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Target discovery from data mining
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Data mining of available biomedical data and information has greatly boosted target discovery in the

‘omics’ era. Target discovery is the key step in the biomarker and drug discovery pipeline to diagnose and

fight human diseases. In biomedical science, the ‘target’ is a broad concept ranging from molecular

entities (such as genes, proteins and miRNAs) to biological phenomena (such as molecular functions,

pathways and phenotypes). Within the context of biomedical science, data mining refers to a

bioinformatics approach that combines biological concepts with computer tools or statistical methods

that are mainly used to discover, select and prioritize targets. In response to the huge demand of data

mining for target discovery in the ‘omics’ era, this review explicates various data mining approaches and

their applications to target discovery with emphasis on text and microarray data analysis. Two emerging

data mining approaches, chemogenomic data mining and proteomic data mining, are briefly

introduced. Also discussed are the limitations of various data mining approaches found in the level of

database integration, the quality of data annotation, sample heterogeneity and the performance of

analytical and mining tools. Tentative strategies of integrating different data sources for target

discovery, such as integrated text mining with high-throughput data analysis and integrated mining

with pathway databases, are introduced.
Introduction
Target discovery is the most crucial step in a modern drug dis-

covery campaign. Past records have indicated that the high failure

rate of drug development can be largely attributed to improper

target selection [1–3]. A target in the drug discovery process can be

from a broad spectrum of moieties, such as molecular entities

(genes/proteins/miRNA), disease biomarkers, biological pathways

and crucial ‘nodes’ on a regulatory network, as long as it is relevant

to a specific disease and its progression [4]. Target discovery can be

grouped into two categories, a system approach and a molecular

approach [1]. The system approach is a strategy that selects targets

through the study of diseases in whole organisms using informa-

tion derived from clinical trials and in vivo animal studies. The

molecular approach, the mainstream of current target discovery

strategies [3,5], is geared towards the identification of ‘druggable’
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targets where activities can be modulated through interactions

with small molecules or proteins and/or antibodies. Presently, the

majority of ‘druggable’ targets are G-protein-coupled receptors

(GPCRs) and protein kinases. Because the biological mechanisms

of human diseases are rather complex, the most crucial task in

target discovery is not only to identify, prioritize and select reliable

‘druggable’ targets but also to understand the cellular interactions

underlying disease phenotypes, to provide predictive models and

to construct biological networks for human diseases [1]. This

requires extensive gathering and filtering of a multitude of avail-

able heterogeneous data and information.

We are embracing an unprecedented omics era with the explo-

sion of biological data and information. For instance, the most

popular biomedical literature database, MEDLINE/PubMed, cur-

rently contains more than 18 million literature abstracts, and more

than 60,000 new abstracts are added monthly. Analogously, the

number of databases warehousing chemical, genomic, proteomic

and metabolic data is rapidly growing with their size estimated to
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FIGURE 1

Workflow of text mining and microarray data mining integrated with other high-throughput data and interaction data for discovery of therapeutic targets or

diagnostic markers.
a Text and microarray data can be combined with proteomics data or chemogenomics data to discover targets; different sources of data can be ‘mapped’ or

‘visualized’ based on gene–gene or protein–protein interaction pathways generated by high-throughput experiments to discover valuable targets in a systematic

fashion.
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double every two years. This wealth of biological data and infor-

mation presents immense new opportunities for target discovery

in support of the drug discovery pipeline [3]. In pace with the

growth of biological databases, the flourishing of bioinformatics,

especially data mining approaches, to extract or filter valuable

targets by combining biological ideas with computer tools or

statistical methods has changed the way target discovery is con-

ducted. Currently, text mining of literature databases and micro-

array data mining are the two prevailing approaches to target

discovery [5]. With the recent development of high-throughput

proteomics and chemical genomics, another two data mining

approaches, proteomic data mining and chemogenomic data

mining, have surfaced (Figure 1). To keep up with new scientific

discoveries, there is a clear need to develop efficient data mining

methods to fuel target discovery in the post-genomics era.

Text mining
Overview of text mining
Text mining (TM) can be defined as the computational discovery of

new, previously unknown information, by automatically extracting

information from different written resources [6]. Generally, TM

consists of two major steps [7–9], information retrieval (IR) and

information extraction (IE). First, IR finds literature or abstracts

related to a particular topic with the aid of general search engines

or specifically designed IR searching tools (Box 1).There are two very

common searching approaches in IR: (i) rule-based or knowledge-

based; and (ii) statistical or machine-learning [7]. The first approach
148 www.drugdiscoverytoday.com
uses patterns that rely on basic biological insights, for example

‘<prostate> and <membrane>’ (Figure 1), to find the literature

or abstracts of interest. The second approach uses syntactic parse

trees (which can also be rule-based) or classifiers to classify the

related biomedical literature. Named entity recognition (NER), a

prerequisite for IE, relies on tools or methods for automatic term

recognition to extract entities such as genes, proteins, drugs or other

molecules. iHOP (information hyperlinked over proteins; also see

Box 1) is an excellent example that browses sentences from Medline

abstracts on the basis of the entities that appear. IE [6] is then used to

identify or tabulate the relevant entities or facts from the retrieved

documents. IE can roughly be divided into two approaches. The first

and simplest approach to IE is co-occurrence, which identifies

entities that co-occur within the text. Furthermore, co-occurrence

could be used to extract relationships of a certain type, for example

physical protein–protein interactions [6]. The second approach is to

extract relations such as gene–gene or protein–protein interactions

and biological pathways, which progress beyond the simple recog-

nition of terms. Natural language processing (NLP) [10], a technol-

ogy that combines syntax and semantics, has been widely applied in

the second approach.

Applications to target discovery
Identification of disease-associated entities
Text mining has been broadly applied to identify disease-associated

entities (genes/proteins) and to understand their roles in diseases.

Very recently, Ozgur et al. [11] described a novel entity recognition
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BOX 1

Websites of some popular text, microarray, pathway databases and associated mining tools

Resources Descriptions Web links

Text/structural databases
PubMed Central Full-text http://www.pubmedcentral.nih.gov/

HighWire Press Full-text http://highwire.stanford.edu/
E-Biosci Full-text http://www.e-biosci.org/

PubMed Abstracts http://www.ncbi.nlm.nih.gov/pubmed/

UniProt Information for proteins http://www.uniprot.org/

InterPro Protein domains http://www.ebi.ac.uk/interpro/

Text mining tools
Google Scholar Search engine http://scholar.google.com/

GoPubMed PubMed engine http://www.gopubmed.org/
Textpresso Full-text search http://www.textpresso.org/

BioRAT Full-text search http://bioinf.cs.ucl.ac.uk/biorat/

ABNER Entity taggers http://pages.cs.wisc.edu/~bsettles/abner/

iHOP Entity recognition http://www.ihop-net.org/UniPub/iHOP/
GeneWays Pathway extraction http://geneways.genomecenter.columbia.edu/

Microarray databases
SMD Raw datasets http://genome-www5.stanford.edu/
Gene Expression Omnibus Raw datasets http://www.ncbi.nlm.nih.gov/geo/

Oncomine Cancer datasets http://www.oncomine.org/

CGAP database Cancer datasets http://cgap.nci.nih.gov/

caArray Cancer datasets http://array.nci.nih.gov/caarray/
Gene Expression Atlas Human Tissues http://symatlas.gnf.org

Clustering platform
GenePattern http://www.broad.mit.edu/cancer/software/genepattern/
GeneCluster 2 http://www.broad.mit.edu/cancer/software/genecluster2/gc2.html

ArrayMiner http://www.optimaldesign.com/ArrayMiner/ArrayMiner.htm

Supervised analysis platform
SAM http://www-stat.stanford.edu/~tibs/SAM/

Pathway and interactome databases
KEGG http://www.genome.jp/kegg/
UniHI http://theoderich.fb3.mdc-berlin.de:8080/unihi/home

PathwayExplorer http://pathwayexplorer.genome.tugraz.at/

GenMAPP http://www.genmapp.org/

Pathguide http://www.pathguide.org/ *(A complete list of pathway databases)
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method to retrieve and prioritize candidate genes associated with

prostate cancer. First, an initial list of 15 genes (seed genes) that are

well known to be related to prostate cancer was collected from a

curated database, Online Mendelian Inheritance in Man (OMIM;

also see Box 1). The list of seed genes was then used to construct a

disease-specific gene-interaction network mined from the full text

articles stored in PubMed Central (PMC), based on the dependency

parsing and support vector machines (SVM) method. The extended

list of genes in the gene-interaction network was then ranked and

prioritized according to the closeness centrality in the literature-

mined network. Remarkably, a total of 95% of the top 20 genes

ranked by this method were previously confirmed to be associated

with prostate cancer. Similarly, our group [12] has employed a

combined textual-structural mining approach to retrieve potential

enzyme targets in the extracellular space of cancerous cells for six

common and lethal human tumors, by searching PubMed abstracts,

universal gene/protein database – UniProt, conserved protein

domains database – InterPro and NCBI Entrez. First, a literature

mining tool LSGraph program was used to extract entities from the

curated database mentioned above based on keywords and gene

ontology (GO) terms. These entities were then enlarged by related

functional annotations and clustered further based on cellular
locations and biochemical functions within Ingenuity knowledge-

base. Finally, this method has led to the identification of a list of

cancer-related hydrolases for each tumor type, among which pro-

static acid phosphatase (ACPP), prostate-specific antigen (PSA) and

sulfatase 1 (SULF1) have been selected as suitable targets for our in-

house enzyme mediated cancer imaging and therapy [13].

Identification of disease-associated networks
One elegant example of applying text/literature mining to identify

disease-related networks is by Krauthammer et al. [14]. They have

created a mining tool called GeneWays (Box 1), which automati-

cally examines a large number of full-text research articles to predict

the physical interactions (edges) among candidate disease genes

(seed nodes) hidden in literature. First, mining in 25 scientific

journals by GeneWays has led to a literature-derived interaction

network that describes thedirect relationshipbetween entities (such

as binding and phosphorylation). Then, a list of 60 AD (Alzheimer’s

disease) candidate genes manually prepared by an expert in the field

was used as a set of seeds to search subnetworks that might harbor

entities related to AD. This method performed well in predicting

network nodes that match AD candidate genes; the results were

confirmed byexperts in the field.Recently, considerable effortshave
www.drugdiscoverytoday.com 149
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BOX 2

Frequently used mining methodologies to analyze high-
throughput data (for each methodology, three
commonly used algorithms are given as examples)

I. Normalization
A transformation method applied to observational high-throughput data

that adjusts the individual profiles to balance them appropriately so

that meaningful biological comparisons can be made. For example,

(i) linear regression analysis, (ii) non-linear regression analysis and
(iii) lowest normalization.

II. Unsupervised clustering
A clustering approach in which the observational data are analyzed

to determine whether the samples exhibit a similar pattern of

expression without constraint on samples. For example, (i) hierarchical

pairwise clustering, (ii) principal component analysis and
(iii) self-organizing maps.

III. Supervised classification
An approach that builds a model to classify known samples
(e.g. cancer vs. normal); it requires a training set and a test set to

validate the classifiers. For example, (i) linear discriminant analysis,

(ii) K-nearest neighborhood prediction and (iii) trained neural network.

R
eview

s
�G

E
N
E
T
O

S
C
R
E
E
N

been made to develop mining tools for extracting interaction net-

works related to human diseases from the literature. For example,

PolySearch [15] is a recently developed web-based tool to identify

biomedical associations and networks from published abstracts and

many well-annotated databases. Similarly, GenCLip [16] is a litera-

ture mining tool developed to discover gene clusters and networks

related to disease pathogenesis.

Limitation and challenges
Although text mining is very useful to derive biological entities and

insights from an astronomically large number of research articles,

several problems still persist [6,7,17]. The first problem is with the

term variation and term ambiguity of biomedical entities [18]. Term

variation occurs when a biomedical concept can be denoted by

various realizations. For example, <prostate> and <prostatic> can

be used as keywords to search entities or networks related to prostate

diseases. Vice versa, term ambiguity arises when the same term may

refer to many biomedical concepts. For example, the string ‘fat’ can

be referred to as both the symbol of Entrez Gene entry 2195, a

cadherin associated with tumor suppression, and the symbol of

Entrez Gene entry 948, which is a thrombospondin receptor asso-

ciatedwith atherosclerosis and platelet glycoproteindeficiency [10].

These ambiguities can lead to erroneous relations between mole-

cular biology and human diseases. To overcome this problem,

methods for rapid development of controlled vocabularies in text

mining have been proposed. For instance, the use of GO terms [19]

(also known as ‘controlled gene ontology vocabulary’) designating

subcellular location, molecular function and biological process has

allowed more appropriate annotation for entities and enhanced

retrieval. A second limitation is restricted access to the full text of

papers and to citation information; more comprehensive, specific

and detailed information is hidden in full-text articles than in

abstracts. Thus, the number of entities identified from text mining

can be greatly underestimated due to the condensed nature of

literature abstracts. Finally, it is important for the researchers to

know the levels of reliability and accuracy of various mining meth-

ods and their associated tools. Bridging the gaps between biologists

and computational scientists is another challenging task. Therefore,

while biologists should be made aware of the novelty of text mining

for biomedical target discovery, computational researchers should

be encouraged to develop more user-friendly methods and tools for

biologists.

Microarray data mining
Overview of microarray data mining
Microarray data mining refers to applying bioinformatics

approaches in microarray data analysis to discover entities and

biological pathways that define a phenotype, such as a human

disease [18,20,21]. Two basic approaches that are broadly applied

in microarray data mining are: unsupervised clustering and super-

vised classification [22] (also see Box 2). In the former approach a

group of genes that share coherent expression across a subset of

conditions is determined using clustering methods such as hier-

archical clustering, principal component analysis (PCA) and self-

organizing maps (SOM) [22]. For instance, the SOM method finds

an optimal set of ‘centroids’ around which the gene expression

data appear to aggregate. Then, cell or tissue samples can be

partitioned into groups with each centroid defining a cluster based
150 www.drugdiscoverytoday.com
on similarity measures for the data points such as Euclidean

distance and the Pearson correlation coefficient [23]. By contrast,

a supervised analysis approach searches for genes that can distin-

guish between known samples and conditions. In a typical super-

vised analysis, the global gene expression profiles of disease

tissues/fluids will be compared to those in normal tissues/fluids

(e.g. cancer vs. healthy tissues/fluids) from which a list of target

genes or biological pathways that are important in diseases will be

identified. Supervised classification methods such as linear discri-

minant analysis, nearest neighborhood search and genetic algo-

rithms have been used in this approach [22]. Driven by the

exponential growth of microarray data over the past few years,

considerable effort has been made to develop microarray databases

with timely public accessibility in a manner that facilitates the

target discovery (Box 1). Accordingly, meta-analysis of multiple

microarray datasets that addresses similar biological hypotheses

has been proposed [24]. The merit of meta-analysis methods is that

statistical measures across different studies could be compared and

all positive results could be assessed simultaneously. In addition,

other gene discovery strategies such as massively parallel signature

sequencing (MPSS), serial analysis of gene expression (SAGE) and

expressed sequence tags (EST) have also proved to be fruitful in

identifying targets and markers [25].

Applications to target discovery
Identification of therapeutic targets
Microarray data mining has proved a fruitful approach to disco-

vering target genes associated with human diseases. For example,

IGFBP3 has been identified as a hypermethylation target of pros-

tate cancer from a data mining approach [26]. Briefly, significantly

downregulated genes in prostate cancer, as compared with the

normal prostate, were identified from Gene Expression Atlas

database (Box 1). The retrieved genes were then organized by

putative function using GeneCards (http://www.genecards.org/).

Among the list of 631 retrieved genes, 16 of them were commonly

http://www.genecards.org/
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identified as downregulated by other studies and, finally, IGFBP3

was selected and verified as a hypermethylation target of prostate

cancer. As another elegant example, Ryu et al. [27] have recently

strived to identify novel molecular signatures as therapeutic tar-

gets for aggressive melanoma, a cancer with one of the highest

increasing rates in the USA. First, they have compared and ana-

lyzed a large amount of gene expression profiles from a series of

melanoma cell lines representing discrete stages of malignant

progression and primary human melanocytes through unsuper-

vised hierarchical clustering methods implemented in GeneClus-

ter (Box 1). This clustering analysis has enabled them to identify

two distinct groups of cell lines, one primary melanoma group and

one aggressive melanoma group. Further, a supervised microarray

data mining platform, significance analysis of microarrays (SAM;

also see Box 1), was employed together with functional annotation

analysis to identify a panel of highly upregulated invasion-specific

genes in aggressive melanoma, among which NF- k B, CXCL1,

CXCL2, IL-8, MMP1 and IGFBP3 have been previously implicated

in the promotion of tumor-associated angiogenesis, a crucial

feature of tumor aggressiveness.

Identification of diagnostic or prognostic markers
Biomarkers are molecules that are indicators of the physiologic

state and hallmarks of changes in a tissue or a bodily fluid during a

disease process [28,29]. With today’s growing needs for biomarker

discovery, microarray data mining has been increasingly used to

detect diagnostic or prognostic marker genes [29]. For instance,

Kim et al. [30] have reported the mining of public gene expression

data from the CGAP database and GEO database (Box 1) to identify

candidate markers for lung cancer. First, several hundreds of

differentially expressed genes in lung cancer were retrieved

through meta-analysis of these two databases using Fisher’s exact

test method. Further, a systematic examination based on the

annotated properties of the genes and a statistical P value cut-

off led to 20 candidate genes that were subjected to experimental

validations. Finally, seven candidate genes that are highly over-

produced were selected as potential diagnostic markers for lung

cancer. Similarly, our group [31] has successfully identified lists of

blood-borne biomarkers for six common human cancer types

through a combined mining strategy in the Oncomine microarray

platform and a curated pathway knowledgebase. First, all of the

significantly upregulated genes with defined GO cellular locations

in cancer were collected with a false discovery rate cut-off. These

retrieved genes were then subjected to pathway analysis and only

those encoding secreted proteins in blood/serum/plasma as puta-

tive markers were kept in the list. Further, a comparison study of

the retrieved marker genes across different tumor types has led to

the identification of common and unique markers in six tumors,

among which ErbB2, BRCA1/BRCA2, PSA, HABP2 and IGF-II have

also been selected by other studies as candidate tumor markers or

are already being used clinically. Remarkably, after manually

consulting the iHOP database (Box 1) and other curated databases,

13 markers out of the common 35 markers (�1/3) across prostate,

breast and lung tumors have been literature-confirmed to serve as

prognostic markers for the progression and invasiveness of human

tumors. In addition, MMP1, CD44, CP and NOTCH4 were selected

and prioritized as promising blood-based markers according to the

normalized fold change-abs[t] value.
Limitation and challenges
Although powerful, there are also a number of limitations and

challenges for microarray data mining in target discovery

[20,22,32]. First, data mining a list of target genes is not the end

of the genomic analysis and, because gene expression levels do not

always correlate with protein levels, follow-up experiments are

required to validate the protein expression levels and protein func-

tions [18,21]. Therefore, techniques such as quantitative RT-PCR,

immunohistochemistry (IHC) or in situ hybridization (ISH) need to

be applied to aid in the target discovery. Second, microarray data

exist on a variety of scales depending on the specific technological

platform as well as the individual experimental procedures. There-

fore, microarray data from different labs are not always directly

comparable [24]. Third, data availability and data integration can be

a challenge for the microarray data mining approach. In the post-

genomic era, the explosion of gene expression data requires timely

data storage and update of gene databases. Moreover, the different

formats of data storage across databases have posed a great challenge

for data mining and analysis. Data integration is needed to combine

data residing at different sources and databases into a uniform view

or format. GO has provided such a solution for data integration by

usinga controlledvocabulary (GO terms) to describegenesand gene

products in any organism [19]. Finally, computational and statis-

tical expertise required for genomic data mining remains a great

challenge for biologists to meet.

Emerging data mining approaches
Proteomic data mining
With the arrival of the post-genomic era of proteomics, a new

technology based on high-throughput mass spectrometry (MS)

analysis has emerged [33,34]. Accordingly, proteomic data mining

is needed to analyze and extract useful information from MS data

points. Since as many as 1–2 million data points may be included

per sample in a high resolution MS instrument [35], proteomic

data mining is challenging because of the size and dimension of

the massive datasets. For example, a typical high-resolution MS-

based analysis of a patient blood sample could result in the

generation of 350,000–400,000 points, with the mass-to-charge

(m/z) ratio and amplitude of the ion(s) being measured. It is

impractical to analyze these many datasets with traditional plot-

ting tools and spreadsheet methods. Therefore, there is a need to

develop novel mining tools and methods to hurdle the target

discovery from a proteomic approach. Recently, Open Proteomic

Database (OPD) [36] and EMBL Proteomic Database (PRIDE) [37]

became available to the public, and mining methods such as

Bayesian analysis, rule-based analysis and likehood scoring have

been proposed to discover patterns of diagnostic signatures [33].

Advanced computational methods are, however, still needed for

integration, mining, comparative analysis and functional inter-

pretation of high-throughput proteomic data.

Chemogenomic data mining
Another emerging data mining approach, chemogenomic data

mining, interprets the data from chemical genomics, a new tech-

nology examining the phenotypes of interest (such as viability,

cell morphology, behavior and gene expression profiles) in a

parallel fashion by applying small molecules from chemical

libraries to a library of cells [38,39]. In the 2D matrix resulting
www.drugdiscoverytoday.com 151
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from chemogenomics screening, one dimension is the chemical

library and the other dimension is the library of different cell types

(Figure 1). This can create new ways to identify cellular drug targets

and to discover disease pathways. The interpretation and filtering

of multi-dimensional chemogenomic data is a difficult task. The

challenge associated with chemogenomic data mining has

initiated the development of mining tools and methods to profile

and analyze data in a systematic way [40]. Notably, a number of

supervised or unsupervised clustering algorithms have been pro-

posed to obtain a subset of genes with significant functions from

the overall pattern, such as hierarchical clustering, k-means, self-

organizing maps, bioclustering and matrix operations [39].

Integrated data mining
Target discovery is an arduous task owing to the complexity of

human diseases and the heterogeneity of various biological data.

No single data mining approach is sufficient for understanding the

cellular mechanisms and reconstructing the biological networks

[1–2,4]. To retrieve and prioritize biologically meaningful targets,

we need to integrate and analyze a wealth of data across many

different disciplines [41–46]. Bioinformatics approaches that inte-

grate different sources of data, taking merits and drawbacks of each

into consideration, would significantly enhance the discovery of

valuable targets [30]. Particularly, the combination or integration

of text mining with high-throughput data analysis (such as geno-

mic, proteomic or chemogenomic data) has been increasingly used

to search disease markers and drug targets (Figure 1). By contrast,

with the emergence of system biology, the continued growth of

gene–gene and protein–protein interaction data has enabled scien-

tists to analyze and visualize a variety of datasets in the context of

biological networks or pathways, mainly with a manually curated

knowledgebase such as KEGG (Kyoto Encyclopedia of Genes and

Genomes; see Box 1) and experimental interactome databases such

as UniHI (Unified Human Interactome; see Box 1). For instance,

PathwayExplorer (Box 1) is a tool that mines high-throughput

expression data based on curated pathway knowledgebases such as

KEGG and GenMAPP (Box 1). In addition, it allows the mapping of

expression profiles of genes or proteins simultaneously onto major

regulatory, metabolic and cellular pathways. Below we have listed

a few more concrete examples to demonstrate the usefulness of

such integrated mining approaches.

Integrated text mining with high-throughput data analysis
Recently, Natarajan et al. [47] have successfully combined the

mining of full-text articles with genomic data analysis to reveal

the effect of sphingosine I-phosphate (SIP), a lysophospholipid

stimulus involved in cell apoptosis, proliferation and migration,

in invasive human glioblastoma and its downstream cascading

events. First, they identified a set of 72 differentially expressed genes

from microarray data analysis as a unique response to SIP, compar-

ing them with the expression profiles under the influence of epi-

dermal growth factor (EGF). This set of genes was then used to infer

gene–gene interaction networks extracted by mining full articles

from 20 popular scientific journals in the cancer research field over a

five-year period (1999–2003), based on natural language processing

(NLP) methods. Among the derived gene–gene interaction net-

works, they have mapped a particular interesting network triggered

by SIP, in which matrix metalloproteinases-9 (MMP-9) was identi-
152 www.drugdiscoverytoday.com
fied as a key player in invasive glioblastomas. Similarly, Li et al. [48]

have applied combined literature mining and microarray analysis

(LMMA) approach to construct a target network for the angiogen-

esis, a process of generating new capillary blood vessels and a

fundamental step in the transition of tumors from a dormant state

to a malignant state. This approach is particularly interesting

because it has summarized and integrated large amounts of related

literature and microarray data in a systematic fashion. First, they

have collected all the related PubMed abstracts using ‘angiogenesis’

as a keyword, from which 1929 geneswith HUGO symbols and 9514

co-citations were retrieved to construct a co-occurrence angiogen-

esis network. Next, the angiogenesis-related gene expression pro-

files of endothelial cells (EC) and solid tumors (ST) were collected

from the Stanford Microarray Database (SMD). Further, the litera-

ture-based angiogenesis network was refined using the retrieved

gene expression profiles through a multivariate selection procedure,

based on the hypothesis that literature-co-cited gene pairs will

indeed interact with each other if they are co-upregulated or co-

downregulated. Finally, a refined angiogenesis network was derived

in which numerous hub genes could be used as targets to inhibit

tumor angiogenesis, such as tumor necrosis factor (TNF)-alpha,

interleukin (IL)-1, -6 and vascular endothelial growth factor (VEGF).

Integrated mining with pathway databases
As an excellent example, Chassey et al. [49] have successfully built a

Hepatitis C virus (HCV) infection protein target network by inte-

grating yeast two-hybrid screening and literature mining with eight

curated interaction knowledgebases, including BIND, BioGRID,

DIP, GeneRIF, HPRD, IntAct, MINT and Reactome (see ‘Pathguide’

in Box 1). First, 314 protein–protein interactions between HCV and

human proteins were identified by yeast two-hybrid experiments

and 170 by text mining. For the text mining approach, all abstracts

related to the keywords ‘HCV’ and ‘protein interactions’ were

retrieved and subjected to gene name recognition and human

expert curation. These derived protein–protein interactions were

used as seeds and integrated into the eight curated knowledgebases

to reconstruct a HCV–human interaction network, among which

CORE protein, NS3 protein and NS5A protein were identified as

major targets to develop anti-viral molecules. In addition to curated

knowledgebases, experimental interactome databases have also

been intensively used to identify potential targets. Very recently,

Yue et al. [50] combined the proteomic data analysis with mining

the UniHI database (Box 1), an experimental protein–protein inter-

action database, to construct a target network for the anticancer

drug ganoderic acid D (GAD), a major component in a traditional

Chinese herbal medicine. Briefly, 21 differentially expressed pro-

teins were first identified as cellular targets of GAD through pro-

teomic data analysis. These 21 proteins were then used as seeds to

fish partner interacting proteins in the UniHI database. The iterative

searching of such partner proteins has led to an expanded network

including all 21 experimentally derived proteins. Finally, they have

identified the 14-3-3 protein family as a major player in the cyto-

toxicity mechanisms of GAD through the derived protein–protein

interaction network.

Concluding remarks and future prospects
With the rising flood of biomedical data and information gener-

ated from a variety of innovative technologies, we are on the verge
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FIGURE 2

Scheme of drug discovery pipeline in the ‘omics’ era.
a Cartoon picture of human placental alkaline phosphatase as ‘druggable’ target. b Diagnostic signatures shed into human blood. c A cell growth and proliferation

pathway for human prostate tumor. d An enzyme-activated prodrug structure of 2-(20-phosphoryloxyphenyl)-6-iodo-4-(3H)-quinazolinone (IQ2-P);
*I: 127I

(chemotherapy), 131I (radiotherapy), and 123I (radioimaging) of ligand for tumor targets.
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of an exciting omics drug discovery era. Inevitably, data mining

approaches will become the first phase of future drug discovery

pipelines by helping to select proper targets and better understand

the cellular mechanisms or phenotypes of human diseases

(Figure 2). Indeed, data mining has already been widely applied

to identify targets for therapeutic invention and early diagnosis.

Approaches consist of text mining, microarray data mining and

another two emerging mining approaches: proteomic data mining

and chemogenomic data mining. Fortunately, a large number of

databases warehousing a variety of data, reliable mining tools and

methods are under active development. Owing to the inherent

limitations of various data mining approaches, however, we sug-

gest that a combination or integration of different mining

approaches should be applied to overcome the drawbacks of a
single mining method. Consequently, future work should be

directed towards the development of integrated databases in uni-

formed formats, and biologist-friendly software or tools for routine

use to accelerate target discovery. This is challenging because

human diseases are highly complex processes and biomedical data

are largely heterogeneous and poorly defined. Nonetheless, data

mining should help researchers to make earlier and crucial deci-

sions in the drug discovery process. We have every reason to

believe that data mining will play an increasingly significant part

in future biomarker and drug discovery campaigns.
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