47%,

98.28%, 94.56%, 98.68%). We attribute this to the fact that different local representations

are extracted to match faces at different modalities. With the same training settings as

HPDA [14], AAN-Face† improves the performance to (99.67%, 98.94%, 96.29%, 99.18%).

This again shows the better localization ability of diverse local patches in our AAN-Face

model, despite of the modality discrepancy problem. Meanwhile, compared with AAN-Face†,

AAN-Face‡ doubles the training epochs, but obtains an inferior performance of (99.40%,

98.00%, 93.54%, 98.54%). This may be explained by the fact that AAN-Face‡ tends to

be over-fitting on the VIS domain, while limiting its generalization capacity of extracting

discriminative information on NIR images. Using a more powerful stem CNN (i.e. LS-

CNN-177), AAN-Face◦ achieves the overall best performance, i.e. (99.65%, 99.06%, 97.06%,

99.27%). This is achieved without fine-tuning on NIR face images, which again demonstrates

the strong generalization ability of our AAN-Face model.

7.3.8 Experiments on Masked Face Matching

The AAN-Face is compared with different models in Tables 7.11 and 7.12 on several

challenging protocols about masked faces, including M2N, M2M, and MLFW. The publicly

available ArcFace [31] and CurricularFace [143] models are evaluated. Besides, our previous

HPDA [14] is also compared. In order to compare results fairly, AAN-Face⋆ and AAN-

Face† are used. The former is trained on ResNet-100 which also is used in ArcFace and
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Figure 7.8: Qualitative illustration of the AAN-Face model [8] on the masked face matching.

Rows 1&3 Input faces with quality changes (Column 1), pose variations (Column 2),

aging (Column 3), almost frontal views (Column 4), and heavy occlusions (Columns 5,

6&7). Rows 2&4 show CAMs generated by our AAN-Face model.

CurricularFace, and the latter is trained on LS-CNN which is employed in HPDA.

M2N refers to matching faces between masked and normal faces in RMFRD. Notice that

either masked or normal faces are captured under the real-world scenarios. As shown in

Fig. 7.8, faces have dramatically different appearances, like low-quality faces (Column 1),

profile faces (Column 2), faces with large age gaps (Column 3), frontal faces (Column 4),

and heavily occluded faces (Columns 5, 6, &7). Therefore, M2N is a very challenging task.

It contains a verification and an identification protocols. To show the results efficiently,

a tuple (a, b, c, d) is used where a, b, and c represent TAR values on FAR=0.1, 0.01, and

0.001, respectively, and d denotes the the Rank-1 accuracy. ArcFace [31] and CurricularFace

[143] obtain performances of (31.53%, 8.54%, 1.45%, 15.73%) and (33.43%, 13.21%, 4.42%,

17.38%), respectively. Wearing face masks makes some parts of a face occluded (i.e. noses

and mouths). Since global faces are directly employed to train ArcFace and CurricularFace

models, distracted masks tend to be represented, resulting in inferior representations. In

masked face matching, it is expected that models can recognize the identity from non-

occluded parts. To this aim, HPDA [14] can extract diverse local representations, so non-

occluded facial parts can contribute beyond the occluded ones, boosting the performance to
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Table 7.11: Performance comparison (%) of our AAN-Face models with several models on

M2N and M2M protocols of masked face matching.

Method M2N M2M
FAR=
0.1

FAR=
0.01

FAR=
0.001 Rank-1

FAR=
0.1

FAR=
0.01

FAR=
0.001

ArcFace [31] 31.53 8.54 1.45 15.73 29.22 7.25 2.06

CurricularFace [143] 33.43 13.21 4.42 17.38 31.55 9.79 2.95

HPDA [14] 57.41 30.94 14.98 34.76 58.99 37.68 22.01

AAN-Face⋆ 45.62 19.56 7.49 23.65 47.41 21.14 7.27

AAN-Face† 61.28 34.74 17.18 40.57 60.31 38.18 19.79

AAN-Face‡ 61.24 36.36 18.87 42.31 60.59 38.23 20.13

AAN-Face◦ 62.11 37.18 18.71 41.54 59.39 35.95 16.54

Table 7.12: Performance comparison (%) of our AAN-Face models with several models on

MLFW protocol of masked face matching.

Method MLFW

FAR=0.1 FAR=0.01 FAR=0.001 Acc.

ArcFace [31] 44.92 12.85 1.81 69.25

CurricularFace [143] 59.24 23.45 3.62 74.61

HPDA [14] 89.06 85.51 76.65 92.34

AAN-Face⋆ 80.87 66.19 29.26 86.10

AAN-Face† 89.44 86.22 80.71 92.58

AAN-Face‡ 89.77 86.28 83.13 92.65

AAN-Face◦ 89.67 86.95 84.17 92.91

(57.41%, 30.94%, 14.98%, 34.76%).

With the same backbone as ArcFace and CurricularFace, AAN-Face⋆ boosts the result to

(45.62%, 19.56%, 7.49%, 23.65%). Compared with HPDA which is trained on LS-CNN [5],

AAN-Face† uses the same backbone, but boosts the performance to (61.28%, 34.74%, 17.18%,

40.57%). There are two reasons that can explain the results. First, the AE simulates

occlusions, which well prepares the model for masked faces. Second, the ACL controls the

centers of attention maps, extracting diverse local representations, making it possible that

non-occluded parts contribute beyond the masked parts. Compared with AAN-Face†, AAN-

Face‡ doubles the training epochs and has a better convergence, improving the performance



Qiangchang Wang Chapter 7.AAN-Face 143

to (61.24%, 36.36%, 18.87%, 42.31%). Using the LS-CNN-177, AAN-Face◦ achieves 62.11%,

37.18% on FAR=0.1, 0.01, respectively, but drops slightly to 18.71% on FAR=0.001 and

rank-1 accuracy of 41.54%.

M2M refers to the matching between masked faces and masked faces. A tuple (a, b, c)

is used where a, b, and c represent the TAR values on FAR=0.1, 0.01, and 0.001, respec-

tively. As demonstrated in Table 7.11, ArcFace and CurricularFace have performances of

(29.22%, 7.25%, 2.06%) and (31.55%, 9.79%, 2.95%). On one hand, both ArcFace and

CurricularFace are trained on global face images. On the other hand, some facial parts in

either gallery or probe faces in testing are occluded. The large gap in train and testing data

leads to the inferior performance. Differently, HPDA [14] automatically locates diverse facial

parts, boosting the performance to (58.99%, 37.68%, 22.01%). Furthermore, due to its well

preparation towards occlusions and excellent ability to extract diverse local representations,

AAN-Face⋆ and AAN-Face† achieve performances of (47.41%, 21.14%, 7.27%) and (60.31%,

38.18%, 19.79%), respectively. AAN-Face‡ further increases the results to (60.59%, 38.23%,

20.13%). However, the accuracy of AAN-Face◦ is slightly decreased to (59.39%, 35.95%,

16.54%). This may because AAN-Face◦ is over-fitted on non-occluded facial images, leading

to a poor generalization ability.

The MLFW denotes a verification protocol on masked LFW dataset. A tuple (a, b, c, d) is

used where a, b, and c represent TAR values on FAR=0.1, 0.01, and 0.001, respectively, and d

denotes the accuracy. Although the publicly available ResNet100 based ArcFace dataset1 and

CurricularFace models achieve 99.77% and 99.80% on the original LFW, their performance

is dramatically reduced to (44.92%, 12.85%, 1.81%, 69.25%) and (59.24%, 23.45%, 3.62%,

74.61%) on MLFW, as illustrated in Table 7.12. In contrast, AAN-Face⋆ obtains a perfor-

mance of (80.87%, 66.19%, 29.26%, 86.10%). Both HPDA [14] and AAN-Face† obtain 99.80%

accuracy on the original LFW. Due to the localization of multiple local representations in

HPDA [14], it obtains (89.06%, 85.51%, 76.65%, 92.34%). AAN-Face† further increases the

performance to (89.44%, 86.22%, 80.71%, 92.58%). This demonstrates the importance and

effectiveness of the local representations in masked face recognition. In comparison, AAN-

Face‡ yields (89.77%, 86.28%, 83.13%, 92.65%). Lastly, AAN-Face◦ achieves the best overall

1https://github.com/deepinsight/insightface/wiki/Model-Zoo
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performance of (89.67%, 86.95%, 84.17%, 92.91%)

7.4 Summary

We have presented a new model called AAN-Face for face recognition, which may be the

first attempt to augment the training images for various face recognition tasks. The proposed

attention erasing (AE) scheme in applied in attention maps to simulate various occlusion

levels, making models robust to pose or occlusion changes. The proposed attention center

loss (ACL) can control the same attention map to focus on the same facial parts, capturing

critical local patches and ignoring the uninformative. When the ACL is fused with the AE

scheme, models are encouraged to learn diverse local representations. Experimental results

on several challenging tasks, especially on masked face datasets, have demonstrated that our

new approach outperforms the state-of-the-art models.
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Chapter 8

CQA-Face: Contrastive Quality-aware

Attentions for Face Recognition

8.1 Motivations

Face recognition (FR) has many practical applications. Previous works can be divided

into two categories: global-based approaches and local-based methods. The former learns

features on global face images [31, 140]. However, they rarely consider representations on

local patches to improve discrimination of face features. Three positive pairs are shown in

Fig. 8.2 (a)&(f), the holistic faces change dramatically by blur changes in (1), pose variations

in (2), and age gaps in (3). However, some local patches remain similar which can help the

verification. For example, the similar eyes in (1) or the similar noes in (2)&(3).

There are mainly two groups of methods to extract discriminative local representa-

tions: landmark-based and attention-based methods. Landmark-based works detected face

landmarks first and then extract local features on cropped regions centered around land-

marks [37,38,42]. However, these methods largely depend on accuracy of landmark detection

and may even suffer from detection failure under dramatic pose variations or heavy occlu-

sions. For example, due to the ongoing outbreak of the COVID-19, people are wearing face

masks. Because some facial parts (e.g. noses or mouths) are invisible, landmark detection

may be inaccurate or failed. Besides, even if face landmarks are detected, the cropped parts

may include masks which would inevitably deteriorate the extracted face features. Without
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 (a)         (b)        (c)        (d)        (e)         (f)         (g)        (h)        (i)        (k)

(1)

(2)

(3)

Figure 8.1: Effects of the CQA-Face model on three positive pairs. (a)&(f): Input faces

are affected by blur changes (1), pose variations (2), and aging (3). (b-d)&(g-i): 1st, 2nd,

and 3rd local branches of local CNNs where different local patches are located in each local

branch. (e)&(k): Discriminative local patches are emphasized in local CNNs. For a good

illustration, only three local branches are used to show class activation maps (CAMs) [3].

relying on landmarks, some models employ attention modules to automatically locate useful

parts [2,5]. However, no mechanism is designed to select the local patches effectively, which

may miss some important facial parts, and thus limit the performance.

FR is challenging mainly because of two reasons: 1) High intra-class variations. Faces

from the same subject may appear at different poses or occlusion levels. In such a case, if

only few facial parts are located, the extracted features may not be sufficient when these

parts are invisible under occlusions (e.g. face masks) or pose variations. 2) Small inter-class

differences. Faces from different subjects may have similar local appearances, especially

considering a large number of subjects. The performance would decline if the few emphasized

facial parts across different subjects look similar. To alleviate the above issues, it is necessary

to capture local representations that are as rich as possible. In such a way, more potentially

useful facial parts can contribute to FR if the few emphasized parts are invisible or remain

similar across different subjects. To achieve this goal, a contrastive attention learning (CAL)

module is devised to encourage the diversity among different attention maps. Consequently,

it is ensured that varying local patches are well-explored across face images and diverse

discriminative facial parts are emphasized.

Local representations can provide discriminative information for FR. However, concate-

nating local representations directly without considering relations between different facial
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parts may not be optimal, as discussed in previous paragraph. To address the limitations of

separated facial parts, the structural correlation of facial parts is built to boost the discrimi-

native ability of local representations. Besides, it is observed that different facial parts have

various quality under occlusion, blur, or pose variations, as illustrated in Fig. 8.2 (b-d)&(g-

i). The performance would be deteriorated if concatenating these local features directly. To

address these two issues, we devise a quality-aware network (QAN). It introduces a part-

level quality-aware module to explore the relation between an individual facial part and the

rest parts by using graph convolutional networks. In such a manner, it has two benefits.

First, each local part itself and its relations with other parts are considered simultaneously.

This encourages each part-level feature to utilize information from other parts, making them

more discriminative. Second, it can estimate the quality of located facial parts, emphasizing

informative parts and suppressing noisy ones.

By putting the CAL and QAN together, a CQA-Face model is developed to learn rich

quality-aware local representations. Our main contributions are three-fold:

1. A contrastive attention learning (CAL) is designed to ensure the localization of com-

prehensive facial parts, especially the less discriminative but still useful facial parts;

2. A region-level quality-aware network (QAN) is proposed to generate quality scores for

each facial part by exploring its relation with the rest, emphasizing important facial parts

and suppressing noisy ones;

3. By combining the CAL and QAN, the CQA-Face model is developed, which outper-

forms the state-of-the-art methods on many challenging datasets.

8.2 Proposed Method

The overall framework of our approach is shown in Fig. 8.2, mainly composed of the stem

CNN, Contrastive Attention Learning (CAL), and Quality-Aware Networks (QAN). The

stem CNN extracts high-level feature maps. Because HSNet-61 model [5] has an excellent

generalization ability, it is used as the default stem CNN.

If without a proper signal, multiple attention maps tend to focus on few facial parts,

while neglecting other important parts. Motivated by this observation, the CAL is devised
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Figure 8.2: (a) CQA-Face: The CAL pushes models to explore comprehensive local repre-

sentations. The QAN learns a quality score for each local patch in a global scope. GAP and

FC refer to the global average pooling and fully-connected layers, respectively. Notice that

only three local branches are used for illustration. (b) LANet: The spatial attention in [5]

is used where h, w, and c is the height, width, and number of channels. r is the reduction

ratio.

to guide multiple local branches to extract diverse local representations based on high-level

feature maps.

However, since comprehensive image details are explored thoroughly across an image,

it is possible that some distracted regions (e.g. face masks) may also be represented. To

alleviate this, the QAN is proposed to learn quality scores among different local patches from

a global scope. Finally, diverse quality-aware local representations are concatenated for face

matching. Details are illustrated as follows.

8.2.1 Contrastive Attention Learning

Existing attention-based methods do not perform localization of less discriminative but

still useful ones. If models focus on few facial parts, they would suffer from performance

drop if facial parts are invisible or remain similar across different subjects. To address this,

a contrastive attention learning (CAL) mechanism is proposed to encourage diversity in

multiple attention maps. Consequently, learned models can retrieve comprehensive local

patches across face images.

Suppose that X ∈ R h×w×c denote the input of the CAL, where h, w, and c refer to the

height, width, and number of channels, respectively. Next, it is expected to learn diverse

attention maps in different local branches, i.e. [M1,M2, ...,Mb], where b is the number of

local branches. As shown in Fig. 8.2 (b), the spatial attention (i.e. LANet) in [5] is used
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to weigh different regions, assigning high weights to important parts and small weights to

useless ones. There are two convolutional layers in LANet in which the first layer uses the

ReLU function and the second layer adopts the Sigmoid function.

For the ith local branch, the output Oi is calculated by the product of the attention map

Mi and input X as follows:

Oi = X ◦Mi, (8.1)

where ◦ denotes Hadamard product.

However, if without a proper guidance, multiple attention maps [O1, O2, ..., Ob] tend to

have similar responses around the same facial parts, limiting the representational ability.

To address this issue, we propose a contrastive attention learning (CAL) using a diver-

gence loss as follows:

LCAL =
2

b(b− 1)

b∑
i=1

b∑
j=i+1

max(0,−t+ exp-(Mi-Mj)
2/σ), (8.2)

where M i and M j mean attention maps in the ith and jth local branches, respectively. t is a

hyper-parameter margin. σ is a positive value to control the shape of the Gaussian function.

The loss LCAL measures the correlation between M i and M j. When M i and M j are

similar, LCAL tends to be large, pushing M i and M j to be dissimilar. In such a way, M i

and M j would have responses around different facial parts. Comprehensive facial parts are

well-explored across face images. Consequently, models can rely on more useful parts if some

parts are invisible for faces with occlusions or pose variations.

After that, a global average pooling (GAP) layer is used to pool feature maps [O1, O2, ..., Ob]

in different local branches, generating local representations in each local branch [P 1, P 2, ..., P b].

It should be mentioned that the diverse learning proposed in [14] can also extract diverse

local patches. The divergence loss is defined as follows:

LD =
2

b(b− 1)

b∑
i=1

b∑
j=i+1

max(0, t− dist(Mi,Mj)), (8.3)

where dist(M i,M j) is the Euclidean distance between M i and M j. As a result, varying

attention maps are encouraged to be different from each other, and thus focus on different

facial parts. Compared with LD [14], our proposed LCAL is more flexible to measure distances

of two attention maps. Experimental results also verify the superiority of our LCAL.
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8.2.2 Quality-Aware Networks

Local patches appear at facial images can be divided into three categories: Few important

local patches (e.g. the nose, mouth, both eyes, or mouth) which can significantly contribute

to FR; Some unimportant regions, like the cheek or forehead; Distracted background or

occlusions which may be represented. This is because these parts are close to important

parts (e.g. eyes) in profile or masked faces. It is highly desired that discriminative parts

should be emphasized and distracted regions should be suppressed.

The attention module automatically determines which regions should be highlighted.

However, few existing approaches design a mechanism to refine attention responses. Conse-

quently, some distracted regions may be extracted, such as noisy background or face masks,

which deteriorate the performance. This issue is especially serious when the CAL is used,

because every face detail is explored to extract comprehensive features. For example, for

masked face matching, because face masks are very close to discriminative parts, noisy in-

formation tends to be represented.

Therefore, there are two issues: Local patches may exhibit varying quality scores; It

is necessary to infer the relations between one facial part and others because the relations

provide important clues to refine attention maps. To alleviate these issues, a quality-aware

network (QAN) is designed. Specifically, it is implemented by a graph convolutional net-

work where relationships between different local patches are captured and quality scores are

learned simultaneously.

Since each local branch generates a local patch, the number of local patches is b. Assume

that G(V , ξ) is the constructed graph with b nodes where V = [P 1, P 2, ..., P b] and the edge ξ

models the relation between two patches. The adjacent matrix A ∈ Rb×b represents pairwise

relations of local patches.

Inspired by the work [156], pairwise relations between every two local patches are repre-

sented as follows:

e(P i, P j) = ϕ(P i)
⊤φ(P j), (8.4)

where ϕ and φ represent two different projects of local features. More specifically, ϕ = W ϕP i

and φ = WφP j whereW
ϕ,Wφ ∈ R c/r×c. r is a dimension reduction ratio to reduce the num-
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ber of parameters. W ϕ and Wφ are implemented by two 1× 1 convolutional layers followed

by batch normalization (BN) and ReLU operations. In such a manner, the transformations

allow models to learn correlations between different local patches adaptively.

The element Ai,j in adjacency matrix A represents the relation between Pi and Pj. For

the ith feature node, pairwise relations with all the nodes are stacked in a fixed order to

obtain a relation vector Ai = [A(i, :), A(:, i)] ∈ R2b. Since the relations are stacked into a

vector with a fixed order, spatial information is also represented in the relation vector Ai.

Each Pi represents original local features, while Ai denotes the structural relations. They

complement and reinforce each other but in different embedding spaces. Therefore, we

combine them in their respective embedding space and jointly learn an importance Si of

feature node Pi by the following formulation:

Si = θ([µ(Pi), ν(Ai)]), (8.5)

where µ and ν represent projection functions for Pi and Ai, respectively. Specifically, they

consist of a spatial 1×1 convolutional layer followed by BN and ReLU operations. Then, an

embedding function is conducted to mine rich information from them for inferring quality

scores through two 1× 1 convolutional layers.

For all nodes, we have a quality score list S = [S1, S2, ..., Sb]. We normalize the quality

scores by the Sigmoid function to obtain normalized quality scores Ŝ = [Ŝ1, Ŝ2, ..., Ŝb] as

follows:

Ŝi =
1

1 + e-Si
. (8.6)

Then, each local representation is multiplied by its corresponding quality score as follows:

P̂i = Ŝi · Pi. (8.7)

For an image, we first concatenate local representations [P̂1, P̂2, ..., P̂b] from b local branches,

which are followed by a FC layer with 512 units before the classification layer.
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8.2.3 Overall Loss

LCls is the CosFace loss [30], guiding models to learn discriminative features. CosFace

loss is formulated as follows:

LCls = − 1

N

N∑
i=1

log
es(cos(θyi,i)−m)

es(cos(θyi,i)−m) +
∑

j ̸=yi e
s cos θj,i

, (8.8)

where N represents the number of samples. m is the cosine margin to maximize the decision

margin in the angular space. The sample xi is normalized and re-scaled to s, belonging to

the yi class.

The overall loss is defined as follows:

LOverall = LCls + λLCAL, (8.9)

where LCAL encourages multiple attention maps to locate diverse facial parts, learning com-

prehensive local representations. λ is a coefficient to control the balance in these two losses.

8.3 Experiments

8.3.1 Implementation Details

CosFace loss [30] is used. The number of warm-up epochs is 2. The batch-size is set to

256. During training on VGGFace2, learning rate starts at 0.03 and is divided by 10 at the

7th and 10th epochs, respectively. The learning rate is set to 1e-4 at the 12th epoch. Training

stops at the 12th epoch. During training on MS1MV2, learning rate is 0.03 and is divided

by 10 at the 13th and 19th epochs, respectively. It is set to 1e-4 at the 23rd epoch. Training

stops at the 24th epoch. The ResNet-100 used as the stem CNN.

After comparative experiments, the number of local branches (b) is set to 4. The σ and

t in Eqn. (8.2) are set to 0.01 and 0.2, respectively. The λ in Eqn. (8.9) is 0.5.

8.3.2 Ablation Study

In ablation study, experiments are conducted, as shown in Tables 8.1 and 8.2 where a

tuple (-, -, -) refers to results on LFW, CALFW, and CPLFW, respectively.
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Table 8.1: Effectiveness of different modules. LD refers to the diverse learning in [14].

CAL QAN LD LFW CALFW CPLFW

99.35 92.55 89.55
√

99.47 92.90 89.85
√ √

99.33 93.20 89.82
√ √

99.52 93.37 90.20

Effects of the proposed components

The proposed CQA-Face model mainly consists of two components: the CAL and QAN.

Their performances are shown in Table 8.1.

Without an explicit guidance, multiple attention maps tend to focus on only few facial

parts and miss other important regions. As shown in Fig. 8.2 (b)&(g), attention-based

methods can learn some important face parts automatically. However, since there is not an

explicit signal, some important regions are ignored. To alleviate this problem, the CAL is

proposed to locate diverse local patches by encouraging distances between each two attention

maps. For face pairs from the same subject, it is possible that some local patches are

distinctive across large age gaps. This is the reason why the accuracy is boosted from 92.55%

to 92.90% on CALFW. For profile faces, some facial parts are occluded due to viewpoint

changes. This would deteriorate the performance if only few facial parts are located. In

contrast, the CAL can generate diverse local patches. Consequently, other important regions

can help the matching besides occluded ones, leading to a moderate improvement on CPLFW

which is from 89.55% to 89.85%. Since rich local representations are mined across face

images, the performance on LFW is slightly increased from 99.35% to 99.47%. Besides, we

also qualitatively show localization ability of diverse local patches in Fig. 8.2 (b-d)&(g-i).

Guided by the CAL, diverse discriminative local patches are located.

While the CAL generates diverse local patches by exploring every image detail, this

may raise two questions: Noisy information may be extracted, like face masks; Different

facial parts may appear at various quality under occlusion, blur, or illumination changes.

For instances, since background is very close to discriminative parts for profile faces, noisy

information tends to be represented. The QAN alleviates these issues by learning a quality



Qiangchang Wang Chapter 8. CQA-Face 154

 (a)         (b)         (c)         (d)        (e)         (f)         (g)        (h)         (i)        (k)

(1)

(2)

(3)

(4)

Figure 8.3: Effects of the CQA-Face model on several challenging faces. (a)&(f): Input faces

which are affected by illumination changes, occlusions, or pose variations where MTCNN

fails to detect landmarks. (b)&(g): Without an explicit signal, multiple attention maps

emphasize few face parts, while missing some important parts. (c)&(h): The CAL can locate

rich local patches. However, different located regions may exhibit different discriminative

ability, like background and snow goggles. (d)&(i): The QAN can emphasize important

face parts and suppress noisy regions. (e)&(k): Located regions if the LD in Eqn. (8.3) is

used.
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Figure 8.4: Quality scores learned by the QAN on 4 local branches.

score for each face part automatically from a global view. As shown in Fig. 8.4, discriminative

local patches are assigned with large quality scores, while less important regions have small

quality scores. Consequently, discriminative parts are highlighted and useless regions are

suppressed. Therefore, the accuracy is increased from (99.47%, 92.90%, 89.85%) to (99.52%,

93.37%, 90.20%). Second, some background information may be represented under the

guidance of the CAL, the QAN can assign low weights to distracted regions and large weights

to discriminative parts, which well prepares our models for pose changes. The large accuracy

gain (0.35%) on CPLFW verifies the effectiveness of the QAN.

As shown in Fig. 8.2 (b)&(g), attention-based methods can learn some important face

parts automatically. However, since there is not an explicit signal, some important regions

are ignored. This would inevitably deteriorate the performance if only some face parts

are visible under pose variations or occlusions. The CAL alleviates this issue by enlarging

pairwise distances about each two attention maps. As demonstrated in (c)&(h), rich local

regions are located under the guidance of the CAL. However, it can be observed that some

noisy regions are emphasized, like background, or snow goggles. The QAN can adaptively

assign weights to different regions through learning from a global perspective. As observed

in (d)&(i), some important regions are emphasized and noisy regions are suppressed. As a

result, more discriminative features are extracted to improve the performance.

Comparison between CAL and diverse learning and dropout

The diverse learning in [14] encourages the dissimilarities among multiple attention maps

by the LD in Eqn. (8.3). Our proposed CAL is compared with the LD in Table 8.1. If the
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LD is used, its performance is (99.33%, 93.20%, 89.82%). In contrast, our CAL is able to

achieve a higher performance of (99.52%, 93.37%, 90.20%). This is because our CAL adopts

a more flexible divergence loss where the σ controls the variation around its mean value.

Besides quantitative results in Table 8.1, we run a experiment by adding only LD into

our baseline, achieving (99.42%, 92.67%, 89.68%), which is inferior than only adding CAL

(99.47%, 92.90%, 89.85%). Besides, as shown in Fig. 8.2, qualitative results between LD

(e&k) and CAL (d&i) also demonstrate the superiority. This is because LD uses Euclidean

distance to calculate the similarity of two attention maps. However, it is sensitive to scales

due to characteristics of Euclidean distances. This makes it less effective under the scenario

of large scale variations in attention maps where some noise may have high responses. In

contrast, CAL takes advantages of Gaussian function and the diversity penalization is af-

fected by the Gaussian distance, preventing more penalization variances and achieving better

performance than Euclidean distance [157]. Furthermore, we thoroughly explore different

values of σ which can control the Gaussian distances flexibly. Three local branches locate

different local patches in Fig. 8.2 (b-d)&(g-i).

If dropout is used instead of CAL, it achieves (99.42%, 92.72%, 89.52%). Although

dropout can encourage the learning of more parts, this signal is too weak to achieve diversity.

In contrast, our CAL enforces attention maps away from each other, locating diverse local

patches.

Different number of local branches b

Different number of local branches (i.e. 2, 4, 8, and 16) are compared in Table 8.2. If b

is set to 2, only few facial parts are located, while missing some important local patches. b

is improved to 4, boosting the results from (99.32%, 93.15%, 90.02%) to (99.52%, 93.37%,

90.20%). However, if the b is 8, some unnecessary information may be represented. Con-

sequently, the result is dropped to (99.45%, 93.13%, 90.00%). This issue is becoming more

serious when b is 16, which achieves the result of (99.40%, 92.80%, 89.78%).
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Table 8.2: Performance comparison (%) of different hyper-parameters: Varying number of

local branches (b) and values of λ Eqn. (8.9), and t and σ in Eqn. (8.2).

b λ σ t LFW CALFW CPLFW

2 0.50 0.01 0.2 99.32 93.15 90.02

4 0.50 0.01 0.2 99.52 93.37 90.20

8 0.50 0.01 0.2 99.45 93.13 90.00

16 0.50 0.01 0.2 99.40 92.80 89.78

4 5.00 0.01 0.2 99.43 93.10 90.22

4 1.00 0.01 0.2 99.42 93.18 90.00

4 0.50 0.01 0.2 99.52 93.37 90.20

4 0.10 0.01 0.2 99.47 92.90 89.85

4 0.05 0.01 0.2 99.40 92.88 90.18

4 0.50 0.001 0.2 99.40 93.17 90.22

4 0.50 0.005 0.2 99.55 93.23 90.07

4 0.50 0.010 0.2 99.52 93.37 90.20

4 0.50 0.050 0.2 99.40 93.27 89.92

4 0.50 0.100 0.2 99.47 93.20 90.12

4 0.50 0.01 0.6 99.35 93.18 90.07

4 0.50 0.01 0.4 99.35 93.07 90.17

4 0.50 0.01 0.2 99.52 93.37 90.20

4 0.50 0.01 0.0 99.45 93.18 90.17

Different values of λ

As illustrated in Table 8.2, we compare the performance of different values of λ in Eqn.

(8.9): 5, 1, 0.5, 0.1, and 0.05. If we reduce the value of λ from 5, 1 to 0.5, the overall

accuracy is boosted to (99.52%, 93.37%, 90.20%). This is because some noisy information is

extracted under the strong guidance of the ACL if λ is too large. On the other hand, if λ is

decreased from 0.5 to 0.1 and 0.05, the performance declines. This means that the signal of

the ACL is too weak to miss some important features. Therefore, λ is assigned to 0.5, which

obtains a good trade-off between the LCls and LCAL.
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Different values of σ

The σ controls the shape of the Gaussian function. When σ becomes larger, more vari-

ances are allowed around the mean; As σ becomes smaller, the less variances allow. It is

observed that the highest accuracy is achieved when σ = 0.01.

Varying values of t

We investigate varying values of the hyper-parameter margin t in Eqn. (8.2) in Table 8.2:

0.6, 0.4, 0.2, and 0. It shows that the best margin t = 0.2 which achieves the best accuracy.

8.3.3 Experiments on Masked Face Matching

Table 8.3: Performance comparison (%) of our CQA-Face models with several models on

M2N and M2M protocols of masked face matching.

Method M2N M2M
FAR=
0.1

FAR=
0.01

FAR=
0.001 Rank-1

FAR=
0.1

FAR=
0.01

FAR=
0.001

ArcFace [31] 31.53 8.54 1.45 15.73 29.22 7.25 2.06

CurricularFace [143] 33.43 13.21 4.42 17.38 31.55 9.79 2.95

CQA-Face 59.40 34.22 16.72 40.46 57.84 34.93 17.75

Table 8.4: Performance comparison (%) of our CQA-Face models with several models on

MLFW protocol of masked face matching.

Method MLFW

FAR=0.1 FAR=0.01 FAR=0.001 Acc.

ArcFace [31] 44.92 12.85 1.81 69.25

CurricularFace [143] 59.24 23.45 3.62 74.61

CQA-Face 89.33 86.68 84.23 92.78

The most recent publicly available models are compared using the M2N, M2M, and

MLFW protocols, respectively, in Tables 8.3 and 8.4. For a fair comparison, CQA-Face

adopts ResNet-100 as the stem CNN which is used in both ArcFace [31] and CurricularFace

[143].
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(1)

(2)
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(4)

19   (a)       (b)         (c)        (d)        (e)        (f) 
Figure 8.5: Qualitative illustration of the CQA-Face model [9] on masked face matching.

(1)&(3): Input faces with blur changes in (a)&(b), pose variations in (c)&(d), and heavy

occlusions in (e)&(f)). (2)&(4) show CAMs on these faces.

M2N refers to matching between masked and normal faces. For a clear presentation,

a tuple (a, b, c, d) is used to denote the performance where a, b, c is the TAR values when

FAR=0.1, 0.01, 0.001, respectively. d refers to the Rank-1 accuracy. Because both masked

and normal faces are captured in the real-world scenarios, this is a very challenging task.

Since ArcFace and CurricularFace are trained on global faces without considering locating

discriminative local representations, the performance is significantly decreased on this task.

Specifically, ArcFace obtains the accuracy of (31.53%, 8.54%, 1.45%, 15.73%) and Curricu-

larFace achieves the performance of (33.43%, 13.21%, 4.42%, 17.38%). However, due to its

localization ability of diverse local patches under the supervision of the CAL and its part-level

quality-aware capacity among multiple local patches with the QAN, our CQA-Face model

boosts the performance to (59.40%, 34.22%, 16.72%, 40.46%). Although our model uses an

inferior CosFace, it still outperforms ArcFace and CurricularFace, showing the superiority.

The M2M protocol refers to the verification between masked and masked faces. For clar-

ity, a tuple (a, b, c) is used to denote the performance where a, b, c is the TAR values when

FAR=0.1, 0.01, 0.001, respectively. Since both faces in gallery and probe sets are masked

faces where some facial clues are occluded in M2M, thus M2M is more challenging than
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Table 8.5: Performance comparison (%) of our CQA-Face model with the state-of-the-art on

different face matching tasks.

Methods IJB-A quality
CPLFW CFP-FP CALFW LFW

FAR=0.01 FAR=0.001

Center loss [29] 52.5 31.3 77.48 - 85.48 99.13

SphereFace [36] 54.8 39.6 81.40 - 90.30 99.42

LS-CNN [5] 87.5 75.5 88.03 97.17 92.00 99.52

MV-Softmax [138] - - 89.69 95.70 95.63 99.79

ArcFace [31] 68.6 65.7 92.08 98.37 95.45 99.83

HPDA [14] 87.6 80.3 92.35 - 95.90 99.80

DBM [140] - - 92.63 - 96.08 99.78

EQFace [158] - - 92.60 98.34 95.98 99.82

CQA-Face 91.1 86.4 93.00 98.49 96.12 99.83

M2N. Consequently, global-based models (i.e. ArcFace, CurricularFace) have inferior per-

formances, with results of (29.22%, 7.25%, 2.06%) and (31.55%, 9.79%, 2.95%), respectively.

Compared with them, our CAL module can locate rich local representations. Consequently,

non-occluded facial parts can contribute to the FR even if some face clues are invisible.

Besides, the QAN learns quality scores for multiple local patches in a global scope, empha-

sizing important local patches and suppressing noisy regions. This is especially important for

masked face matching where face masks cover some important face regions. In such a man-

ner, the QAN assigns low weights to unimportant located parts. Therefore, our CQA-Face

achieves the highest overall performance of (57.84%, 34.93%, 17.75%).

MLFW means the verification protocol on masked LFW. A tuple (a, b, c, d) is used where

a, b, and c represent TAR values on FAR=0.1, 0.01, and 0.001, respectively, and d denotes

the accuracy. As illustrated in Table 8.4, although ArcFace [31] model1 achieves 99.77% on

the original LFW, its accuracy is reduced significantly to (44.92%, 12.85%, 1.81%, 69.25%).

Similarly, although CurricularFace [143] obtains the 99.80% on the original LFW, it achieves

the accuracy of (59.24%, 23.45%, 3.62%, 74.61%) on MLFW. Our CQA-Face model improves

over them, achieving (89.33%, 86.68%, 84.23%, 92.78%).

1https://github.com/deepinsight/insightface/wiki/Model-Zoo
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As shown in Fig. 8.5, global faces change significantly under different challenging factors,

like blur changes in (a)&(b), pose variations in (c)&(d), and heavy occlusions in (e)&(f).

However, our CQA-Face model can locate discriminative parts effectively. As demonstrated

in the above analysis, our CQA-Face model is more robust to face masks, which shows great

potentials for recognizing masked faces under the pandemic of the COVID-19.

8.3.4 Experiments on Cross-Quality Face Matching

In some real-world applications, the captured face images may be of low-quality, which

are matched with enrolled high-quality faces. Here cross-quality face matching is conducted

to simulate the above scenarios. Several public models are compared on IJB-A quality in

Table 8.5. TAR values are reported when FAR=0.01 and 0.001, respectively.

Several global-based approaches employed full face images as the training input: Center

loss [29], SphereFace [36], and ArcFace [31]. However, they fail to extract discriminative

local patches, which lead to sub-optimal representations. Differently, LS-CNN [5] used spatial

attention modules to focus on important local parts, and boosted the performance to (87.5%,

75.5%). Furthermore, HPDA model [14] enlarged pairwise attention distances, emphasizing

rich facial parts to make models robust to blur changes. It obtains the performance of

(87.6%, 80.3%). Like ArcFace [31] which uses ResNet-100 as the stem, CQA-Face boosts the

performance from (68.6%, 65.7%) to (91.1%, 86.4%).

8.3.5 Experiments on Cross-Pose Face Matching

CPLFW and CFP-FP datasets are used to evaluate the performance where a tuple (a, b)

is used to show the results.

Since some face clues are missed in profile view, it is inevitable that global-based methods

(i.e. Center loss [29], SphereFace [36], and MV-Softmax [138]) suffer from performance drops.

In contrast, LS-CNN [5] locates discriminative local patches by spatial attentions. Thus, it

achieves competitive performances on these datasets, which shows great potentials of local

descriptions in this task.

However, some important local patches may be missed. HPDA [14] alleviates this issue
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by maximizing pairwise attention Euclidean distances, and thus outperforms LS-CNN, which

is (92.35%, -) versus (88.03%, 97.17%). − denotes that the result is unreported. Meanwhile,

CQA-Face adopts ResNet-100 as stem CNN, but further increases the overall performance to

(93%, 98.49%). Our explanation is that the CAL enlarges pairwise attention distances, and

thus make models locate diverse facial parts. Non-occluded parts can contribute to FR if the

occluded parts are invisible, making models robust to pose variations. And also, the QAN

learns a quality score for each local representation in a global scope, assigning high weights

to important parts and low weights to noisy parts. Although EQFace [158] learns a quality

score for a whole facial image and achieves (92.60%, 98.34%), it fails to explore quality scores

for different facial parts. This is important for cross-pose face matching because different

facial parts have different importance.

8.3.6 Experiments on Cross-Age Face Matching and LFW Dataset

We investigate the performance on cross-age face matching. As shown in Table 8.5, our

CQA-Face achieves the best result on CALFW (96.12%). Finally, our CQA-Face model

obtains the competitive result on LFW, achieving 99.83% accuracy.

8.4 Summary

We have proposed a new method, called CQA-Face model, which is mainly composed

of contrastive attention learning (CAL) and quality-aware network (QAN). First, the CAL

encourages the diversity among different attention maps. In such a manner, it is guaranteed

that comprehensive facial regions are explored. Second, the QAN learns quality scores for

each local representations from a global scope. Our CQA-Face model outperforms the state-

of-the-art methods on several challenging tasks, illustrating the importance and usefulness

of our proposed approach.
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Chapter 9

Conclusion and Future Work

In this dissertation, the recent developments of FR have been reviewed firstly, which

include traditional approaches and deep learning approaches. Then, my research works

are introduced where effective attention mechanisms are designed for FR. Since rich local

patches are located to benefit FR, decent performances have been obtained on various face

recognition tasks, including cross-age, cross-pose, cross-quality, cross-modality, and masked

face matching.

A comprehensive comparison is conducted between all our proposed models in terms

of accuracy and inference time. As shown in Tables 9.1, 9.2, and 9.3, a comprehensive

performance comparison is conducted between our proposed LS-CNN, HPDA, CQA-Face,

DSA-Face, AAN-Face and other SOTA models. It can be observed that DSA-Face performs

the best on cross-quality and cross-pose datasets. AAN-Face is the best on cross-age and

LFW datasets. DSA-Face performs the best on M2N and M2M. AAN-Face is the best on

MLFW dataset. Besides, we also conduct a inference time comparison in terms of running

time. This experiment is conducted with a batch size of 16 on NVIDIA TITAN Xp. The

running time is calculated by averaging 2,000 iterations. As shown in Table 9.4, our proposed

LS-CNN, HPDA, CQA-Face, DSA-Face, and AAN-Face models are compared. It can be

observed that CQA-Face, DSA-Face[a], and AAN-Face[a] have a similar running time because

they use the same backbone, namely ResNet-101. Similarly, LS-CNN, HPDA, DSA-Face[b],

DSA-Face[c], AAN-Face[b], and AAN-Face[c] use the same backbone (LS-CNN) where the

HPDA has a higher running time because of its more complex network structure. Besides,
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Table 9.1: Performance comparison (%) between different models on cross-quality, cross-

pose, cross-age face matching and LFW dataset.

Method IJB-A quality
CPLFW CFP-FP

VGGFace2
-FP CALFW AgeDB-30 LFW

FAR=0.01 FAR=0.001

Center loss [29] 52.5 31.3 77.48 - 75.10 85.48 - 99.13

SphereFace [36] 54.8 39.6 81.40 - 20.10 90.30 - 99.42

MV-Softmax [138] - - 89.69 95.70 - 95.63 98.11 99.79

ArcFace [31] 68.6 65.7 92.08 98.37 46.20 95.45 98.15 99.83

DDL [150] - - 93.43 98.53 - - - 99.68

DBM [140] - - 92.63 - - 96.08 97.90 99.78

LS-CNN 87.5 75.5 88.03 97.17 69.92 92.00 - 99.52

HPDA 87.6 80.3 92.35 - 95.32 95.90 - 99.80

CQA-Face 91.1 86.4 93.00 98.49 - 96.12 - 99.83

DSA-Face[a] 87.3 80.4 93.70 98.53 95.96 - - 99.83

DSA-Face[b] 89.5 83.2 92.73 98.14 95.66 - - 99.75

DSA-Face[c] 91.2 86.7 93.33 98.66 95.96 - - 99.82

DSA-Face[d] 90.5 85.3 93.62 98.69 96.24 - - 99.85

AAN-Face[a] 90.6 85.9 93.25 98.39 95.72 96.03 97.95 99.85

AAN-Face[b] 89.2 82.6 92.68 97.94 95.62 96.00 97.83 99.80

AAN-Face[c] 89.4 82.9 92.97 98.26 95.68 95.97 98.10 99.82

AAN-Face[d] 90.0 84.5 93.57 98.63 95.82 96.13 98.15 99.87

the running time of DSA-Face[d] and AAN-Face[d] increases significantly. This is because the

LS-CNN-177 is adopted as the backbone which has 177 layers compared with 97 layers in

the LS-CNN.

As validated in my research works, local features are proved very important in FR. It

is highly expected to achieve decent performance with local features on other face-related

tasks:

Face Anti-Spoofing. Face anti-spoofing (FAS) is important for ensuring the security

of face recognition systems. Deep learning has obtained great success in this area, however,

most existing approaches fail to consider comprehensive relation-aware local representations

of live and spoof faces. To solve this issue, we propose a Transformer-based Face Anti-

Spoofing (TransFAS) model to explore comprehensive facial parts for FAS [159]. Besides the

multi-head self-attention which explores relations among local patches in the same layer, we

propose Cross-layer Relation-aware Attentions (CRA) to adaptively integrate local patches

from different layers. Furthermore, to effectively fuse hierarchical features, we explore the

best Hierarchical Feature Fusion (HFF) structure, which can capture the complementary
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Table 9.2: Performance comparison (%) of our models with several publicly available models

on M2N and M2M protocols of masked face matching.

Method M2N M2M
FAR=
0.1

FAR=
0.01

FAR=
0.001 Rank-1

FAR=
0.1

FAR=
0.01

FAR=
0.001

ArcFace [31] 31.53 8.54 1.45 15.73 29.22 7.25 2.06

CurricularFace [143] 33.43 13.21 4.42 17.38 31.55 9.79 2.95

Subcenter Arcface [144] 24.60 4.51 0.56 12.49 28.95 8.57 3.15

HPDA 57.41 30.94 14.98 34.76 58.99 37.68 22.01

CQA-Face 59.40 34.22 16.72 40.46 57.84 34.93 17.75

DSA-Face[a] 48.04 21.53 8.09 22.67 47.96 21.47 7.93

DSA-Face[b] 62.09 36.59 18.55 43.08 60.81 38.92 19.58

DSA-Face[c] 48.28 21.60 7.42 23.91 51.05 25.54 11.16

DSA-Face[d] 62.83 39.21 21.14 43.50 59.28 38.14 17.08

AAN-Face[a] 45.62 19.56 7.49 23.65 47.41 21.14 7.27

AAN-Face[b] 61.28 34.74 17.18 40.57 60.31 38.18 19.79

AAN-Face[c] 61.24 36.36 18.87 42.31 60.59 38.23 20.13

AAN-Face[d] 62.11 37.18 18.71 41.54 59.39 35.95 16.54

information of both low-level artifacts and high-level semantic features of the spoofing pat-

terns. With these novel modules, TransFAS not only improves the generalization ability of

classical Vision Transformer, but also achieves SOTA performance on multiple benchmarks,

demonstrating the superiority of the Transformer-based model for FAS.

Despite decent performance has been obtained, few existing works fully leverage temporal

information. This would inevitably lead to inferior performance because real and fake faces

share highly similar spatial appearances while important temporal features between different

frames are neglected. In this work, we propose a temporal transformer network (TTN) to

learn multi-granularity temporal information for FAS [160]. It mainly consists of temporal

difference attentions (TDA), a pyramid temporal aggregation (PTA), and a temporal depth

difference loss (TDL). Firstly, the Vision Transformer (ViT) is used as the backbone where

comprehensive local patches are utilized to learn subtle differences between real and spoof

faces. Then, instead of learning temporal features on global faces which may miss some
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Table 9.3: Performance comparison (%) of our proposed models with several publicly avail-

able models on MLFW protocol of masked face matching.

Method MLFW

FAR=0.1 FAR=0.01 FAR=0.001 Acc.

ArcFace [31] 44.92 12.85 1.81 69.25

CurricularFace [143] 59.24 23.45 3.62 74.61

Subcenter Arcface [144] 50.05 30.32 18.82 69.89

HPDA 89.06 85.51 76.65 92.34

CQA-Face 89.33 86.68 84.23 92.78

DSA-Face[a] 82.81 69.33 36.77 87.47

DSA-Face[b] 89.20 85.84 79.77 92.46

DSA-Face[c] 85.68 74.91 51.12 88.63

DSA-Face[d] 89.74 86.72 82.25 92.91

AAN-Face[a] 80.87 66.19 29.26 86.10

AAN-Face[b] 89.44 86.22 80.71 92.58

AAN-Face[c] 89.77 86.28 83.13 92.65

AAN-Face[d] 89.67 86.95 84.17 92.91

Table 9.4: Inference time comparison of our proposed models.

Method LS-CNN HPDA CQA-Face DSA-Face AAN-Face

[a] [b] [c] [d] [a] [b] [c] [d]

Time (ms) 238.24 345.78 155.83 162.16 259.08 262.55 614.49 152.90 233.48 235.52 530.41

important local cues, the TDA is used to extract temporal local attentions on comprehensive

local patches from adjacent frames. Besides, the TDA is inserted into different layers of the

ViT. Consequently, the TDA can extract multi-scale motion-sensitive local cues to improve

the FAS performance. Secondly, it is observed that different subjects may have different

temporal speeds in some actions, making it necessary to learn different temporal speeds.

To solve this issue, the PTA aggregates temporal features at various tempos, which could

build short-range and long-range relations among multiple frames. Thirdly, depth maps for

real parts may change continuously, while they remain to be zeros for spoof regions. In

order to locate motion features on spoof parts, the TDL is proposed to guide the network to
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locate spoof facial parts where motion patterns between neighboring frames are set as the

ground truth. To the best of our knowledge, this work may be the first attempt to learn

temporal information via Transformers. Both qualitative and quantitative results on several

challenging tasks demonstrate the usefulness and effectiveness of our proposed modules.

Facial Expression Recognition. Facial expression recognition (FER) has received

increasing interest in computer vision. We propose the TransFER model which can learn

rich relation-aware local representations [161]. It mainly consists of three components: Multi-

Attention Dropping (MAD), ViT-FER, and Multi-head Self-Attention Dropping (MSAD).

First, local patches play an important role in distinguishing various expressions, however,

few existing works can locate discriminative and diverse local patches. This can cause serious

problems when some patches are invisible due to pose variations or viewpoint changes. To

address this issue, the MAD is proposed to randomly drop an attention map. Consequently,

models are pushed to explore diverse local patches adaptively. Second, to build rich relations

between different local patches, the Vision Transformers (ViT) are used in FER, called ViT-

FER. Since the global scope is used to reinforce each local patch, a better representation

is obtained to boost the FER performance. Thirdly, the multi-head self-attention allows

ViT to jointly attend to features from different information subspaces at different positions.

Given no explicit guidance, however, multiple self-attentions may extract similar relations.

To address this, the MSAD is proposed to randomly drop one self-attention module. As a

result, models are forced to learn rich relations among diverse local patches. Our proposed

TransFER model outperforms the state-of-the-art methods on several FER benchmarks,

showing its effectiveness and usefulness.

Besides, many other related tasks may also be explored, such as face detection, deefake

detection, facial landmark detection, and so on.
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