3 research outputs found

    Hyperspectral classification of Cyperus esculentus clones and morphologically similar weeds

    Get PDF
    Cyperus esculentus (yellow nutsedge) is one of the world's worst weeds as it can cause great damage to crops and crop production. To eradicate C. esculentus, early detection is key-a challenging task as it is often confused with other Cyperaceae and displays wide genetic variability. In this study, the objective was to classify C. esculentus clones and morphologically similar weeds. Hyperspectral reflectance between 500 and 800 nm was tested as a measure to discriminate between (I) C. esculentus and morphologically similar Cyperaceae weeds, and between (II) different clonal populations of C. esculentus using three classification models: random forest (RF), regularized logistic regression (RLR) and partial least squares-discriminant analysis (PLS-DA). RLR performed better than RF and PLS-DA, and was able to adequately classify the samples. The possibility of creating an affordable multispectral sensing tool, for precise in-field recognition of C. esculentus plants based on fewer spectral bands, was tested. Results of this study were compared against simulated results from a commercially available multispectral camera with four spectral bands. The model created with customized bands performed almost equally well as the original PLS-DA or RLR model, and much better than the model describing multispectral image data from a commercially available camera. These results open up the opportunity to develop a dedicated robust tool for C. esculentus recognition based on four spectral bands and an appropriate classification model

    Exploring the Potential of Feature Selection Methods in the Classification of Urban Trees Using Field Spectroscopy Data

    Get PDF
    Mapping of vegetation at the species level using hyperspectral satellite data can be effective and accurate because of its high spectral and spatial resolutions that can detect detailed information of a target object. Its wide application, however, not only is restricted by its high cost and large data storage requirements, but its processing is also complicated by challenges of what is known as the Hughes effect. The Hughes effect is where classification accuracy decreases once the number of features or wavelengths passes a certain limit. This study aimed to explore the potential of feature selection methods in the classification of urban trees using field hyperspectral data. We identified the best feature selection method of key wavelengths that respond to the target urban tree species for effective and accurate classification. The study compared the effectiveness of Principal Component Analysis Discriminant Analysis (PCA-DA), Partial Least Squares Discriminant Analysis (PLS-DA) and Guided Regularized Random Forest (GRRF) in feature selection of the key wavelengths for classification of urban trees. The classification performance of Random Forest (RF) and Support Vector Machines (SVM) algorithms were also compared to determine the importance of the key wavelengths selected for the detection of the target urban trees. The feature selection methods managed to reduce the high dimensionality of the hyperspectral data. Both the PCA-DA and PLS-DA selected 10 wavelengths and the GRRF algorithm selected 13 wavelengths from the entire dataset (n = 1523). Most of the key wavelengths were from the short-wave infrared region (1300-2500 nm). SVM outperformed RF in classifying the key wavelengths selected by the feature selection methods. The SVM classifier produced overall accuracy values of 95.3%, 93.3% and 86% using the GRRF, PLS-DA and PCA-DA techniques, respectively, whereas those for the RF classifier were 88.7%, 72% and 56.8%, respectively
    corecore