2,033 research outputs found

    A stigmergy-based analysis of city hotspots to discover trends and anomalies in urban transportation usage

    Full text link
    A key aspect of a sustainable urban transportation system is the effectiveness of transportation policies. To be effective, a policy has to consider a broad range of elements, such as pollution emission, traffic flow, and human mobility. Due to the complexity and variability of these elements in the urban area, to produce effective policies remains a very challenging task. With the introduction of the smart city paradigm, a widely available amount of data can be generated in the urban spaces. Such data can be a fundamental source of knowledge to improve policies because they can reflect the sustainability issues underlying the city. In this context, we propose an approach to exploit urban positioning data based on stigmergy, a bio-inspired mechanism providing scalar and temporal aggregation of samples. By employing stigmergy, samples in proximity with each other are aggregated into a functional structure called trail. The trail summarizes relevant dynamics in data and allows matching them, providing a measure of their similarity. Moreover, this mechanism can be specialized to unfold specific dynamics. Specifically, we identify high-density urban areas (i.e hotspots), analyze their activity over time, and unfold anomalies. Moreover, by matching activity patterns, a continuous measure of the dissimilarity with respect to the typical activity pattern is provided. This measure can be used by policy makers to evaluate the effect of policies and change them dynamically. As a case study, we analyze taxi trip data gathered in Manhattan from 2013 to 2015.Comment: Preprin

    Traffic Prediction using Artificial Intelligence: Review of Recent Advances and Emerging Opportunities

    Full text link
    Traffic prediction plays a crucial role in alleviating traffic congestion which represents a critical problem globally, resulting in negative consequences such as lost hours of additional travel time and increased fuel consumption. Integrating emerging technologies into transportation systems provides opportunities for improving traffic prediction significantly and brings about new research problems. In order to lay the foundation for understanding the open research challenges in traffic prediction, this survey aims to provide a comprehensive overview of traffic prediction methodologies. Specifically, we focus on the recent advances and emerging research opportunities in Artificial Intelligence (AI)-based traffic prediction methods, due to their recent success and potential in traffic prediction, with an emphasis on multivariate traffic time series modeling. We first provide a list and explanation of the various data types and resources used in the literature. Next, the essential data preprocessing methods within the traffic prediction context are categorized, and the prediction methods and applications are subsequently summarized. Lastly, we present primary research challenges in traffic prediction and discuss some directions for future research.Comment: Published in Transportation Research Part C: Emerging Technologies (TR_C), Volume 145, 202

    Urban traffic flow prediction, a spatial-temporal approach

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial TechnologiesCurrent advances in computational technologies such as machine learning combined with traffic data availability are inspiring the development and growth of intelligent transport Systems (ITS). As urban authorities strive for efficient traffic systems, traffic forecasting is a vital element for effective control and management of traffic networks. Traffic forecasting methods have progressed from traditional statistical techniques to optimized data driven methods eulogised with artificial intelligence. Today, most techniques in traffic forecasting are mainly timeseries methods that ignore the spatial impact of traffic networks in traffic flow modelling. The consideration of both spatial and temporal dimensions in traffic forecasting efforts is key to achieving inclusive traffic forecasts. This research paper presents approaches to analyse spatial temporal patterns existing in networks and goes on to use a machine learning model that integrates both spatial and temporal dependency in traffic flow prediction. The application of the model to a traffic dataset for the city of Singapore shows that we can accurately predict traffic flow up to 15 minutes in advance and also accuracy results obtained outperform other classical traffic prediction methods

    Similarity Search for Spatial Trajectories Using Online Lower Bounding DTW and Presorting Strategies

    Get PDF
    Similarity search with respect to time series has received much attention from research and industry in the last decade. Dynamic time warping is one of the most widely used distance measures in this context. This is due to the simplicity of its definition and the surprising quality of dynamic time warping for time series classification. However, dynamic time warping is not well-behaving with respect to many dimensionality reduction techniques as it does not fulfill the triangle inequality. Additionally, most research on dynamic time warping has been performed with one-dimensional time series or in multivariate cases of varying dimensions. With this paper, we propose three extensions to LB_Rotation for two-dimensional time series (trajectories). We simplify LB_Rotation and adapt it to the online and data streaming case and show how to tune the pruning ratio in similarity search by using presorting strategies based on simple summaries of trajectories. Finally, we provide a thorough valuation of these aspects on a large variety of datasets of spatial trajectories

    Towards Mobility Data Science (Vision Paper)

    Full text link
    Mobility data captures the locations of moving objects such as humans, animals, and cars. With the availability of GPS-equipped mobile devices and other inexpensive location-tracking technologies, mobility data is collected ubiquitously. In recent years, the use of mobility data has demonstrated significant impact in various domains including traffic management, urban planning, and health sciences. In this paper, we present the emerging domain of mobility data science. Towards a unified approach to mobility data science, we envision a pipeline having the following components: mobility data collection, cleaning, analysis, management, and privacy. For each of these components, we explain how mobility data science differs from general data science, we survey the current state of the art and describe open challenges for the research community in the coming years.Comment: Updated arXiv metadata to include two authors that were missing from the metadata. PDF has not been change
    corecore