29,054 research outputs found

    High-level synthesis under I/O Timing and Memory constraints

    Full text link
    The design of complex Systems-on-Chips implies to take into account communication and memory access constraints for the integration of dedicated hardware accelerator. In this paper, we present a methodology and a tool that allow the High-Level Synthesis of DSP algorithm, under both I/O timing and memory constraints. Based on formal models and a generic architecture, this tool helps the designer to find a reasonable trade-off between both the required I/O timing behavior and the internal memory access parallelism of the circuit. The interest of our approach is demonstrated on the case study of a FFT algorithm

    Constraint Centric Scheduling Guide

    Get PDF
    The advent of architectures with software-exposed resources (Spatial Architectures) has created a demand for universally applicable scheduling techniques. This paper describes our generalized spatial scheduling framework, formulated with Integer Linear Programming, and specifically accomplishes two goals. First, using the ?Simple? architecture, it illustrates how to use our open-source tool to create a customized scheduler and covers problem formulation with ILP and GAMS. Second, it summarizes results on the application to three real architectures (TRIPS,DySER,PLUG), demonstrating the technique?s practicality and competitiveness with existing schedulers

    Schedulability analysis of timed CSP models using the PAT model checker

    Get PDF
    Timed CSP can be used to model and analyse real-time and concurrent behaviour of embedded control systems. Practical CSP implementations combine the CSP model of a real-time control system with prioritized scheduling to achieve efficient and orderly use of limited resources. Schedulability analysis of a timed CSP model of a system with respect to a scheduling scheme and a particular execution platform is important to ensure that the system design satisfies its timing requirements. In this paper, we propose a framework to analyse schedulability of CSP-based designs for non-preemptive fixed-priority multiprocessor scheduling. The framework is based on the PAT model checker and the analysis is done with dense-time model checking on timed CSP models. We also provide a schedulability analysis workflow to construct and analyse, using the proposed framework, a timed CSP model with scheduling from an initial untimed CSP model without scheduling. We demonstrate our schedulability analysis workflow on a case study of control software design for a mobile robot. The proposed approach provides non-pessimistic schedulability results

    Simulation of Mixed Critical In-vehicular Networks

    Full text link
    Future automotive applications ranging from advanced driver assistance to autonomous driving will largely increase demands on in-vehicular networks. Data flows of high bandwidth or low latency requirements, but in particular many additional communication relations will introduce a new level of complexity to the in-car communication system. It is expected that future communication backbones which interconnect sensors and actuators with ECU in cars will be built on Ethernet technologies. However, signalling from different application domains demands for network services of tailored attributes, including real-time transmission protocols as defined in the TSN Ethernet extensions. These QoS constraints will increase network complexity even further. Event-based simulation is a key technology to master the challenges of an in-car network design. This chapter introduces the domain-specific aspects and simulation models for in-vehicular networks and presents an overview of the car-centric network design process. Starting from a domain specific description language, we cover the corresponding simulation models with their workflows and apply our approach to a related case study for an in-car network of a premium car
    corecore