
Constraint Centric Scheduling Guide
Michael Sartin-Tarm† Tony Nowatzki† Lorenzo De Carli† Karthikeyan Sankaralingam† Cristian Estan∗

†University of Wisconsin-Madison ∗Broadcom
(tjn@cs.wisc.edu, msartintarm@wisc.edu, lorenzo@cs.wisc.edu, karu@cs.wisc.edu, cristian@estan.org)

Abstract—The advent of architectures with software-exposed resources (Spatial Architectures) has created a demand for universally
applicable scheduling techniques. This paper describes our generalized spatial scheduling framework, formulated with Integer Linear
Programming, and specifically accomplishes two goals. First, using the “Simple” architecture, it illustrates how to use our open-source tool
to create a customized scheduler and covers problem formulation with ILP and GAMS. Second, it summarizes results on the application to
three real architectures (TRIPS,DySER,PLUG), demonstrating the technique’s practicality and competitiveness with existing schedulers.

F

1 INTRODUCTION

Spatial architectures, which provide energy-efficient computa-
tion by exposing elements of their execution to the software,
are likely to play an important role in future architectures.
Compilers for spatial architectures typically use heuristic-based
algorithms, like those for RAW, TRIPS, Wavescalar, and CCA
[2], [5]–[7], [9]. However, such approaches can be complex and
difficult to maintain or implement, lack insight into the opti-
mality of solutions, and lack portability across architectures.

To address these deficiencies, Nowatzki et al. have designed
a spatial scheduling framework, formulating the problem using
integer linear programming (ILP) [8]. Their solution is advanta-
geous in that the formulation is general enough to be applied to
a variety of architectures, and their constraint-based approach
finds solutions with guaranteed optimality bounds.

This paper describes, from a developer’s perspective, the
spatial scheduling tool we have created, which leverages the
framework of [8]. Written in the GAMS language [1], this tool’s
source is at http://www.cs.wisc.edu/vertical/ilp-scheduler,
and this paper serves as its usability guide. Our implemen-
tation is attractive in that it is extremely concise – the core
scheduler implementation (the ILP constraints) for three real
spatial architectures is less than 50 lines of GAMS code. Also,
the simplicity of GAMS enables the formulation to be easily
followed and augmented with only modest ILP background.

To demonstrate the use of our framework, this paper defines
a scheduler for an abstract architecture: the “Simple” architec-
ture. This approach allows us to focus on scheduling concepts
without the distraction of architecture-specific nuances.

The structure of this paper is as follows: §2 gives an overview
of our approach, and describes background information on
our example architecture and ILP. §3 details the GAMS-based
ILP Scheduler Interface used by the compilers. §4 illustrates
the application of our general framework to the “Simple”
architecture. §5 highlights scheduler performance from three
architectures and considers limitations, and §6 concludes.

2 OVERVIEW AND BACKGROUND

This section presents three key pieces of background relevant
to understanding our general scheduling framework. We first
describe the role of the scheduler in a compilation system
and highlight our approach, then describe the “Simple” spatial
architecture that we use as a running example. Finally, we
give a high-level overview of Integer Linear Programs and the
GAMS modeling language.

Computation
 DAG

× ALU

/ALU

in1

in2

out1

out2

Hardware Desc.

in2

ALU /

out2

out1

ALU×

in1

Output
Schedule

(a) Standard
Scheduling Flow

×
/

a b

z

c × ALU

/ALU

in1

in2

out1

out2 z

/ALU

b

a out1

ALU×

Computation
DAG Hardware Graph Output Schedule

(b) ILP Scheduling
Framework

Integer Linear
Programming
Constraints

“Simple”
Architecture
example for
ILP Scheduler
Interface

(Section 3)

Compiler
“Frontend”

Native
Scheduler

Compiler
“Backend”

Compiler
“Frontend”

GAMS +
ILP-Solver

Compiler
“Backend”

Integer
Linear

Program

(Section 4)

×

/

a b

z

c

Figure 1. Overview of Standard and ILP Scheduler Flows

2.1 The Scheduler’s Role

In a compilation system, the role of a spatial-architecture sched-
uler is to determine the hardware configuration of abstract
units of computation. The scheduler’s goal is to find a legal
and optimal placement and ordering of events, where optimal
is usually defined as minimizing the overall execution time.
Figure 1(a) shows how a typical scheduler is fed a directed
acyclic graph (DAG), representing the computation, from the
“frontend” of the compiler. The scheduler then uses some
knowledge of the hardware’s topology and capabilities to cre-
ate the output schedule, again in some native format. Finally,
the compiler “backend” uses this information to generate the
architectural configuration.

Our framework requires only modest changes, as shown by
Figure 1(b). Here, the scheduler is replaced by an ILP solver
with a GAMS frontend (described in section 2.3). The interface
we provide, called the ILP Scheduling Interface (ISI), is a
GAMS language based format for representing computation
DAGS, hardware graphs, and output schedules. The flow
is as follows: first, the compiler “frontend” produces an ISI
computation DAG, based on the native format. Second, GAMS
reads the computation DAG, hardware graph, and the ILP
constraints, which together form an Integer Linear Program.
Finally, the GAMS runtime interacts with an ILP solver to
determine the optimal solution, and the ISI output schedule

is converted to the native format by the compiler “backend”.
From a developer’s perspective, the work required in using

our framework is 3-fold: i) in creating compiler modules which
can emit ISI computation DAGs and read ISI output sched-
ules (§3), ii) one-time effort in creating the GAMS hardware
graph describing the hardware topology and resource capabil-
ities (§3), iii) one-time effort in selecting the constraints from
our framework which enforce the appropriate architecture
primitives (§4). The generalized constraint formulation, which
aids developers in quickly writing ILP based schedulers, is the
intellectual core of this work.

2.2 The “Simple” Architecture
To demonstrate our framework, we introduce the “Simple”
architecture. Figure 1 shows an example software graph, hard-
ware graph, and example schedule for our architecture. First,
the software graph, which can be arbitrary computation DAGs,
is composed of five node types: Inputs, Outputs, ALU, DIV,
and multiply. The hardware graph has correspondingly typed
nodes, and adds router nodes to create a 2×2 grid interconnect.
The following five features describe the architecture.

1) Heterogeneous Nodes: Typed computation nodes.
2) Custom Routing: Messages between nodes may traverse

an arbitrary sequence of routers.
3) Dataflow Execution: Execution units fire whenever their

input operands are ready.
4) Dynamic resource arbitration: Resources arbitration de-

cided on the fly, by first come first serve.
5) Objective: Lowest run-time latency.

The execution model of the architecture is straightforward.
Inputs arrive dynamically at a cycle number which is unknow-
able at scheduling time. Links take one cycle to traverse and
can carry multiple messages per cycle. Execution units can only
perform a single operation per cycle, but are fully pipelined.

2.3 GAMS and ILP Primer
Integer Linear Programs (ILP) are algebraic models of sys-
tems used for optimization [10]. They are composed of: 1)
decision variables describing the possible outcomes, 2) linear
constraints describing the solution space, 3) a linear objective
which describes the solution desirability. A short tutorial on
ILP modeling and solving techniques is here: http://wpweb2.
tepper.cmu.edu/fmargot/introILP.html. We utilize ILP for this
work because it offers significant expressability with reason-
able solution times.

GAMS is a language that can express optimization problems
of many classes, including ILP. Using GAMS is a matter
of converting the mathematical formulation into equivalent
GAMS variable and constraint declarations. The language
also provides mechanisms for formatted reading and writ-
ing, and interfaces with underlying solvers, which are com-
pletely encapsulated from the modeler. An extensive GAMS
guide is here: http://www.gams.com/dd/docs/bigdocs/
GAMSUsersGuide.pdf, while an example for the syntax of
GAMS formulations is here: http://www.gams.com/docs/
example.htm.

3 ILP SCHEDULER INTERFACE (ISI)
We begin describing our scheduling framework with the details
of the ISI which is exposed to the compiler in terms of the
hardware graph and computation DAG.

v4

v5

v1 v2

v6

v3 × ALU

/ALU

in1

in2

out1

out2

v1,v2

v6v3

ISI Comp. DAG ISI Hardware Graph ISI Output Schedule

“Vertices”

“Edges”

“Nodes” “Links”

“Routers”

e1 e2

e3

e4

e5

l2 l3
l4

l5 l6 l7

l8
l9

l15

l19 l20

n1 n2

r1 r2

r3 r4

n8n7

n3

n5

n4

n6

l1

v5

v4

Figure 2. Notation for the ILP Scheduler Interface

Listing 1. GAMS based ISI Hardware Graph
1 Set n "Nodes" /n1, n2, n3, n4, n5, n6, n7, n8/;
2 Set r "Routers" /r1, r2, r3, r4/;
3 Set l "Links" /l1, l2, l3, [etc]/;

4 * Node Connections
5 Set Hnl(n,l) /n1.l1, n2.l3, n3.l5, .../;
6 Set Hln(l,n) /l2.n1, l4.n2, l7.n4, .../;
7 * Router Connections
8 Set Hrl(r,l) /r1.l2, r1.l9, r2.l4, .../;
9 Set Hlr(r,l) /l1.r1, l3.r2, l6.r2, .../;

10 Set K "Operation Kind" /IN,OUT,ADD,SUB,MULT/;
11 Set kindN(K,n) /IN.n3, ADD.n2, SUB.n2, .../;

Listing 2. GAMS based ISI Computation Dag
1 Set v "Vertices" /v1, v2, v3, v4, v5, v6/;
2 Set e "Edges" /e1, e2, e3, e4, e5/;
3 Set Gve(v,e) /v1.e1, v2.e2, v3.e3, v4.e4, .../;
4 Set Gev(e,v) /e1.v4, e2.v4, e3.v5, e4.v5, .../;

5 parameter delta(e) /e5 3, e4 1, e3 1, .../;

6 Set kindV(K,v) /DIV.v5, MULT.v4, IN.v3, .../;

3.1 Specifying the Hardware Graph
The ISI hardware graph describes the spatial topology, and
would be written once for a particular architecture. An example
in Listing 1 corresponds to the depiction in Figure 2. This graph
is composed of three sets: one representing mappable nodes,
and routers and links which form the network. Lines 1-3 define
these sets.

Links are explicit in our model because they are mapped to
directly. As such, we need to specify the connections between
nodes/routers and links, accomplished through four parame-
ters: Hnl,Hln,Hrl,Hlr . Here Hnl describes the outgoing links
of a node, while Hlr describes the incoming links of a router.
Lines 4-9 define these parameters; ellipsis indicate truncation.

Finally, we specify the heterogeneous capabilities of the
hardware through two sets, shown in lines 10-11. The set K
lists the possible node “kinds”, which represent fundamental
operations like “add” or “multiply”. The parameter kindN
describe the operation capabilities of each node.

3.2 Specifying the Computation DAG
The computation DAG, produced by the compiler, is modeled
similar to the hardware graph as shown in Listing 2. Sets for
vertices, representing individual operations, and edges, repre-
senting data communication, are defined in lines 1-2. The DAG
is built through the sets Gve, for vertex to edge connections,
and Gev edge to vertex connections, as shown in lines 3-4.

The latencies of the computations described by vertices are
captured by delta(e), which defines for each edge the delay
between when the source vertex is activated and the message
represented by the edge is sent(line 5). Finally, vertex types in
the same way as hardware node types, with kindV (line 6).

4 APPLYING THE ILP FORMULATION
We have created a general scheduling framework in GAMS
which formulates common spatial scheduling constraints. The

+1 +2

/

a b

c

ALU

/

in2

out1

out2

a,b c

in1

×

ALU
+1,+2

ALU

/

in2

out1

out2

a,b c

in1

×

ALU
+1,+2

ALU

/

in2

out1

out2

a,b c

in1

×

ALU
+1,+2

ALU

/

in2

out1

out2

a,b c

in1

×

ALU
+1,+2

ALU

/

in2

out1

out2

b c

in1

×

ALU
+2

Computation
DAG

(a) Hetergenous
Node Mapping

(b) Message
Routing

(c) Dataflow Event Timing
(Timing TV Shown)

(d) Resource Contention
(Work-effort Wn Shown)

(e) Objective
(Work-effort Wn Shown)

1

2 4

5

6 10

11

7-93

2

2 1

1

a

+1

Min SVC =2Min LAT =11 (Min LAT =12)Min SVC =1

1

1 1

1

1

1

/ / / / /

Figure 3. Applying scheduling constraints to the “Simple” Architecture

Listing 3. Scheduling Constraints for “Simple” Architecture
1 binary variable Mvn(v,n);
2 c1_map_all_v(K,v)$kindV(K,v)..

sum(n$(kindN(K,n)), Mvn(v,n))=e=1;
3 c2_map_valid(K,v)$kindV(K,v)..

sum(n$(not kindN(K,n)), Mvn(v,n))=e=0;

4 binary variable Mel(e,l);
5 c3_map_edge_src(v,e,n)$Gve(v,e)..

Mvn(v,n) =e= sum(l$Hnl(n,l), Mel(e,l));

6 c4_map_edge_dst(e,v,n)$Gev(e,v)..
Mvn(v,n) =e= sum(l$Hln(l,n), Mel(e,l));

7 c5_router_fwd(e,r).. sum(l$Hlr(l,r), Mel(e,l))
=e= sum(l$Hrl(r,l), Mel(e,l));

8 positive variable Tv(v), LAT;
9 c6_timing(v1,e,v2)$(Gve(v1,e) and Gev(e,v2))..

Tv(v2) =g= Tv(v1)+delta(e)+sum(l,Ml(e,l));
10 c7_max_cycle(v).. LAT =g= Tv(v);

11 positive variable Wn(n), SVC;
12 c8_work_effort(n).. sum(v,Mvn(v,n)) =e= Wn(n);
13 c9_calc_svc(n).. SVC =g= Wn(n);

14 Model problem1 / c1, c2, c3 ... c9 /;
15 solve problem1 using mip minimizing SVC;
16 c10.. SVC =e= SVC.l;
17 Model problem2 / c1, c2, c3 ... c9, c10 /;
18 solve problem2 using mip minimizing LAT;

specific ILP scheduler formulation for each architecture builds
upon the general framework by selecting constraints to enforce
the required behavior and features, and may extend the frame-
work with new constraints where necessary. In this section, we
first describe the constraints of Listing 3, which apply to the
“Simple” architecture, and then describe aspects of our general
framework which are beyond the scope of this architecture.

4.1 Heterogeneous Node Mapping
The most basic task of any spatial scheduler is the mapping
between computations vertices and hardware resource nodes.
We describe this mapping with Mvn, a set of binary variables,
one for each combination of elements in n and v. Each element
indicates if vertex v should be mapped to node n.

Two constraints enable node mapping. The first ensures that
each vertex is mapped to one compatible node. We do this by
enforcing that, for all vertices, the sum of Mvn over all nodes
with corresponding type is equal to one. The second ensures
all incompatible vertex/node pairs are illegal, and is performed
similarly. The mathematical notation for both follow.

∀v,K|kind(K, v) Σn|kindN(K,n)Mvn(v, n) = 1 (1)
∀v,K|kind(K, v) Σn|not kindN(K,n)Mvn(v, n) = 0 (2)

Lines 1-3 of Listing 3 show the corresponding GAMS syntax.
To explain c1, the syntax before the two dots “..” indicates for
which elements in the specified sets our formula on the right of
the dots applies. This constraint applies for all elements of K and
v. Here, the dollar syntax intuitively means such that the following
expression holds. Therefore “$kindV(k,v)” in c1 means that we are
only considering the vertices of the current “Kind”.

Consider the GAMS equation notation in line 2. The first argu-
ment of “sum” is the summation index, and the second is the
summation expression. Note that in GAMS, the index and the
index’s bounds are synonymous. Next, “=e=” indicates expres-
sion equality, while “=l=” means less-than, etc. Constraint c2 is
expressed similarly. Figure 3(a) shows a legal mapping of vertices
to nodes after applying the above constraints.

4.2 Message Routing
In the “Simple” architecture, since the routing paths are flexible, we
must model arbitrary communication mapping. This is performed
through the binary variable Mel, which describes the mapping be-
tween edges in the computation graph, and links in the hardware
graph, akin to the vertex/node mapping. Valid paths must start at
the correct node, end at the correct node, and be fully connected
in between. The GAMS code in lines 4-7 enforce these properties.

To explain, c3 enforces that edges must start at their mapped
node’s location. Intuitively, it does this by enforcing that if the
corresponding vertex is mapped to a node, the edge should be
mapped to one of the node’s outgoing links. Mathematically,
we equate the vertex/node mapping Mvn(v, n) with the sum of
edge/link mapping on outgoing links Σl|Hnl(n,l)Mel(e, l). Con-
straint c4 works similarly for incoming edges/links. Constraint c5
enforces that all paths are continuous, by ensuring incoming router
edges are also outgoing router edges. The constraint achieves
this by equating the total edge/link mapping for incoming and
outgoing router links for each edge. Figure 3(b) shows a legal
mapping of edges to links after applying the above constraints.

4.3 Dataflow Event Timing
The timing model for our “Simple” architecture is based on
dataflow execution ordering. This means that when all messages
for a vertex have arrived, the computation can begin. First, we
create a variable indicating the firing time of any vertex, Tv . Con-
straint c6 computes Tv for each vertex by selecting the maximum
latency of each incoming edge. The latency of an edge is computed
as the sum of: 1) the Tv of the source vertex; 2) the delay before the
edge is ready (delta(e)); 3) the number of links traversed between
source and destination nodes. We also compute the total latency
LAT, with c7. Figure 3(c) shows that the total latency for our
example schedule is 11 cycles.

4.4 Dynamic Resource Contention
Even though minimizing the overall latency is the primary goal
of the scheduler, the dataflow timing Tv does not consider the
delay due to resource constraints. To model contention, we need
two new concepts, work-effort and the service interval, SVC. Work-
effort is simply the amount of work carried out by each hardware
resource. We use this to calculate the service interval.

The intuitive meaning of SVC is the minimum time between
pipelined instances of the same computation. For instance, if two
computational vertices are mapped to the same node, then it
would only be possible to achieve a pipelined throughput of 1
computations every 2 cycles. Minimizing SVC will equalize work-
effort across nodes. For the “Simple” architecture, we can compute
the work-effort Wn using c8, which sums up the number of vertices
mapped to a single node. Constraint c9 computes SVC as the
maximum of all work-effort values. Figure 3(d) shows that the
SVC for our example schedule is 2 cycles.

General
Constraints

Extra
Constraints

Dynamic
Equations

Average
Solve (sec)

Trips 11 4 2.8 K 31
DySER 11 2 150 K 159
PLUG 9 5 23 K 120

Table 1. Number of Equations and Solve Times

4.5 Objective
The objective of a scheduler defines its ultimate goal. So far, we
have seen that we need two distinct goals: minimizing dataflow
latency (LAT) and service interval (SVC). Our framework, leverag-
ing GAMS, allows us to easily specify and optimize for multiple
objectives, as long as some priority can be assigned to each value.

Since the “Simple” architecture benefits more from resource
distribution than just dataflow latency, we solve the problem two
times, first for SVC, then for LAT, fixing the value of SVC to its best
value after the first solve. The GAMS code of lines 14-18 shows
this procedure, and Figure 3(e) shows the optimal schedule. Note
that one cycle latency sacrifice enables an optimal service interval.

4.6 Other General Constraints
Though we have shown how the “Simple” architecture uses our
general constraints to construct a scheduler, it does not elicit every
possible architectural feature modeled in our general framework.
We highlight some of these below.

• Generalizations of Work-Effort: The way work-effort is calcu-
lated may depend on the architecture. We provide constraints
to model link work-effort and operation-specific work-effort.

• Routing Restrictions: Some architectures only allow certain
routing patterns, like dimension ordered routing. We provide
a general mechanism for such restrictions.

• Multi-Destination Messages: These messages are unique in
that they may share routing resources along communication
paths. We provide variables and equations for modeling
resource usage (work-effort) for this capability.

Building an architecture specific scheduler is a matter of choos-
ing the appropriate constraints given knowledge of the architec-
ture. Though there are a number of constraints, each enforces a
specific architectural primitive, and they are simple to compose.

5 DISCUSSION

We evaluate our approach in terms of three questions: i) is this
feasible for disparate spatial architectures? ii) does the solver run
in practical time? iii) how does it compare to existing schedulers?
We conclude by discussing the limitations of our approach.

5.1 Results

Feasibility: To test our framework on non-trivial architec-
tures, we built three schedulers on top of our general framework
for TRIPS [2], DySER [4] and PLUG [3], and integrated this
scheduler into their compilers. The number of general framework
versus architecture-specific constraints is shown in the first two
columns of Table 2. Only a few architecture-specific constraints
were required in each case. Moreover, our ILP based framework
was able to model the primitives of three real architectures, pro-
ducing correct schedules for all computation DAGs considered.

Practicality: We show the number of dynamic equations
generated by GAMS, based on the constraints and ISI graphs, and
also the average solution time in the third and fourth columns
of table 2. Naturally, architectures which require more dynamic
equations are prone to longer solution times. Even with many
dynamic equations, the overall solution times are still practical,
in the range of seconds to a few minutes.

Micro Benchmarks Standard Benchmarks

Trips -0.8% (uBench) 1.5% (EEBMC)
DySER 420.0% (throughput) 7.1% (Parboil)
PLUG - 2.1% (plug bench)

Table 2. Average Percentage Speedup
Performance: Table 2 shows the geometric mean speedup of

our ILP scheduler versus the best known native scheduler for each
architecture. TRIPS achieves only marginal speedups (or slight
slowdowns) because the native scheduler implementation uses
additional knowledge about cache banks that we did not have
access to. The DySER ILP based scheduler always outperforms the
native version, achieving an average of 7% improvement, and up
to 4× on a throughput microbenchmark. The PLUG benchmarks
are also an average of 2% better in terms of overall performance.
Overall, we find that our scheduling approach is competitive with
or outperforms native schedulers.

5.2 Limitations
In this section, we discuss the limitations of our approach, and
offer possible solutions.

Architectural Generality: Though our general framework
supports the primitives of many spatial architectures, it is possible
that an architecture might contain some unique feature. In this
case, it will be necessary to define new constraints or variables,
potentially adding to or replacing some of the originals. Since our
formulation was designed with the principle of generality, we have
found such extensions to be simple and straightforward.

Handling Dynamic Latencies: Our model assumes com-
mon case latency values for events with variability, rather than con-
sidering the probability distribution of the latencies of such events.
We argue this limitation is fundamental to any static scheduler, and
other native schedulers like TRIPS, RAW, WaveScalar, DySER, and
PLUG take the same approach. An extension to our model could
employ stochastic programming, where several latency scenarios
would be considered for inputs known to have variation.

6 CONCLUSION
This paper presents an overview of our constraint-centric spatial
architecture scheduler and serves as a guide to our framework. It
simultaneously introduces essential ILP modeling concepts and the
GAMS language. Our approach is practically attractive in that the
implementation and maintenance is relatively simple, due to the
decreased complexity in specifying ILP constraints in contrast with
heuristic-based algorithmic tuning. Additionally, our solutions are
competitive with, or outperform heuristic-based algorithms.

Though we have demonstrated applicability for three diverse
architectures, it is yet unclear what spatial architectures could
render our framework ineffective. On the other hand, our tech-
niques will be relevant in other domains in graph mapping, like
memory controller scheduling, process scheduling in the context
of an operating system, or job scheduling/partitioning in large
heterogeneous systems. We believe that the infrastructure we
created can serve as the basis and inspiration for future research.

REFERENCES

[1] General algebraic modeling language, http://www.gams.com/.
[2] K. Coons, X. Chen, S. Kushwaha, K. S. McKinley, and D. Burger.

A Spatial Path Scheduling Algorithm for EDGE Architectures. In
ASPLOS XII.

[3] L. De Carli, Y. Pan, A. Kumar, C. Estan, and K. Sankaralingam.
Plug: Flexible lookup modules for rapid deployment of new
protocols in high-speed routers. In SIGCOMM ’09.

[4] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani, N. Satish,
K. Sankaralingam, and C. Kim. Dyser: Unifying functionality and
parallelism specialization for energy efficient computing. IEEE
Micro, 33(5), 2012.

[5] W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarkar,
and S. Amarasinghe. Space-time scheduling of instruction-level
parallelism on a raw machine. In ASPLOS-VIII.

[6] M. Mercaldi, S. Swanson, A. Petersen, A. Putnam, A. Schwerin,
M. Oskin, and S. J. Eggers. Instruction scheduling for a tiled
dataflow architecture. In ASPLOS-XII.

[7] R. Nagarajan, S. K. Kushwaha, D. Burger, K. S. McKinley, C. Lin,
and S. W. Keckler. Static placement, dynamic issue (spdi) schedul-
ing for edge architectures. In PACT ’04.

[8] T. Nowatzki, M. Sartin-Tarm, L. De Carli, K. Sankaralingam, C. Es-
tan, and B. Robatmili. A general constraint-centric scheduling
framework for spatial architectures. In PLDI ’13, To Appear.

[9] H. Park, K. Fan, S. A. Mahlke, T. Oh, H. Kim, and H.-s. Kim.
Edge-centric modulo scheduling for coarse-grained reconfigurable
architectures. In PACT ’08.

[10] L. A. Wolsey and G. L. Nemhauser. Integer and Combinatorial
Optimization.

