9,758 research outputs found

    An ontology to standardize research output of nutritional epidemiology : from paper-based standards to linked content

    Get PDF
    Background: The use of linked data in the Semantic Web is a promising approach to add value to nutrition research. An ontology, which defines the logical relationships between well-defined taxonomic terms, enables linking and harmonizing research output. To enable the description of domain-specific output in nutritional epidemiology, we propose the Ontology for Nutritional Epidemiology (ONE) according to authoritative guidance for nutritional epidemiology. Methods: Firstly, a scoping review was conducted to identify existing ontology terms for reuse in ONE. Secondly, existing data standards and reporting guidelines for nutritional epidemiology were converted into an ontology. The terms used in the standards were summarized and listed separately in a taxonomic hierarchy. Thirdly, the ontologies of the nutritional epidemiologic standards, reporting guidelines, and the core concepts were gathered in ONE. Three case studies were included to illustrate potential applications: (i) annotation of existing manuscripts and data, (ii) ontology-based inference, and (iii) estimation of reporting completeness in a sample of nine manuscripts. Results: Ontologies for food and nutrition (n = 37), disease and specific population (n = 100), data description (n = 21), research description (n = 35), and supplementary (meta) data description (n = 44) were reviewed and listed. ONE consists of 339 classes: 79 new classes to describe data and 24 new classes to describe the content of manuscripts. Conclusion: ONE is a resource to automate data integration, searching, and browsing, and can be used to assess reporting completeness in nutritional epidemiology

    Using philosophy to improve the coherence and interoperability of applications ontologies: A field report on the collaboration of IFOMIS and L&C

    Get PDF
    The collaboration of Language and Computing nv (L&C) and the Institute for Formal Ontology and Medical Information Science (IFOMIS) is guided by the hypothesis that quality constraints on ontologies for software ap-plication purposes closely parallel the constraints salient to the design of sound philosophical theories. The extent of this parallel has been poorly appreciated in the informatics community, and it turns out that importing the benefits of phi-losophical insight and methodology into application domains yields a variety of improvements. L&C’s LinKBase® is one of the world’s largest medical domain ontologies. Its current primary use pertains to natural language processing ap-plications, but it also supports intelligent navigation through a range of struc-tured medical and bioinformatics information resources, such as SNOMED-CT, Swiss-Prot, and the Gene Ontology (GO). In this report we discuss how and why philosophical methods improve both the internal coherence of LinKBase®, and its capacity to serve as a translation hub, improving the interoperability of the ontologies through which it navigates

    Structural analysis and auditing of SNOMED hierarchies using abstraction networks

    Get PDF
    SNOMED is one of the leading healthcare terminologies being used worldwide. Due to its sheer volume and continuing expansion, it is inevitable that errors will make their way into SNOMED. Thus, quality assurance is an important part of its maintenance cycle. A structural approach is presented in this dissertation, aiming at developing automated techniques that can aid auditors in the discovery of terminology errors more effectively and efficiently. Large SNOMED hierarchies are partitioned, based primarily on their relationships patterns, into concept groups of more manageable sizes. Three related abstraction networks with respect to a SNOMED hierarchy, namely the area taxonomy, partial-area taxonomy, and disjoint partial-area taxonomy, are derived programmatically from the partitions. Altogether they afford high-level abstraction views of the underlying hierarchy, each with different granularity. The area taxonomy gives a global structural view of a SNOMED hierarchy, while the partial-area taxonomy focuses more on the semantic uniformity and hierarchical proximity of concepts. The disjoint partial-area taxonomy is devised as an enhancement of the partial-area taxonomy and is based on the partition of the entire collection of so-called overlapping concepts into singly-rooted groups. The taxonomies are exploited as the basis for a number of systematic auditing regimens, with a theme that complex concepts are more error-prone and require special attention in auditing activities. In general, group-based auditing is promoted to achieve a more efficient review within semantically uniform groups. Certain concept groups in the different taxonomies are deemed “complex” according to various criteria and thus deserve focused auditing. Examples of these include strict inheritance regions in the partial-area taxonomy and overlapping partial-areas in the disjoint partial-area taxonomy. Multiple hypotheses are formulated to characterize the error distributions and ratios with respect to different concept groups presented by the taxonomies, and thus further establish their efficacy as vehicles for auditing. The methodologies are demonstrated using SNOMED’s Specimen hierarchy as the test bed. Auditing results are reported and analyzed to assess the hypotheses. With the use of the double bootstrap and Fisher’s exact test (two-tailed), the aforementioned hypotheses are confirmed. Auditing on various complex concept groups based on the taxonomies is shown to yield a statistically significant higher proportion of errors

    A unified framework for building ontological theories with application and testing in the field of clinical trials

    Get PDF
    The objective of this research programme is to contribute to the establishment of the emerging science of Formal Ontology in Information Systems via a collaborative project involving researchers from a range of disciplines including philosophy, logic, computer science, linguistics, and the medical sciences. The re­searchers will work together on the construction of a unified formal ontology, which means: a general framework for the construction of ontological theories in specific domains. The framework will be constructed using the axiomatic-deductive method of modern formal ontology. It will be tested via a series of applications relating to on-going work in Leipzig on medical taxonomies and data dictionaries in the context of clinical trials. This will lead to the production of a domain-specific ontology which is designed to serve as a basis for applications in the medical field

    A taxonomy of multi-industry labour force skills

    Get PDF
    This paper proposes an empirical study of the skill repertoires of 290 sectors in the United States over the period 2002–2011. We use information on employment structures and job content of occupations to flesh out structural characteristics of industry-specific know-how. The exercise of mapping the skills structures embedded in the workforce yields a taxonomy that discloses novel nuances on the organization of industry. In so doing we also take an initial step towards the integration of labour and employment in the area of innovation studies
    • …
    corecore