3,579 research outputs found

    Integrative IRT for documentation and interpretation of archaeological structures

    Get PDF
    The documentation of built heritage involves tangible and intangible features. Several morphological and metric aspects of architectural structures are acquired throughout a massive data capture system, such as the Terrestrial Laser Scanner (TLS) and the Structure from Motion (SfM) technique. They produce models that give information about the skin of architectural organism. Infrared Thermography (IRT) is one of the techniques used to investigate what is beyond the external layer. This technology is particularly significant in the diagnostics and conservation of the built heritage. In archaeology, the integration of data acquired through different sensors improves the analysis and the interpretation of findings that are incomplete or transformed. Starting from a topographic and photogrammetric survey, the procedure here proposed aims to combine the bidimensional IRT data together with the 3D point cloud. This system helps to overcome the Field of View (FoV) of each IRT image and provides a three-dimensional reading of the thermal behaviour of the object. This approach is based on the geometric constraints of the pair of RGB-IR images coming from two different sensors mounted inside a bi-camera commercial device. Knowing the approximate distance between the two sensors, and making the necessary simplifications allowed by the low resolution of the thermal sensor, we projected the colour of the IR images to the RGB point cloud. The procedure was applied is the so-called Nymphaeum of Egeria, an archaeological structure in the Caffarella Park (Rome, Italy), which is currently part of the Appia Antica Regional Park

    Close-Range Sensing and Data Fusion for Built Heritage Inspection and Monitoring - A Review

    Get PDF
    Built cultural heritage is under constant threat due to environmental pressures, anthropogenic damages, and interventions. Understanding the preservation state of monuments and historical structures, and the factors that alter their architectural and structural characteristics through time, is crucial for ensuring their protection. Therefore, inspection and monitoring techniques are essential for heritage preservation, as they enable knowledge about the altering factors that put built cultural heritage at risk, by recording their immediate effects on monuments and historic structures. Nondestructive evaluations with close-range sensing techniques play a crucial role in monitoring. However, data recorded by different sensors are frequently processed separately, which hinders integrated use, visualization, and interpretation. This article’s aim is twofold: i) to present an overview of close-range sensing techniques frequently applied to evaluate built heritage conditions, and ii) to review the progress made regarding the fusion of multi-sensor data recorded by them. Particular emphasis is given to the integration of data from metric surveying and from recording techniques that are traditionally non-metric. The article attempts to shed light on the problems of the individual and integrated use of image-based modeling, laser scanning, thermography, multispectral imaging, ground penetrating radar, and ultrasonic testing, giving heritage practitioners a point of reference for the successful implementation of multidisciplinary approaches for built cultural heritage scientific investigations

    rigorous procedure for mapping thermal infrared images on three dimensional models of building facades

    Get PDF
    A rigorous methodology for mapping thermal and RGB images on three-dimensional (3-D) models of building facades is presented. The developed method differs from most existing approaches because it relies on the use of thermal images coupled with 3-D models derived from terrestrial laser scanning surveying. The primary issue for an accurate texturing is the coregistration of the geometric model of the facade and the thermal images in the same reference system. This task is done by using a procedure standing out from other approaches adopted in current practice, which are mainly based on the independent registration of each image on the basis of homography or space resection techniques. A rigorous photogrammetric orientation of both thermal and RGB images is computed together in a combined bundle adjustment. This solution allows one to have a better control of the quality of the results, especially to reduce errors and artifacts in areas where more images are mosaicked onto the 3-D model. Several products can be obtained: 3-D triangulated textured models or raster products like orthophotos, having the temperature as radiometric value. The proposed approach is tested on different buildings of Politecnico di Milano University. Applications demonstrated the performance of the procedure and its technical applicability in routine thermal surveys

    Use of a Laser Scanning System for Professional Preparation and Scene Assessment of Fire Rescue Units

    Get PDF
    The paper presents results of a study focused on usability of a 3D laser scanning system by fire rescue units during emergencies, respectively during preparations for inspection and tactical exercises. The first part of the study focuses on an applicability of a 3D scanner in relation to an accurate evaluation of a fire scene through digitization and creation of virtual walk-through of the fire scene. The second part deals with detailed documentation of access road to the place of intervention, including a simulation of the fire vehicle arrival

    Study on quality in 3D digitisation of tangible cultural heritage: mapping parameters, formats, standards, benchmarks, methodologies and guidelines: final study report.

    Get PDF
    This study was commissioned by the Commission to help advance 3D digitisation across Europe and thereby to support the objectives of the Recommendation on a common European data space for cultural heritage (C(2021) 7953 final), adopted on 10 November 2021. The Recommendation encourages Member States to set up digital strategies for cultural heritage, which sets clear digitisation and digital preservation goals aiming at higher quality through the use of advanced technologies, notably 3D. The aim of the study is to map the parameters, formats, standards, benchmarks, methodologies and guidelines relating to 3D digitisation of tangible cultural heritage. The overall objective is to further the quality of 3D digitisation projects by enabling cultural heritage professionals, institutions, content-developers, stakeholders and academics to define and produce high-quality digitisation standards for tangible cultural heritage. This unique study identifies key parameters of the digitisation process, estimates the relative complexity and how it is linked to technology, its impact on quality and its various factors. It also identifies standards and formats used for 3D digitisation, including data types, data formats and metadata schemas for 3D structures. Finally, the study forecasts the potential impacts of future technological advances on 3D digitisation

    Point to Pipe: Automatic Reconstruction and Classification of Pipes Using Lasergrammetry and Thermogrammetry for Building Information Modeling (BIM)

    Get PDF
    Existing buildings account for 40% of global energy consumption, and two-thirds of them will be still be operational in 2050. As most of these buildings lack the needed documentation for energy upgrades, it is essential to understand and represent the current conditions of their envelopes and mechanical systems. This project proposed a skeleton-based application for reconstructing and classifying pipes in existing buildings using point clouds from laser scanners and thermal images for Building Information Modeling (BIM) applications. MATLAB and Dynamo were used to process and model this information in Revit. Initial results indicate that the application is robust to identifying pipes and connections, and that thermal images can be used to create sematic-rich models. These results can contribute to improving the capabilities of some of the commercially available software for pipe reconstruction in BIM and to expediting the digital reconstruction processes in existing buildings

    3D Data Fusion for Historical Analyses of Heritage Buildings Using Thermal Images: The Palacio de Colomina as a Case Study

    Get PDF
    In the framework of built heritage monitoring techniques, a prominent position is occupied by thermography, which represents an efficient and non-invasive solution for these kinds of investigations, allowing the identification of phenomena detectable only in the non-visible range of the electromagnetic spectrum. This is of extreme interest, especially considering the possibility of integrating the radiometric information with the 3D models achievable from laser scanning or photogrammetric techniques, characterised by a high spatial resolution. This paper aims to illustrate how combining different geomatics techniques (in particular, by merging thermal images, laser scanning point clouds, and traditional visible colour photogrammetric data) can efficiently support historical analyses for studying heritage buildings. Additionally, a strategy for generating HBIM models starting from the integration of 3D thermal investigations and historical sources is proposed, concerning both the multi-temporal modification of the volumes of the building and the individual architectural elements. The case study analysed for the current research was the Palacio de Colomina in Valencia, Spain, a noble palace—now the headquarters of a university—that, during the last few centuries, has been subjected to considerable transformations in terms of rehabilitation works and modification of its volume

    3D INTERPRETATION AND FUSION OF MULTIDISCIPLINARY DATA FOR HERITAGE SCIENCE: A REVIEW

    Get PDF
    Activities related to the protection of tangible heritage require extensive multidisciplinary documentation. The various raw data that occur have been oftentimes been processed, visualized and evaluated separately leading to aggregations of unassociated information of varying data types. In the direction of adopting complete approaches towards more effective decision making, the interpretation and fusion of these data in three dimensions, inserting topological information is deemed necessary. The present study addresses the achieved level of three-dimensional interpretation and fusion with geometric models of data originating from different fields, by providing an extensive review of the relevant literature. Additionally, it briefly discusses perspectives on techniques that could potentially be integrated with point clouds or models
    corecore