599 research outputs found

    Identification of "pathologs" (disease-related genes) from the RIKEN mouse cDNA dataset using human curation plus FACTS, a new biological information extraction system

    Get PDF
    BACKGROUND: A major goal in the post-genomic era is to identify and characterise disease susceptibility genes and to apply this knowledge to disease prevention and treatment. Rodents and humans have remarkably similar genomes and share closely related biochemical, physiological and pathological pathways. In this work we utilised the latest information on the mouse transcriptome as revealed by the RIKEN FANTOM2 project to identify novel human disease-related candidate genes. We define a new term "patholog" to mean a homolog of a human disease-related gene encoding a product (transcript, anti-sense or protein) potentially relevant to disease. Rather than just focus on Mendelian inheritance, we applied the analysis to all potential pathologs regardless of their inheritance pattern. RESULTS: Bioinformatic analysis and human curation of 60,770 RIKEN full-length mouse cDNA clones produced 2,578 sequences that showed similarity (70–85% identity) to known human-disease genes. Using a newly developed biological information extraction and annotation tool (FACTS) in parallel with human expert analysis of 17,051 MEDLINE scientific abstracts we identified 182 novel potential pathologs. Of these, 36 were identified by computational tools only, 49 by human expert analysis only and 97 by both methods. These pathologs were related to neoplastic (53%), hereditary (24%), immunological (5%), cardio-vascular (4%), or other (14%), disorders. CONCLUSIONS: Large scale genome projects continue to produce a vast amount of data with potential application to the study of human disease. For this potential to be realised we need intelligent strategies for data categorisation and the ability to link sequence data with relevant literature. This paper demonstrates the power of combining human expert annotation with FACTS, a newly developed bioinformatics tool, to identify novel pathologs from within large-scale mouse transcript datasets

    Identification of "pathologs" (disease-related genes) from the RIKEN mouse cDNA dataset using human curation plus FACTS, a new biological information extraction system

    Get PDF
    BACKGROUND: A major goal in the post-genomic era is to identify and characterise disease susceptibility genes and to apply this knowledge to disease prevention and treatment. Rodents and humans have remarkably similar genomes and share closely related biochemical, physiological and pathological pathways. In this work we utilised the latest information on the mouse transcriptome as revealed by the RIKEN FANTOM2 project to identify novel human disease-related candidate genes. We define a new term "patholog" to mean a homolog of a human disease-related gene encoding a product (transcript, anti-sense or protein) potentially relevant to disease. Rather than just focus on Mendelian inheritance, we applied the analysis to all potential pathologs regardless of their inheritance pattern. RESULTS: Bioinformatic analysis and human curation of 60,770 RIKEN full-length mouse cDNA clones produced 2,578 sequences that showed similarity (70–85% identity) to known human-disease genes. Using a newly developed biological information extraction and annotation tool (FACTS) in parallel with human expert analysis of 17,051 MEDLINE scientific abstracts we identified 182 novel potential pathologs. Of these, 36 were identified by computational tools only, 49 by human expert analysis only and 97 by both methods. These pathologs were related to neoplastic (53%), hereditary (24%), immunological (5%), cardio-vascular (4%), or other (14%), disorders. CONCLUSIONS: Large scale genome projects continue to produce a vast amount of data with potential application to the study of human disease. For this potential to be realised we need intelligent strategies for data categorisation and the ability to link sequence data with relevant literature. This paper demonstrates the power of combining human expert annotation with FACTS, a newly developed bioinformatics tool, to identify novel pathologs from within large-scale mouse transcript datasets

    WENDI: A tool for finding non-obvious relationships between compounds and biological properties, genes, diseases and scholarly publications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, there has been a huge increase in the amount of publicly-available and proprietary information pertinent to drug discovery. However, there is a distinct lack of data mining tools available to harness this information, and in particular for knowledge discovery across multiple information sources. At Indiana University we have an ongoing project with Eli Lilly to develop web-service based tools for integrative mining of chemical and biological information. In this paper, we report on the first of these tools, called WENDI (Web Engine for Non-obvious Drug Information) that attempts to find non-obvious relationships between a query compound and scholarly publications, biological properties, genes and diseases using multiple information sources.</p> <p>Results</p> <p>We have created an aggregate web service that takes a query compound as input, calls multiple web services for computation and database search, and returns an XML file that aggregates this information. We have also developed a client application that provides an easy-to-use interface to this web service. Both the service and client are publicly available.</p> <p>Conclusions</p> <p>Initial testing indicates this tool is useful in identifying potential biological applications of compounds that are not obvious, and in identifying corroborating and conflicting information from multiple sources. We encourage feedback on the tool to help us refine it further. We are now developing further tools based on this model.</p

    CIG-DB: the database for human or mouse immunoglobulin and T cell receptor genes available for cancer studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Immunoglobulin (IG or antibody) and the T-cell receptor (TR) are pivotal proteins in the immune system of higher organisms. In cancer immunotherapy, the immune responses mediated by tumor-epitope-binding IG or TR play important roles in anticancer effects. Although there are public databases specific for immunological genes, their contents have not been associated with clinical studies. Therefore, we developed an integrated database of IG/TR data reported in cancer studies (the Cancer-related Immunological Gene Database [CIG-DB]).</p> <p>Description</p> <p>This database is designed as a platform to explore public human and murine IG/TR genes sequenced in cancer studies. A total of 38,308 annotation entries for IG/TR proteins were collected from GenBank/DDBJ/EMBL and the Protein Data Bank, and 2,740 non-redundant corresponding MEDLINE references were appended. Next, we filtered the MEDLINE texts by MeSH terms, titles, and abstracts containing keywords related to cancer. After we performed a manual check, we classified the protein entries into two groups: 611 on cancer therapy (Group I) and 1,470 on hematological tumors (Group II). Thus, a total of 2,081 cancer-related IG and TR entries were tabularized. To effectively classify future entries, we developed a computational method based on text mining and canonical discriminant analysis by parsing MeSH/title/abstract words. We performed a leave-one-out cross validation for the method, which showed high accuracy rates: 94.6% for IG references and 94.7% for TR references. We also collected 920 epitope sequences bound with IG/TR. The CIG-DB is equipped with search engines for amino acid sequences and MEDLINE references, sequence analysis tools, and a 3D viewer. This database is accessible without charge or registration at <url>http://www.scchr-cigdb.jp/</url>, and the search results are freely downloadable.</p> <p>Conclusions</p> <p>The CIG-DB serves as a bridge between immunological gene data and cancer studies, presenting annotation on IG, TR, and their epitopes. This database contains IG and TR data classified into two cancer-related groups and is able to automatically classify accumulating entries into these groups. The entries in Group I are particularly crucial for cancer immunotherapy, providing supportive information for genetic engineering of novel antibody medicines, tumor-specific TR, and peptide vaccines.</p

    Computing Network of Diseases and Pharmacological Entities through the Integration of Distributed Literature Mining and Ontology Mapping

    Get PDF
    The proliferation of -omics (such as, Genomics, Proteomics) and -ology (such as, System Biology, Cell Biology, Pharmacology) have spawned new frontiers of research in drug discovery and personalized medicine. A vast amount (21 million) of published research results are archived in the PubMed and are continually growing in size. To improve the accessibility and utility of such a large number of literatures, it is critical to develop a suit of semantic sensitive technology that is capable of discovering knowledge and can also infer possible new relationships based on statistical co-occurrences of meaningful terms or concepts. In this context, this thesis presents a unified framework to mine a large number of literatures through the integration of latent semantic analysis (LSA) and ontology mapping. In particular, a parameter optimized, robust, scalable, and distributed LSA (DiLSA) technique was designed and implemented on a carefully selected 7.4 million PubMed records related to pharmacology. The DiLSA model was integrated with MeSH to make the model effective and efficient for a specific domain. An optimized multi-gram dictionary was customized by mapping the MeSH to build the DiLSA model. A fully integrated web-based application, called PharmNet, was developed to bridge the gap between biological knowledge and clinical practices. Preliminary analysis using the PharmNet shows an improved performance over global LSA model. A limited expert evaluation was performed to validate the retrieved results and network with biological literatures. A thorough performance evaluation and validation of results is in progress

    Foreword

    Get PDF
    The aim of this Workshop is to focus on building and evaluating resources used to facilitate biomedical text mining, including their design, update, delivery, quality assessment, evaluation and dissemination. Key resources of interest are lexical and knowledge repositories (controlled vocabularies, terminologies, thesauri, ontologies) and annotated corpora, including both task-specific resources and repositories reengineered from biomedical or general language resources. Of particular interest is the process of building annotated resources, including designing guidelines and annotation schemas (aiming at both syntactic and semantic interoperability) and relying on language engineering standards. Challenging aspects are updates and evolution management of resources, as well as their documentation, dissemination and evaluation

    An Analysis of the Abstracts Presented at the Annual Meetings of the Society for Neuroscience from 2001 to 2006

    Get PDF
    Annual meeting abstracts published by scientific societies often contain rich arrays of information that can be computationally mined and distilled to elucidate the state and dynamics of the subject field. We extracted and processed abstract data from the Society for Neuroscience (SFN) annual meeting abstracts during the period 2001–2006 in order to gain an objective view of contemporary neuroscience. An important first step in the process was the application of data cleaning and disambiguation methods to construct a unified database, since the data were too noisy to be of full utility in the raw form initially available. Using natural language processing, text mining, and other data analysis techniques, we then examined the demographics and structure of the scientific collaboration network, the dynamics of the field over time, major research trends, and the structure of the sources of research funding. Some interesting findings include a high geographical concentration of neuroscience research in the north eastern United States, a surprisingly large transient population (66% of the authors appear in only one out of the six studied years), the central role played by the study of neurodegenerative disorders in the neuroscience community, and an apparent growth of behavioral/systems neuroscience with a corresponding shrinkage of cellular/molecular neuroscience over the six year period. The results from this work will prove useful for scientists, policy makers, and funding agencies seeking to gain a complete and unbiased picture of the community structure and body of knowledge encapsulated by a specific scientific domain
    corecore