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ABSTRACT 

STRUCTURAL ANALYSIS AND AUDITING OF SNOMED HIERARCHIES 

USING ABSTRACTION NETWORKS 

 

by 

Yue Wang 

SNOMED is one of the leading healthcare terminologies being used worldwide.  Due to 

its sheer volume and continuing expansion, it is inevitable that errors will make their way 

into SNOMED.  Thus, quality assurance is an important part of its maintenance cycle.  

A structural approach is presented in this dissertation, aiming at developing 

automated techniques that can aid auditors in the discovery of terminology errors more 

effectively and efficiently. Large SNOMED hierarchies are partitioned, based primarily 

on their relationships patterns, into concept groups of more manageable sizes. Three 

related abstraction networks with respect to a SNOMED hierarchy, namely the area 

taxonomy, partial-area taxonomy, and disjoint partial-area taxonomy, are derived 

programmatically from the partitions. Altogether they afford high-level abstraction views 

of the underlying hierarchy, each with different granularity. The area taxonomy gives a 

global structural view of a SNOMED hierarchy, while the partial-area taxonomy focuses 

more on the semantic uniformity and hierarchical proximity of concepts. The disjoint 

partial-area taxonomy is devised as an enhancement of the partial-area taxonomy and is 

based on the partition of the entire collection of so-called overlapping concepts into 

singly-rooted groups.  

The taxonomies are exploited as the basis for a number of systematic auditing 

regimens, with a theme that complex concepts are more error-prone and require special 

attention in auditing activities. In general, group-based auditing is promoted to achieve a 



more efficient review within semantically uniform groups. Certain concept groups in the 

different taxonomies are deemed “complex” according to various criteria and thus 

deserve focused auditing. Examples of these include strict inheritance regions in the 

partial-area taxonomy and overlapping partial-areas in the disjoint partial-area taxonomy.   

Multiple hypotheses are formulated to characterize the error distributions and 

ratios with respect to different concept groups presented by the taxonomies, and thus 

further establish their efficacy as vehicles for auditing. The methodologies are 

demonstrated using SNOMED’s Specimen hierarchy as the test bed. Auditing results are 

reported and analyzed to assess the hypotheses. With the use of the double bootstrap and 

Fisher’s exact test (two-tailed), the aforementioned hypotheses are confirmed. Auditing 

on various complex concept groups based on the taxonomies is shown to yield a 

statistically significant higher proportion of errors. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Motivation 

Electronic Health Record (EHR) systems have been widely used in the healthcare 

industry in pursuit of reduced medical errors, higher-quality care, and improved 

efficiency. The basis for these products is a standard terminology, which provides a 

consistent way to index, store, retrieve, and aggregate clinical data across specialties and 

sites of care. The primary purpose of such a terminology is to support the effective 

clinical data recording and information exchange so as to improve patient care.  

The Systematized Nomenclature of Medicine – Clinical Terms (“SNOMED” for 

short, hereafter) [1], one of the leading biomedical terminologies, is well structured, 

highly computerized, and has many merits that make it superior to its peers. This is 

evidenced, for example, by the fact that it is slated to become an integral component of 

standardization in health information technology [2]. In one particular application, the 

encoding of patients’ problems in EHRs by concepts derived from SNOMED has been 

proposed as part of the requirements for “meaningful use” of such systems [2].  

However, due to SNOMED’s large volume and inherent complexity, it is 

unavoidable that errors will find their way to this large knowledge base, particularly as it 

continues to expand. As SNOMED underlies decision-support systems, clinical patient 

records, health care administrative systems, etc., errors in SNOMED may propagate to 

errors in these systems, which in turn may result in endangering the life or quality of life 

of a patient.  
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Given SNOMED’s expanding content and attendant complexity, quality 

assurance is a critical task facing SNOMED’s maintenance personnel. To this end, the 

International Health Terminology Standards Development Organisation (IHTSDO) [3] 

formed the Quality Assurance Committee, which supports the mission of the IHTSDO by 

advising on issues related to the quality of SNOMED, the quality of related standards for 

which the IHTSDO has responsibility, and the quality of services provided by the 

IHTSDO. It is in this committee that SNOMED’s content undergoes a clinical quality 

assurance process prior to each release. More importantly, automated and semi-

automated methodologies that can aid editors in this endeavor and enhance the efficiency 

and efficacy of SNOMED auditing are invaluable.   

The objective of this research is to investigate how computer science techniques 

can be applied to assist the quality assurance of SNOMED. The structural aspects of the 

SNOMED hierarchies and their constituent concepts are studied. Three high-level 

abstraction networks, namely area taxonomy, partial-area taxonomy, and disjoint partial-

area taxonomy, are derived programmatically based on analyses of a SNOMED 

hierarchy’s attribute relationships and their patterns of inheritance. The three taxonomies 

complement each other in terms of granularity of display, each with different focus. 

Altogether they serve as a multi-level abstraction of a SNOMED hierarchy, providing a 

more effective and efficient way for orientation and assessment. Multiple auditing 

methodologies that make use of these taxonomies are presented in this dissertation. These 

taxonomy-based auditing regimens are considered semi-automatic, as the taxonomies can 

aid an auditor by automatically identifying concepts that deserve attention. Importantly, 

many concept errors were found manifested themselves as structural anomalies at the 
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taxonomy level, and thus the taxonomies proved to be effective building blocks for 

automated auditing regimens. 

 

1.2 Background and Literature Review 

1.2.1 SNOMED  

SNOMED [4-6] is a clinical terminology developed as a joint venture between the 

College of American Pathologists (CAP) and the UK’s National Health Service (NHS).  

It was formed by merging, expanding, and restructuring an earlier version of SNOMED 

(i.e., SNOMED RT) and the UK’s Clinical Terms Version 3 (CTV3). In 2007, the 

SNOMED intellectual property rights were transferred from the CAP to the IHTSDO. 

SNOMED’s concepts are organized in 19 top-level hierarchies, each with a 

unique root called a top-level concept.  Above all these top-level concepts sits a single 

concept called SNOMED Concept, which serves as the root of the entire terminology.  

Each concept is a descendant of SNOMED Concept via a sequence of IS-A 

(subsumption) relationships passing through exactly one top-level concept.  

Descriptions are the terms, or names, assigned to each of SNOMED’s concepts.  

A given concept has one or more associated descriptions. One of them is called the “Fully 

Specified Name” (FSN), which is a unique phrase that describes a concept in a way that 

is intended to be unambiguous.  All concepts have one description which is designated as 

a “preferred term” for each language edition. (The preferred term is different for UK 

English, US English, and, of course, Spanish.) Many concepts have alternative 

descriptions called “synonyms.”  
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Most of SNOMED’s top-level hierarchies represent broad groupings of clinically 

related concepts. There are Clinical Finding, Procedure, Body Structure, Organism, 

Pharmaceutical/Biologic Product, etc.  Three of the hierarchies, namely, Linkage 

Concept, Qualifier Value, and Special Concept, serve more specific structural roles in the 

terminology.  

Relationships are the connections between concepts in SNOMED, with every 

concept having at least one relationship to another concept. Relationships in SNOMED 

are unidirectional, extending from a source concept to a target concept. There are two 

general kinds of relationships in SNOMED:  

1. IS-A relationships (already noted above), that form the basis of the hierarchies. 

Each connects a more specific concept (a child) to a more general concept (a 

parent).  

 

2. Attribute relationships, that characterize and define concepts. Each can take on 

values (targets) only from a prescribed top-level hierarchy.  

 

A particular attribute relationship comprises its source concept, its relationship 

type (defined as a separate SNOMED concept in its own right), and a value (another 

concept).  These three together are called the “Object-Attribute-Value” (OAV) triplet.  

For brevity, “attribute relationship” will be referred to as “relationship,” while “IS-A 

relationship” will be referred to as “IS-A” hereafter.  

Relationships in SNOMED are the major interests when the partitioning 

techniques are applied and abstraction networks are constructed for auditing. These 

relationships serve in definitional capacities. For example, the concept Ear problem (in 

the Clinical Finding hierarchy) has the relationship finding site to the concept Ear 

structure (in the Body Structure hierarchy) specifying that Ear structure is the site of Ear 
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problem.  Some hierarchies introduce multiple relationships. For example, the Specimen 

hierarchy defines five kinds of relationships, namely, specimen substance, specimen 

procedure, specimen source morphology, specimen source topography, and specimen 

source identity. 

1.2.2 Abstraction Networks 

In the course of extensive research on terminologies and ontologies over the past 20 

years, it has become apparent that their maintenance (including auditing) is greatly 

enhanced by high-level abstraction networks, particularly those derived from partitions, 

i.e., groupings of concepts into smaller, more manageable collections. SNOMED’s 

designers decided to organize their terminology in 19 top-level hierarchies as of its most 

recent release (July 2011). With respect to the UMLS, an abstraction feature was 

considered paramount and the Semantic Network was thus built as one of its fundamental 

knowledge sources [7, 8].  

A refined Semantic Network (SN) of the UMLS was presented in [9], which 

offers a partition of the UMLS Metathesaurus into disjoint sets of concepts with similar 

semantics, not offered by the SN. Later work went even further with a proposal for an 

additional layer of abstraction, a partition of the SN’s semantic types into various subject 

areas [10, 11]. The notion of metaschema of the SN [12, 13] was introduced as another 

form of additional level of abstraction.  As a matter of fact, most of the papers in a special 

issue of the Journal of Biomedical Informatics on Structural Issues in UMLS Research 

[14] utilize the interplay between the SN and the Metathesaurus [15, 16] in one way or 

another. An abstraction network for the Medical Entities Dictionary (MED) [17] was 

presented that partitions it into disjoint sets of concepts of similar structure and semantics 
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in [18, 19]. The usefulness of the schema for structural orientation and auditing was 

demonstrated in [20]. 

Beyond the field of medical informatics, the Suggested Upper Merged Ontology 

(SUMO) [21, 22], developed toward the IEEE Standard Upper Ontology, and the 

mapping of WordNet [23] to SUMO [24] have been conceived in this spirit of 

abstraction.   

1.2.3 Terminology Auditing 

Auditing large terminologies is a serious challenge facing the biomedical informatics 

community. Terminologies are typically huge in size and have high complexity, making 

comprehensive audits very difficult— indeed, overwhelming—tasks.  

A variety of systematic auditing techniques have been proposed and applied to 

SNOMED. Its conceptual coverage and its completeness have been assessed using 

comparative approaches involving external sets of clinical terms [25-27]. An evaluation 

of the semantic completeness of SNOMED’s content has also been done using a formal 

concept analysis (FCA)-based model [28]. Following that work, a highly-scalable 

approach was utilized to determine how well SNOMED conformed to a lattice structure 

and to suggest possible content extensions [29].  

Lexical information (specifically, term substrings) was used to detect potential 

classification omissions [30].  In other work, lexical analysis of SNOMED concepts’ 

textual descriptions has yielded a large collection of underspecified concepts and 

possibilities for refining SNOMED’s content [31]. Another lexical approach has 

identified a variety of inconsistencies between SNOMED terms and the underlying 
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logical modeling of seemingly similar concepts [32]. Inconsistent usage of the words 

“and” and “or” in SNOMED terms has been studied [33].  

Ontological and linguistic techniques were utilized to identify duplicates and 

redundancy [34, 35].  SNOMED has been analyzed to determine how well its hierarchical 

relations adhere to four basic ontological principles [36, 37]. Since SNOMED is based on 

a description logic (DL) formalism, it is amenable to algorithms developed in the context 

of DL representations for the detection of terminological inconsistencies [38] and 

synonymy [39]. The impact of SNOMED revisions was assessed by investigating the 

manual mappings between a proprietary interface terminology to two versions of 

SNOMED [40]. A comprehensive review of auditing methodologies used for SNOMED 

are presented in [41] along with a useful general glossary pertaining to auditing.  

In general, the typically limited availability of auditing resources makes it 

imperative to develop systematic techniques that focus efforts on concepts or groups of 

concepts that are likely to have higher rates of errors. In this way, a better return, 

measured in the number of errors found, can be expected for a given amount of auditing 

work.  

Many important terminologies and terminological systems, aside from SNOMED 

and the others mentioned above, have been the focus of systematic auditing regimens. In 

fact, a special issue of JBI [14] has been devoted exclusively to terminology auditing 

methodologies. In [41] in that issue, a framework was introduced to help classify the 

large body of disparate techniques based on various criteria. For example, distinctions 

were made based on the kind of terminology attribute that was the focus of the audit, e.g., 

terms and concepts vs. semantic classification. Moreover, the methodologies were 
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categorized according to their uses of various knowledge and their levels of automation 

in the identification of problems. According to the classification, the methodologies being 

presented in this dissertation can be described as “automated systematic.”  

Some of the methodologies surveyed in [41] that were designated automated 

systematic involved some kind of rule specification. For example, the work in [42] used 

rules to assess certain uniqueness constraints in Read Codes. In the context of the UMLS, 

a search for concept redundancy was aided by constraints on semantic types [43]. The 

algorithm [44] for finding all redundant semantic-type assignments is based on a rule for 

the UMLS Semantic Network [45].  Concept redundancy was also addressed in 

SNOMED with the use of rules based on a mapping to LinKBase, a medical ontology 

[35]. A number of automated systematic methods have exploited DL representations of 

terminologies. The methodology of [39] is such an example.  

The methodologies presented in this dissertation do not utilize any DL classifier 

functions or any features of SNOMED’s underlying DL framework, except for its 

systematic definition of relationships and their inheritance via the IS-A hierarchy.  

Instead, a classification of a collection of complex concepts is made and multiple 

abstraction networks are defined on top of that collection to guide the auditing efforts.  

1.2.4 Previous Work on MED and NCIt  

In previous work [18, 19] on the MED [17], an abstraction network called a schema was 

introduced.  In this dissertation, the fundamental partition techniques are extended to 

apply to a SNOMED hierarchy, where the resulting taxonomies prove to be a necessary 

alternative to the schema for MED.  As an example, the schema could not accommodate 

the situation where the same relationship is introduced at multiple, independent points in 
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the terminology’s hierarchy.  A schema can only accommodate a given relationship 

introduction at a unique concept [19].  The taxonomy remedies this deficiency (see 

Section 2.2).  The natural progression from the schema to the area taxonomy and on to 

the augmented partial-area taxonomy is described.  

A similar structural abstraction network was presented in [46] in the context of 

work on auditing the NCI Thesaurus (NCIt) [47]. The partition technique was applied to 

the NCIt’s small Biological Process hierarchy, which consisted of 589 concepts and had 

seven relationships defined for these concepts. As it happened, the Biological Process 

hierarchy was effectively a tree structure, where each concept had just one parent. (In 

fact, only four concepts had more than one parent, and following the feedback of this 

study the hierarchy was reorganized into a strict tree structure [46].) The tree-structured 

hierarchy did not require the full scope of taxonomic development that a directed acyclic 

graph (DAG) terminology does, as is manifested in this dissertation.  It was natural, in 

fact, to proceed from the easier to the harder and first tackle the tree-structured case and 

only then extend the methodologies to the DAG case, as found in SNOMED.  

 

1.3 Dissertation Overview 

Based on analyses of the SNOMED hierarchy’s attribute relationships and their patterns 

of inheritance, this research explores the automated techniques to devise high-level 

abstraction networks (called taxonomies), that facilitate terminology orientation and 

comprehension. A number of systematic auditing regimens are formulated based on these 

taxonomies. The effectiveness of the so-called taxonomy-based auditing is demonstrated 

in multiple hierarchies of SNOMED. This dissertation is organized as follows: 
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Chapter 2 presents the structural auditing methodologies based on partitioning and 

abstraction. Automated techniques are developed for partitioning SNOMED into smaller 

groups of concepts. From the partition, two different abstraction networks, the area 

taxonomy and partial-area taxonomy are derived. Multiple systematic auditing 

methodologies utilizing the taxonomies are presented, and the results garnered from 

applications of the auditing regimens to SNOMED are used to investigate the 

concentration of errors among certain types of concept groups.  

Chapter 3 further extends the taxonomy paradigm to deal with particularly 

complex portions of a SNOMED hierarchy, where overlapping concepts reside. A new 

abstraction network, called the disjoint partial-area taxonomy, is introduced as a 

refinement to the partial-area taxonomy, which provides a better high-level view of the 

tangled portion of a hierarchy, and facilitates orientation and assessment of SNOMED’s 

content. The techniques are demonstrated using the Specimen hierarchy.  

Chapter 4 introduces an systematic auditing regimen based on the disjoint partial-

area taxonomy presented in Chapter 3. The methodology constitutes a systematic review 

of the overlapping concepts as determined by their hierarchical ordering within the 

disjoint partial-area taxonomy. A thorough analysis of errors that are found as a result of 

auditing the overlapping concepts shows a need for enhancements to the partial-area 

taxonomy in order to capture a partition into disjoint sets having uniform semantics. 

Chapter 5 outlines the future direction of this research. 

The research work described in this dissertation has been presented in a number 

of papers [48-51, 70].  
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CHAPTER 2  

STRUCTURAL METHODOLOGIES FOR AUDITING SNOMED 

 

2.1 Introduction 

In this chapter, two high-level abstraction networks are devised based on analyses of a 

SNOMED hierarchy’s attribute relationships and their patterns of inheritance. First a 

hierarchy’s concepts were partitioned into groups, called areas, according to their 

specific attribute relationships. From this partition, an abstraction network, referred to as 

the area taxonomy, affording a summary view of the distribution of the attribute 

relationships was constructed. Further refinement of areas led to another abstraction 

network, the partial-area taxonomy, which conveyed information about sub-area 

hierarchical arrangements. In addition to their support for orientation to and 

comprehension of a SNOMED hierarchy, the two networks have served as the foundation 

of the formulation of structural methodologies for auditing SNOMED hierarchies.  

Multiple auditing regimens that make use of the taxonomies are put forward. The 

first of these detects errors that have manifested themselves as structural irregularities at 

the abstract level in the area taxonomy. The second investigates irregularities occurring 

within the partial-area taxonomy. The third methodology, group-based auditing, is also 

supported by the partial-area taxonomy, where sets of purportedly similar concepts are 

reviewed together as a group.  

The partitioning, abstraction, and auditing methodologies are demonstrated on the 

Specimen hierarchy. Errors discovered during the auditing process are reported and 

analyzed to assess several hypotheses about concentration of errors within various parts 
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of the terminology. Using results garnered from applications of the auditing regimens to 

SNOMED, an investigation into the concentration of errors among such groups was 

carried out. Three hypotheses pertaining to the error distributions are put forth. The 

results support the fact that certain groups presented by the taxonomies show higher error 

percentages as compared to other groups. This knowledge will help direct auditing efforts 

to increase their impact.  

 

2.2 Methods 

The partitioning methodology presented in this chapter focuses primarily on the sets of 

relationships exhibited by various concepts.  In particular, the similarity and disparity of 

such sets were used as the basis for partitioning of the terminology. Relationships are 

given primacy because of their overall definitional importance in terminologies. The 

reasoning underlying this approach is that dividing with respect to relationships along 

structural lines yields groups which are also likely to be semantically uniform.  

Furthermore, the author seeks a partition into groups of concepts that are 

semantically cohesive, as defined in terms of having a unique root concept.  This 

provides a second dimension of division and results in two levels of partition granularity. 

From the various partitions, abstraction networks called area taxonomies are derived 

automatically.  

Ordinarily, a concept’s relationships are inherited from its parent concepts via the 

IS-As. However, for each kind of relationship, there is always a top concept in the 

hierarchy at which it first appears.  Such concepts are defined as introducing concepts. 

Unlike the MED [17], SNOMED does not exhibit uniqueness of relationship 
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introduction. As a consequence, the analysis becomes more complex.  

2.2.1  Areas and Schemas  

The first phase of partitioning focuses on the distribution pattern of relationships in the 

terminology and is based on the notion of area. In the following, structure of a concept is 

used to denote a concept’s complete set of relationships.  

An area is a collection of all concepts with the exact same structure.  It can be 

seen that all areas are disjoint since a concept will belong to one and only one of them. 

Hence, the areas of a terminology form a partition. Structure with respect to an area is 

defined to be the structure of its constituent concepts.  

A concept is a root of its area if all its parent(s) are not in the area. (As a special 

case, a concept without parents is defined to be a root.) That is, a root is characterized by 

having parents with different structures. As a consequence of the fact that an introducing 

concept is the first point at which a given relationship appears, such a concept will be a 

root of its area. A root is a generalization of all its descendants in an area and thus 

conveys the overarching semantics of the set. 

An area may have one or more roots. Consider the simpler case of a singly rooted 

area first. In such a case, the root concept neatly conveys the prevailing semantics of the 

whole area. For this reason, such an area is named after its root.  

Look at an abstract example to illustrate these ideas for singly rooted areas.  

Figure 2.1 shows a terminology fragment with five introducing concepts, A through E, 

and some other unlabeled concepts that do not introduce any new relationships. All 

concepts are drawn as rounded rectangles. The unlabeled, thick arrows stand for IS-As 

among concepts. Other labeled arrows represent the relationships between the two 
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concepts. For example, the arrow from A to C labeled r1 means that A has a relationship 

r1 with C. Concepts A through E introduce the relationships r1 , r2 , r3 , r3’ (the converse 

of r3), and r4, respectively.  Note that the children and grandchildren of A all exhibit the 

relationship r1 (and only that relationship in this terminology fragment) due to 

inheritance. Therefore, all these are grouped into an area called A, after the root, drawn as 

a box enclosing its constituent concepts.  While concept B (a great grandchild of A) also 

inherits r1, it introduces the relationship r2. Hence, B and its descendants exhibit the two 

relationships r1 and r2 and are grouped in area B. Similarly, there are the areas C, D, and 

E.  

 

Figure 2.1  Five introducing concepts and associated areas. 

Following the analysis of the MED [18, 19], an abstraction network, called an 

area schema, can be automatically derived from the partition into areas as follows. For 

each area in the partition, a single corresponding node—labeled with the area’s name—is 

defined in the schema. For conciseness, the node in the schema is referred to as an area, 

too.  One area B is defined as a child-of of another area A—and is connected to it via an 
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unlabeled, thick arrow—if the root of area B IS-A some concept (not necessarily the root) 

in area A. A relationship r is directed from area X to area Y if the root of area X introduces 

or inherits a relationship r whose target is some concept (not necessarily the root) in area 

Y.  

Note that for the definitions of both kinds of relationships, the target concept is 

not required to be the root of its area. Only the source concept of the relationship is 

required to be the root. This guarantees that all concepts of the area share the 

relationships of the root (and thus the area) whether those relationships are introduced at 

the root or inherited from the parent area. The inheritance is enabled at the source of the 

relationship. The target is inherited with the relationship kind.  

Overall, the schema abstractly displays the relationships exhibited by the various 

areas of similar concepts. It differentiates among the various kinds of concepts based on 

their differing structures. In particular, the semantics of one group of concepts is clearly 

distinguished from that of another group if each group exhibits a different structure. The 

naming convention for nodes makes each introducing concept a focal point. This is 

warranted because such a concept is where new semantics is introduced, paving the way 

for the spread of the new knowledge in the portion of the hierarchy below it. Hence, in 

the area schema, the name of an area expresses the semantics of its concepts, and its 

structure expresses the structure of its concepts. Thus, the area schema captures both the 

structure and semantics of a terminology in a compact and abstract way. 

Figure 2.2 shows the area schema derived from Figure 2.1, consisting of five 

areas, two child-of relationships, and five relationships. As can be seen, this area schema 
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is a compact representation of the prevailing relationship pattern of the terminology 

fragment.  

 

Figure 2.2  Area schema derived from partition in Figure 2.1. 

2.2.2  Multi-Rooted Areas  

An underlying assumption in the development of the area schema of the MED, 

guaranteeing singly rooted areas, was that each kind of relationship was introduced at a 

unique concept in the terminology.  However, such a unique introduction point is not a 

natural requirement for a terminology. SNOMED and other terminologies do not adhere 

to this.  

Under the condition of unique introduction points, all areas are guaranteed to be 

singly rooted. Multiple introduction points for a given relationship imply that an area can 

have multiple roots. While the partition of concepts into areas with multiple roots is 

straightforward, complications do arise with respect to the area schemas. For example, 

consider Figure 2.3, where there are five areas. The interesting one is on the lower left 

side and contains two roots, X and Y, and their respective children. The concept X 

introduces the relationship r directed at concept W, which happens to be the unique root 

of its area. The concept Y also introduces r, which in this case is directed at Z, also the 

unique root of its area. Since X, Y, and their children all exhibit r, they are placed together 

in an area, as shown in Figure 2.3. Meanwhile, the ancestor A of X and Y introduces the 

relationship r1 directed at B, the parent of W and Z. B itself introduces no relationship. In 



17 
 

 

 

addition, Z introduces the relationship r2 targeted at W, while the converse relationship r2’ 

points from W to Z.  

 

Figure 2.3  A multi-rooted area (with roots X and Y). 

There are problems with an area schema for this configuration. First, what does 

one call this area rooted at X and Y? None of the two roots is a generalization of all 

concepts of the area and thus none of them is appropriate as a name of the area.  A second 

problem is that if the relationship r head in multiple directions from this area to areas W 

and Z, it conveys the knowledge that for each concept of the area there are two 

relationships r, one to a concept of the area W and one to a concept of the area Z. But this 

configuration is not applicable to any concepts in this area. Hence, there is no natural area 

schema for the terminology fragment of Figure 2.3.  

2.2.3 Area Taxonomy 

Due to the above problems, an alternative abstract view, called an area taxonomy, is 

introduced.  The term “taxonomy” typically denotes a terminology’s entire set of 

concepts and the IS-As connecting them [52, 53]. The non-IS-A relationships are not 

included. Similarly, an area taxonomy graphically consists of only the area nodes and 
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hierarchical child-of relationships (defined as in the area schema) connecting them.  Note 

that an area taxonomy is acyclic, since a cycle in the area taxonomy will imply a cycle of 

IS-A in the underlying hierarchy, which is impossible due to the hierarchical nature of IS-

As. Relationship arrows other than those for child-of are not defined as part of the area 

taxonomy. The only information pertaining to such relationships is maintained inside an 

area node in textual form. As a matter of fact, the set of relationships defined for an area 

node (i.e., its structure) is used as its name to overcome the above area’s naming problem 

for multi-rooted areas. The targets of the relationships are not represented in any way.  

The area taxonomy ignores the targets of relationships, and instead concentrates on the 

relationships’ names. Hence, it avoids the above two problems that prevented the author 

from defining an area schema. 

Figure 2.4 shows the area taxonomy for the terminology fragment of Figure 2.3, 

where the rectangles are area nodes and the solid arrows stand for child-of relationships 

between area nodes. The area rooted at A in Figure 2.3 is named {r1*}, the relationship it 

introduces. In the text, an area will be denoted by listing its relationship(s) in a pair of 

braces. The “*” indicates that r1 is introduced in this particular area. The area with the 

two roots X and Y is named after its relationships r and r1. In particular, its name {r1, r*} 

indicates that this area inherits (via its roots) the relationship r1 and introduces the new 

relationship r, as again denoted by the “*”. The area rooted at B in Figure 2.3 exhibits no 

relationships, so it is named Ø, the symbol for the empty set.  

The area taxonomy succeeds in providing a compact, abstract, structural view of a 

terminology.  That is, an area contains all the concepts of the terminology sharing the 

same structure, and this structure is used to name the area.  However, the area taxonomy 
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fails to provide semantic uniformity, as illustrated by the concepts X and Y in the multi-

rooted area of Figure 2.3. Their different semantics is manifested by having the targets 

for the common relationship r in two different areas, W and Z, and by the lack of one 

concept as a generalization of all concepts in this multi-rooted area.  

 

Figure 2.4  Area taxonomy of Figure 2.3. 

To illustrate the definitions and further demonstrate the details of the area 

taxonomy in the context of SNOMED, Figure 2.5 shows an excerpt of the area taxonomy 

for the Specimen hierarchy. While Figure 2.3 and Figure 2.4 followed a graph model 

where each concept (area) was displayed as a node in a semantic network, Figure 2.5 

simply lists some of the concepts in their area boxes.  (The ellipsis “...” indicates the 

omission of other concepts.) An area is named by its list of relationships enclosed in 

braces, e.g., {specimen substance, specimen procedure*, specimen source morphology*} 

in the lower left of Figure 2.5. A relationship may be marked by a “*” indicating that it is 

introduced at the particular area. (The “+” marking will be explained in Section 2.2.5.) 

Thick arrows are child-of relationships between areas.  

The concept indentation within an area box indicates IS-As. IS-As across areas 

are drawn as thin arrows.  These concept-to-concept arrows are not part of an area’s 

definition, but are included to illustrate the IS-As that underlie the area’s child-of 

relationships.  
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There are over 50 concepts in {specimen substance*}, all of which share that 

single relationship. Similarly, all four concepts in {specimen substance+, specimen 

source morphology} have the same structure comprising these two relationships. In fact, 

each area has a structurally uniform set of concepts. The child-of from {specimen source 

morphology*} to the top-level area Ø is due to the IS-A from the root Lesion sample to 

General biological sample. The IS-As from Liquid material specimen to Inanimate 

samples and substances, and from Fluid sample to General biological sample are 

responsible for the child-of from {specimen substance*} to Ø.  

 

Figure 2.5  Excerpt of the Area Taxonomy for SNOMED’s Specimen hierarchy. 
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Since an area taxonomy is a high-level abstraction of the actual hierarchy, some 

information is naturally not displayed. For instance, in Figure 2.4, there is no indication 

of whether a particular area is multi-rooted or not. More specific information is shown in 

the next level taxonomy.  

2.2.4  Partial-areas and Partial-area Taxonomy  

A natural solution to the semantic problems in the area taxonomy of Figure 2.4 is to 

divide the area {r1, r*} into two constituent parts.  Even though the roots X and Y 

introduce the same kind of relationship r, they each represent a unique semantics given 

that the targets of their r relationships are in different areas. Furthermore, each of the two 

roots, being a generalization of its descendants, captures their overarching semantics. 

Thus, X and its descendants in the area {r1, r*} can be seen as a unique semantic 

grouping. The same is true of Y and its descendants in this area. Such a grouping is 

defined as a partial-area. While such a multi-rooted area is named after its 

relationship(s), each partial-area can be named after its unique root. The root X and its 

descendants form one partial-area X, while Y and its descendants form another partial-

area Y. The area {r1, r*} contains both partial-areas X and Y.  

It is important to note that while the partial-areas form a semantic division of an 

area, they do not necessarily constitute a partition of the area. In particular, a concept, 

say, O in {r1, r*} might be a descendant of both X and Y. In such a case, O would be in 

both partial-areas X and Y. Formally, the collection of partial-areas of an area is thus a 

cover [54] and not a partition.  

This second level of division of areas into partial-areas induces a second-level 

partial-area taxonomy.  The partial-areas themselves are defined as nodes, and each area 
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is displayed as a collection of partial-area nodes within an area node that is named after 

the relationship(s). In a partial-area taxonomy, a dashed (instead of solid) rectangle is 

used to stand for an area, indicating that it comprises partial-areas. For consistency, the 

notion of partial-area for singly rooted areas is defined as well, although in such a case it 

contains all (not part of) the concepts in the area.  

The hierarchical child-of relationship in the partial-area taxonomy is defined 

similarly to the one in an area taxonomy. That is, if there is an IS-A from the root of a 

partial-area P1 to a concept (not necessarily a root) of a partial-area P2, then in the partial-

area taxonomy there is a child-of hierarchical relationship from node P1 to node P2. Note 

that this IS-A needs to be from the root of the partial-area P1 to guarantee that each of the 

concepts of P1 is a descendent of the root of P2 and inherits its relationships as 

symbolized by P1 child-of P2. However, this purpose is achieved even if this IS-A’s target 

is any concept of P2, as such a concept itself is a descendent of the root of P2 and inherits 

its relationships. In the case where all the partial-areas of an area {Q} are child-of the 

same partial-area P, one may, in order to prevent clutter, draw one hierarchical arrow 

from the boundary of {Q} to P. This also pertains, as a special case, to areas with a single 

partial-area.  

Figure 2.6 shows the partial-area taxonomy for the terminology fragment of 

Figure 2.3, including five different areas (the same as in Figure 2.4). Partial-areas, named 

after their roots, are arrayed inside the area nodes. One area {r1, r*}, contains two partial-

areas X and Y.  All other areas are singly rooted and thus contain only one partial-area: A, 

B, Z, and W, respectively. The child-of relationship from the area node {r1, r*}, to the 

partial-area node A indicates that both partial-areas X and Y are child-of the partial-area A.  
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Figure 2.6  Partial-area taxonomy of Figure 2.3. 

Note that each partial-area is singly rooted. As discussed in Section 2.2.1, it is 

paramount that the units of a division be singly-rooted if they are to yield nodes which 

make a view readily comprehensible. The single root of a partial-area provides one 

uppermost generalized concept of which all other concepts in the group are descendants. 

The comprehensibility of a partial-area taxonomy stems from the fact that each one of the 

concepts in the partial-area is a specialization of the unique root. Due to this, the root 

functions as an effective designation for an aspect of the semantics: all things in the 

group are “specializations of the root.” The root itself can be a representative of the entire 

collection, capturing its general category, and thus in the partial-area taxonomy the 

corresponding partial-area is named after the root.  

Similar to the area schema discussed in Section 2.2.1, one may define 

relationships among partial-areas and create the partial-area schema.  However, the 

choice is made to avoid those relationships and prefer the framework of a partial-area 

taxonomy. There are several reasons for this choice. The first is that for the purpose of 

auditing, the partial-area taxonomy is sufficient.  The other reason is that a potential 

partial-area schema will be so overwhelming in its size and complexity that it will not 

properly promote comprehension of a terminology. In Section 2.3, it is seen that the 
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number of partial-areas for a sample hierarchy of SNOMED is an order of magnitude 

higher than the number of its areas. Furthermore, the target partial-areas of relationships 

of a partial-area of one SNOMED hierarchy are typically in another hierarchy. Thus, a 

partial-area schema will not be constrained within one hierarchy. Thus it will be very 

difficult to graphically display a partial-area schema and comprehend all its parts.  By 

keeping only the names of the relationships listed once in an area node and not repeated 

in its multiple partial-area nodes, a much more compact view of the relationships of the 

partial-areas is provided. Since all partial-areas in an area share the same structure, there 

is no need to make the structure part of the display of each partial-area. At the same time, 

for the purpose of auditing, displaying just the names of the relationships of a partial-area 

without the targets will be sufficient for highlighting most of the irregular or missing 

concepts of a partial-area. Thus, the decision to use a partial-area taxonomy rather than a 

partial-area schema seems to be both practical and functional for the purpose of auditing. 

When needed, an auditor can review the targets of relationships of concepts by accessing 

the terminology itself.  

2.2.5 Regions  

Another complication that can arise due to multiple introduction points for the same 

relationship is demonstrated by the terminology fragment in Figure 2.7. It is seen that the 

concept H introduces the relationship r6, while it inherits the relationship r5 from its 

parent F. As such, H is the root of an area, which by the convention in Section 3.1.3 

would be denoted {r5, r6*}. (To simplify the discussion, assume that r5 is the only 

relationship exhibited by F.  Thus, F’s area is {r5}.)  However, this name is not accurate 

in this context. The concept I also has the relationships r5 and r6, but it introduces r5 
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while inheriting r6  from G. Therefore, with respect to the root I, the area should be 

named {r5*, r6}.  

 

Figure 2.7  Two patterns of relationship obtainment. 

There are also problems concerning the child-of relationships of this area. The IS-

A between H and F induces a child-of from H’s area to {r5*}. A similar situation exists 

regarding the concepts I and G, with a child-of pointing to {r6*}. However, the area-

taxonomy abstraction in this case gives an inaccurate picture of the status at the concept 

level. One would infer that all concepts in the area rooted at H and I would have 

ancestors in both areas {r5*} and {r6*}. But that is not even true for I and H. 

 

Figure 2.8  Partial-area taxonomy including regions. 

To deal with these issues, the partial-area taxonomy is augmented with a division 

of the problematic area into separate obtainment-pattern regions (just regions for short). 

Each region is distinguished by the pattern in which its relationships are introduced 
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and/or inherited, and each is named as if it were a separate area. But graphically all 

regions of a single area are drawn within the same box, with boundaries between regions 

drawn as dashed lines. Moreover, for an area with multiple regions, the child-of’s are 

directly from the regions instead of from the area as a whole. An example can be seen in 

Figure 2.8.  

Note that the combination of two relationships, such as r5 and r6, leads to the 

possibility of four different regions. In Figure 2.9, all four possible patterns of 

relationship obtainment with respect to r5 and r6 are illustrated. The two additional 

patterns yield the other two possible regions:  {r5*, r6*} and {r5, r6}. The former is a 

strict introduction region. The latter is a strict inheritance region, previously referred to 

as an intersection area [18, 9]. Such strict inheritance regions play an important role in 

the auditing methodology, as will be discussed below. If a region is neither a strict 

introduction region nor a strict inheritance region, such as the two regions in Figure 2.8, it 

is referred to as a mixed region. The partial-area taxonomy for Figure 2.9 can be seen in 

Figure 2.10. Notice that the region {r5, r6} is a child of two areas. Strict inheritance 

regions always have multiple parents. They are also distinguished by the absence of “*” 

from their names. 

 

Figure 2.9  All four types of relationship obtainment. 
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It will be noted that in an area taxonomy areas do not display down to the level of 

regions. However, when an area exhibits multiple patterns of obtainment with respect to a 

given relationship, say, r, then r+ is used in its name. For example, Figure 2.11 shows the 

area taxonomy of Figure 2.9, where the area involving r5 and r6 is marked as {r5+, r6+}. 

As discussed below, this notation is useful in the auditing process.  

 

Figure 2.10  Partial-area taxonomy for Figure 2.9. 

For convenience, in the following discussion, areas containing only a strict 

inheritance region will be referred as “strict inheritance areas,” while partial-areas of 

strict inheritance regions are referred as “strict inheritance partial-areas.” 

 

Figure 2.11  Area taxonomy for Figure 2.9. 

Figure 2.12 presents the partial-area taxonomy excerpt corresponding to the area 

taxonomy excerpt of Figure 2.5. In Figure 2.12, the partial-areas appear as solid-line 

boxes inside their respective areas, now drawn as dashed-line boxes. Inside the box of a 

partial-area, its name, derived from its unique root, along with its number of concepts (in 
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parentheses) is listed. For example, the area Ø has only one partial-area Specimen 

containing 30 concepts.  

The thick arrows stand for the child-of relationships between partial-areas.  For 

example, the partial-area Fluid sample (9) is a child-of Specimen (30). In the case of 

multiple obtainment patterns within one area (indicated by a “+” following the 

appropriate relationships in the area’s name), the area is divided into several regions, 

each with a disambiguated name. For example, the area {specimen source morphology, 

specimen substance+} in Figure 2.5 is divided into two regions in the partial-area 

taxonomy of Figure 2.12:  {specimen source morphology, specimen substance} and 

{specimen source morphology, specimen substance*}.  The strict inheritance region on 

the left contains two partial-areas, Blister fluid sample (1) and Vesicle fluid sample (1), 

both of which do not introduce any relationship.  Instead, both inherit specimen substance 

from Fluid sample and specimen morphology from Lesion sample, respectively. The 

partial-area Biliary stone sample (2) in the right region introduces the relationship 

specimen substance while inheriting specimen source morphology from Lesion sample. 

Thus, an individual region exhibits a unique obtainment pattern and has partial-areas 

whose child-of’s capture their roots’ parentage in other areas’ partial-areas.  

2.2.6 Auditing Methodologies 

The concept groupings and the taxonomy diagrams they induce can serve as the basis for 

efficient auditing by highlighting irregularities in the terminology. The two levels of 

taxonomy offer the auditor opportunities to detect irregularities of two kinds, structural 

and semantic, respectively.  
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Figure 2.12  Excerpt of partial-area taxonomy for the Specimen hierarchy. 

2.2.6.1 Detecting Structural Irregularities in the Area Taxonomy. In the area 

taxonomy, one could detect structural or hierarchical irregularities on the abstract level 

that may indicate errors on the concrete level. Generally, areas are arranged in levels 

according to their numbers of relationships. The number of levels depends on the total 

number of relationships defined for a hierarchy and the actual combinations. These 

relationships may combine with one another in any form. Combinatorially, n 

relationships may have up to 2
n
 different combinations, with n combinations on the first 
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level, ( 
 
) on the second level, etc. Comparing the actual number of areas on the lower 

levels with the theoretical bound can help to uncover potential errors.  Missing 

relationship combinations in the levels with fewer relationships may be due to errors that 

occurred in the editing process.  

Areas on the first level are usually expected to have children in the area 

taxonomy, because relationships are presumably introduced in the lower levels and are 

inherited all the way through the hierarchy. Therefore, a first-level area {r*} without any 

children is a noticeable irregularity, especially when the particular relationship r appears 

in higher levels of the hierarchy combined with other relationships. A natural question is: 

is this introduction pattern without further inheritance a reasonable one, and why does it 

exist? Similarly, a first-level area with very few children (e.g., one child) in the second 

level compared with other such areas may indicate an irregularity.  

It is not expected to encounter many concepts with a large number of 

relationships since such situations typically denote very complex concepts. If they were 

to be found, they would be at the higher levels of the area taxonomy. Of special interest 

in auditing are areas with a large number of relationships but very few concepts, since 

those concepts would have a complex and uncommon structure.  

2.2.6.2 Detecting Irregularities in the Partial-area Taxonomy. The area taxonomy 

itself is not sufficient to answer these questions because it only contains structural 

information. This is where the partial-area taxonomy with its semantic knowledge comes 

in to support the auditing process.  It presents a “close-up” abstraction of the concept 

hierarchy, including information on regions and partial-areas, identifying groups of 
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concepts of uniform structure (relationships) and semantics (a unique generalizing root 

concept). 

Areas with Few Small Partial-areas. An area taxonomy also conveys the 

number of partial-areas each area has.  Using the area taxonomy, one can concentrate on 

areas with small numbers of partial-areas. The partial-area taxonomy would be further 

checked to see whether those few partial-areas have a small number of concepts.  In such 

a case, a partial-area having a small number of concepts have been identified with this 

two-step process, whose combination of relationships (from its area) and its semantics 

(represented by its root) both occur infrequently. A domain expert would review such a 

small group of concepts in the context provided by the two taxonomies.  

Small Partial-areas with Many Relationships. As mentioned in Section 

2.2.6.1, it is recommended that an expert review the partial-areas with a large number of 

relationships in the higher levels of the partial-area taxonomy.  Special attention should 

be given to such partial-areas with only a few concepts. As mentioned before, the 

concepts of a small partial-area with an infrequently occurring combination of 

relationships are highly suspicious.  

Strict Inheritance Small Partial-areas. Multiple obtainment patterns 

(denoted using “+” notation) induce more than one region in an area. When looking into 

these regions, strict inheritance regions are of special interest in the auditing process.  As 

a matter of fact, the experience [20] in auditing the MED has shown that hunting for 

errors among strict inheritance regions (referred to in [20] as “intersection areas”) can be 

extremely fruitful. Concepts in strict inheritance regions are more complex, as manifested 

not only by their compound nature but also by the multiple inheritance of relationships 
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from different parents.  Thus, a higher likelihood of errors is expected in strict inheritance 

regions than in other regions, especially when such a region contains only a few partial-

areas of small size. It is expected to have errors such as misclassifications, redundancies, 

omissions of concepts and relationships, incorrect synonyms, incorrect relationships and 

relationship targets, incomplete modeling, and modeling inconsistencies.  

Compact View Irregularities. The partial-area taxonomy provides a 

concept-oriented compact view of the content of an area. For example, the area 

{specimen substance} with its 51 concepts is summarized by the partial-area taxonomy 

as just nine partial-areas whose names indicate what kind of concepts are found in each. 

This compact view helps the auditor detect irregularities such as duplicate concepts and 

missing concepts. Such irregularities may be found strictly at the partial-area level or in 

conjunction with the concept level.  An example of a concept duplication observed 

strictly on the partial-area level is the existence of the two partial-areas Specimen from 

ear and Ear sample in the area {specimen source topography*} (Figure 2.16). Clearly, 

their roots are redundant.  

An example of a missing-concept irregularity observed in conjunction with the 

concept level occurs with the partial-area Surgical excision sample which has only two 

concepts (Figure 2.15). There are certainly more kinds of surgical excisions that should 

exist in this partial-area besides the child concept Specimen obtained by radical excision. 

In this case, the partial-area’s number of concepts alerted the author to these omissions.  

2.2.6.3 Group-based Auditing.  The current systematic quality-assurance methods 

used by the SNOMED editorial staff employ several different tools, notably, Apelon’s 

TDE [55], the CliniClue browser [56], Protégé [57] and IHTSDO Workbench [3].  Most 
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of the editing work is done using the TDE “tree editor” display that focuses on the 

relationships of one concept.  This display shows the children of a concept, along with its 

defining relationships.  When displaying multiple concepts and their interrelationships, 

the various tools currently employed all display a single folder-type view of a hierarchy, 

or minor variations such as the TDE’s “concept walker.” The concept walker displays the 

parents of a concept, as well as its children. Each of these can be expanded to display 

indented hierarchy views of the corresponding ancestor and descendant hierarchies. The 

IHTSDO Workbench includes a set of tools that allow users to author terminology, map 

terminology to other code sets, undertake workflow and process automation, and search, 

browse or classify terminology. 

The efficient auditing methodologies previously developed [9, 20, 58] for large 

terminologies are based on partitions/divisions and their derived associated abstractions, 

which distill large networks of concepts down to more manageably sized networks.  This 

distilling process divides the terminology into small groups of “similar concepts,” as 

defined by a variety of criteria.  In turn, reviewing such groups directs auditors toward 

identifying concepts that are clearly different from others in the group—though they were 

presumed to be similar—and are thus potentially in error in some way.  Forming smaller 

groups of structurally and semantically similar concepts also enables the identification of 

“missing” concepts, those which would naturally be expected to belong to a group but are 

currently absent.  Such situations could arise because the concepts were omitted from the 

terminology originally (perhaps by mistake), or were misclassified or misplaced in the 

IS-A hierarchy. As such, one can characterize these auditing methodologies as “group-

based” auditing as opposed to the standard “concept-based” approaches.  
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An alternative approach to the interfaces currently used by the SNOMED editorial 

staff is being presented here.  According to the paradigm of area and partial-area 

taxonomies, concepts are first grouped according to similar structure, and then as a 

secondary criterion, are grouped as descendants of a root concept. That is, concepts are 

grouped by areas and partial-areas. Group-based auditing is organized around these 

groups instead of around individual concepts.  Of course, specific concepts are the 

ultimate targets of auditing, but this particular approach offers a unique path for arriving 

at them.  

The author believes that reviewing the concepts of a partial-area as a group 

provides a context that helps in detecting errors that would not be exposed when each 

concept is reviewed separately.  Besides the error of missing concepts, other kinds of 

errors that are expected to find in terminologies while reviewing uniform groups of 

concepts include: redundant concepts, incorrect IS-A arrangements, erroneous 

relationship configurations, and modeling errors.  

It will be noted that a partial-area taxonomy provides an effective basis for group-

based auditing. Moreover, the current auditing methodology fits the characterization of 

group-based auditing even more so than those methodologies developed previously.  

While the identified groups in [20] were structurally similar and those in [9, 58] were 

semantically similar, a partial-area is a group of concepts of both structural and semantic 

uniformity, and thus is an ideal unit for group-based auditing.  

 

 

 



35 
 

 

 

2.2.7 Hypotheses 

Based on specific concept groups presented automatically by these partitioning and 

abstraction methodologies, a few auditing regimens have been put forward, which proved 

effective.  In particular, three regimens focused respectively on two kinds of regions and 

small-sized partial-areas are applied to a top-level hierarchy of SNOMED. It is noted that 

the auditing and the subsequent analysis carried out here are based on the inferred 

(distributed) view of the terminology, i.e., the results after the DL classifier has computed 

all entailed subsumption relationships.  

For the sake of comparison, all the concepts in the chosen SNOMED hierarchy 

are reviewed for errors. Based on the overall outcomes of these efforts, the validity of the 

following three hypotheses pertaining to the efficacy of the auditing regimens described 

here is investigated.  

Hypothesis 2.1: There is a higher likelihood for the existence of concept errors in strict 

inheritance regions than in strict introduction regions or mixed regions. ■ 

Hypothesis 2.2: There is a higher likelihood for the existence of concept errors in mixed 

regions than in strict introduction regions. ■ 

The idea underlying these two hypotheses has to do with hierarchical complexity 

accumulated in the inheritance process.  When a relationship is inherited, it comes down 

through a path of ancestors who contribute—in addition to the relationship—their 

accumulated definitional knowledge to the descendant.  

Typically, at each level, a constraint or limiting scope is added.  Such additional 

knowledge is sometimes manifested as a more detailed concept name. For example, 

consider the path from Specimen to Cyst tissue (Figure 2.13). It goes through the concepts 
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Lesion sample (introducing specimen source morphology) and Specimen from cyst. 

Naturally, each concept along the path is more specialized than its parent. The specialized 

knowledge accumulated along the path is referred to as the hierarchical complexity.  

 

Figure 2.13  Excerpt of partial-area taxonomy showing three areas, four regions, and six 

partial-areas.  

When a concept inherits a relationship, the path has to go through an area where 

that relationship is introduced. Traversing an area may mean visiting several concepts 

(e.g., two from the Lesion sample partial-area above). If a concept introduces a 

relationship instead, then a sub-path going through an area for the sake of picking up the 

relationship can be avoided, making the overall path shorter. For example, Hematological 

sample, the root of the only partial-area (of 26 concepts) in the strict introduction region 

of the area {specimen substance, specimen procedure} (the rightmost area on level 3 in 

Figure 2.14). That concept has just one parent Specimen, belonging to the area Ø, and 

introduces its own two relationships without gaining hierarchical complexity.  In general, 

an inherited relationship implies more hierarchical complexity than an introduced 

relationship.  
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A strict inheritance region implies more paths, each of which must travel through 

areas where inherited relationships are introduced and collected from. This in turn 

implies that concepts in such a region will, in general, have more ancestors and more 

hierarchical complexity. The case of strict introduction is of lower hierarchical 

complexity due to the fact that no extra path is needed to deliver the relationship.  A 

mixed region has an intermediate hierarchical complexity as it inherits some relationships 

(via an ancestor path) but introduces others (without going through extra areas).  The 

underlying assumption and motivation for the two hypotheses is that concepts with higher 

hierarchical complexity are more prone to modeling errors.  

An example of this can be found in the context of the partial-areas in Figure 2.13. 

The concept Skin lesion sample, the root of its partial-area in the region {specimen source 

topography, specimen source morphology*}, has a single parent Skin tissue specimen, 

residing in the partial-area Tissue specimen, from which it inherits specimen source 

topography. Skin lesion sample explicitly introduces specimen source morphology, 

providing further hierarchical complexity. The concept Cyst tissue in the neighboring 

region {specimen source topography, specimen source morphology} inherits those two 

relationships respectively from its parents Tissue specimen (the root of its partial-area) 

and Specimen from cyst (in the partial-area Lesion sample). Two ancestor paths through 

these two parents lead to Cyst tissue. The one through the latter parent was described 

above. Therefore, Skin lesion sample obtains its relationships in a simpler hierarchical 

configuration than that needed for Cyst tissue and is thus less complex.  

Hypothesis 2.3: There is a higher likelihood for the existence of concept errors in small 

partial-areas than in large partial-areas. ■ 
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This hypothesis indicates the expectation that a small group of concepts similar in 

their structure and semantics is less likely to be properly modeled and have proper 

classifications than a similarly constituted large group with a common structure and 

semantics. That is, the high incidence of a combination of a structure and semantics 

supports its feasibility, while a rarely seen combination raises questions about whether it 

is the correct structure and root for its few elements. (Note that a similar hypothesis was 

proposed and verified [46] in the context of the NCIt [47].)  

Bootstrap [59] was used to assess the statistical significance of the hypotheses 

while accounting for the clustering of concepts within partial-areas.  

 

2.3 Results 

The techniques presented in Section 2.2 will be demonstrated on an excerpt of 

SNOMED, specifically, the Specimen hierarchy. The hierarchy contains 1,056 concepts 

(as of the January 2004 release), and it gives a good illustration of the benefits of the 

methodology.  

2.3.1  Area and Partial-area Taxonomies for the Specimen Hierarchy  

There are five relationships defined for concepts of the Specimen hierarchy: specimen 

substance, specimen source identity, specimen source topography, specimen source 

morphology, and specimen procedure. The area taxonomy derived for this hierarchy 

contains 19 areas, each named after its relationships, with the number of its partial-areas 

appearing in parentheses (Figure 2.14). For example, the area {specimen substance∗} has 

nine partial-areas. The areas in Figure 2.14 are displayed in color-coded levels according 

to the number of relationships defined for each. Note that the rightmost area {specimen 
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substance ∗, specimen procedure∗} on level 2 (area Ø is on level 0) is an area consisting 

of one strict introduction region. Another area where two relationships are introduced 

together is {specimen substance, specimen procedure∗, specimen source morphology∗} 

(leftmost on level 3), where only specimen substance is inherited from its parent area on 

level 1.  

 

Figure 2.14  Area taxonomy for the Specimen hierarchy of SNOMED. 

Among these 19 areas, seven have multiple patterns of relationship obtainment. 

For instance, {specimen source topography+, specimen substance+} contains 19 partial-

areas of three different obtainment patterns. Detailed information about the obtainment 

patterns is shown in the partial-area taxonomy that will be discussed below.  

The partial-area taxonomy of the Specimen hierarchy is shown in a sequence of 

three figures, Figure 2.15-2.17. Due to the extent of some areas, some partial-areas have 

been omitted from Figure 2.15. They can be found in later figures.  In particular, 
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{specimen source topography*} consisting of 33 partial-areas is fully displayed in Figure 

2.16.  Similarly, {specimen source topography, specimen procedure+} with 42 partial-

areas is fully displayed in Figure 2.17. The number of concepts in a partial-area appears 

in parentheses. For example, among the nine partial-areas of {specimen substance*}, the 

partial-area Body fluid specimen contains eight concepts.  

The partial-area taxonomy also presents the regions of the Specimen hierarchy’s 

areas. An example with a complex obtainment pattern is shown in Figure 2.16.  The area 

{specimen source topography+, specimen substance+} contains 19 partial-areas divided 

into three regions.  Among them, two partial-areas, Tears specimen and Peritoneal fluid 

specimen, inherit from {specimen substance*} and introduce the other relationship 

specimen source topography. (A partial-area is considered introducing a relationship 

when its root does.) Another seven partial-areas, including Breast fluid sample and 

Urological fluid sample, have the opposite inheritance pattern: they introduce specimen 

substance while inheriting from {specimen source topography*}.  The other ten partial-

areas, e.g., Sweat specimen and Saliva specimen, are in a strict inheritance region. 

Another such complex area is {specimen substance, specimen procedure+, specimen 

source topography+} (Figure 2.16), which also contains three regions.  

Special attention is given to the strict inheritance regions because of their special 

importance to the auditing methodologies.  The partitioning of the Specimen hierarchy 

yields nine strict inheritance regions, containing 27 partial-areas and 83 concepts 

altogether.  



 

 

 

 

 

Figure 2.15  Partial-area taxonomy for the Specimen hierarchy (incomplete). 
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Figure 2.16  Excerpt of the partial-area taxonomy for the Specimen hierarchy.  
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Figure 2.17  A second excerpt of the partial-area taxonomy for the Specimen hierarchy. 4
3
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2.3.2  Auditing Using Taxonomies  

With the area taxonomy and partial-area taxonomy in place, this section is dedicated to 

demonstrate how to utilize them to uncover errors of various kinds.  

2.3.2.1 Structural Irregularities in Specimen Area Taxonomy.  Consider the area 

taxonomy (Figure 2.14) of the Specimen hierarchy of SNOMED. Theoretically, with five 

relationships, the child-of hierarchy could be as deep as five levels. The actual taxonomy 

turns out to have areas with at most three relationships. That is, the most complex 

specimen concepts have no more than three relationships.  

All five relationships are represented in the first-level areas, and each area has 

children on level 2. Among the five first-level areas, only two, {specimen procedure*} 

and {specimen source identity*}, have just a single child on level 2. According to the 

methodology, those situations are suspicious and need to be investigated. The other three 

first-level areas, {specimen source topography*}, {specimen substance*}, and {specimen 

source morphology*}, have more children on level 2.  

The sole child of {specimen source identity*} on level 2 is {specimen source 

topography+ , specimen source identity}, containing two partial-areas.  The partial-area 

taxonomy shows two regions (Figure 2.15). The only partial-area, Specimen from 

digestive system, in the region {specimen source identity, specimen source topography*} 

contains 38 concepts denoting specimens from different parts of the digestive system, 

such as Specimen from stomach, Tissue specimen from liver, etc.  While the introduction 

of specimen source topography is totally legitimate, the fact that it is a child of the 

partial-area Specimen from patient, from which it inherits specimen source identity, is 

wrong. The root concept Specimen from digestive system should rather be a child of
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Specimen. Instead, Specimen from patient should have six other new concepts as its 

children, e.g., Blood bag specimen from patient, Leucocyte specimen from patient, and 

Serum specimen from patient. Thus, this structural irregularity leads to the discovery of a 

modeling error. It will be noted that following this study, this error has been corrected in 

the Jan. ’05 release of SNOMED by removing the specimen source identity relationship 

from the root concept Specimen from digestive system. Thus, the partial-area moves 

accordingly to the area {specimen source topography*}.  Furthermore, six new concepts 

were added as children of Specimen from patient.  

The only child of {specimen procedure*} on level 2 is {specimen source 

topography, specimen procedure+}, with 42 partial-areas. The partial-area taxonomy 

shows two regions (Figure 2.17). One region {specimen procedure*, specimen source 

topography} of 39 partial-areas introduces specimen procedure rather than inheriting it 

directly from the first level. A natural question is: why is this region not a child of 

{specimen procedure*} instead?  

The 39 partial-areas in this region are further reviewed. Each introduces the 

relationship specimen procedure connecting it with one of the three following 

procedures: biopsy, excision or resection, and swab (although the actual terms may be 

different when the procedure is applied to different body parts, e.g., the excision of breast 

is Mastectomy).  Due to the difference in the names of the procedures, these 

subsumptions were probably not realized in the editing stage. Two of these three 

procedures appear at {specimen procedure*} in the partial-area taxonomy excerpt in 

Figure 2.15. The concept Swab is in the hierarchy residing at Ø on level 0 and not in 

{specimen procedure*} because of a missing-relationship error. Adding this relationship, 



46 
 

 

 

Swab will move to the {specimen procedure*} area. Therefore, in addition to their 

current parent partial-areas in {specimen source topography*}, these 39 partial-areas 

should be children of one of the corresponding partial-areas in {specimen procedure*}.  

For example, Skin biopsy sample should be a child of Biopsy sample in addition to Tissue 

specimen. Likewise, Excised salivary gland sample and Resected lung sample should 

have another parent, Surgical excision sample.  

As a matter of fact, the Jan. ’05 release of SNOMED confirmed these findings:  

37 out of 39 partial-areas appearing in {specimen source topography, specimen 

procedure*} (Figure 2.17) have been corrected to include one more parent partial-area 

depicting the procedures. Although the SNOMED editorial team uncovered the errors 

using other editing tools, they serve to show the effectiveness of the auditing 

methodology presented here. The only two partial-areas left, Specimen from pleura 

obtained by thoracoscopic procedure and Specimen from thymus gland obtained by 

thoracotomy, do not correspond to any specific procedure in {specimen procedure*}, and 

thus will remain in this region. After this correction, 37 out of 39 partial-areas move to 

the strict inheritance region {specimen procedure, specimen source topography}, joining 

three other partial-areas that were there before. As such, the irregularity of two first-level 

areas having just one child on level 2 led to the discovery of these errors.  

2.3.2.2 Irregularities in the Specimen Partial-area Taxonomy.  

Areas with Just a Few Small Partial-areas. Special attention is also given to 

areas/regions with small numbers of partial-areas. There are ten regions having only one 

partial-area in the partial-area taxonomy (Figures 2.15-2.17). One problematic partial-

area, Specimen from digestive system, with 38 concepts has been previously identified by 
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its structural irregularity. Among these ten regions, seven of them (four on the second 

level and three on the third) consist of a single partial-area with three concepts or less. 

These “small” partial-areas are deemed highly suspicious according to the auditing 

guidelines. In fact, after review of the partial-area taxonomy and the actual concepts, 

three such partial-areas having confirmed errors were found. For example, the partial-

area Skin lesion sample in the region {specimen source topography, specimen source 

morphology*} (Figure 2.15) has only one concept. In addition to its current parent 

partial-area, Tissue specimen, it should also have the parent Lesion sample in the area 

{specimen source morphology*}.  

Thus, this region disappears and the partial-area joins the three other partial-areas 

in the strict inheritance region of the same area. Another example is the partial-area 

rooted at Biliary stone sample with two concepts (Figure 2.15), which should not inherit 

specimen source morphology from Lesion sample. In this case, the partial-area moves to 

the area {specimen substance*}, and the region {specimen source morphology, specimen 

substance*} disappears as a result of the removal of the relationship specimen source 

morphology.  

Small Partial-areas with Many Relationships. The relationship combinations 

get more complex on the third level.  A review of the third-level partial-areas reveals 

more errors.  One area, {specimen source identity, specimen source topography, 

specimen source morphology*}, contains only one partial-area, Colonic polyp sample 

(Figure 2.15), which includes only two concepts.  It is obvious that the relationship 

specimen source identity is irrelevant in this context.  As being pointed out previously, 

this area’s parent {specimen source identity, specimen source topography*} inherits an 
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incorrect relationship specimen source identity, and this error propagates via the 

subsumption hierarchy to its descendants. In fact, another third-level area, {specimen 

source identity, specimen source topography, specimen procedure+}, has the same error 

due to this problematic parent.  After removing the incorrect relationship specimen 

source identity, these two areas disappear and their partial-areas move accordingly to 

some second-level areas.  

Small, Strict Inheritance Partial-areas. The auditing methodology pays 

special attention to concepts of strict inheritance regions and especially to their small 

partial-areas.  The root concept of the partial-area Specimen obtained by fine needle 

aspiration procedure (Figure 2.17) in the strict inheritance region {specimen procedure, 

specimen source topography} has only one child, Fine needle aspirate of thyroid, 

cytologic material.  This is thus a small partial-area of a strict inheritance region with few 

partial-areas.  Other specimens obtained by the same procedure are missing from 

SNOMED, demonstrating the incompleteness of the modeling. This is another example 

where the compact view of the partial-area taxonomy exposes irregularities on the 

concept level.  

All concepts of such small partial-areas warrant close inspections, not just the 

roots. For example, the partial-area Specimen from gastrointestinal tract obtained by 

incisional biopsy in the strict inheritance region {specimen source identity, specimen 

source topography, specimen procedure} (Figure 2.17) has only two concepts. Its child 

concept Specimen from stomach obtained by incisional biopsy has a relationship 

specimen source topography connecting it with the wrong target, Large intestinal 

structure. Another error was revealed when reviewing the singleton partial-area Specimen 
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from lung obtained by fine needle aspiration procedure in the strict inheritance region 

{specimen procedure, specimen source topography, specimen substance} (Figure 2.16). 

The root concept should have Specimen obtained by fine needle aspiration procedure as a 

parent instead of Specimen from lung obtained by biopsy.  

Respiratory fluid specimen in the strict inheritance region {specimen source 

topography, specimen substance} (Figure 2.16) has Upper respiratory sample as one of 

its parents.  Apparently, Respiratory fluid specimen could be from either the upper or 

lower respiratory tracts. The fact that all its children are fluid samples from upper 

respiratory tract (Figure 2.19) made the auditor wonder whether the correct concept here 

should be Upper respiratory fluid sample, which was mistakenly defined as a synonym of 

Respiratory fluid specimen in SNOMED.  

Compact View Irregularities. As mentioned in Section 2.2.6, the compact 

view of the concepts in an area provided by a partial-area taxonomy can help expose 

irregularities.  For example, a partial-area Female genital fluid specimen is in the region 

{specimen source topography, specimen substance*} (Figure 2.16), but its potential 

counterpart Male genital fluid specimen is missing from SNOMED. Such an omission is 

observed due to the view of just seven partial-areas in the region containing 36 concepts.  

Furthermore, the review of these seven partial-areas reveals that all consist of 

body fluid sample concepts, and their roots, including Breast fluid sample and Urological 

fluid sample, should therefore have IS-As to Body fluid specimen, the root (and name) of 

a partial-area observed in the review of {specimen substance*} (Figure 2.15).  Due to 

these new IS-As, the relationship specimen substance of all these partial-areas will be 

inherited rather than introduced, and the whole region will disappear because its partial-
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areas will move to the strict inheritance region {specimen source topography, specimen 

substance}.  

Moreover, when the above mentioned area {specimen substance*} is reviewed in 

the context of the partial-area taxonomy, it is observed that Body fluid specimen itself 

should be a child of both Fluid sample, the root of its partial-area in {specimen 

substance*} (Figure 2.15), and Body substance sample, a root of another partial-area in 

that same area.  But when one tries to add Body fluid specimen as a child of Body 

substance sample, it becomes apparent that there is already a child Body fluid sample.  

This is an example of two identical concepts, one of which should be a synonym of the 

other, instead. The reason for such an error is that the term “specimen” was used 

previously in SNOMED RT, and “sample” was used in CTV3. Such redundancy errors 

occurred as a result of the integration process.  

The incorrect subsumption relationships among Fluid sample, Body fluid sample, 

and Body fluid specimen lead to other errors in the strict inheritance regions.  For 

example, there are redundant IS-A links if concepts have both Fluid sample and Body 

fluid sample/specimen as their parents. The roots Saliva specimen, Sweat specimen, and 

Seminal fluid specimen of their respective small partial-areas in the strict inheritance 

region {specimen source topography, specimen substance} (Figure 2.16) should not be, 

as a consequence, children of Fluid sample, just of Body fluid specimen. When reviewing 

some larger partial-areas in that region, the author found some other roots, such as 

Respiratory fluid specimen and Saliva specimen, that should also not have Fluid sample 

as a parent.  
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2.3.3 Group-based Auditing 

To demonstrate such group-based auditing, consider the part of the Specimen hierarchy 

that includes Body fluid specimen and all its 70 descendants. In the structural analysis 

displayed by the partial-area taxonomy (Figure 2.15), the partial-area rooted at Body fluid 

specimen contains only eight concepts.  Hence, the other 63 descendants have a different 

structure and thus appear in a different area.  

Figure 2.18 and Figure 2.19 present the same 71 concepts in a different way:  in 

an indented format as in the SNOMED CliniClue browser [56]. The concepts are grouped 

into partial-areas of different regions. Figure 2.19 shows only the concepts that are in the 

strict inheritance regions; the other descendants of Body fluid specimen are shown in 

Figure 2.18. For completeness, all concepts in every partial-area are shown, but only the 

descendants of Body fluid specimen are shown in black; others are in blue.  

The indented hierarchy display of SNOMED CLUE can be used to support review 

of groups, such as a concept together with all its children (e.g., Urine specimen and its 

nine children), or a concept and all its descendants (e.g., Sputum specimen). However, 

these groups have some deficiencies. Although such a group is cohesive due to its unique 

root, the structures of its concepts are not necessarily the same. For instance, neither 

Catheter specimen nor Urinary catheter specimen, both children of Urine specimen, has 

the same structure as its parent.  Furthermore, concepts may have other parents that 

appear in a different location and are not seen in the tree representation.  For example, in 

addition to the parent Body fluid specimen, Urine specimen has the parent Urological 

fluid sample, appearing in another part of the Specimen hierarchy. Similarly, Catheter 

specimen has the parent Device specimen, in addition to Urine specimen.  
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Figure 2.18 and Figure 2.19 break down the hierarchy into multiple partial-areas 

and go down to the concept level, thus providing the auditors with a more refined view of 

the partial-area taxonomy.  As mentioned previously, the typically small groups of 

concepts of a partial-area are uniform both structurally and semantically. In addition, the 

partial-area taxonomies reflect the multiple parents of a partial-area if they exist 

(especially for the partial-areas in the strict inheritance regions). Hence, review of 

concept groups of partial-areas is more promising for the purpose of auditing than review 

of the indented tree representation.  

 

Figure 2.18  The partial-areas of strict introduction regions and mixed regions containing 

the descendants of Body fluid specimen.  
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The errors being reported here were exposed while reviewing such groups. For 

instance, when the partial-area Respiratory fluid specimen in the strict inheritance region 

{specimen substance, specimen source topography} (Figure 2.19) is reviewed, two 

concepts, Nasopharyngeal washings and Oropharyngeal aspirate, are found in this 

partial-area, but a related concept, Nasopharyngeal aspirate, which is expected to appear 

in the same group, was missing. In fact, Nasopharyngeal aspirate, a child of Respiratory 

fluid specimen, appears in a separate singleton partial-area in another area {specimen 

substance, specimen source topography, specimen procedure*} (Figure 2.18). This leads 

to the discovery of a “missing relationship” error: seven concepts from this Respiratory 

fluid specimen partial-area, such as Nasopharyngeal washings, Sinus washings, etc., 

should have one more relationship, specimen procedure, just like two of their siblings 

Nasopharyngeal aspirate and Transtracheal aspirate sample.  

 

Figure 2.19  The partial-areas of strict inheritance regions containing the descendants of 

Body fluid specimen.  
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Reviewing a group of concepts that is structurally and semantically uniform, as 

with a partial-area, helps to uncover irregularities. For example, the partial-area Body 

fluid specimen contains the two concepts Cerebrospinal fluid sample and Cerebrospinal 

fluid specimen, which are identical.  In another example, the partial-area Peritoneal fluid 

specimen is a child of the partial-area Body fluid specimen, but the latter contains a 

concept, Peritoneal fluid sample, identical to the root of the former.  

When the partial-area Gastrointestinal fluid sample is reviewed, it is observed that 

Gastric washings is missing the relationship specimen procedure. Such examples 

demonstrate the power of group-based auditing in exposing irregularities in groups that 

are supposed to be uniform.  Such irregularities may indicate errors that would not 

otherwise have been detected without the group context.  

Altogether 54 errors of different kinds were found using the auditing 

methodologies reported in this chapter. These errors were reviewed by Dr. Kent A. 

Spackman, who is the Chief Terminologist of IHTSDO. All but four of the errors were 

confirmed and corrected in the Jan. ’05 release of SNOMED.  

2.3.4  Testing of the Hypotheses  

The auditing regimens pertaining to strict inheritance and strict introduction regions and 

small partial-areas were applied to the Specimen hierarchy of SNOMED, and the 

resulting error counts with respect to these various groups have been tabulated (Table 2.1 

and Table 2.2). For example, within the Specimen hierarchy, there are nine strict 

inheritance regions encompassing 28 partial-areas and a total of 83 concepts (see the 

second row of Table 2.1). Among those concepts, 16 errors were discovered, amounting 

to a percentage of 19.28. The percentages of errors for the other two kinds of regions are: 
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mixed: 12.60%; and strict introduction: 3.28%. (Note that the first row in Table 2.1 

shows the data for the area ∅ whose only region is a special case of a region without any 

relationships at all.) With respect to the Specimen hierarchy’s overall 1,056 concepts, 97 

(9.19%) concept errors were found. These figures confirm Hypotheses 1 and 2.  

      Table 2.1  Errors Across Kinds of Regions 

Kind of Region # # P-areas # Concepts # Errors % Errors 

Ø 1 1 30 2 6.67 

Strict Inheritance 9 28 83 16 19.28 

Mixed 12 266 516 65 12.60 

Strict Introduction 6 157 427 14 3.28 

Total: 28 452 1,056 97 9.19 

 

                  Table 2.2  Errors Across Ranges of Partial-area Size 

P-area Size # P-areas # Concepts # Errors % Errors 

1-7 427 646 69 10.68 

8 or more 25 410 28 6.83 

Total: 452 1,056 97 9.19 

 

The error totals found in the context of partial-areas of various sizes can be seen 

in Table 2.2. The table, in fact, breaks the space of partial-areas into two: those with 

seven or fewer concepts and those with eight or more.  

Partial-areas in the former range are deemed to be “small”; those in the latter, 

large.  As can be seen from the table, 10.68% of the concepts in small partial-areas are in 

error, while the number is only 6.83% for large partial-areas. This result confirms 

Hypothesis 2.3. 

While strict inheritance had a nominally greater error rate than mixed or strict 

introduction, the differences were not statistically significant, most likely due to the 
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relatively small number of strict inheritance partial-areas. Mixed was greater than strict 

introduction, and the difference in this case was statistically significant.  

The error rate for smaller partial-areas was nominally higher than that for larger 

partial-areas, but again the difference was not statistically significant, perhaps due to the 

small number of large partial-areas.  

  Table 2.3  Sample of Errors Discovered in SNOMED (sp = specimen; src = source) 
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Table 2.3 presents a sample of 15 errors discovered with the use of taxonomy 

auditing regimens in the context of the 2004 release of SNOMED. In each case, the 

concept’s region, partial-area, kind of error, and required correction are listed. The table 

is subdivided with respect to the different kinds of regions (SIT = strict introduction; SIH 

= strict inheritance; MIX = mixed).  The second row, for example, shows that the 

concepts Body fluid sample and Body fluid specimen were found to be independent 

concepts, when in fact they should be synonyms of each other. Furthermore, the fifth row 

indicates the discovery of a missing IS-A between the child Body fluid sample and the 

parent Fluid sample.  

All the errors in Table 2.3 were, again, confirmed by Dr. Kent A. Spackman. 

Most of the errors have already been corrected as of the 2007 release. The others will be 

dealt with in the upcoming release. 

 

2.4 Discussion 

2.4.1 Interpretation 

In summary, auditing using the two-level taxonomies can be very fruitful. The area and 

partial-area taxonomies provide the auditor abstract views of different granularities, thus 

prompting the auditor to view the hierarchy first structurally and later semantically.  

Consequently, the taxonomies help to detect irregularities, which lead to the 

identification of potential errors.  

The development of area and partial-area taxonomies described above is of more 

than theoretical interest. Maintenance personnel face great challenges when trying to 

keep a terminology relatively error-free.  A thorough understanding of the general 
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structure of a terminology is imperative.  On the other hand, an understanding of every 

last concept in a large terminology is impractical. The taxonomies aptly fulfill this need 

by providing a high-level abstract view of the terminology. The compact two-level 

taxonomy enables better navigation and orientation into the content and structure of a 

terminology.  

When a related object-oriented methodology was applied to the MED [19, 20] 

previously, the schema obtained was 500 times smaller than the original concept network. 

It thus compactly revealed the gestalt of the terminology and allowed its designers to see 

it in a brand new perspective. J. J. Cimino, the designer of the MED stated “The schema 

captures the essence of the MED while ignoring its minutiae.” In addition, the 

construction of the schema led to the discovery of some errors and inconsistencies that 

would otherwise have gone undetected.  

In the example of the Specimen hierarchy, a similar phenomenon is encountered 

for the two-level area taxonomy. 19 areas and 164 partial-areas were obtained for a 

hierarchy of 1056 concepts. Together the two levels, taken in parts provide a compact 

view of the structure and content of this hierarchy. For example, looking at the partial-

area taxonomy in Figure 2.15, one sees several groups of concepts with the same 

structure of specimen source substance relationship, such as Body fluid specimen (8), 

Body substance sample (11), Milk specimen (9) and Fluid sample (9) as well as few 

smaller groups. Looking at these partial-areas, one obtains a good comprehension for the 

concepts with such a relationship. The primary partition into areas helps the orientation 

by providing structurally similar groups of small to medium numbers of partial-areas.  
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It has often proved to be the case that when new vocabularies are integrated into 

the UMLS, the developers of that vocabulary have seen opportunities for improvement as 

a result of the mapping process, e.g., when the Gene Ontology (GO) was integrated into 

the UMLS [60]. Likewise, the UMLS developers have seen room for improvement and 

enhancement. When SNOMED was integrated into the UMLS, errors in 800 concepts, 

about 0.25% of all concepts of SNOMED, were uncovered. In other words, integration of 

one terminology into another has also a side effect in terms of auditing. However, the 

percentage of errors found is much lower than when the techniques presented in this 

chapter were applied to the sample of the Specimen hierarchy.  

General quality-assurance techniques employed by SNOMED involve direct 

inspection of the hierarchies, inspection of the stated and inferred forms of the description 

logic definitions of individual concepts, and inspection of the hierarchy changes that 

result from changes in definitions.  The focus of the effort is identified by reports of 

needed corrections that come from multiple parties, including end users of the 

terminology. In particular, within the Specimen hierarchy, many needed changes were 

identified as a direct result of feedback from the research described here. Identification of 

the same errors also occurred independently through inspection of the concepts by the 

editors. The author does not have specific data that would compare the effort involved in 

the two different auditing processes.  

2.4.2 Limitations 

The auditing methodologies presented in this chapter are based on abstraction networks 

that require systematic inheritance of relationships (via the terminology’s IS-A hierarchy) 

for their derivation.  They are, therefore, applicable to a number of terminologies 
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exhibiting this behavior, including: SNOMED; the Veteran Administration’s Enterprise 

Reference Terminology (ERT) [61]; Kaiser’s Convergent Medical Terminology (CMT) 

[62] (the preceding two based on SNOMED); NCIt [47]; FMA [63]; RxNorm [64]; MED 

[17]; and the Vocabulary Server (VOSER) terminology [65] (the basis for the 3M 

Healthcare Data Dictionary [66]). While the list of such qualifying terminologies is not 

overly extensive, it comprises many that are very important and widely used.  Moreover, 

the author foresees many emerging terminologies being of this ilk and therefore being 

amenable to the methodologies discussed in this chapter.  In fact, the design of SNOMED 

anticipates the need for extensions and subsets in order to craft terminological artifacts 

that are tuned to the needs of individual hospitals as well as groups of organizations of all 

sizes. SNOMED International’s “reference set specification” [67] serves the purpose of 

extracting components of SNOMED tailored to particular organizational preferences and 

use-cases. Thus, SNOMED itself is in an ideal position to be the progenitor of a whole 

family of new terminologies.  

Because these methodologies group concepts based on their structure, an auditor 

may be preferentially directed to review concepts whose structure stands out as being 

exceptional. This is not necessarily a problem as structural similarity tends to parallel 

semantic similarity, and semantic errors are liable to be discovered in this manner. 

However, the methodologies will not readily reveal errors of a semantic nature for 

concepts whose structure is not particularly exceptional.  

The taxonomy derivation and auditing methodology were successfully applied to 

one small hierarchy of SNOMED, the Specimen hierarchy.  However, other hierarchies 

may potentially yield different results.  



61 
 

 

 

For example, hierarchies with low numbers of concepts having multiple parents, 

such as SNOMED’s Event, Staging and Scales hierarchy or its Dependent Categories 

hierarchy, will probably have no strict inheritance regions where this auditing 

methodology focus searching for errors. Some hierarchies have high or low number of 

relationships that will influence the number of levels of the taxonomies. A more 

extensive investigation of larger different SNOMED hierarchies is needed to further 

substantiate and refine this auditing methodology.  

2.4.3 Explanation of the Hypotheses 

The hypotheses suggest that ever-limited auditing resources be concentrated on small 

partial-areas of strict inheritance and mixed regions in order to try to maximize the 

number of errors found for a given amount of effort.  The scope of the auditing 

experiments was limited to the Specimen hierarchy, which represents a relatively small 

portion of SNOMED. While the tabulated percentages support the hypotheses, the current 

numbers are too small to achieve statistical significance for two out of the three 

hypotheses. There is thus a need to apply the auditing methodologies to additional 

hierarchies to further examine the hypotheses and especially to further support their 

statistical analysis. Similar results for other hierarchies are expected.  

Each hierarchy of SNOMED is different in its size, height, width, number of 

defined relationships, and pattern of relationship introduction. These characteristics will 

naturally be reflected in the taxonomies that abstract the hierarchies.  It is not clear how 

those differences will affect the distribution of errors among regions and partial-areas. 

While the reasoning for the hypotheses suggests a general phenomenon, further 

experiments are required for verification. In particular, it is difficult to predict the range 
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of small and large partial-areas for the context of the hypotheses. An empirical approach 

was followed suggesting 7 as the size threshold.  

Since SNOMED uses a DL formalism, it can be fruitful to go outside that realm in 

an effort to uncover errors.  As demonstrated in previous sections, SNOMED’s DL-

classifiers failed to find certain errors (such as the fact that Eye fluid sample is a child of 

Body fluid sample) that were found with the structural methodologies.  
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CHAPTER 3  

ABSTRACTION OF COMPLEX CONCEPTS WITH A REFINED PARTIAL-

AREA TAXONOMY OF SNOMED 

 

3.1 Introduction 

Due to SNOMED’s fast growing size and inherent complexity, advanced tools for the 

display of aspects of SNOMED’s conceptual content—facilitating orientation and 

comprehension—are needed.  

In Chapter 2, two high-level abstraction networks have been devised to provide a 

multi-level abstraction view on top of a SNOMED hierarchy. In addition to their support 

for orientation to and comprehension of a SNOMED hierarchy, the two networks have 

served as the bases of the formulation of structural methodologies for auditing SNOMED 

hierarchies. Importantly, many concept errors were found to have manifested themselves 

as structural anomalies at the taxonomy level, and thus the taxonomies proved to be 

effective building blocks for automated auditing regimens. The area taxonomy and 

partial-area taxonomy for Specimen hierarchy of SNOMED July 2007 release are shown 

in Figures 3.1 and 3.2.  

In this chapter, the taxonomy paradigm is further extended to overcome some 

deficiencies in the framework in dealing with particularly complex portions of a 

SNOMED hierarchy. A recurring theme of the previous terminological analyses has been 

that complex concepts—characterized by various structural features—are often obstacles 

to orientation and comprehension efforts and usually are natural places to look for 

modeling errors.  Of course, there are numerous ways, in different contexts, to qualify the 

notion of “complex.” The idea that concepts are complex when they simultaneously
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belong to multiple groups along some given categorizing dimension is used here. In the 

context of SNOMED auditing, as discussed in Chapter 2, concepts appearing in regions 

of the partial-area taxonomy characterized by the convergence of multiple ancestral 

inheritance paths were deemed to be complex and given auditing priority.  

 

Figure 3.1  Area taxonomy for SNOMED’s Specimen hierarchy (July 2007 release). 

This chapter focuses on another variety of complex concepts, where again 

structural feature (relatively easily computed) is being used to determine “complex.” In 

this case, the structural feature is set overlap, and the concepts are those that reside in 

overlapping portions of two or more partial-areas.  As it happens, the entire collection of 

these overlapping concepts may constitute a highly tangled subhierarchy.  It is intended 

to impose some order on such a subhierarchy to facilitate orientation and comprehension 

for various users. In particular, an automated methodology is presented to partition the 

entire set of overlapping concepts to form a disjoint partial-area taxonomy, an 
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abstraction network that captures the prevailing hierarchical configuration of the 

overlaps. Through this taxonomy the user is presented with a view showing the gestalt of 

the overlaps, allowing for easier comprehension of their content.  

One class of user, in particular, that can benefit from the refined, high-level 

display offered by the new abstraction network is the domain-expert auditor. In this 

chapter, the details of the abstraction network and its derivation are presented. An 

enhanced auditing regimen based on this network and the overlapping concepts is 

expounded in Chapter 4. 

 

3.2 Methods 

The partial-area taxonomy has proven to be a useful vehicle for comprehending the 

overall structure of a SNOMED hierarchy, locating potential errors within it, and 

identifying modeling aspects that can be improved [48, 49].  However, the taxonomy 

does lack a characteristic called semantic uniformity that has been found useful in the 

realms of both comprehension and auditing. This deficiency is due to the potential 

overlap between partial-areas that was alluded to above. For example, the area {identity} 

has two roots, Device specimen and Specimen from patient (see Figure 3.2). Device 

specimen and its 18 descendants (including Blood bag specimen) form one partial-area.  

Specimen from patient and its child Blood bag specimen, from patient form another. 

Blood bag specimen, from patient also happens to be a child of Blood bag specimen. 

Thus, Blood bag specimen, from patient is in two partial-areas: Device specimen and 

Specimen from patient. This situation is illustrated in Figure 3.3. These two partial-areas,  



 
 

 

 

 

Figure 3.2  Partial-area taxonomy for SNOMED’s Specimen hierarchy (July 2007 release). 

6
6
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Device specimen and Specimen from patient, are considered “overlap” with each other. 

The concept Blood bag specimen, from patient is called an “overlapping concept.” The 

entire set of overlapping concepts is denoted V. 

 

Figure 3.3  The overlapping concept Blood bag specimen, from patient resides in two 

partial-areas, Device specimen and Specimen from patient, demarcated by the dashed 

bubbles. 

This raises two important issues.  First, the entire collection of partial-areas does 

not form a partition of the hierarchy. This is in contrast to the collection of areas which 

does. Second, when two partial-areas overlap, some concepts in a partial-area, like the 

concept Blood bag specimen, elaborate only the semantics of one root (i.e., Device 

specimen) while the overlapping concepts in that same partial-area, in this case, the 

concept Blood bag specimen, from patient, elaborate the semantics of two roots (i.e., 

Device specimen and Specimen from patient). The situation gets worse when three 

overlapping partial-areas, say, R1, R2, and R3, are involved. In this situation, some 
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concepts in R1 are elaborating the semantics of the root R1, while others may be 

elaborating the semantics of the two roots R1 and R2, and others are elaborating the 

semantics of all three roots R1, R2, and R3. In this sense, the partial-area R1 is not 

semantically uniform with respect to its root.  

This deficiency of the partial-area taxonomy actually presents the opportunities of 

further extending and enhancing the taxonomy, which is presented in this chapter. One is 

the fact that the overlapping concepts lend themselves nicely to auditing scrutiny.  Such 

concepts elaborate the semantics of two or more significant root concepts in the hierarchy 

and thus warrant the designation “complex concept,” which underpins an auditing 

methodology that will be introduced in Chapter 4.  

The second opportunity pertains to the refinement of the partial-area taxonomy. 

Its theoretical underpinning will be extended and it will be refined to further facilitate 

comprehending the terminology as well as the job of an auditor. In particular, the 

overlapping concepts will be partitioned systematically such that each resulting group of 

concepts is singly-rooted. The single root of each such group will provide a uniform 

semantics for the whole group. This is important because the overlapping concepts can 

collectively constitute quite a tangled hierarchy. The partition paves the way for the 

formation of an enhanced partial-area taxonomy that provides a view of the prevailing 

hierarchical configuration of the overlapping concepts. This will aid the subject-domain-

expert editor and user in seeing the gestalt of the partial-area overlaps and more easily 

comprehending their content. Furthermore, such enhanced comprehension will enable an 

auditor to recognize any troublesome aspects.  In this context, a new auditing 

methodology will be presented in Chapter 4.  
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In the remainder of this section, the issue of the complexity of overlapping 

concepts is discussed further. After that, a singly-rooted partitioning scheme for the 

overlapping concepts of an area is devised. This begins with the definition of overlapping 

roots. From the partition, a new refined abstraction network for the concepts of a 

SNOMED hierarchy will be defined. This refined abstraction network will better support 

comprehension of a SNOMED hierarchy by maintenance personnel, including editors 

and auditors, by providing a disjoint partition of the hierarchy’s concepts—the 

overlapping concepts, among them—into semantically uniform groups. It will also form 

the basis for an enhanced auditing regimen for the overlapping concepts of such a 

hierarchy, which will be discussed in Chapter 4. 

3.2.1 Overlapping Concepts are Complex Concepts 

The following example is presented to further motivate the focus on overlapping concepts 

and see their inherent complexity.  In the area {substance} (Figure 3.2), the three direct 

children, Body substance sample, Fluid sample, and Drug specimen, of the top-level 

concept Specimen induce three partial-areas, respectively. Figure 3.4 shows the three root 

concepts, along with two of their descendants (shaded). The partial-areas are demarcated 

with dashed bubbles, where the different border styles denote the different partial-areas. 

Body fluid sample, being a child of both Body substance sample and Fluid sample, 

resides in the intersection of the two partial-areas. It inherits the relationship substance 

directed to Body fluid in the Substance hierarchy from both its parents. 

The other shaded concept in Figure 3.4, Acellular blood (serum or plasma) 

specimen, sits in the intersection of the partial-areas Fluid sample and Drug specimen. 

Thus, it elaborates the semantics of both parents, and inherits the relationship substance 
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and the accompanying targets. Different from the previous example, Acellular blood 

(serum or plasma) specimen has two occurrences of the substance relationship, one 

pointing at Liquid substance and the other pointing at Blood component, a descendant of 

Drug or medicament, the target of the relationship substance of Drug specimen.  

 

Figure 3.4  The overlapping concepts Body fluid sample and Acellular blood (serum or 

plasma) specimen (shaded) in the area {substance}.  

 

Overall, the area {substance} (Figure 3.2) contains ten partial-areas and has quite 

a few overlapping concepts.  This can be gathered from the fact that the sum of the 

numbers of concepts in its partial-areas (136) is much higher than the actual number of 

concepts in the area (81).  The increased complexity of overlapping concepts is a 

consequence of the fact that they represent combination specializations deriving from 

multiple root concepts. For example, Body fluid sample and all its descendants residing in 

{substance} are overlapping concepts belonging to the partial-areas Body substance 

sample and Fluid sample. All these concepts that are both body substance and fluid 

examples, e.g., Amniotic fluid specimen and Lymph sample, are inherently more complex 

than concepts that are solely fluid samples, e.g., Water specimen, or only body substance 
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samples, e.g., Calculus specimen. They each elaborate the semantics of a dual 

specialization.  

The amount of overlapping, and attendant complexity, may increase as traversing 

downward along the IS-A hierarchy. In {substance}, it is found that 15 concepts 

belonging to exactly two partial-areas, and 20 concepts belonging to three partial-areas. 

From this, its actual number of concepts is obtained: 136 − (2 − 1) • 15 − (3 − 1) • 20 = 

81.  

 

Figure 3.5  Differing degrees of complexity for overlapping concepts in the area 

{substance}. The green overlapping concepts are more complex than the orange 

overlapping concept which is more complex than the yellow overlapping concepts. 

  

Differing degrees of complexity are seen for the overlapping concepts in Figure 

3.5, which contains a small fragment of the Specimen hierarchy consisting of nine 

concepts from the area {substance} (along with the hierarchy’s root). The three bubbles 
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with different border styles enclose three partial-areas. Their roots are children of 

Specimen. All concepts below the roots (in colors) are overlapping concepts. The first of 

these are the yellow concepts Body fluid sample and Acellular blood (serum or plasma) 

specimen. Traversing downward along the IS-A hierarchy, examples of even more 

complex overlapping concepts were found. For example, one of the children of the 

overlapping concept Body fluid sample, Blood specimen (in orange), has another parent 

Drug specimen that is the root of its partial-area. In this case, Blood specimen is the 

specialization of three roots and thus resides in the intersection of three separate partial-

areas. But from the complexity point of view, it is a child of one overlapping concept and 

one root of a partial-area. Hence, it is more complex than the two yellow overlapping 

concepts that are children of roots of partial-areas.  

Other—more complex—cases can be seen with the green concepts, Serum 

specimen and Serum specimen from blood product, each having two parents that are 

overlapping concepts themselves.  Note that a move down the hierarchy does not 

necessarily imply an increase in complexity.  This is illustrated by Amniotic fluid sample, 

whose only parent is Body fluid sample. Being singly parented, it does not lie at a 

significant knowledge convergence point and is thus considered no more complex than 

Body fluid sample from a structural standpoint.  

3.2.2  Foundations of the Partition: Overlapping Roots  

As discussed, the portion of an area consisting of the overlapping concepts may constitute 

a highly tangled hierarchy. The goal is to impose some order on it by partitioning it in 

such a way as to obtain a collection of concept groups exhibiting semantic uniformity by 

satisfying single-rootedness and no overlaps.  Thus, the first task is to identify those 
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overlapping concepts that will serve as the roots of the concept groups. They will be 

called overlapping roots.  Just like the root of a partial-area, an overlapping root will 

capture the overarching semantics of its group of overlapping concepts.  The grouping 

process proceeds in a deeply nested (recursive) fashion.  

Two kinds of overlapping roots are defined:  those at the true “tops” of the 

overlapping portions of the partial-areas and those residing beneath them—perhaps quite 

deep in the overlap. Let us first define the fundamental kind of overlapping root called a 

base overlapping root, where, again, V is the entire set of overlapping concepts.  

Definition (Base Overlapping Root): A concept     is a base overlapping root if 

          ( )        . ■ 

Examples of overlapping concepts are shown in Figure 3.5. Among them, for 

instance, Body fluid sample is a base overlapping root because both of its parents, Body 

substance sample and Fluid sample, are non-overlapping concepts. They are, in fact, 

partial-area roots. Another example is Acellular blood (serum or plasma) specimen with 

the non-overlapping parents Fluid sample and Drug specimen.  

In the progressive build-up of knowledge that is a concept hierarchy, the 

significance of a base overlapping root is that it lies at the confluence of multiple 

independent lines of knowledge—originating from the roots of the area. In this sense, 

such a concept can be seen as denoting a change of conceptual context within the 

hierarchy as one moves downward. The roots of a partial-area are significant in terms of 

unique sets of relationships. The base overlapping roots do not differ from their partial-

area roots in regard to their relationships (they have the same relationships, in fact), but 
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each one does represent a new combination in the downward direction of individual 

knowledge artifacts, each of which was first expressed by some partial-area root.  

With the definition of base overlapping root now in place, the general notion of 

overlapping root can be defined in a recursive manner as follows.  

Definition (Overlapping Root): A concept     is an overlapping root if either (1) it is 

a base overlapping root; or there exist concepts C1 and C2 (C1 ≠ C2) such that desc(L, C1), 

desc(L, C2), and either (2) C1 is an overlapping root and C2 is a partial-area root or (3) 

both C1 and C2 are overlapping roots. For both Cases (2) and (3), the hierarchical paths 

from L to C1 and from L to C2 do not contain other (intermediate) overlapping roots. ■ 

Note that the qualifying pair of ancestors (C1, C2) is not necessarily unique. That 

is, more than one pair of ancestors might satisfy the requirements.  The definition of 

overlapping root is well illustrated in Figure 3.5. The yellow concepts, Body fluid sample 

and Acellular blood (serum or plasma) specimen, are base overlapping roots (Case (1)). 

The orange concept Blood specimen follows Case (2) since one parent, Body fluid 

sample, is an overlapping root and the other, Drug specimen, is a partial-area root. 

Finally, the green concepts Serum specimen and Serum specimen from blood product are 

overlapping roots according to Case (3) since each is a child of two overlapping roots.  

Case (1) denotes the fact that base overlapping roots, defined above, form the 

foundation upon which other overlapping roots are defined. Cases (2) and (3) of the 

definition (the recurrences) designate certain points in the hierarchy below the level of 

the base overlapping concepts as being significant convergences of knowledge and thus 

warranting new grouping structures.  A concept satisfying Case (2) or Case (3) in 

particular is called a derived overlapping root.  
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In Figure 3.5, Blood specimen is a derived overlapping root according to Case (2).  

Its two qualifying ancestors are its parents Body fluid sample, a base overlapping root, 

and Drug specimen, a partial-area root.  Serum specimen and Serum specimen from blood 

product are also derived overlapping roots.  The two parents of Serum specimen are base 

overlapping roots.  On the other hand, the two parents of Serum specimen from blood 

product are both derived overlapping roots.  

The excerpt of the Specimen hierarchy’s area {substance} in Figure 3.6(a)—some 

of which already seen in Figure 3.5—shows six of its overlapping roots, highlighted with 

multi-coloring. (All lines in the figure are IS-As.)  This coloring scheme allows for easy 

identification of an overlapping root’s respective partial-area root ancestors. The three 

partial-area roots are the single-colored concepts on the top level of the figure. For 

example, Body fluid sample, colored orange and blue on the second level, is an 

overlapping root that is a descendant of Body substance sample (orange) and Fluid 

sample (blue). In fact, it happens to be a child of both and is thus a base overlapping root. 

In Level 2, another base overlapping root Acellular blood (serum or plasma) specimen is 

found, colored blue and yellow, as well as the non-overlapping concept Stool specimen, a 

descendant of only one partial-area root Body substance sample. Fecal fluid sample, 

colored orange and blue on Level 3, is also a base overlapping root due to the fact that its 

two parents are non-overlapping concepts.  The derived overlapping roots begin to appear 

on that level, too. They are the two concepts Blood specimen and Serum specimen, both 

colored orange, blue, and yellow.  Blood specimen is a child of one base overlapping 

root, Body fluid sample, in Level 2 and one partial-area root, Drug specimen (see Case (2) 

of the definition).  Serum specimen is a child of the two base overlapping roots in Level 2  
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(a) 

 

(b) 

Figure 3.6  (a) Some overlapping roots (shown as multi-colored boxes) from the area 

{substance} in the Specimen hierarchy; (b) corresponding excerpt of the d-partial-area 

taxonomy representation of {substance}, where the embedded boxes are d-partial-areas. 
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(Case (3)). Note that both have descendants that are not overlapping roots (e.g., Mixed 

venous blood specimen). The last derived overlapping root Serum specimen from blood 

product is found in Level 4.   

It should be noted that overlapping concepts having a single parent cannot be 

overlapping roots. Again, the purpose of this designation is to highlight knowledge 

convergence points for which multiple parents are necessary. As an example, the concept 

Acidified serum sample has as its only parent the derived overlapping root Serum 

specimen and is thus not an overlapping root (see Figure 3.6(a)). Similarly, the derived 

overlapping root Blood specimen has 12 descendants, such as Whole blood sample, 

Arterial blood specimen, and Cord blood specimen, none of which are overlapping roots.  

(Note that these descendants are not shown in the excerpt in Figure 3.6(a). They will be 

shown in the full figure in Figure 3.8.) As these examples demonstrate, there are 

overlapping concepts that are not overlapping roots, even though their parents are derived 

overlapping roots.  

3.2.3 Disjoint Partial-Areas 

With the definition of overlapping root in place, one can now proceed to establish a 

partition of an entire area whose partial-areas overlap. Moreover, each of the concept 

groups collectively forming the partition will be singly-rooted. Such concept groups are 

referred to as disjoint partial-areas (d-partial-areas, for short). The initial set of d-

partial-areas is derived by removing those portions of the original partial-areas that 

constitute overlaps, leaving only non-overlapping concepts.  For example, the d-partial-

area Body substance sample contains one additional concept Stool specimen beyond its 

root. It is obtained from the original partial-area of the same name having 47 total 
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concepts by removing the overlapping roots Fecal fluid sample and Body fluid sample 

along with the latter’s descendants (see Figure 3.6(a)). Clearly, such d-partial-areas are 

all disjoint with respect to each other and also with respect to the entire set of overlapping 

concepts. And they are each singly-rooted.  

The remainder of the d-partial-areas are created in the context of the set of 

overlapping concepts based on the overlapping roots. In fact, each overlapping root will 

be the root of its own newly derived d-partial-area. Intuitively, such a d-partial-area is the 

portion of the area residing “between” an overlapping root, say, CR and the descendants 

of CR that are also overlapping roots. For example, consider the overlapping root Body 

fluid sample. The concepts that are removed in order to form its d-partial-area are the 

overlapping root child Blood specimen along with all its respective descendants and the 

other overlapping root child Serum specimen with its two children (see Figure 3.6(a)).  

The concepts that are left in the d-partial-area rooted at Body fluid sample are, besides 

itself, its seven children (e.g., Amniotic fluid specimen) and its grandchildren which are 

children of the child Cerebrospinal fluid sample. (Note that only one such child is shown 

in Figure 3.6(a), as it is an excerpt. All ten descendants appear in the full figure in Figure 

3.8.)  

More formally, let CR be an overlapping root. Then it is designated as the root of 

its own d-partial-area with the name “CR.” Furthermore, let C be an overlapping 

concept—but not an overlapping root—which is a descendant of CR such that there are no 

other overlapping roots on the paths between C and CR. Then C is a member of the d-

partial-area CR.  For example, consider the overlapping root Blood specimen and its 

descendant Mixed venous blood specimen in Figure 3.6(a). Since the intermediate 
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concept Venous blood specimen on the only path from Mixed venous blood specimen to 

Blood specimen is not an overlapping root, Mixed venous blood specimen belongs to the 

d-partial-area Blood specimen. It is possible to prove that CR is unique for any given C, 

and hence C’s membership in a d-partial-area is well-defined.  Moreover, it is possible to 

prove that for each overlapping concept C there is always such a CR.  

3.2.4  Disjoint Partial-area Taxonomy  

From the d-partial-areas, an abstraction network is formed, which enhances the partial-

area taxonomy framework introduced in Chapter 2 and highlights the structural subtleties 

of the overlapping portions of the partial-areas. This new network is called the disjoint 

partial-area taxonomy (d-partial-area taxonomy, for short). Those d-partial-areas derived 

directly from the existing partial-areas—and consisting only of non-overlapping 

concepts—hold the same place as their predecessors in the d-partial-area taxonomy. 

Moreover, partial-areas originally having no overlapping concepts retain their places as 

nodes and are also designated d-partial-areas in the new network.  The child-of 

relationships emanating from these d-partial-areas and extending into other areas are 

derived as done previously for the partial-areas.  

The d-partial-areas comprising overlapping concepts are also elevated to the 

status of nodes in the d-partial-area taxonomy. Each is displayed as a box with its name 

(i.e., its unique overlapping root) inside and its number of concepts in parentheses. Child-

of links are defined for these new nodes in a similar manner to those for areas and partial-

areas, but here the overlapping roots play a role. Let A and B be two d-partial-areas, such 

that the concept A (the overlapping root of the former) has a parent in the latter.  Then 

there exists a child-of from the d-partial-area A to the d-partial-area B. A portion of the d-
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partial-area taxonomy for the area {substance} derived from the excerpt of its hierarchy 

shown in Figure 3.6(a) can be seen in Figure 3.6(b). For example, there is a child-of from 

the d-partial-area Fecal fluid sample to the d-partial-area Body substance sample since, in 

Figure 3.6(a), there is an IS-A from the concept Fecal fluid sample to the concept Stool 

specimen which resides in Body substance sample.  As can be seen in Figure 3.6(b), the 

d-partial-area nodes, like the partial-area nodes, are embedded in their respective area, 

which in this case is {substance}, colored green following Figure 3.1.  

3.2.5  Enhanced Abstraction of the Complex Overlapping Concepts in Disjoint 

Partial-areas  

 

The described taxonomies provide abstraction-level views of the content of a SNOMED 

hierarchy.  For example, the area taxonomy (Figure 3.1) shows that there are 81 concepts 

having exactly the one relationship substance. The partial-area taxonomy (Figure 3.2) 

also conveys the overarching semantics of these concepts. There are 44 fluid samples, 23 

drug specimens, 47 body substance samples, and 13 food specimens. Those four large 

groups constitute most of the concepts representing specimens with only one relationship 

to the Substance hierarchy of SNOMED.  There are some other small groups, including 

Gaseous material specimen (3), Microbial isolate specimen (2), and Plant specimen (1). 

Reviewing this information, the user gets a summary of the content of this area.  In 

contrast, the area {morphology} has just one partial-area Lesion sample of 14 concepts. 

(This consolidated view was obtained following the auditing of the 2004 release of the 

Specimen hierarchy supported by the taxonomies [48]. The area {morphology} had six 

partial-areas in the earlier version, but the auditing found that all fall under Lesion 

sample.)  
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 When users want to view concepts with both substance and morphology 

relationships, they can utilize the area {morphology, substance} in the second level 

having 11 concepts.  This area is a child of both {substance} and {morphology} (Figure 

3.1).  As it happens, the area has 11 partial-areas of one concept each, e.g., Effusion 

sample and Cyst fluid sample (Figure 3.2). As shown in Chapter 2, this view provided by 

the partial-area taxonomy was very helpful in exposing errors in the Specimen hierarchy.  

 The partial-area taxonomy view is particularly useful when the different partial-

areas of an area are disjoint, but it is somewhat deficient when the partial-areas overlap. 

As was discussed above, those overlapping parts of a partial-area contain concepts that 

are semantically more complex than concepts of non-overlapping parts of the same 

partial-area. Furthermore, the unit of a partial-area with an overlap is not semantically 

uniform.  Hence, the difficulty of comprehending such concepts is magnified.  For 

example, out of the 23 drug-specimen concepts in the partial-area of that name in the area 

{substance}, 21 are also fluid samples, while 20 are also body substance samples. 

Furthermore, 12 concepts are both fluid samples and body substance samples. Hence, the 

knowledge conveyed by the partial-areas of the area {substance} (Figure 3.2) is hiding a 

more complex situation.  They provide a relatively superficial perspective where a more 

refined view is needed. Furthermore, as shown in Figure 3.1, the area {substance} 

contains only 81 concepts, where overlapping concepts appear in multiple counts of the 

sizes of the partial-areas in Figure 3.2.  

 The desired refined view of an area with overlapping partial-areas is provided by 

the d-partial-area taxonomy introduced above. In Figure 3.6(b), the overlap of the three 

partial-areas just discussed is concentrated under two d-partial-areas: Body fluid sample 
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of 11 concepts, capturing an overlap of Body substance sample and Fluid sample; and 

Acellular blood (serum or plasma) specimen of one concept, capturing an overlap of 

Drug Specimen and Fluid sample. In the d-partial-area taxonomy, the children of these 

two d-partial-areas, Blood specimen of 13 concepts and Serum specimen of two concepts, 

denote the overlaps of the three partial-areas. In turn, a deeper level of overlap is 

indicated by the grandchild d-partial-area Serum specimen from blood product of one 

concept. The names (overlapping roots) of the d-partial-areas communicate more precise 

knowledge of the content of the overlapping concepts.  The full d-partial-area taxonomy 

for that portion of the area {substance} from which Figure 3.6(b) was extracted will 

appear in Figure 3.9. More such knowledge was excluded from Figures 3.6(a) and 3.6(b) 

for the sake of brevity and clarity.  

Importantly, each d-partial-area of the overlapping concepts consists of a 

semantically uniform group, where its name, e.g., Blood specimen, characterizes the 

concepts of the group very well.  Hence, the d-partial-area taxonomy is a vehicle for 

more readily comprehending the nature of the overlapping concepts. In another example 

corresponding to Figure 3.3, the d-partial-area taxonomy will have a minimal overlap of 

just one concept, Blood bag specimen, from patient, between the two partial-areas of 

Figure 3.3, Device specimen and Specimen from patient. This overlap appears as one d-

partial-area, Blood bag specimen, from patient, containing only that concept.  Note that in 

the d-partial-area taxonomy, this d-partial-area is the child of the two semantically 

uniform d-partial-areas Device specimen (18) and Specimen from patient (1), which are 

now uniform due to the removal of the overlapping concept (Figure 3.7).  Thus, the d-

partial-area taxonomy reveals both the uniform semantics of the overlapping subgroup 
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and the precise size of its extent (by the number appearing alongside the name) as well as 

the uniform semantics of the d-partial-areas obtained by the removal of the overlapping 

concepts from the partial-areas of the partial-area taxonomy. This enhanced view 

afforded by the d-partial-area taxonomy supports a better auditing regimen for the 

complex overlapping concepts, which will be demonstrated in Chapter 4.  

 

Figure 3.7  The d-partial-areas Device specimen, Specimen from patient, and Blood bag 

specimen, from patient of the area {identity}.  

 

There are two issues regarding the display of the d-partial-area taxonomy.  One is 

the arrangement of d-partial-areas within an area.  In the partial-area taxonomy (e.g., 

Figure 3.2), no child-of hierarchical relationships exist between partial-areas of the same 

area because each is based on and contains a root of the area. When one partial-area is 

displayed below another (see, e.g., the area {substance} in Figure 3.2), no hierarchical 

arrangement is implied. It is just a layout expediency. 

In the d-partial-area taxonomy, there are child-of’s between d-partial-areas in a 

given area.  In fact, any d-partial-area rooted at an overlapping root (be it base or derived) 
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has multiple child-of’s to other d-partial-areas of the same area. To reflect the hierarchical 

nature of these child-of’s, the author try to position the d-partial-areas such that they are 

below their respective parents, and the child-of’s are in an upward direction.  

As a result, there is a contrast between the detailed display of an area of many 

overlapping concepts, such as {substance} in Figure 3.6(b), and an area without 

overlapping concepts, such as {morphology}. The d-partial-area taxonomy contains both 

kinds of areas. Thus, there is a disparity in the display of these two kinds of areas in 

regard to their nature and level of detail. It will be discussed in the following sections that 

the three taxonomies are best used in concert in a kind of multi-scale display. 

 

3.3 Results 

The July 2007 release of the Specimen hierarchy of SNOMED consists of 1,056 active 

concepts, of which 162 are overlapping. The July 2007 release has been used in this 

chapter because in Chapter 4, the application of a systematic auditing regimen to both the 

July 2007 and 2009 releases will be reported.  The partial-area taxonomy and the d-

partial-area taxonomy for July 2009, whose contents were affected by the audit of the 

July 2007 release, will appear in Chapter 4. Most of the overlapping concepts reside in 

Level l areas, i.e., those having one relationship. In fact, roughly one third (155 out of 

468) of the Level 1 concepts are overlapping, and these are found primarily in 

{topography} and {substance}.  Overlapping concepts also appear in the partial-areas of 

areas with two relationships, but in far fewer numbers.  In fact, there are only seven of 

them.  Six are in {topography, procedure}, and the other is in {topography, 

morphology}.  The statistics of the overlapping concepts in Levels 1 and 2 are given in 
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Table 3.1. For each area, its total number of concepts C (Column 2), number of 

overlapping concepts V (Column 3), the percentage of overlapping concepts (Column 4), 

the number of d-partial-areas with overlapping roots D (Column 5), and the average 

number of overlapping concepts per d-partial-area: V /D (Column 6), are listed. For 

example, {substance} has 81 concepts and 35 of them are overlapping (43%). It also has 

nine overlapping roots which head d-partial-areas, with about four concepts per each such 

d-partial-area, on average.  

          Table 3.1  Statistics of Overlapping Concepts at Levels 1 and 2 

Area C V V / C (%) D Avg = V / D 

substance 81 35 43 9 3.9 

topography 333 116 35 52 2.2 

procedure 20 3 15 3 1.0 

identity 20 1 5 1 1.0 

topography, procedure 380 6 2 6 1.0 

topography, morphology 18 1 6 1 1.0 

Total: 852 162 19 72 2.3 

C = # concepts; V = # overlapping concepts; D = # overlapping roots 

Most overlapping concepts in the area {topography} are found in intersections 

with the partial-area Tissue specimen which contains 126 concepts.  These results have 

been tabulated separately in Table 3.2.  For example, the partial-area Specimen from eye 

has 18 concepts. Its intersection with Tissue specimen has 12 of them (67%).  

The full complement of nine overlapping roots from the area {substance} can be 

seen as the multi-colored boxes in the excerpt in Figure 3.8. This figure follows the color 

conventions of Figure 3.6(a). The top four concepts are the area’s roots.  Among the 

overlapping roots, five are base overlapping roots and four are derived overlapping roots.  
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The remaining white concepts are overlapping concepts that elaborate the semantics of 

the overlapping roots of their respective d-partial-areas.  

                Table 3.2  Intersections Involving Partial-area Tissue specimen 

Second Partial-area C V V / C (%) 

Specimen from eye 18 12 67 

Ear sample 2 1 50 

Specimen from breast 8 4 50 

Cardiovascular sample 13 3 23 

Products of conception tissue sample  12 3 8 

Genitourinary sample  73 22 27 

Dermatological sample 6 2 33 

Specimen from digestive system 74 30 39 

Musculoskeletal sample 35 22 63 

Respiratory sample 41 7 16 

Endocrine sample 12 3 25 

Specimen from central nervous system 4 1 25 

Specimen from thymus gland 2 1 50 

Specimen from trophoblast 2 1 50 

Total: 302 112 35 

C = # concepts; V = # overlapping concepts 

The portion of the d-partial-area taxonomy for the area {substance} 

corresponding to the concept diagram in Figure 3.8 is shown in Figure 3.9. It presents a 

precise abstraction of the configuration of the overlapping concepts within {substance}. 

Note that the numbers of concepts listed for the top-level d-partial-areas are actually the 

numbers of non-overlapping concepts appearing in the original partial-areas from which 

these d-partial-areas are derived. For example, Drug specimen (2) has the two non-

overlapping concepts from the partial-area of the same name, containing a total of 23 

concepts, in Figure 3.2. They are the area root Drug specimen plus a non-overlapping 

child not shown in Figure 3.8. The entire content of the partial-area Drug specimen is 
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distributed among the d-partial-area Drug specimen and all its descendants.  This can be 

seen by summing up the numbers of concepts in those d-partial-areas: 2 + 1 + 13 + 2 + 4 

+ 1 = 23. The same holds true for the other top-level d-partial-areas and their respective 

descendants in Figure 3.8.  

The complete node for {substance} in the d-partial-area taxonomy is shown in 

Figure 3.10, which differs from Figure 3.9 only in the inclusion of the six additional d-

partial-areas derived from the corresponding six partial-areas (Figure 3.2) that do not 

contain any overlapping concepts.  The isolation of these d-partial-areas from the others 

conveys the absence of overlaps.  Overall, this network can be used, for example, as a 

vehicle for comprehending the details of the kinds of overlapping concepts and their 

numbers in the underlying SNOMED hierarchy.  

Figure 3.11 provides a larger excerpt of the portion of the d-partial-area taxonomy 

appearing within the area {topography}, highlighting the extensive overlapping among 

its partial-areas. As shown in Table 3.1, this area has 116 overlapping concepts 

distributed among 52 d-partial-areas. Most of the overlapping concepts have Tissue 

specimen as one of their partial-areas, as listed in Table 3.2. In the top level of Figure 

3.11, 15 d-partial-areas are obtained by removing all overlapping concepts from the 

original partial-areas. On the next level down, 13 d-partial-areas are found having base 

overlapping roots. Two d-partial-areas with derived overlapping roots appear on the 

bottom level.  Many other d-partial-areas with few concepts have been omitted. Again, it 

should be noted that the intersection of two partial-areas may contain several overlapping 

roots. For example, the intersection of Tissue specimen and Cardiovascular sample has



 

 

 

 

 

Figure 3.8  The nine overlapping roots from the area {substance} are shown as multi-colored boxes among other concepts. 
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three overlapping roots, as shown in the figure: Tissue specimen from heart, Heart valve 

tissue, and Native heart valve sample. 

 

Figure 3.9  The d-partial-area taxonomy excerpt consisting of 13 d-partial-areas 

corresponding to the concept network appearing in Figure 3.8. 

 

To illustrate the general applicability of this abstraction approach, the author has 

applied it to all seven of the SNOMED hierarchies that have outgoing lateral 

relationships.  (The other 12 hierarchies have no such relationships, rendering this 

methodology inapplicable to them.) The results are listed in Table 3.3. For each of the 

seven hierarchies, the table gives its total number of concepts, the number of overlapping 

concepts and their percentage, and the number of overlapping roots. For example, the 

Pharmaceutical Product hierarchy has a total of 17,410 concepts, of which 1,047 are 

overlapping (6.1%). The number of overlapping roots is 949. Note that in Pharmaceutical 

Product almost all the overlapping concepts are overlapping roots (1,047 compared to 
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949).  As it happens, the hierarchies Event and Body Structure have no overlapping 

concepts whatsoever.  

Table 3.3  Concept Distributions in Seven SNOMED Hierarchies 

Hierarchy C V V/C 

(%) 

D Cmult Cmult/C 

(%) 

Vmult 

Event 3,661 0 0 0 86 2.4 0 

Situation 3,237 86 2.7 67 387 12.0 67 

Pharmaceutical Product 17,140 1,047 6.1 949 7,721 45.1 963 

Procedure 52,687 7,878 15.0 3,374 27,031 51.3 5,846 

Specimen 1,330 191 14.4 80 788 59.3 130 

Body Structure 31,155 0 0 0 13,418 43.1 0 

Clinical Finding 98,414 13,943 14.2 3,127 44,544 45.3 9,841 

Total: 207,624 23,145 11.2 7,597 93,975 45.3 16,847 

C = # concepts; V = # overlapping concepts; D = # overlapping roots; Cmult  = # concepts 

having multiple parents; Vmult  = # overlapping concepts having multiple parents 

 

As a point of comparison, Table 3.3 lists the number of concepts having multiple 

parents (and their percentage), along with the number of overlapping concepts having 

that characteristic. These numbers will be discussed further below.  The Pharmaceutical 

Product hierarchy has 7,721 concepts (45%) with multiple parents, of which only 963 

(5.6%) are overlapping. As can be seen, there are only 14 (= 963 − 949) non-root 

overlapping concepts having multiple parents.  Note that 84 (= 1047 − 963) overlapping 

concepts have only one parent.  



 
 

 

 

 

Figure 3.10  The d-partial-area taxonomy node for the area {substance} containing 19 embedded d-partial-areas. The numbers in 

parentheses indicate the numbers of concepts in the respective d-partial-areas.   

  

9
1
 



 
 

 
 

9
2
 

 

Figure 3.11  An excerpt of the d-partial-area taxonomy for the area {topography} consisting of 30 d-partial-areas. 
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3.4 Discussion 

3.4.1 Taxonomy Support for Presentation of Terminology Content 

The value of a terminological knowledge base depends on the accuracy and reliability of 

its constituent knowledge. This is true from the perspective of both ad hoc users and 

developers of software systems, such as EHR software and decision-support systems, that 

are dependent on that knowledge. Moreover, the ability to visualize and assess the 

knowledge’s underlying structural organization is a critical factor contributing to 

terminology usability, deployment, and maintenance.  The area and partial-area 

taxonomy abstraction networks have been shown to support maintenance efforts for 

SNOMED [48, 49] and the NCIt [46]. However, in this chapter, some deficiencies in 

these abstraction networks have been discussed regarding complex portions of the 

terminology involving what is called overlapping concepts.  The d-partial-area taxonomy 

that was introduced extends the area taxonomy paradigm to more properly present the 

overlapping concepts by highlighting semantically uniform groups and their sizes. For 

example, Figure 3.9 highlights the groups Blood specimen (13), Serum specimen (2), and 

Plasma specimen (4), which were originally hidden but tacitly accounted for multiple 

times in Body substance sample (47), Fluid sample (44), and Drug specimen (23) in 

Figure 3.2.  

In Figure 3.11, showing the area {topography}, only two d-partial-areas with 

derived overlapping roots are found. More than twice that number is found, with many 

concepts in their d-partial-areas, in the excerpt of {substance} in Figure 3.9. What is seen 

in {topography} is extensive overlapping with many base overlapping roots but not as 

complex a pattern as is found in {substance}. An interesting finding revealed by Figure 
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3.11 is that Products of conception tissue sample, the second d-partial-area from the right 

in Level 1, represents a modeling error. Its root should not actually have been a root but 

rather an overlapping concept of Tissue specimen and Genitourinary sample.  

In this chapter, the complexity of overlapping concepts was studied, finding what 

is called “overlapping roots” that represent the convergence of multiple hierarchical paths 

originating at the roots of an area (see Section 3.2.1). A variety, called “base overlapping 

root”, is less complex than the “derived overlapping root.” Within the latter, different 

kinds have been identified according to Cases (2) and (3) of the definition (see Section 

3.2.2). The organizational subtleties of the various kinds of overlapping concepts are 

abstracted in the d-partial-area taxonomy which was introduced in Section 3.2.4. The 

network breaks down the highly tangled group of overlapping concepts of an area into 

subsets in a manner that summarizes their hierarchical configuration and supports 

orientation into their nature. This phenomenon is demonstrated, for example, in Figure 

3.10, where nine d-partial-areas (rooted at derived overlapping roots) on Levels 2 and 3 

expose the very complex modeling of the 35 overlapping concepts in a clear and 

unambiguous way, while all this knowledge is hidden “under the hood” in the partial-area 

taxonomy of Figure 3.2. The refined view helps in assessing the correctness of the 

modeling of this highly complex portion of the SNOMED hierarchy.  

3.4.2 Further Applicability of the Methodology  

While the abstraction methodology presented in this chapter was formulated in the 

context of SNOMED, its applicability extends to other DL-based terminologies such as 

the NCIt. Moreover, terminologies such as Kaiser-Permanente’s CMT [62] and the VA’s 

ERT [61], that have been derived in part from SNOMED, may prove to be fertile grounds 
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for additional applications.  By 2015, SNOMED is slated to become a standard for 

problem-list encoding in EHRs under the HITECH initiative [2].  It is thus reasonable to 

assume that further derivatives from SNOMED will emerge. SNOMED’s design, in fact, 

anticipates the need for extensions and subsets in order to craft terminological artifacts 

that are tuned to the needs of individual hospitals and other organizations. Its “reference 

set specification” [67] serves the purpose of extracting components of SNOMED tailored 

to particular organizational preferences and use-cases.  

3.4.3 Limitations and Future Work  

The area and partial-area taxonomies are available only for DL-based terminologies.  

Abstraction of terminologies is very delicate, and no one model of abstraction networks is 

expected to fit all terminologies. However, more research is needed to explore abstraction 

networks for other families of terminologies and terminological systems. The benefits 

obtained from abstraction networks in regard to auditing should motivate more research 

in this direction.  

A limitation of the taxonomy approach is that it depends on the existing 

relationships defined for a hierarchy of SNOMED. Hence, the methodology of this 

research is not applicable to a SNOMED hierarchy without any outgoing relationships at 

all.  An initial effort to handle such a hierarchy based on converse relationships appeared 

in [68]. Moreover, the d-partial-area taxonomy is only pertinent when there are 

overlapping partial-areas within the partial-area taxonomy. Otherwise, the two 

taxonomies are identical.  

In general, an abstraction network should represent a significant reduction in size 

(i.e., number of nodes) vis-à-vis its underlying concept network. For the Specimen 
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hierarchy, the area taxonomy provides a 0.023 reduction factor (24 areas versus 1,056 

concepts). The partial-area taxonomy has a reduction factor of 0.34 (361 partial-areas 

versus 1,056 concepts). The d-partial-area taxonomy only has a reduction factor of 0.41 

(433 d-partial-areas versus 1,056 concepts).  Note that the higher reduction factor for the 

d-partial-area taxonomy is the justifiable price paid for the enhanced view obtained by 

the inclusion of the d-partial-areas that abstract the more complex overlapping concepts.  

There is no impact on the representation of those partial-areas experiencing no overlap in 

the partial-area taxonomy. Experiments with more SNOMED and NCIt hierarchies of 

various sizes are needed to shed more light on reduction factors obtained for various 

kinds of taxonomies. Also note that the relatively high reduction factor for the partial-

area taxonomy is a result of a large number of partial-areas containing just one concept 

each (so-called “singletons”). As was shown in Chapter 2, such partial-areas tend to 

signal errors. It is interesting to see if the number of such partial-areas will decrease as a 

result of auditing them.  An initial promising result is brought up in [69].  Further 

research into this issue is required.  

The reduction factors aside, the three taxonomies complement each other in terms 

of granularity of display, with a zooming effect achieved as one moves successively 

through them starting from the area taxonomy. When used together in this manner, they 

provide a multi-scale display. The area taxonomy offers a global view of the hierarchy’s 

layout and the partial-area taxonomy provides a more semantically focused view of the 

areas, whereas the real benefits of the d-partial-area taxonomy are seen at the local 

level—on the scale of an individual area—where it helps to reveal the complexity of the 

configuration of the overlapping concepts.  
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One might question whether there are simpler ways to identify “complex” 

concepts rather than having to go through the abstraction analysis presented in this 

chapter. For example, one might choose to consider the easily identified concepts having 

multiple parents as being complex.  Note that the overlapping concepts are not simply a 

subset of the multi-parent concepts. Only a root overlapping concept must have, by 

definition, more than one parent.  As seen in Table 3.1, only 72 out of 162 overlapping 

concepts, in the Specimen hierarchy of July 2007, are overlapping roots. The other 

overlapping concepts have mostly a single parent. See also Figure 3.8 where only the 

nine overlapping roots are multi-parented. Similar statistics are seen in Table 3.3. In the 

seven hierarchies for which the analysis is applicable, a total of 93,975 multi-parented 

concepts (45.3%) were found.  In that same context, there are a total of 23,145 

overlapping concepts, with 16,847 being multi-parented.  

 

3.5 Summary 

SNOMED is one of the leading terminologies being used in a variety of applications 

worldwide. However, it contains hundreds of thousands of concepts and has an inherent 

complexity that could hinder its further adoption as well as its ongoing maintenance. A 

new abstraction network, called the disjoint partial-area taxonomy, has been introduced 

to provide a better high-level view of portions of a SNOMED hierarchy containing 

concepts of a particularly complex nature. It refines the previous abstraction network, the 

partial-area taxonomy, for SNOMED introduced in Chapter 2. The new network focuses 

on the location and number of such complex concepts and highlights their modeling and 

local neighborhoods. Overall, users are provided with a summary account of the “lay of 
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the land” that can facilitate orientation to and assessment of SNOMED’s content. The 

methodology was demonstrated by applying it to SNOMED’s Specimen hierarchy.  In 

Chapter 4, a systematic auditing regimen based on the disjoint partial-area taxonomy will 

be presented, demonstrating its utility to terminology maintenance personnel.  
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CHAPTER 4 

AUDITING OVERLAPPING CONCEPTS OF SNOMED USING A REFINED 

HIERARCHICAL ABSTRACTION NETWORK 

 

 

4.1 Introduction 

One of the driving themes in this dissertation has been that “complex” concepts, as 

defined by various criteria, are worth concentrating on in auditing efforts. By their very 

nature, such concepts are more difficult to model and should therefore be scrutinized 

more closely by auditors.  In Chapter 3, a category of complex concepts, referred to as 

overlapping concepts, is identified based on the partial-area taxonomy. The author 

presented a methodology for hierarchically clustering such concepts and automatically 

constructing a novel abstraction network for their presentation.  A portion of the new 

network, the disjoint partial-area taxonomy, is a directed acyclic graph of nodes 

representing groups of overlapping concepts where increased conceptual complexity is 

encountered as one navigates downward in the terminological hierarchy.  

This chapter continues to follow the theme of focusing auditing on complex 

concepts. A methodology for auditing the overlapping concepts based on the disjoint 

partial-area taxonomy presented in Chapter 3 is introduced. The methodology constitutes 

a systematic review of the overlapping concepts as determined by their hierarchical 

ordering within the disjoint partial-area taxonomy. The methodology is applied to the 

July 2009 release of SNOMED’s Specimen hierarchy. The results are compared to those 

obtained from an audit carried out on the July 2007 release and based on a preliminary 

methodology that also focused on overlapping concepts [70]. 



 

 

 
 

 

Figure 4.1  The 15 overlapping roots from the area {substance} of the Specimen hierarchy (July 2009) are shown as multi-colored 

boxes among other concepts. The coloring indicates their ancestry. 1
0
0
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4.2 Methods 

Different auditing methodologies are applied in the first phase and the second phase of 

this study. The former is with respect to the July 2007 release of SNOMED, when all the 

overlapping concepts were reviewed without utilizing any grouping structures or 

ordering; the latter, with respect to the July 2009 release, when topological ordering was 

employed in auditing.  

4.2.1 Phase 1: Unordered Auditing  

As discussed in Chapter 3, the overlapping concepts are complex concepts due to their 

multiple classification with respect to the partial-area taxonomy and are thus targeted for 

auditing.  For Phase 1, two domain experts, Dr. Gai Elhanan, Chief Medical Information 

Officer of Halfpenny Technologies, and Junchuan Xu, MD, were called upon, each of 

whom has training in medicine as well as training and experience in medical 

terminologies.  The overlapping concepts of the July 2007 Specimen hierarchy are 

reviewed individually by each of the two auditors.  The concepts are presented to the 

auditors with the following data for each:  concept ID, preferred term, area, and d-partial-

area.  The auditor is given a standardized form containing two fields for completion. The 

first field is used to indicate the error type (if any).  The choice is to be made from a 

menu of seven types of errors:  incorrect parent, missing parent, incorrect child, missing 

child, incorrect relationship type, missing relationship, and incorrect relationship target. 

The second field is used by the auditors to suggest a correction for the error discovered.  

The auditors’ review in this phase involves the examination of all overlapping 

concepts without regard to any specific order [70].  After that, the two auditors together 

review concepts for which their individual reports differ, and analyze the discrepancies 
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until a consensus is reached. A consensus report is then given to Dr. Kent A. 

Spackman—who is currently the Chief Terminologist of IHTSDO [3]—for further 

review. Only his accepted results are reported for Phase 1.  

4.2.2 Phase 2: Topologically Ordered Auditing  

As discussed in Chapter 3, some overlapping concepts are seen to be more complex than 

others when moving down through the hierarchy. With this idea in mind, the following 

auditing regimen is proposed that utilizes the paradigm of “group-based” auditing [48]. In 

the group-based approach applied to overlapping concepts, the concepts are reviewed in 

groups exhibiting semantic uniformity, that is, all the overlapping concepts of a d-partial-

area are reviewed together with an eye toward the overlapping root which expresses the 

overarching semantics of the group. Furthermore, the concepts in the immediate 

neighborhoods of the overlapping concepts (consisting of parents, children, siblings, and 

targets of relationships) are audited. This “neighborhood auditing” may help to uncover 

propagated errors, which might otherwise be missed if the review were limited to the 

overlapping concepts alone.  

Since SNOMED is DL based, relationships are inherited by a child concept from 

its parent(s) along the IS-A hierarchy.  Thus, an error such as an incorrect relationship 

will be inherited, too. Furthermore, even an error such as an omitted relationship may be 

“inherited” in the sense that if it is missing from the parent, it will probably be missing 

from the child (unless it is explicitly defined at the child).  

As a consequence, it is preferred in an audit of a group of hierarchically related 

concepts that the review follow a top-down order. Following such an order may help in 

detecting more errors as well as in accelerating the review process. In particular, when a 
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child is scrutinized, the auditor is already aware of any errors with the parents and is alert 

to their potential propagation. The topological sort [71] of a directed acyclic graph 

(DAG)—the structure exhibited by a SNOMED hierarchy—offers a traversal of concepts 

in a manner where each is processed only after all its parents have been processed. 

Because the d-partial-areas and their child-of relationships also constitute a DAG [50], 

the disjoint partial-area taxonomy enables the utilization of the topological sort order at 

two different levels: the d-partial-area level and the concept level, with the latter nested in 

the former.  

 

Figure 4.2  The portion of the disjoint partial-area taxonomy for the area {substance} 

corresponding to the concept network in Figure 4.1 (July 2009). 

 

The following describes the auditing methodology for overlapping concepts based 

on the disjoint partial-area taxonomy. It should be noted that overlapping roots come in 

two varieties: base and derived. The details can be found in Chapter 3. The important 

distinction between the two in this context is that the base overlapping roots occur toward 

the top of the concept hierarchy and are above all the derived overlapping roots. Also 

note that some d-partial-areas do not have any overlapping concepts at all. They are the 

ones at the very top of the disjoint partial-area taxonomy that were residually left over 
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after the lower-level d-partial-areas—containing overlapping concepts—were removed 

from their original partial-areas. For example, the top d-partial-area Drug specimen (1), 

comprising a single, non-overlapping concept, was left over as a result of extracting the 

d-partial-areas Intravenous infusion fluid sample (2) and Dialysis fluid specimen (1) (see 

Figure 4.2) from the original partial-area also named “Drug specimen” that contained a 

total of four concepts. Those upper-level d-partial-areas are not considered in this 

auditing methodology.  

1. Taxonomy level: The d-partial-areas are processed in topological sort order 

starting with those having base overlapping roots. The processing proceeds 

through their children, grandchildren, etc., down to the very bottom of the disjoint 

partial-area taxonomy. As discussed in Chapter 3, the lower d-partial-areas are 

rooted at more complex overlapping concepts.  

2. Concept level: On arrival at a particular d-partial-area in (1), all its constituent 

concepts are reviewed in a topological sort order starting with its unique root and 

progressing downwards.  The concepts are presented to the auditor in an indented 

hierarchical (textual) format for inspection. The indented display neatly supports 

the top-down processing where each concept is reviewed only after all its 

respective parents are reviewed.  

It is noted that the topological sort order leaves degrees of freedom with regards 

to the order with which the nodes of the graph are visited—and reviewed. For example, 

in a level-by-level traversal, all nodes on a given level are processed before any node on 

the next level. Another choice is a “preorder traversal,” where the processing proceeds 

from a parent node to its children and even its grandchildren, assuming all their parents 
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were already processed at that point. For the effectiveness of the auditing regimen, the 

preorder traversal is recommended. In this way, the scrutiny of a child follows that of the 

parent as quickly as possible, allowing an auditor to more readily retain knowledge of 

errors discovered at the parent and potentially propagating to the child.  

To illustrate the Taxonomy level, the review will begin with the bicolored d-

partial-areas in Figure 4.2, including Exhaled air specimen, Inhaled air specimen, etc.  

Once the review reaches Body fluid sample, the only bicolored d-partial-area with 

children, it proceeds to the bottom level containing eight tricolored d-partial-areas, i.e., 

Acellular blood (serum or plasma) specimen, Peripheral blood specimen, and so on. 

When all child d-partial-areas of Body fluid sample have been audited, the processing 

continues with the rest of the bicolored d-partial-areas, e.g., Dialysis fluid specimen. 

Again, the d-partial-areas of one color in Figure 4.2 do not have overlapping concepts 

and are therefore not part of the auditing regimen.  

Within the d-partial-area Body fluid sample, the Concept level processing would 

begin with the root Body fluid sample and then proceed to its 22 children, including 

Exudate sample and Discharge specimen (Figure 4.1). When a concept with children is 

encountered, the children are processed immediately after the parent to support the 

auditor in detecting error propagation from parent to child.  For example, Amniotic fluid 

specimen is followed by its child Cytologic fluid specimen obtained from amniotic fluid. 

An example of a propagation of an error that is easily detectable when reviewing a d-

partial-area can be seen with the concept Synovial fluid specimen in the d-partial-area 

Body fluid sample (Figure 4.1). A missing topography relationship is detected with the 

target Articular space in the Body Structure hierarchy. The same missing relationship is 
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detected for its three children: Multiple joint synovial fluid, Cytologic material obtained 

from synovial fluid, and Synovial fluid joint NOS. Arriving later at the d-partial-area 

Acellular blood (serum or plasma) specimen, the root would be examined first.  Note that 

the root’s overlapping parent Body fluid sample would already have been examined 

according to the Taxonomy level ordering.  The review of its child Serum specimen and 

its four children would follow.  Only after that would the review of the sibling Plasma 

Specimen and its three descendants occur (see Figure 4.1).  

 

Figure 4.3  An  indented  display  of  four  d-partial-areas  and  their  constituent  

concepts  illustrating  the topological-sort-order processing. 

For further illustrative purposes, Figure 4.3 shows an excerpt of four d-partial-

areas, Body fluid sample, Acellular blood (serum or plasma) specimen, Venous blood 

specimen, and Peripheral blood specimen, of the area {substance}, where both the d-

partial-areas, drawn as boxes, and the concepts, listed inside the boxes, are displayed in 
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an indented format to illustrate the topological-sort-order processing. The auditing 

proceeds left-to-right and downward, following the indentation. Only a sample of the 

concepts are shown for the d-partial-area Body fluid sample.  

For this phase, the auditing is performed by three domain experts, Dr. Gai 

Elhanan, Dr. Junchuan Xu, and Dr. Yan Chen, an associate professor from Borough of 

Manhattan Community College, each of whom has training in medicine as well as 

training and experience in medical terminologies.  All the overlapping concepts of 

SNOMED’s Specimen hierarchy (July 2009), within all its areas, are audited. The data 

presented to them for each concept are exactly the same in this phase as they are in Phase 

1. Additionally, the same error-reporting form is used. In Section 4.3, a sample of the 

various types of errors is listed. 

In the Phase 2 review, the author seeks to achieve a better agreement regarding 

the combined reported results. Thus, the auditors’ findings are anonymized and 

summarized.  The three experts are then requested to review the summary report and 

mark whether they agree or disagree with the errors listed.  One expert might overlook an 

error discovered by another, and may eventually agree with it once the potential error is 

reported. All errors asserted by at least one auditor are reviewed by Dr. James T. Case of 

the SNOMED US National Release Center (NRC) at the NLM for possible inclusion in 

the US extension of SNOMED. Only errors confirmed by him are considered in the 

results. Any changes approved by him for inclusion in the US extension of SNOMED are 

eventually transferred to the IHTSDO for review and potential inclusion in SNOMED’s 

international release.  
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4.2.3 Hypotheses and Control Sample  

There are two hypotheses that were investigated in regard to this study. The first 

distinguishes between overlapping concepts and non-overlapping concepts.  The second 

distinguishes between overlapping roots of d-partial-areas and other overlapping concepts.  

Hypothesis 4.1: Concepts residing in d-partial-areas having overlapping roots (i.e., 

overlapping concepts) are more likely to have errors than concepts residing in d-partial-

areas containing no overlapping concepts. ■ 

Hypothesis 4.2: Overlapping roots of d-partial-areas are more likely to have errors than 

non-root overlapping concepts. ■ 

The first hypothesis asserts that these more complex concepts indeed exhibit a 

higher number of errors. The second hypothesis refers to the more significant overlapping 

concepts as the overlapping roots, where the convergence of multiple inheritance paths 

occurs and where higher concentrations of errors is expected.  

As a basis for comparison, a control sample, which comprises concepts gleaned 

from partial-areas having no overlaps whatsoever, is also audited.  Both kinds of concepts 

are audited by the same auditors.  Figure 4.4 presents a flow diagram that summarizes 

this study.  

To compare overlapping concepts with those in the control sample, the proportion 

of erroneous concepts is examined. The d-partial-area is used as the unit of analysis, and 

across levels (because of the small number of concepts at Level 2). Both hypotheses are 

tested for Phases 1 and 2 of the auditing on the two releases of SNOMED, two years 

apart. The double bootstrap [59] and Fisher’s exact test two-tailed [72] are employed to 
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calculate the statistical significance of the difference of the proportions, for Hypothesis 

4.1 and 4.2, respectively. 

 

Figure 4.4  Flow diagram summarizing the audits of SNOMED 2007 and 2009. The 

numbers in each box represent the respective numbers from the 2007 and 2009 versions of 

SNOMED. For example, “1,056/1,236” in the top box indicates that there are 1,056 

concepts in the Specimen hierarchy in SNOMED 2007 and 1,236 in 2009. 

 

4.3 Results 

The results are reported for Phase 1 in Section 4.3.1 and for Phase 2 in Section 4.3.2. The 

results pertaining to the hypotheses (see Section 4.2.3) are distributed in these sections 

according to the respective phase.  

Two phases of results obtained with respect to two releases of SNOMED are 

reported. Phase 1 for the July 2007 release and Phase 2 for July 2009. In Phase 2, the 

methodology described in the previous section is utilized and based on the disjoint 

partial-area taxonomy. During Phase 1, the methodology was not yet developed and 

therefore and exhaustive audit of all overlapping concepts was carried out without regard 



110 

 

 

 

to any structural configuration or ordering. A preliminary report with some results of 

Phase 1 appeared in [70]. 

4.3.1 Phase 1: Auditing of July 2007 SNOMED  

The July 2007 release of the Specimen hierarchy consists of 1,056 concepts, of which 

162 are overlapping. For its partial-area taxonomy, see Figure 3.2. Most of the 

overlapping concepts reside in Level 1 areas, i.e., those having one relationship. In fact, 

roughly one third (155 out of 468) of the Level 1 concepts are overlapping. And these are 

found primarily in the area {topography} and {substance}. A portion of the disjoint 

partial-area taxonomy of {substance} can be seen in Figure 4.5, which should be compared 

with the 2009 version appearing in Figure 4.2. The d-partial-areas of {substance} and 

{topography} can be seen in Figure 3.10 and 3.11, respectively. Overlapping concepts 

also appear in the partial-areas of areas with two relationships but in far fewer numbers. 

In fact, there are only seven of them. Six are in {topography, procedure}, and the other is 

in {topography, morphology}. 

Table 4.1 presents the results of auditing the 35 overlapping concepts (see Figure 

3.8) distributed across nine d-partial-areas in the area {substance} (Figure 4.5). For each 

d-partial-area, the following are listed: number of overlapping concepts V, number of 

erroneous overlapping concepts Verr, the number of errors Eroot exhibited by the 

overlapping root, and the total number of errors E for all overlapping concepts. For 

example, the largest d-partial-area Blood specimen has 13 concepts, of which five were 

found to be in error. The root Blood specimen had two errors, and overall the d-partial-

area’s concepts had seven. For this d-partial-area, 50% (six out of 12) of the non-root 
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overlapping concepts are erroneous, while the root itself exhibits two errors. The result, 

for one example of a d-partial-area, gives support to Hypothesis 4.2. 

 

Figure 4.5  A portion of the disjoint partial-area taxonomy for the area {substance} (July 

2007). The multicolored boxes are the d-partial-areas containing overlapping concepts. 

 

The auditing results for all overlapping concepts are listed by area Table 4.2. For 

each area, its total number of concepts C, number of overlapping concepts V, number of 

overlapping roots D, number of erroneous overlapping concepts Verr, total number of 

errors E for the overlapping concepts, number of erroneous overlapping roots Derr, 

number of errors Eroot exhibited by the set of overlapping roots, and a number of relevant 

ratios are shown. For example, {substance} has 81 concepts, of which 35 are 

overlapping. Eleven (31%) of the latter were found to have a total of 31 errors or an 

average of 2.8 per erroneous concept, as detailed in Table 4.2. The ratio of the total 
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number of errors at the overlapping concepts to the number of overlapping concepts is 

0.89. Of the nine overlapping roots, five (56%) were found to be in error – with a 

combined 24 errors among them (or 4.8 errors per erroneous root). But only 23% (= (11-

5)/(35-9)) of the non-root overlapping concepts had errors. Note that for some areas (e.g., 

{procedure}), the ratio in the last column is not applicable (undefined) since singletons 

(i.e., d-partial-areas containing just one concept) have no non-root overlapping concepts. 

Other ratios may not be applicable due to a lack of errors. Nevertheless, the total ratios at 

the bottom of the table are defined across all the areas with overlapping concepts. 

     Table 4.1  Auditing Results for Overlapping Concepts of {substance} Arranged by 

      Disjoint Partial-area 

Disjoint partial-area V Verr Eroot E 

Exhaled air specimen 1 0 0 0 

Inhaled gas specimen 1 0 0 0 

Fecal fluid sample 1 0 0 0 

Acellular blood (serum or plasma) specimen 1 1 1 1 

Serum specimen from blood product 1 1 3 3 

Serum specimen 2 0 0 0 

Plasma specimen 4 1 1 1 

Body fluid sample 11 3 17 19 

Blood specimen 13 5 2 7 

Total: 35 11 24 31 

V = # overlapping concepts; Verr = # erroneous overlapping concepts; 

Eroot = # errors at the overlapping root; E = total # errors at overlapping concepts 

 Table 4.2  Auditing Results for Overlapping Concepts by Area 

Area C V D Verr E 
E/ 

Verr 
E/V Derr Eroot 

Eroot/

Derr 

Derr 

/D (%) 

(Verr-Derr) 

/(V-D) (%) 

substance 81 35 9 11 31 2.8 0.89 5 24 4.80 56 23 

topography 333 116 52 71 110 1.6 0.95 39 62 1.59 75 50 

procedure 20 3 3 3 9 3.0 3.00 2 9 4.50 66 N/A 

identity 20 1 1 0 0 N/A 0 0 0 N/A 0 N/A 

topog., 

proc. 
380 6 6 4 9 2.3 1.50 4 9 2.30 66 N/A 

topog., 

morph. 
18 1 1 0 0 N/A 0 0 0 N/A 0 N/A 

Total: 852 162 72 89 159 1.8 0.93 50 104 2.1 69 43 

C = # concepts; V = # overlapping concepts; D = # overlapping roots; 

Verr = # erroneous overlapping concepts; E = total # errors at overlapping concepts; 

Derr = # erroneous overlapping roots; Eroot = # errors at the overlapping roots; N/A = Not applicable 
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Most overlapping concepts in {topography} are found in intersections of partial-

areas involving Tissue specimen containing 126 concepts. These results have been 

tabulated separately in Table 4.3. For example, the partial-area Specimen from eye has 18 

concepts. Its intersection with Tissue specimen has 12 of them. Eight of those are in error.  

The control sample was gleaned from partial-areas from partial-areas that had no 

intersections whatsoever with other partial-areas and from d-partial-areas having no 

overlapping concepts (i.e., those left over after the removal of the d-partial-areas with 

overlapping concepts from a partial-area; see, e.g., the six d-partial-areas at Level 1 of 

Figure 4.2). Furthermore, only partial-areas that contained more than one concept are 

used. The reason for the last requirement is that, as alluded to, partial-areas of one 

concept are already known to be error-prone [46, 49]. Thus, they do not make for a 

proper control sample.  

  Table 4.3  Results of Auditing Intersections Involving Partial-area Tissue specimen 

Second Partial-Area C V Verr Verr / V (%) 

Specimen from eye 18 12 8 67 

Ear sample 2 1 0 0 

Specimen from breast 8 4 2 50 

Cardiovascular sample 13 3 1 33 

Products of conception tissue sample 12 1 1 100 

Genitourinary sample 73 20 17 85 

Dermatological sample 6 2 0 0 

Specimen from digestive system 74 29 18 62 

Musculoskeletal sample 35 22 15 68 

Respiratory sample 41 6 5 83 

Endocrine sample 12 3 0 0 

Specimen from central nervous system 4 1 0 0 

Spec. from thymus gland 2 1 0 0 

Specimen from trophoblast 2 1 0 0 

 

A control sample of 78 concepts is used from Level 1, half of its overlapping 

concepts (155). From Level 2, seven concepts are gathered for the control sample, an 
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equal number to the overlapping concepts. Hence, there are 155+7=162 overlapping 

concepts, and the control sample has 78+7 = 85 concepts. Since the purpose was to audit 

overlapping concepts, a smaller control sample is used that was large enough to support 

statistical significance for the result presented below. 

Table 4.4 gives the results of the auditing carried out on these two groups of 

concepts. C denotes the number of concepts, E (Column 3) denotes the total number of 

errors, and Cerr  is the number of erroneous concepts (Column 5)—with a given concept 

potentially having more than one error. The average erroneous-concept rate among the 

overlapping concepts was 55%, and among the control sample it was 29% (Column 6). 

The difference was significant (using the double bootstrap [72]) at the 0.05 level, 

supporting Hypothesis 4.1. Let the author point out that there was nearly one error (0.98) 

on average per overlapping concept as compared to 0.36 on average within the control 

sample (Column 4). Moreover, erroneous concepts in the overlapping group had 1.8 

errors on average (last column) versus 1.2 errors on average for the control sample, 

showing further difference between the two. 

           Table 4.4  Auditing Results for Overlapping Concepts vs. Control Sample  

           (Phase 1) 

 C E E / C Cerr Cerr/C(%) E/Cerr 

Overlapping 162 158 0.98 89 55 1.8 

Control Sample 85 31 0.36 25 29 1.2 

 

In examining the auditing results, overlapping roots are found to be more error-

prone than other overlapping concepts. For example, in {procedure} and {topography, 

procedure}, all errors are found in overlapping roots. As shown in Table 4.2, in the area 

{substance}, five out of nine roots (55%) versus six (= 11-5) out of 26 (=35-9) non-root 

overlapping concepts (23%) were found to be erroneous. To assess Hypothesis 4.2, the 
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data from Table 4.2 are used for the entire collection of overlapping concepts. The 

percentage of erroneous concepts for overlapping roots is 69% (=50/72). The percentage 

of erroneous concepts in the set of non-root overlapping concepts is 43% (=(89-50)/(162-

72)). The difference in the percentages of erroneous concepts between the overlapping 

roots (69%) and the non-root overlapping concepts (43%) is statistically significant 

(Fisher’s exact test two-tailed [72], p-value = 0.0014), supporting Hypothesis 4.2. 

4.3.2 Phase 2: Auditing of July 2009 SNOMED  

The results of Phase 1 were submitted to CAP for consideration and incorporation into the 

Specimen hierarchy. As a result, there were many changes in the overlapping concepts of 

this hierarchy as reflected in SNOMED’s July 2009 release. The area taxonomy and the 

partial-area taxonomy for the July 2009 release appear in Figures 4.6 and 4.7, respectively.  

A comparison of the area taxonomies of 2007 (Figure 3.1) and 2009 (Figure 4.6) exposes 

many differences in the Specimen hierarchy. For example, the total number of concepts 

with one relationship—which is equal to the sum of the sizes of the (green) areas on Level 

1—went down from 468 to 420. At the same time, the area {substance} grew from 81 to 

107 concepts. The number of areas with three relationships went down from seven to five 

with the loss of the two areas {morphology, procedure, substance} and {topography, 

identity, procedure}.  On the other hand, the area {procedure, topography, substance} 

grew from 26 concepts in 2007 to 288 concepts in 2009.  
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Figure 4.6  Area taxonomy for SNOMED’s Specimen hierarchy (July 2009 release). 



 

 

 

 

 

Figure 4.7  Partial-area taxonomy for the Specimen hierarchy (July 2009 release).
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Similarly, comparing the partial-area taxonomies for 2007 and 2009 reveals many 

differences.  For example, the area {substance} changed from having ten to 11 partial-

areas. But that small numerical change is misleading, as one can guess, considering the 

32% increase in the size of the area. Only six partial-areas did not change. A new partial-

area is Blood specimen with 25 concepts. Note that there was a d-partial-area with that 

name consisting of 13 concepts in 2007 (Figure 4.5).  At the same time, Drug specimen 

shrank from 23 to four concepts, mainly due to the removal of blood specimen concepts. 

Body substance sample expanded from 47 to 67 concepts, while Fluid sample grew from 

44 to 55 concepts. Such large changes on the partial-area level seem to indicate an 

increase in the overlap size when compared to the overall increase of 26 concepts 

observed on the area level. As another example, the area {morphology, topography, 

substance} went from having three partial-areas to 12. The area {morphology, 

topography, procedure, substance} grew from one to ten.  

The number of overlapping concepts increased by 48 from 162 to 210 (30%). 

Clearly, the landscape of the overlapping portions of partial-areas changed meaningfully 

from the time of the July 2007 release. For example, as was predicted above, in the area 

{substance}, there were 35 overlapping concepts in nine d-partial-areas in 2007 (Figure 

3.9), but 48 overlapping concepts in 15 d-partial-areas in 2009 (Figure 4.2).  

These changes motivated the application of the new methodology based on the 

disjoint partial-area taxonomy in this phase to the July 2009 release’s overlapping 

concepts. The author’s expectation was also that this new methodology employing a 

detailed order of review would expose errors missed during Phase 1.  

 



119 

 

 

 

 Table 4.5  Sample of Error Types of Overlapping Concepts for July 2009 Release 

 

Concept Partial-areas Error Type(s) Correction(s) 

Serum 

specimen from 

blood product 

Blood specimen / Fluid 

sample/Body substance 

sample 

Missing parent Add parent: Blood 

specimen from 

blood product 

Dentin 

specimen 

Specimen from 

digestive 

system/Specimen from 

head and neck structure 

Incorrect Parent: 

Oral cavity sample 

Correct parent: 

Specimen from 

tooth 

a.m. serum 

specimen 

Blood specimen/Fluid 

sample(specimen)/Body 

substance sample 

Missing 

relationship 

Add relationship: 

TIMEASPECT with 

the value of – am-

ante meridiem 

Specimen 

from tooth 

Specimen from 

digestive 

system/Specimen from 

head and neck structure 

Incorrect 

relationship target: 

Oral cavity 

structure 

Refine with: Tooth 

structure 

Specimen 

obtained by 

fine needle 

aspiration 

procedure 

Specimen obtained by 

aspiration/Biopsy 

sample 

Missing child Add children: 

*Breast fine needle 

aspirate sample; 

*Soft tissue lesion 

fine needle aspirate 

sample; 

*Specimen from 

heart obtained by 

fine needle 

aspiration 

procedure; 

*Specimen from 

thymus gland 

obtained by fine 

needle aspiration 

biopsy 

Tissue 

specimen from 

placenta 

Tissue specimen from 

genital system/Products 

of conception tissue 

sample 

Other error type: 

missing ancestor 

“Soft tissue 

sample” 

Create a proper 

concept to parent it 

in the “Soft tissue 

sample” tree. 

 

A sample of different types of errors agreed upon by all three auditors and 

confirmed after a review (by Dr. James T. Case) is listed in Table 4.5.  For example, it 

was agreed that Serum specimen from blood product is missing a parent Blood specimen 
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from blood product that should be added. Table 4.6 summarizes the number of 

occurrences for each type of error found in the overlapping concepts of the July 2009 

release. Missing parents, for example, were found for 23 concepts.  

 In the Phase 2 review, a better agreement regarding the combined reported results 

is tried to be achieved. One expert might have overlooked an error discovered by another, 

and may have agreed with it, once the potential error was reported. The level of 

agreement improved after the second-stage review. All overlapping concepts are reported 

as potential errors to the SNOMED United States NRC having at least one auditor 

reporting an error for them. The report was reviewed by Dr. Case (who works at the 

NRC). Only errors confirmed by him are considered in the results presented in the 

following. 

                               Table 4.6  Distribution of Types of Errors in the Second Phase of  

                               Auditing Overlapping Concepts 

Error Type # Concepts 

Missing parent 23 

Incorrect parent 22 

Missing child 6 

Incorrect child 2 

Missing relationship 55 

Incorrect relationship target 2 

Other error type 6 

 

The auditing results for Phase 2 are listed by area in Table 4.7, in the same format 

used in Table 4.2 for Phase 1. In this case, for example, {topography} has 249 concepts, 

with 110 of them being overlapping. Fifty-two out of the 110 (47%) were found to have a 

total of 57 errors or an average of 1.10 per erroneous concept. The ratio of the total 

number of errors to the number of overlapping concepts is 0.52. Twenty of the 37 

overlapping roots (54%) were found to be in error – with a combined 22 errors among 
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them (or 1.10 errors per root). Finally, 44% (=(52-20)/(110-37)) of the non-root 

overlapping concepts had errors. 

For the entire set of overlapping concepts summarized in the bottom row of Table 

4.7, 127 out of 210 (60%) were found to be erroneous. This result is applicable in 

assessing Hypothesis 4.1 (as shown in Table 4.8).  

Table 4.7  Phase 2 Auditing Results for Overlapping Concepts by Area 

Area C V D Verr E 
E/ 

Verr 

E/ 

V 
Derr Eroot 

Eroot 

/Derr 

Derr 

/D (%) 

(Verr-Derr) 

/(V-D) (%) 

substance 107 48 15 28 36 1.29 0.75 8 11 1.38 53 61 

topography 249 110 37 52 57 1.10 0.52 20 22 1.10 54 44 

procedure 23 2 1 1 1 1.00 0.50 1 1 1.00 100 0 

topog., proc. 244 29 16 28 38 1.36 1.31 15 19 1.27 94 100 

topog., subst. 171 5 4 3 4 1.33 0.80 3 4 1.33 75 0 

subst., topog., 

proc. 
288 16 14 15 25 1.67 1.56 14 23 1.64 100 50 

Total: 1,082 210 87 127 161 1.27 0.77 61 80 1.30 70 54 

C = #concepts; V=#overlapping concepts; D=#overlapping roots; 

Verr = #erroneous overlapping concepts; E=total #errors; 

Derr = # erroneous overlapping roots; Eroot = #errors at the roots 

 

The control sample for Phase 2 was taken strictly from partial-areas and d-partial-

areas that had no intersections whatsoever. As with Phase 1, only partial-areas that 

contained more than one concept are used. The sample consisted of 111 concepts from 

the same areas as the overlapping concepts. And as in Phase 1, the number of sample 

concepts taken from areas with small numbers (i.e., 2 – 16) of overlapping concepts was 

about the same as the number of overlapping concepts taken from those areas. The 

sample concepts numbered about half the overlapping concepts for areas with larger 

numbers of overlapping concepts. As with Phase 1, the purpose was to audit overlapping 

concepts, and a smaller control sample is used that was nevertheless big enough to 

support statistical significance of the result. 

Like Table 4.4, Table 4.8 juxtaposes the results of auditing the overlapping 

concepts and those in the control sample. The average erroneous-concept rate among the 
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overlapping concepts was 60%, versus 13% for the control sample (Column 6). The 

difference was significant at the 0.05 level, supporting Hypothesis 4.1. Note that there 

were 0.77 errors on average per overlapping concept as compared to 0.13 on average 

within the control sample (Column 4). Erroneous concepts in the overlapping group had 

1.27 errors on average (last column) versus 1.00 errors on average for the control sample, 

showing further difference between the two samples.  

           Table 4.8  Auditing Results for Overlapping Concepts vs. Control Sample  

           (Phase 2) 

 C E E/C Cerr Cerr/C (%) E/Cerr 

Overlapping 210 161 0.77 127 60 1.27 

Control Sample 111 14 0.13 14 13 1.00 

 

For the assessment of Hypothesis 4.2, the results obtained for all overlapping 

concepts are used, reflected in the bottom row of Table 4.7. Among the 87 overlapping 

roots, 61 (70%) were erroneous, while for the 123 (=210-87) non-root overlapping 

concepts, 66 (=127-61 or 54%) were found to be in error. The difference in the 

percentages of erroneous concepts between the overlapping roots (70%) and the non-root 

overlapping concepts (54%) is statistically significant (Fisher’s exact test two-tailed, p-

value = 0.0217). 

 

4.4 Discussion 

4.4.1 Auditing Theme: Complex Concepts 

This study is motivated by a general theme that more “complex” concepts tend to have 

more errors than simpler concepts. The theme of being more complex may manifest itself 

in a variety of ways. One manifestation of this theme for partial-areas was the group of 
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concepts residing in “strict inheritance” partial-areas described in Chapter 2 [48, 49]. In 

the context of the current study, this theme appears twice: the first time in identifying 

overlapping concepts as more complex than non-overlapping concepts due to their 

elaborating the multiple semantics of the multiple partial-areas they belong to; the second 

in the distinction between overlapping roots and non-root overlapping concepts. The 

reason for the higher complexity of overlapping roots stems from their being at the 

junction points where multiple hierarchical paths from ancestors converge. Each such 

path contributes a portion of a diverse collection of inherited knowledge at the 

overlapping root. Hypothesis 4.1 addresses the first appearance. Hypothesis 4.2 pertains 

to the second.  

 As was shown in Chapter 2 with regards to strict inheritance partial-areas, the 

results of the study confirm the auditing theme that complex concepts have relatively 

more errors. In view of the fact that modeling complex concepts is more challenging than 

modeling simpler concepts, it is not really surprising to find more errors in the former. 

The research challenge is to discover various characterizations of “complex” concepts. In 

particular, it is fruitful to identify structural characterizations that can be computed 

automatically, as in the current study and in Chapter 2. The higher error rate shown here 

and in Chapter 2 will help achieve higher productivity from quality-assurance personnel 

in their review of such concepts. It is suggested that the design of partial-area taxonomies 

and the auditing of the complex concepts discussed here and in Chapter 2 should become 

integral parts of the design cycle for terminologies such as SNOMED and the NCIt [46]. 

Such techniques will also help interface terminologies such as Kaiser-Permanente’s CMT 

[62]  or the VA’s ERT [61], which were derived initially from SNOMED and were 
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enhanced with local vocabulary as well as integrated parts of other terminologies. It is a 

research challenge to identify more manifestation of complex concepts using taxonomies 

or other structural techniques for SNOMED and similar terminologies. 

 One may wonder why there are more errors in overlapping roots than there are in 

other overlapping concepts (as stated in Hypothesis 4.2), in spite of the expectation that 

this methodology will expose error propagation from parents to children, which implies 

that errors at an overlapping root would be “inherited” by the other concepts in its d-

partial-area. One should realize that indeed missing or incorrect relationship errors are 

“inherited,” but that is not true of other errors, e.g., an incorrect parent. Furthermore, 

many d-partial-areas have just a single concept (which serves as the respective root), with 

no children below to inherit the errors. Hence, this methodology is designed to expose the 

cross-generational error propagation to the extent that it exists. 

4.4.2 Repeated Application of an Auditing Methodology  

In this dissertation, various methodologies for auditing a SNOMED hierarchy are 

presented.  A question to consider is whether there is a reason to reapply the same auditing 

technique to the hierarchy obtained following corrections derived from the earlier auditing 

phase that used the same technique. Should it be assumed that not all errors were found 

and corrected?  In the context of this research, the question was: should the overlapping 

concepts be audited again following the first phase reported in [70]? Furthermore, how 

many times should the same technique be applied? Another way to phrase this last question 

is: how the convergence of the auditing process is identified? 

There were several reasons to re-audit the overlapping concepts. First, in Phase 1, 

only the set of all overlapping concepts were audited without utilizing any structure 
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among them. In this chapter, the new “group auditing” methodology of overlapping 

concepts was introduced, where d-partial-areas were utilized as the grouping unit 

following the new framework described in Chapter 3 [50]. Furthermore, the new 

methodology employs a top-down ordering within each d-partial-area and among various 

d-partial-areas.  

Another reason for repeating the auditing on the overlapping concepts is the large 

increase in their numbers and the number of d-partial-areas.  For example, see Figure 4.2 

for the d-partial-areas in the area {substance} in comparison to the corresponding Figure 

3.9. Only four d-partial-areas without overlapping concepts are seen in Figure 3.9 at the 

first level and nine d-partial-areas comprising overlapping concepts. In Figure 4.2, 

showing the overlapping concepts of {substance} in 2009, there are six top d-partial-

areas without overlapping concepts and 15 d-partial-areas with overlapping concepts.  

Moreover, when one reviews the details of the two figures, many internal changes can be 

seen. For example, the d-partial-area Body fluid sample had 11 concepts in 2007 and 23 

in 2009. Blood specimen had 13 overlapping concepts in Level 3 originally, and in 2009 

it is a top d-partial-area of one concept only. It has eight child d-partial-areas containing 

18 overlapping concepts on Level 3, which are shared jointly by the parent d-partial-area 

Body fluid sample (see Figure 4.2). The latter was a parent of Blood specimen in Figure 

3.9. 

When realizing the extent of the changes, it was possible that new errors were 

introduced and that the new disjoint partial-area taxonomy would lead to exposure of 

errors not reported in the review of the 2007 release. The results shown in Table 4.7 

justify the decision for the second auditing phase. While a meaningful amount of errors 
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are expected to be found in Phase 2, it is surprising by their magnitude.  Both the 

percentages of erroneous concepts among overlapping concepts  (60% vs. 55%) and 

among overlapping roots (70% vs. 69%) were little changed in spite of this being a 

second round of auditing.  Part of the explanation may be the improved methodology 

employed in this study.  Another reason may be the large increase in the number of 

overlapping concepts (from 162 to 210). A further factor might be that in practice the 

proper modeling of these complex concepts demands more than one iteration.  

On the other hand, the ratio of errors per erroneous concept was reduced (0.93 to 

0.77) for all overlapping concepts, as was the ratio for erroneous overlapping roots (2.1 to 

1.3).  Hence, while the percentage of erroneous concepts persisted, the average number of 

errors fell. That is, fewer concepts with multiple errors are found. This last observation 

seems in line with the speculation above that multiple iterations are required for the 

proper modeling of complex concepts.  

One could certainly question the expectation of the need for an additional phase 

of auditing after all corrections from the overlapping-concept regimen have been 

implemented. That is particularly true when the corrections have made their way into 

SNOMED’s international release following the report of Dr. Case at the NRC to 

IHTSDO.  To better understand the phenomenon of finding more errors in a subsequent 

phase of auditing overlapping concepts mentioned above, one needs to keep in mind the 

restructuring undergone by d-partial-areas due to the discovered errors. For example, in 

the description of the methodology in Section 4.2, a concept Synovial fluid specimen in 

the d-partial-area Body fluid sample is mentioned, which together with its children is 

missing the relationship specimen topography to Articular space. But reviewing the 
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complete audit report for the overlapping concepts in {substance}, one may realize that 

the same concept was found to have an incorrect parent, Body fluid sample, which was 

replaced by Joint fluid specimen.  This latter concept was independently found to be 

missing the same topography relationship, as was its child Cytologic material obtained 

from joint fluid.  Furthermore, another concept Synovial fluid cells in the area 

{topography} was also made a child of Synovial fluid specimen instead of Synovial 

sample. What is seen is a movement of many concepts into the d-partial-area rooted at 

Joint fluid specimen, which before had only one child.  Moreover, this d-partial-area 

would move from the area {substance} to the area {substance, topography} due to the 

additional topography relationship. When all these corrections are incorporated into a 

future release of SNOMED, the disjoint partial-area taxonomy will convey the refined 

modeling of all joint fluid specimen concepts, contributing to better overall 

comprehension. However, this new modeling may expose errors not yet detected and 

deserves the analysis provided by the disjoint partial-area taxonomy.  

If the new disjoint partial-area taxonomy for the Specimen hierarchy obtained as a 

result of the Phase 2 audit, and possibly reflecting a future release of SNOMED, were to 

differ meaningfully from the disjoint partial-area taxonomy of the 2009 release of 

SNOMED, then it may be advisable to reapply the auditing regimen utilizing this new 

view.  

4.4.3 Error Rates and the Complexity of the Disjoint Partial-area Taxonomy  

In Phase 1 of the auditing, the bulk of the erroneous overlapping concepts and the 

overlapping concept errors occurs for the areas {substance} and {topography}. It is 

interesting to compare the various ratios of errors for these two areas.  The percentage of 
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erroneous overlapping concepts in {topography} (61%) is about double that in {substance} 

(31%). However, when measuring the ratios of errors to overlapping concepts, the values 

for the two areas, 0.95 and 0.89, respectively, are close. This is a result of a much higher 

ratio of errors to erroneous concepts for {substance} (2.8) than for {topography} (1.6). 

This observation indicates a correlation between the ratio of the number of errors to the 

number of erroneous concepts and the level of complexity of overlapping concepts, as 

expressed in the structure of the disjoint partial-area taxonomy. As was discussed and 

shown in Figures 3.9 and 3.10 in Chapter 3, the nature of the overlap is much more 

complex for {substance} with several levels in its disjoint partial-area taxonomy, while it is 

simpler and relatively flat for {topography}.  

4.4.4 An Audit Report from Several Auditors 

The auditing in Phase 1 was performed by two auditors (Dr. Elhanan and Dr. Xu), and their 

error report was obtained by a consensus from their individual findings. Anecdotal 

evidence from the auditors was that the face-to-face consensus process seemed to follow 

more of a social give-and-take rather than a deep investigation about the concepts. Similar 

anecdotal evidence was obtained for a study of auditor performance regarding a consensus-

building stage [73].  

As a result, it was decided to avoid the discussion-based, consensus-building 

effort in the Phase 2 auditing. Instead, a combined report derived from the three auditors’ 

Phase 2 reports was circulated. This report was anonymized and contained listings of the 

number of auditors for each identified error. In this second stage, each auditor was asked 

to indicate their agreement with each of the errors. Errors that had the support of at least 

one auditor were passed on for further review. It seems that a second review of others’ 
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audit reports carried out by each auditor individually without the pressure of direct social 

interaction is functioning well in achieving an agreement level. Not only was a better 

level of agreement reached, but the author also witnessed auditors backing off from 

certain errors, when noticing that the other auditors did not mark them.  

4.4.5 Limitations and Future Work  

As can be seen from Tables 4.4 and 4.8, according to all reported measures, there is a 

significantly higher return for the auditing effort obtained for the overlapping concepts 

compared to concepts in partial-areas without overlaps. Such higher return seems to justify 

concentrating auditing efforts on the more complex overlapping concepts.  The results 

confirm Hypothesis 4.1. More experiments with different and larger hierarchies of 

SNOMED and similar terminologies, e.g., NCIt [46], are needed to further confirm the 

finding.  One idea expressed in Chapter 3 that was not confirmed by this study was that 

“derived” overlapping roots (of d-partial-areas) would be more error-prone than “base” 

overlapping roots due to their higher complexity.  The current results did not support such a 

phenomenon. Future studies should look again at whether this extra inherent complexity 

manifests itself in higher error rates in other SNOMED hierarchies.  

The interest of the author in this dissertation was not in studying the auditing 

process per se, but in the distribution of the unquestionable errors resulting from it. 

Auditor performance and the impact of various protocols in achieving better agreement 

among a group of auditors may be investigated further in the future.  
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4.5 Summary 

The author proceeded from the assumption that “complex” concepts warrant particular 

attention in quality-assurance activities pertaining to SNOMED. Toward that end, an 

auditing methodology based on a refined abstraction network for a SNOMED hierarchy is 

presented, called the disjoint partial-area taxonomy, formulated in Chapter 3. The complex 

concepts in this study were taken to be those residing in elements of the disjoint partial-area 

taxonomy that represented certain overlapping subsets of portions of a SNOMED 

hierarchy.  These so-called overlapping concepts in the Specimen hierarchy (in two 

different releases of SNOMED) were identified programmatically and then put through 

rigorous audits.  Comparing these auditing results with those from control sets, a 

statistically significant higher error rate among the overlapping concepts is found. 

Furthermore, among the overlapping concepts, roots have a statistically significantly higher 

error rate than do non-roots. Thus, the auditing methodology based on the disjoint partial-

area taxonomy and its overlapping concepts can be seen as an important addition to the 

existing suite of SNOMED and SNOMED-related terminology auditing regimens. 
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CHAPTER 5  

CONCLUSION AND FUTURE WORK 

 

Biomedical terminologies, such as SNOMED, have attained an important position in the 

medical information domain, underlying applications ranging from electronic medical 

records and clinical laboratory systems to outcomes assessment and telemedicine. As such, 

it is critical that the conceptual content of terminologies be kept as accurate and up-to-

date as possible.  Due to SNOMED’s large volume and continuing expansion, quality 

assurance is a daunting challenge facing the biomedical community. 

This dissertation takes an approach based entirely on the structural aspects of the 

SNOMED hierarchies, aiming at developing automated or semi-automated methods that 

can identify concepts deserving special attention, and consequently enhance the efficacy 

and efficiency of the auditing process.  

A partitioning methodology is applied to a SNOMED hierarchy which yields 

small groups of concepts similar in both structure and semantics. Three different 

abstraction networks, the area taxonomy, partial-area taxonomy and disjoint partial-area 

taxonomy, are derived programmatically from the partitions. These three taxonomies 

complement each other in terms of granularity of display, providing a high-level 

contextual view of the underlying terminology in a multi-scale display.  

The taxonomies form the basis for a number of systematic auditing regimens 

proposed and implemented in this dissertation. Often times, concept errors are manifested 

as anomalies at the taxonomy level. For example, by examining the area taxonomy and 

partial-area taxonomy, three kinds of concept groups, strict-inheritance regions, mixed 
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regions, and small partial-areas, are found to be fruitful in bringing errors to light [48,49]. 

The disjoint partial-area taxonomy is devised as a refinement of partial-area taxonomy, 

which helps to reveal the complexity of the configuration of the overlapping concepts 

[50].  Following the assumption that “complex” concepts warrant particular attention in 

quality assurance activities, the overlapping concepts in SNOMED Specimen hierarchy 

are identified programmatically and then put through a rigorous audit. Comparing these 

auditing results with results from a control set, a statistically significant of higher error 

rate among the overlapping concepts has been found. In addition, two phases of auditing 

were carried out with respect to two releases of SNOMED in different fashions. Results 

show a statistically significant higher error rate among the overlapping concepts.  

In general, the taxonomy-based auditing methodology presented in this 

dissertation can be seen as complementary to other auditing approaches. Since different 

auditing techniques typically expose some kinds of errors while missing others, there is a 

need for a suite comprising a variety of techniques to provide quality-assurance support 

for terminologies.  

In the future, the current study will be extended in the following directions. The 

current research and experiments are mostly done using SNOMED’s Specimen hierarchy. 

Applying the methodologies to hierarchies with large numbers of concepts and rich sets 

of relationships may shed more light on the manageability and scalability of the 

techniques described in this dissertation.  

One of the limitations of the taxonomy approach is that it depends on the existing 

relationships defined for a hierarchy of SNOMED. More research is required on how to 
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handle the hierarchies without any outgoing relationships. The use of converse 

relationships is investigated in [68] as an initial attempt to resolve the issue.  

Following the research theme emphasized in this dissertation that complex 

concepts are more error prone and thus deserve special attention, only one particular kind 

of “complex” concepts, the overlapping concepts, is investigated in this research. Further 

research is needed to classify other kinds of complex concepts, by different structural and 

semantic features of the concepts, which may require further refinement of the 

taxonomies discussed here. 

Furthermore, the taxonomies implemented in this dissertation are only applicable 

to DL-based terminologies. There may be certain kinds of structures that can only occur 

when primitive concepts are present.  Thus, they may very well have an impact on the 

complexity that is seen in this work. More research is needed to explore the feasibility of 

extending the techniques for other families of terminologies and terminological system.   
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